iVOD / 162775

Field Value
IVOD_ID 162775
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/162775
日期 2025-06-23
會議資料.會議代碼 委員會-11-3-19-17
會議資料.會議代碼:str 第11屆第3會期經濟委員會第17次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 17
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第17次全體委員會議
影片種類 Clip
開始時間 2025-06-23T10:53:05+08:00
結束時間 2025-06-23T11:04:48+08:00
影片長度 00:11:43
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/b58c4cf52db2e91a23abdbb9dd60b4cbb85017248ed72d8dda6ae3643212cc5f739ca4563886b2115ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 邱志偉
委員發言時間 10:53:05 - 11:04:48
會議時間 2025-06-23T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第17次全體委員會議(事由:邀請經濟部部長、國家發展委員會主任委員、交通部首長及國家科學及技術委員會首長就「因應高齡化社會,我國智慧公共運具發展及目標」進行報告,並備質詢。【6月23日及6月25日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 1.92096875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 20.77034375
transcript.pyannote[1].end 24.46596875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 24.70221875
transcript.pyannote[2].end 25.19159375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 25.41096875
transcript.pyannote[3].end 28.85346875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 36.70034375
transcript.pyannote[4].end 42.65721875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 36.83534375
transcript.pyannote[5].end 37.32471875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 42.89346875
transcript.pyannote[6].end 46.47096875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 46.97721875
transcript.pyannote[7].end 48.20909375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 48.85034375
transcript.pyannote[8].end 50.06534375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 50.60534375
transcript.pyannote[9].end 51.65159375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 52.14096875
transcript.pyannote[10].end 54.03096875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 54.11534375
transcript.pyannote[11].end 57.57471875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 58.06409375
transcript.pyannote[12].end 59.65034375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 60.56159375
transcript.pyannote[13].end 64.03784375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 64.49346875
transcript.pyannote[14].end 66.07971875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 66.90659375
transcript.pyannote[15].end 68.89784375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 69.72471875
transcript.pyannote[16].end 71.31096875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 71.64846875
transcript.pyannote[17].end 72.74534375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 73.42034375
transcript.pyannote[18].end 77.01471875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 75.76596875
transcript.pyannote[19].end 76.49159375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 76.54221875
transcript.pyannote[20].end 76.91346875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 77.01471875
transcript.pyannote[21].end 77.40284375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 77.40284375
transcript.pyannote[22].end 82.09409375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 82.92096875
transcript.pyannote[23].end 85.75596875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 86.75159375
transcript.pyannote[24].end 89.24909375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 89.24909375
transcript.pyannote[25].end 89.26596875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 89.65409375
transcript.pyannote[26].end 90.70034375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 90.70034375
transcript.pyannote[27].end 107.20409375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 107.42346875
transcript.pyannote[28].end 108.90846875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 109.43159375
transcript.pyannote[29].end 120.09659375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 119.26971875
transcript.pyannote[30].end 123.30284375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 123.48846875
transcript.pyannote[31].end 125.19284375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 125.37846875
transcript.pyannote[32].end 128.14596875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 128.61846875
transcript.pyannote[33].end 134.28846875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 134.96346875
transcript.pyannote[34].end 134.98034375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 134.98034375
transcript.pyannote[35].end 143.53596875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 144.26159375
transcript.pyannote[36].end 148.02471875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 148.02471875
transcript.pyannote[37].end 156.73221875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 157.12034375
transcript.pyannote[38].end 172.05471875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 163.75221875
transcript.pyannote[39].end 164.79846875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 172.30784375
transcript.pyannote[40].end 175.46346875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 174.70409375
transcript.pyannote[41].end 179.24346875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 180.39096875
transcript.pyannote[42].end 183.98534375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 184.55909375
transcript.pyannote[43].end 190.00971875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 190.48221875
transcript.pyannote[44].end 191.83221875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 192.18659375
transcript.pyannote[45].end 194.56596875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 194.86971875
transcript.pyannote[46].end 197.21534375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 197.33346875
transcript.pyannote[47].end 197.83971875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 198.27846875
transcript.pyannote[48].end 201.83909375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 202.51409375
transcript.pyannote[49].end 204.55596875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 202.73346875
transcript.pyannote[50].end 202.86846875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 204.55596875
transcript.pyannote[51].end 204.67409375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 204.67409375
transcript.pyannote[52].end 207.05346875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 207.05346875
transcript.pyannote[53].end 207.96471875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 207.44159375
transcript.pyannote[54].end 210.41159375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 210.96846875
transcript.pyannote[55].end 213.07784375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 213.90471875
transcript.pyannote[56].end 214.96784375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 214.96784375
transcript.pyannote[57].end 215.17034375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 216.13221875
transcript.pyannote[58].end 216.14909375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 216.14909375
transcript.pyannote[59].end 224.21534375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 221.05971875
transcript.pyannote[60].end 221.97096875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 221.97096875
transcript.pyannote[61].end 222.52784375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 224.83971875
transcript.pyannote[62].end 240.02721875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 226.96596875
transcript.pyannote[63].end 227.60721875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 230.34096875
transcript.pyannote[64].end 230.89784375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 240.02721875
transcript.pyannote[65].end 245.44409375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 244.26284375
transcript.pyannote[66].end 247.11471875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 246.81096875
transcript.pyannote[67].end 250.55721875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 248.36346875
transcript.pyannote[68].end 249.10596875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 249.34221875
transcript.pyannote[69].end 259.48409375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 259.48409375
transcript.pyannote[70].end 262.04909375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 262.18409375
transcript.pyannote[71].end 262.62284375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 262.90971875
transcript.pyannote[72].end 274.58721875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 275.02596875
transcript.pyannote[73].end 280.71284375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 281.10096875
transcript.pyannote[74].end 293.62221875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 293.87534375
transcript.pyannote[75].end 304.50659375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 305.04659375
transcript.pyannote[76].end 305.43471875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 305.83971875
transcript.pyannote[77].end 309.48471875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 309.90659375
transcript.pyannote[78].end 313.21409375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 313.51784375
transcript.pyannote[79].end 314.39534375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 314.69909375
transcript.pyannote[80].end 315.00284375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 315.13784375
transcript.pyannote[81].end 316.21784375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 316.21784375
transcript.pyannote[82].end 316.23471875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 317.98971875
transcript.pyannote[83].end 325.26284375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 325.81971875
transcript.pyannote[84].end 337.93596875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 335.20221875
transcript.pyannote[85].end 343.92659375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 344.70284375
transcript.pyannote[86].end 349.66409375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 350.17034375
transcript.pyannote[87].end 357.57846875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 357.52784375
transcript.pyannote[88].end 357.81471875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 357.67971875
transcript.pyannote[89].end 366.97784375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 366.97784375
transcript.pyannote[90].end 368.47971875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 368.47971875
transcript.pyannote[91].end 377.69346875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 368.53034375
transcript.pyannote[92].end 369.08721875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 375.12846875
transcript.pyannote[93].end 375.44909375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 377.96346875
transcript.pyannote[94].end 381.96284375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 382.03034375
transcript.pyannote[95].end 382.75596875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 382.95846875
transcript.pyannote[96].end 388.30784375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 388.76346875
transcript.pyannote[97].end 393.25221875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 393.53909375
transcript.pyannote[98].end 401.41971875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 401.82471875
transcript.pyannote[99].end 413.33346875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 413.78909375
transcript.pyannote[100].end 420.37034375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 420.99471875
transcript.pyannote[101].end 422.05784375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 422.69909375
transcript.pyannote[102].end 423.79596875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 423.93096875
transcript.pyannote[103].end 424.21784375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 424.62284375
transcript.pyannote[104].end 426.17534375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 426.49596875
transcript.pyannote[105].end 427.72784375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 428.57159375
transcript.pyannote[106].end 430.66409375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 431.08596875
transcript.pyannote[107].end 433.93784375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 434.39346875
transcript.pyannote[108].end 435.06846875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 436.06409375
transcript.pyannote[109].end 439.35471875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 440.46846875
transcript.pyannote[110].end 440.92409375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 441.19409375
transcript.pyannote[111].end 442.67909375
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 444.07971875
transcript.pyannote[112].end 466.20284375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 466.20284375
transcript.pyannote[113].end 476.91846875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 477.22221875
transcript.pyannote[114].end 488.27534375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 488.73096875
transcript.pyannote[115].end 496.74659375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 497.23596875
transcript.pyannote[116].end 507.49596875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 508.00221875
transcript.pyannote[117].end 509.92596875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 511.29284375
transcript.pyannote[118].end 513.77346875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 513.79034375
transcript.pyannote[119].end 515.14034375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 515.34284375
transcript.pyannote[120].end 517.48596875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 518.44784375
transcript.pyannote[121].end 521.01284375
transcript.pyannote[122].speaker SPEAKER_03
transcript.pyannote[122].start 523.12221875
transcript.pyannote[122].end 523.69596875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 524.97846875
transcript.pyannote[123].end 526.48034375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 527.18909375
transcript.pyannote[124].end 543.23721875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 543.91221875
transcript.pyannote[125].end 547.81034375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 548.06346875
transcript.pyannote[126].end 564.44909375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 564.44909375
transcript.pyannote[127].end 564.65159375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 564.65159375
transcript.pyannote[128].end 567.50346875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 568.09409375
transcript.pyannote[129].end 569.79846875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 571.13159375
transcript.pyannote[130].end 574.23659375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 575.04659375
transcript.pyannote[131].end 577.35846875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 577.93221875
transcript.pyannote[132].end 582.64034375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 583.02846875
transcript.pyannote[133].end 586.60596875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 586.62284375
transcript.pyannote[134].end 586.63971875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 586.63971875
transcript.pyannote[135].end 588.88409375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 588.88409375
transcript.pyannote[136].end 595.27971875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 595.90409375
transcript.pyannote[137].end 597.03471875
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 597.57471875
transcript.pyannote[138].end 602.13096875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 602.33346875
transcript.pyannote[139].end 605.37096875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 606.11346875
transcript.pyannote[140].end 609.03284375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 609.03284375
transcript.pyannote[141].end 625.09784375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 622.46534375
transcript.pyannote[142].end 631.32471875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 631.32471875
transcript.pyannote[143].end 631.62846875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 631.62846875
transcript.pyannote[144].end 665.61471875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 639.40784375
transcript.pyannote[145].end 640.28534375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 647.69346875
transcript.pyannote[146].end 648.25034375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 666.10409375
transcript.pyannote[147].end 673.96784375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 674.28846875
transcript.pyannote[148].end 676.53284375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 676.11096875
transcript.pyannote[149].end 678.76034375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 676.98846875
transcript.pyannote[150].end 680.38034375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 680.19471875
transcript.pyannote[151].end 683.29971875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 682.10159375
transcript.pyannote[152].end 695.02784375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 684.85221875
transcript.pyannote[153].end 685.64534375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 695.02784375
transcript.pyannote[154].end 699.56721875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 697.84596875
transcript.pyannote[155].end 700.12409375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 701.33909375
transcript.pyannote[156].end 701.44034375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 701.44034375
transcript.pyannote[157].end 702.33471875
transcript.whisperx[0].start 0.009
transcript.whisperx[0].end 0.589
transcript.whisperx[0].text 謝謝主席我是不是請經濟部國部長國部長然後還有國科會國科會書副主委
transcript.whisperx[1].start 38.839
transcript.whisperx[1].end 58.948
transcript.whisperx[1].text 昨天我看了一下CNN跟BBC對美國針對伊朗核設施的空襲我今天特別注意伊朗的議會已經通過可能要對赫姆斯海峽進行封鎖可能還要經過安全會議
transcript.whisperx[2].start 60.632
transcript.whisperx[2].end 85.348
transcript.whisperx[2].text 假如一旦封鎖,當然我們的這個天然氣來源國應該是以澳洲第一澳洲差不多三、四萬再來應該是加拿大,再來美國,再來巴布亞、紐西蘭差不多是這樣,如果我們記錯數字所以加拿大差不多要減三、四、兩、三、七左右那荷姆斯海峽如果一封鎖
transcript.whisperx[3].start 86.789
transcript.whisperx[3].end 111.429
transcript.whisperx[3].text 對我們田園企業的接收、供應會造成影響嗎?當然是會影響啦現在我們就是有在前一星期就開始針對這些情形來做一些這個 simulation那這些情境的分析啊那麼我們可能就是可能會在現貨市場裡面去取得一些協助啦
transcript.whisperx[4].start 112.21
transcript.whisperx[4].end 133.508
transcript.whisperx[4].text 那雖然現在是已經方法有很多啦那可能抱歉在這個地方我不便跟這個對 因為它是這個最近的供應國啦譬如說你澳洲 巴布亞 紐西蘭 再來美國美國未來它的佔比現在是10%左右美國未來會不會提升天然氣採購的佔比
transcript.whisperx[5].start 135.39
transcript.whisperx[5].end 142.425
transcript.whisperx[5].text 當然未來美國應該是會我們調高天然氣購買來源的一個非常重要的一個關鍵
transcript.whisperx[6].start 144.386
transcript.whisperx[6].end 164.12
transcript.whisperx[6].text 所以在目前的這個狀況之下我們估計會目前是百分之十左右未來對美國天然氣的比例比重大概會到什麼樣的一個規模我們大概我們希望說能夠到達這個穩定的狀況這個很抽象穩定的狀況對就是穩定因為這個其實跟委員報告這種東西都是動態的
transcript.whisperx[7].start 173.527
transcript.whisperx[7].end 201.607
transcript.whisperx[7].text 這個市場裡面一定是狀態他新聞來看 新聞來看應該是中東比較雙是不是這樣他新聞來看 美俄洲比巴布尼亞比美國這新聞來看 應該是中東比較雙所以我們這樣卡他 才不會這樣我們三峽左右所以我要提醒經濟部如果說一旦荷姆斯被封鎖讓三峽位卡他出來這個天然氣供應 你們可能要做有一些因應的方案
transcript.whisperx[8].start 204.235
transcript.whisperx[8].end 223.766
transcript.whisperx[8].text 我們都有這個因應的方案所以不會造成天然氣供應因為這個赫姆斯海峽封鎖而造成影響會有一些影響啦但是我們 我想 我知道這個委員的關注的部分我們有交代 交期不能夠影響
transcript.whisperx[9].start 224.915
transcript.whisperx[9].end 228.199
transcript.whisperx[9].text 所以我們可以調整,譬如說他要去保障的生活人員,這都可以調整他要給保障的人也是要為他卡他出來
transcript.whisperx[10].start 244.355
transcript.whisperx[10].end 246.678
transcript.whisperx[10].text 我們當然可以尋求對澳洲或對美國增加經濟衛生來支援
transcript.whisperx[11].start 263.159
transcript.whisperx[11].end 279.086
transcript.whisperx[11].text 我是說確定要供應不會造成說我們天然氣供應的不足或者造成因為這可能會是一個長期的效應不知道說它會豐收多久可是它要豐收一年我們本來是三十萬卡拉出來沒辦法出來這影響很大我們這也是有變成五百年
transcript.whisperx[12].start 282.208
transcript.whisperx[12].end 303.967
transcript.whisperx[12].text 只要經濟部我相信經濟部有相關的因應方案那現在永安天然氣LNG廠現在當然天然氣進來你要擴大天然氣儲存量 要建儲槽我希望這個部分可能終於要去跟這個地方多做溝通我想這個地方上在永安是反對聲音還蠻大的我覺得要多做溝通
transcript.whisperx[13].start 306.82
transcript.whisperx[13].end 313.928
transcript.whisperx[13].text 至於說前幾天在永安的說明會,我覺得地方上是一致性的強烈反對
transcript.whisperx[14].start 318.052
transcript.whisperx[14].end 343.596
transcript.whisperx[14].text 我們都可以了解這個國人的這些擔心但是我們會在就像委員講的這個我們希望能夠多溝通讓國人都知道這個天然氣它的排碳是現在的這個燒煤的你要借一個除潮就是安全性的一定要地方有共識要當地的這個市民支持
transcript.whisperx[15].start 344.775
transcript.whisperx[15].end 364.941
transcript.whisperx[15].text 否則我作為當地的民意代表作為立法委員我覺得我電視上好讓地方的聲音那他們來跟我申請他們說明說目前出朝還是有安全之餘但是你要多做溝通啦所以多做溝通我如果你們取得當地這個我們市民的同意我當然是無條件支持所以謝謝委員支持
transcript.whisperx[16].start 365.441
transcript.whisperx[16].end 386.501
transcript.whisperx[16].text 因為過去這個除潮是在地下這幾點我都知道地下跟地上差異在哪裡 安全係數有沒有多少變化可能要多做幾次溝通那另外就是說為什麼要請蘇政剛蘇副主委白埔產業園區是過去我跟經濟部爭取作為傳統產業園區
transcript.whisperx[17].start 388.863
transcript.whisperx[17].end 411.081
transcript.whisperx[17].text 現在市政府當然很積極希望說把北高雄這個橋頭跟岡山變成一個宜居然後高科技然後健康的一個城市所以北高雄外山坑外橋頭外到岡山是未來我有一個夢想要把它打造成高雄市的這個岡橋副都心
transcript.whisperx[18].start 413.883
transcript.whisperx[18].end 442.118
transcript.whisperx[18].text 富多基你要完善的入網你要完善的這個醫療設施你要有這個環境也很好然後這個宜居然後交通又方便然後另外就有產業產業就是高科技嘛產業進駐就會有機會所以白布產業園區我們希望說能夠爭取到這個TSMC啊能夠在考慮在這地方設廠這個有硫化物的問題嗎
transcript.whisperx[19].start 444.09
transcript.whisperx[19].end 465.994
transcript.whisperx[19].text 我想個別廠商的設廠他有針對製程的條件不一他會關心很多種不同的相關的周邊的條件那剛剛邱委員所提示的其實非常正確也就是說相關的產業業績在開發的時候我們在串聯整個南台灣的產業狼帶的時候會考量到九大配套措施包含生活機能交通這個都會一起來放一起來納入考量
transcript.whisperx[20].start 466.274
transcript.whisperx[20].end 484.239
transcript.whisperx[20].text TSMC社長有他的專業考量有他們公司的這個相關的專業判斷但是地方政府的支持地方政府的這個這個協助也很重要但是中央也要協助地方政府啦齁所以地方政府要合作來跟台積電說明這是一個好的地方啦我是說我每天在那齁
transcript.whisperx[21].start 488.8
transcript.whisperx[21].end 517.314
transcript.whisperx[21].text 這比我國家好一點好一點應該是很好的一個地方我是拜託國客會跟經濟部可以再跟TSMC去考量去說明這是一個他們選項之一我認為一定要放在那裡選項之一啦如果有國客會跟這個經濟部推薦他們會覺得會有更多的意願所以今天我們拜託國務部長和書副主委
transcript.whisperx[22].start 518.733
transcript.whisperx[22].end 539.259
transcript.whisperx[22].text 另外交通部的部分今天林市長高齡者開車駕車安全性是所有高齡者必須去重視的問題但你不要忽略一個問題的重點在哪裡問題本是說都會區跟非都會區年長者
transcript.whisperx[23].start 544.276
transcript.whisperx[23].end 569.374
transcript.whisperx[23].text 使用運具的這個習慣是不一樣因為工具會產生他們的這個使用習慣好 都會區它有很多選項班次密集 有捷運 有公車路網 對不對它不需要騎摩托車 它不需要自己開車它可以很便利 很方便 很安全到哪一場去的地方但是非都會區 比方說高雄市北邊它雖然有捷運 但只有這一條
transcript.whisperx[24].start 571.189
transcript.whisperx[24].end 596.754
transcript.whisperx[24].text 很多區域都需要自己開車或騎摩托車所以你要考慮到這個區域的差別對這些年長者他們使用應居的需求跟標準以及協助你要有不同的思維 你不要疑似同仁是 委員講的是重點 確實如此你要針對非度位區這些長者他沒有其他的選擇 他一定要開車他一定要騎摩托車
transcript.whisperx[25].start 599.256
transcript.whisperx[25].end 605.304
transcript.whisperx[25].text 現在他們子女可能在出外上班沒有辦法在家裡他必須靠自己
transcript.whisperx[26].start 606.435
transcript.whisperx[26].end 624.599
transcript.whisperx[26].text 這種情況之下他沒有公共交通運輸可以選擇的時候怎麼辦呢委員您講的是重點如果沒有公共運輸他勢必要自行開車或家人接送那自行開車的過程我們這個制度並不是不讓他開車我們是要他在75歲或是我理解這種需求會對非都會區的長者會更為需求強度會更強確實
transcript.whisperx[27].start 632.32
transcript.whisperx[27].end 655.671
transcript.whisperx[27].text 所以你跟他們有更多的政策上的協助配套的措施讓他們可以安心的開車所以這部分這個應該是行政部門跟交通部要去做一個完整的規劃我想把這個問題點出來讓交通部門能夠理解最後這個幾個計畫都是交通平權交通平權就是縣市的平權然後都會區跟非都會區也要平權
transcript.whisperx[28].start 656.792
transcript.whisperx[28].end 673.591
transcript.whisperx[28].text 這個建設這幾都是北高雄為公共運輸能夠強化讓這些長者不用自己開車騎到拜所以現在五省 省省差不多5.09億現在還在報道交通部在誰我希望交通部能夠全力支持
transcript.whisperx[29].start 674.892
transcript.whisperx[29].end 698.42
transcript.whisperx[29].text 這個清單我都把你列出來的有 委員我想待會我會把這清單再請次長去了解一下我們部門跟公務局會你們再跟高雄市政府交通局再做溝通好不好這些都是針對非都會區怎麼樣去改善這個交通平權怎麼樣讓非都會區的長者能夠安全的駕駛是 每個地方有特定的議題所以我們歸納來處理好 謝謝委員好 謝謝