iVOD / 162858

Field Value
IVOD_ID 162858
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/162858
日期 2025-06-25
會議資料.會議代碼 委員會-11-3-15-27
會議資料.會議代碼:str 第11屆第3會期內政委員會第27次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 27
會議資料.種類 委員會
會議資料.委員會代碼[0] 15
會議資料.委員會代碼:str[0] 內政委員會
會議資料.標題 第11屆第3會期內政委員會第27次全體委員會議
影片種類 Clip
開始時間 2025-06-25T11:28:43+08:00
結束時間 2025-06-25T11:39:14+08:00
影片長度 00:10:31
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3c0085a4689617f52f45dd3201f16cc9d00eebfa22cd2c4c7cefc3e4f112f4f03bf7720ea16dc3525ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 洪孟楷
委員發言時間 11:28:43 - 11:39:14
會議時間 2025-06-25T09:00:00+08:00
會議名稱 立法院第11屆第3會期內政委員會第27次全體委員會議(事由:一、審查委員王定宇等18人擬具「詐欺犯罪危害防制條例第五十四條條文修正草案」案。二、審查委員廖先翔等18人擬具「詐欺犯罪危害防制條例第四十三條條文修正草案」案。三、審查委員張宏陸等30人擬具「詐欺犯罪危害防制條例第四十七條條文修正草案」案。四、審查委員林宜瑾等27人擬具「詐欺犯罪危害防制條例第四十七條條文修正草案」案。五、審查委員王義川等16人擬具「詐欺犯罪危害防制條例第四十七條條文修正草案」案。六、審查委員陳素月等18人擬具「詐欺犯罪危害防制條例第四十七條條文修正草案」案。【第六案如未經各黨團簽署不復議同意書則不予審查。】)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 3.50721875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 3.81096875
transcript.pyannote[1].end 5.12721875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 9.51471875
transcript.pyannote[2].end 10.35846875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 10.67909375
transcript.pyannote[3].end 10.99971875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 11.60721875
transcript.pyannote[4].end 18.08721875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 18.17159375
transcript.pyannote[5].end 20.56784375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 20.98971875
transcript.pyannote[6].end 21.71534375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 22.03596875
transcript.pyannote[7].end 25.88346875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 26.08596875
transcript.pyannote[8].end 30.06846875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 30.55784375
transcript.pyannote[9].end 33.39284375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 33.83159375
transcript.pyannote[10].end 37.45971875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 41.34096875
transcript.pyannote[11].end 44.80034375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 45.47534375
transcript.pyannote[12].end 48.69846875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 48.90096875
transcript.pyannote[13].end 52.05659375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 52.76534375
transcript.pyannote[14].end 53.15346875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 53.69346875
transcript.pyannote[15].end 55.26284375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 55.80284375
transcript.pyannote[16].end 58.19909375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 58.23284375
transcript.pyannote[17].end 61.38846875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 62.33346875
transcript.pyannote[18].end 63.41346875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 63.97034375
transcript.pyannote[19].end 72.12096875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 72.69471875
transcript.pyannote[20].end 78.14534375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 79.22534375
transcript.pyannote[21].end 84.49034375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 84.50721875
transcript.pyannote[22].end 87.08909375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 87.62909375
transcript.pyannote[23].end 96.53909375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 97.04534375
transcript.pyannote[24].end 98.76659375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 98.96909375
transcript.pyannote[25].end 102.31034375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 102.74909375
transcript.pyannote[26].end 110.52846875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 111.05159375
transcript.pyannote[27].end 113.90346875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 114.47721875
transcript.pyannote[28].end 126.52596875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 127.01534375
transcript.pyannote[29].end 129.31034375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 129.96846875
transcript.pyannote[30].end 130.47471875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 130.81221875
transcript.pyannote[31].end 132.71909375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 133.02284375
transcript.pyannote[32].end 134.38971875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 134.52471875
transcript.pyannote[33].end 135.14909375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 135.30096875
transcript.pyannote[34].end 135.79034375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 136.19534375
transcript.pyannote[35].end 136.75221875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 138.08534375
transcript.pyannote[36].end 138.30471875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 138.99659375
transcript.pyannote[37].end 139.70534375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 140.16096875
transcript.pyannote[38].end 141.00471875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 141.91596875
transcript.pyannote[39].end 142.74284375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 142.86096875
transcript.pyannote[40].end 143.58659375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 144.71721875
transcript.pyannote[41].end 151.90596875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 152.15909375
transcript.pyannote[42].end 168.91596875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 169.47284375
transcript.pyannote[43].end 176.54346875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 177.21846875
transcript.pyannote[44].end 179.71596875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 181.13346875
transcript.pyannote[45].end 181.48784375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 181.62284375
transcript.pyannote[46].end 182.09534375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 183.64784375
transcript.pyannote[47].end 184.25534375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 187.42784375
transcript.pyannote[48].end 209.83784375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 209.92221875
transcript.pyannote[49].end 226.22346875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 226.22346875
transcript.pyannote[50].end 226.99971875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 227.80971875
transcript.pyannote[51].end 228.18096875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 229.02471875
transcript.pyannote[52].end 230.52659375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 231.48846875
transcript.pyannote[53].end 232.50096875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 232.60221875
transcript.pyannote[54].end 238.94721875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 239.25096875
transcript.pyannote[55].end 246.77721875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 247.31721875
transcript.pyannote[56].end 256.48034375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 256.88534375
transcript.pyannote[57].end 266.68971875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 267.33096875
transcript.pyannote[58].end 270.89159375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 271.53284375
transcript.pyannote[59].end 273.06846875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 273.38909375
transcript.pyannote[60].end 275.54909375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 275.86971875
transcript.pyannote[61].end 293.41971875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 294.24659375
transcript.pyannote[62].end 299.02221875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 299.93346875
transcript.pyannote[63].end 305.53596875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 306.04221875
transcript.pyannote[64].end 307.39221875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 307.61159375
transcript.pyannote[65].end 310.66596875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 310.96971875
transcript.pyannote[66].end 313.58534375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 315.01971875
transcript.pyannote[67].end 319.05284375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 319.28909375
transcript.pyannote[68].end 323.60909375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 323.60909375
transcript.pyannote[69].end 324.82409375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 323.77784375
transcript.pyannote[70].end 324.52034375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 324.82409375
transcript.pyannote[71].end 324.92534375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 324.92534375
transcript.pyannote[72].end 331.75971875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 324.94221875
transcript.pyannote[73].end 324.99284375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 331.75971875
transcript.pyannote[74].end 334.25721875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 334.25721875
transcript.pyannote[75].end 340.21409375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 341.17596875
transcript.pyannote[76].end 355.21596875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 356.56596875
transcript.pyannote[77].end 359.89034375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 360.49784375
transcript.pyannote[78].end 365.34096875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 366.25221875
transcript.pyannote[79].end 369.67784375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 370.23471875
transcript.pyannote[80].end 370.75784375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 372.51284375
transcript.pyannote[81].end 373.69409375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 374.01471875
transcript.pyannote[82].end 374.57159375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 374.95971875
transcript.pyannote[83].end 375.48284375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 376.10721875
transcript.pyannote[84].end 376.12409375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 376.12409375
transcript.pyannote[85].end 376.15784375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 376.15784375
transcript.pyannote[86].end 397.43721875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 376.17471875
transcript.pyannote[87].end 376.64721875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 390.72096875
transcript.pyannote[88].end 391.85159375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 393.79221875
transcript.pyannote[89].end 396.32346875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 396.79596875
transcript.pyannote[90].end 417.61971875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 418.10909375
transcript.pyannote[91].end 424.94346875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 425.01096875
transcript.pyannote[92].end 436.82346875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 437.11034375
transcript.pyannote[93].end 438.12284375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 438.30846875
transcript.pyannote[94].end 444.13034375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 444.51846875
transcript.pyannote[95].end 446.13846875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 446.67846875
transcript.pyannote[96].end 477.18846875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 449.69909375
transcript.pyannote[97].end 451.03221875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 460.00971875
transcript.pyannote[98].end 460.21221875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 477.39096875
transcript.pyannote[99].end 487.70159375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 487.06034375
transcript.pyannote[100].end 491.43096875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 492.02159375
transcript.pyannote[101].end 497.45534375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 492.52784375
transcript.pyannote[102].end 497.43846875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 497.45534375
transcript.pyannote[103].end 497.47221875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 497.47221875
transcript.pyannote[104].end 497.65784375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 497.65784375
transcript.pyannote[105].end 497.97846875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 497.97846875
transcript.pyannote[106].end 498.53534375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 498.02909375
transcript.pyannote[107].end 498.58596875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 498.58596875
transcript.pyannote[108].end 503.09159375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 498.63659375
transcript.pyannote[109].end 498.73784375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 503.39534375
transcript.pyannote[110].end 504.44159375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 504.84659375
transcript.pyannote[111].end 507.17534375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 507.93471875
transcript.pyannote[112].end 509.11596875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 509.68971875
transcript.pyannote[113].end 520.82721875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 521.08034375
transcript.pyannote[114].end 522.39659375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 522.46409375
transcript.pyannote[115].end 523.12221875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 523.12221875
transcript.pyannote[116].end 525.28221875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 525.78846875
transcript.pyannote[117].end 527.71221875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 527.93159375
transcript.pyannote[118].end 533.85471875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 533.95596875
transcript.pyannote[119].end 541.22909375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 541.75221875
transcript.pyannote[120].end 547.65846875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 548.26596875
transcript.pyannote[121].end 548.90721875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 549.04221875
transcript.pyannote[122].end 552.19784375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 552.90659375
transcript.pyannote[123].end 556.77096875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 556.85534375
transcript.pyannote[124].end 559.43721875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 559.85909375
transcript.pyannote[125].end 563.84159375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 564.41534375
transcript.pyannote[126].end 564.75284375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 564.75284375
transcript.pyannote[127].end 564.76971875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 565.32659375
transcript.pyannote[128].end 576.02534375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 576.19409375
transcript.pyannote[129].end 580.05846875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 580.19346875
transcript.pyannote[130].end 595.58346875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 595.83659375
transcript.pyannote[131].end 610.75409375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 598.40159375
transcript.pyannote[132].end 598.73909375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 611.27721875
transcript.pyannote[133].end 628.48971875
transcript.whisperx[0].start 0.471
transcript.whisperx[0].end 4.831
transcript.whisperx[0].text 謝謝,麻煩請我們劉世芳部長跟警政署署長好,部長跟署長
transcript.whisperx[1].start 9.9
transcript.whisperx[1].end 37.199
transcript.whisperx[1].text 部長好部長看到我們今天在針對詐騙犯罪的部分大家都希望能夠加嚴加緊讓詐騙從台灣越來越少那我看到現在我們這邊有比較說是打詐的一個成效先講我們的這個一個報告說比去年8月平均下降但是5月比4月成長了多少部長知道嗎
transcript.whisperx[2].start 41.38
transcript.whisperx[2].end 60.954
transcript.whisperx[2].text 五月比四月大概多件數是差不多但是大概是多十億左右百分之十四啊從七十六億變八十七億啊對啊所以真的部長大家都希望詐騙面對今天八十七億不是八十七萬不是八十七塊
transcript.whisperx[3].start 62.606
transcript.whisperx[3].end 77.993
transcript.whisperx[3].text 還是很高啊每一個案件裡面一萬多筆的案件裡面背後就是一萬多個破碎的家庭啊我想部長跟署長應該能認同這句話吧好來 那再請教因為本席之前一直講是說第一線的員警非常辛苦
transcript.whisperx[4].start 79.261
transcript.whisperx[4].end 101.875
transcript.whisperx[4].text 每一個員警我認識的 不管是分局長喔我們地方分局長 還是我們的派出所所長把握每一個機會參會 都會上台去宣導165反詐騙 都會去宣導我們要怎麼樣試詐防詐但是源頭沒有管理 源頭沒有控管那就永遠會有人被騙了
transcript.whisperx[5].start 102.836
transcript.whisperx[5].end 113.426
transcript.whisperx[5].text 那其中今天的簡報裡面有講到光一到五月下架違法假投資廣告六萬多則Meta 色詐訊息九萬多則
transcript.whisperx[6].start 114.52
transcript.whisperx[6].end 136.568
transcript.whisperx[6].text 那之前我也問過速發部速發部那時候講是說警政組織沒有通報所以說很難開罰後來才講是說有啦是當天詢問的時候當天通報所以當天會診之後開罰我們國人被騙了87億5月光5月就被騙了87億到目前為止速發部開罰Meta100萬那後續我想請教一下不管是Meta不管是Line
transcript.whisperx[7].start 144.773
transcript.whisperx[7].end 168.605
transcript.whisperx[7].text 我們的報告裡面都寫了他有九萬多則詐騙的訊息有八千多則詐騙的訊息那源頭管理是不是應該要請企業主負起相關的責任他不能刊登廣告啊怎麼會一而再再放任說他廣告錢他賺然後他刊登了廣告讓國人受害受騙了我們的警察員警還要去
transcript.whisperx[8].start 169.545
transcript.whisperx[8].end 179.594
transcript.whisperx[8].text 海巡還要去視察把他通報了然後才要要求他下架那變成是我們的警察同盟變成是那些社群企業的下線啊部長署長你們怎麼看
transcript.whisperx[9].start 188.596
transcript.whisperx[9].end 204.31
transcript.whisperx[9].text 委員的這個論述確實有他的這個基礎在我覺得我在各種場合都強調做源頭的管理源頭那邊組織組掉了就可以組掉所有的這些被詐騙的一個訊息這個是一直我們努力的地方
transcript.whisperx[10].start 204.79
transcript.whisperx[10].end 230.391
transcript.whisperx[10].text 那我們現在也是跟主的這個樹花部在做通力合作未來在這個炸王條裡面是不是在對於網路廣告平台這些業者規範更嚴謹而且他們企業主也有他們自己本身的責任我們希望在這方面更加的這個完整那我們也朝這個方向來做一個努力好 部長部長李聖溫的學姐啦
transcript.whisperx[11].start 231.53
transcript.whisperx[11].end 246.418
transcript.whisperx[11].text 部長今天你可能在這邊覺得無奈只想說這是速發部的問題啊你放心速發部的問題我沒有少問過他但是今天是內政部警政署所有警察同仁在第一線那麼辛苦我為警察同仁抱不捨啊
transcript.whisperx[12].start 247.378
transcript.whisperx[12].end 270.737
transcript.whisperx[12].text 我說警察同仁要利用每個參會時間去上台去講165反詐騙然後結果我們放任詐騙廣告持續的出來其實說穿了詐騙廣告能夠減少的話我們詐騙的案件數以及詐騙的金額我相信至少一半以上因為他沒有管道去接觸到民眾了嘛
transcript.whisperx[13].start 271.584
transcript.whisperx[13].end 298.866
transcript.whisperx[13].text 那今天既然速發部他到目前為止只開發100萬喔我也強調我是對勢不對人我今天不是要針對哪一個企業公司要去開發而是90%以上的詐騙廣告都集中在同一家公司的時候怎麼會那個公司只有賺廣告的費用但是他沒有內部集合的把關機制讓詐騙廣告持續的出來我覺得這才是源頭啊所以也才需要部長跟部長這邊互相溝通啊
transcript.whisperx[14].start 299.98
transcript.whisperx[14].end 313.377
transcript.whisperx[14].text 不然內政部一定會覺得很納悶就說我又沒有裁罰的權利裁罰的權利在速發部啊那可是我們內政部警政署移送了那麼多案件給速發部結果速發部到目前為止只處理兩案
transcript.whisperx[15].start 315.086
transcript.whisperx[15].end 339.353
transcript.whisperx[15].text 署長能不能告訴我我們現在內政部警政署移送了多少案件給訴法部我們兩個第一次是15件第二次是23件23件15件那不管23件或15件這都是明證確鑿他通報了他也沒有下架所以你們才移送嘛是不是這個部分訴法部正在處理當中是但是訴法部現在跟我們的答案是說他會找相關人員開會啊我也不知道說要開什麼會啊
transcript.whisperx[16].start 341.383
transcript.whisperx[16].end 370.439
transcript.whisperx[16].text 都已經 民政確鑿你們已經組了九萬多則九萬多則裡面有十五件跟二十三件是真的屢勸不聽或是說他沒有二十四小時下架你們才移送那移送之後速發部說還要再開會再討論講不客氣的一天裡面就可以有多少人被詐騙了結果我們現在光移送一個十五件跟移送一個二十三件拖一個多月了沒有下文那這一些說不定他早就已經賺飽飽早就已經換廣告了不是嗎
transcript.whisperx[17].start 372.554
transcript.whisperx[17].end 393.742
transcript.whisperx[17].text 部長不要只有點頭啦是不是署長這個部分應該我們會同書報部共同來做一個處理那我想其實我們造文條例裡面對於這一些的業者他們自己本身也要這些他們的集合跟管理的機制只是在60度這個部分而已60度的部分的執行
transcript.whisperx[18].start 397.623
transcript.whisperx[18].end 416.271
transcript.whisperx[18].text 打詐五法打詐四法每一次都講說我們給予相關的法源依據要求業者但是業者有沒有落實這就是我們公部門應該要去執行跟努力的地方來再者另外一個部分一個多月左右有一個台中的女大生說被騙到東南亞
transcript.whisperx[19].start 418.151
transcript.whisperx[19].end 443.92
transcript.whisperx[19].text 那雖然到最後這個外公說繳付贖金然後還是沒辦法然後後來見報之後里長、民間人士來協助讓這個兩個女大生回來了嘛但是本席目前也接獲到好幾起的一個陳情都是有相關東南亞的這種不管是被騙去、被旅遊等等相關我也要確認一下是不是現在有死灰復燃的跡象
transcript.whisperx[20].start 444.734
transcript.whisperx[20].end 463.415
transcript.whisperx[20].text 我想這個應該是就是個案應該這個不多啦但是我們掌握的這個狀況有一些自己本身如果要到那邊去大概有一些都是他知情的狀況相對是這種不知情的不多沒有
transcript.whisperx[21].start 464.176
transcript.whisperx[21].end 489.925
transcript.whisperx[21].text 沒有那種情形有一些就是可能就是知情過去那邊在執行過程當中沒有達到這一些詐欺集團的這個目標所造成的這個情形那我們在於這個區塊對於外交部跟我們警政署移民署大概都有在做通力合作在做這樣的一個相關的協助跟研究兩三年前那時候疫情期間這種東南亞
transcript.whisperx[22].start 492.099
transcript.whisperx[22].end 506.718
transcript.whisperx[22].text 把我們變成人球 那是寧願致死的對 那寧願致死所以現在這個狀況 沒有這種情況是 本席現在提醒如果說他本來就已經他自己就知道說他要去犯罪了那當然我們該怎麼判就怎麼判我們也不會
transcript.whisperx[23].start 507.95
transcript.whisperx[23].end 525.062
transcript.whisperx[23].text 同情或是保護但是另外一個部分是針對一個月前左右這個新聞是說呂大生被騙去然後兩三個月然後到最後還要外公去繳付贖金這個新聞署長有看到吧有看到對那現在暑假將近
transcript.whisperx[24].start 525.842
transcript.whisperx[24].end 547.456
transcript.whisperx[24].text 本期也要再一次的提醒就是說針對七八月暑假將近來那警政署這邊在第一線包括說內政部所管轄移民署相關單位出入境管理局是不是針對新手辦護照第一次要出國的時候就前往不是國人一般常習慣的去日本
transcript.whisperx[25].start 549.166
transcript.whisperx[25].end 563.483
transcript.whisperx[25].text 韓國等地方而是第一次手辦護照馬上就飛東南亞的一些國家特定的高風險的國家的時候多予給予關心跟警示多詢問一下也許這樣子是可以來防範於未來
transcript.whisperx[26].start 564.448
transcript.whisperx[26].end 584.765
transcript.whisperx[26].text 部長我們現在已經都有做這樣的跨部會的包括外交部對於辦護照或者是在我們航警局那個地方我們航警局就是在不管是在航空的一個櫃檯要登機的櫃檯或者是要在這個相關的這個移民署的這個通關的地方
transcript.whisperx[27].start 585.385
transcript.whisperx[27].end 610.476
transcript.whisperx[27].text 我們除了這個宣導之外在那個地方做攔阻到的要到東安利亞可能會遭受詐騙我們這個部分的這個攔阻的這個狀況也非常的好大概一月到晚有攔阻十幾件十幾件的這個情形都是我們主動機攔阻到的那這個除了在我們國內的這些相關宣導之外那國外的部分也都有做這樣的一個尤其是求職的一個情形
transcript.whisperx[28].start 611.34
transcript.whisperx[28].end 627.8
transcript.whisperx[28].text 好 本席還是再提醒因為最主要是暑期快到了我們不希望說我們的紀念朋友誤信導致於說有任何被炸的狀況 好不好那相關的剛剛講說攔阻的一個計畫成效是不是也給本席辦公室一份書面資料好 沒問題好 謝謝