iVOD / 162774

Field Value
IVOD_ID 162774
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/162774
日期 2025-06-23
會議資料.會議代碼 委員會-11-3-26-18
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第18次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 18
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第18次全體委員會議
影片種類 Clip
開始時間 2025-06-23T10:50:45+08:00
結束時間 2025-06-23T11:05:24+08:00
影片長度 00:14:39
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/b58c4cf52db2e91a849b7bfdee90f7ccb9483b76f331b600da6ae3643212cc5f9aab6c45daf424f65ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 蘇清泉
委員發言時間 10:50:45 - 11:05:24
會議時間 2025-06-23T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第18次全體委員會議(事由:一、審查 (一)委員劉建國等17人擬具「老人福利法第四十八條條文修正草案」案。 (二)台灣民眾黨黨團擬具「老人福利法第四十八條條文修正草案」案。 二、審查 委員許宇甄等18人、委員邱鎮軍等19人、委員林月琴等17人、委員陳菁徽等18人、台灣民眾黨黨團、委員范雲等17人、委員邱若華等17人【提案第11006882號】、委員魯明哲等19人、委員傅崐萁等24人、委員洪孟楷等17人、委員邱若華等17人【提案第11010755號】分別擬具「身心障礙者權益保障法第五十三條條文修正草案」等11案。 三、審查 (一)委員范雲等17人、委員何欣純等17人、委員羅廷瑋等16人、委員廖偉翔等19人、委員陳菁徽等16人、委員羅美玲等16人、委員劉建國等17人分別擬具「身心障礙者權益保障法部分條文修正草案」等7案。 (二)委員郭昱晴等19人擬具「身心障礙者權益保障法第十六條條文修正草案」案。 (三)委員陳冠廷等16人擬具「身心障礙者權益保障法第三十八條條文修正草案」案。 (四)委員陳冠廷等20人擬具「身心障礙者權益保障法第二條、第五十三條及第九十九條條文修正草案」案。 (五)委員徐富癸等18人擬具「身心障礙者權益保障法第十條條文修正草案」案。 (六)委員黃捷等17人擬具「身心障礙者權益保障法第七十一條條文修正草案」案。 (七)委員王鴻薇等20人擬具「身心障礙者權益保障法增訂第四十條之一條文草案」案。 (八)委員柯志恩等18人擬具「身心障礙者權益保障法增訂第四十條之一條文草案」案。 (九)委員柯志恩等17人擬具「身心障礙者權益保障法第六十條之一條文修正草案」案。 (十)委員馬文君等19人擬具「身心障礙者權益保障法第三十條之一、第五十條及第五十二條條文修正草案」案。 (十一)委員廖偉翔等21人擬具「身心障礙者權益保障法增訂第五十條之一條文草案」案。 (十二)委員林楚茵等20人擬具「身心障礙者權益保障法第十條條文修正草案」案。 (十三)委員洪孟楷等18人擬具「身心障礙者權益保障法增訂第四十條之一條文草案」案。 (十四)委員陳俊宇等18人擬具「身心障礙者權益保障法第七十一條條文修正草案」案。 (十五)委員林楚茵等17人擬具「身心障礙者權益保障法第七十一條條文修正草案」案。 (十六)委員劉建國等17人擬具「身心障礙者權益保障法第七十一條條文修正草案」案。 (十七)委員邱若華等17人擬具「身心障礙者權益保障法第七十一條條文修正草案」案。 【第一案至第三案採綜合詢答;本日僅處理第一案及第二案。】 【6月23日、25日及26日三天一次會】)
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 0.72284375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 7.16909375
transcript.pyannote[1].end 10.91534375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 11.26971875
transcript.pyannote[2].end 14.22284375
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 12.40034375
transcript.pyannote[3].end 12.97409375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 14.30721875
transcript.pyannote[4].end 14.96534375
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 15.58971875
transcript.pyannote[5].end 15.74159375
transcript.pyannote[6].speaker SPEAKER_03
transcript.pyannote[6].start 15.85971875
transcript.pyannote[6].end 15.96096875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 18.01971875
transcript.pyannote[7].end 19.58909375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 19.97721875
transcript.pyannote[8].end 20.80409375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 21.17534375
transcript.pyannote[9].end 24.78659375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 25.07346875
transcript.pyannote[10].end 27.77346875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 28.09409375
transcript.pyannote[11].end 34.81034375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 35.21534375
transcript.pyannote[12].end 40.22721875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 41.69534375
transcript.pyannote[13].end 43.02846875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 43.80471875
transcript.pyannote[14].end 46.04909375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 48.07409375
transcript.pyannote[15].end 51.07784375
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 49.96409375
transcript.pyannote[16].end 52.57971875
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 53.35596875
transcript.pyannote[17].end 53.37284375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 53.37284375
transcript.pyannote[18].end 56.91659375
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 53.54159375
transcript.pyannote[19].end 53.60909375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 57.13596875
transcript.pyannote[20].end 61.67534375
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 61.67534375
transcript.pyannote[21].end 61.72596875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 61.72596875
transcript.pyannote[22].end 75.73221875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 77.28471875
transcript.pyannote[23].end 85.75596875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 86.56596875
transcript.pyannote[24].end 88.30409375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 88.70909375
transcript.pyannote[25].end 96.74159375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 98.80034375
transcript.pyannote[26].end 104.11596875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 104.43659375
transcript.pyannote[27].end 111.62534375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 112.57034375
transcript.pyannote[28].end 116.97471875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 117.78471875
transcript.pyannote[29].end 122.27346875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 123.74159375
transcript.pyannote[30].end 126.40784375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 127.15034375
transcript.pyannote[31].end 129.14159375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 129.66471875
transcript.pyannote[32].end 135.19971875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 135.75659375
transcript.pyannote[33].end 140.70096875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 141.66284375
transcript.pyannote[34].end 141.67971875
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 141.67971875
transcript.pyannote[35].end 143.60346875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 142.91159375
transcript.pyannote[36].end 144.22784375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 145.78034375
transcript.pyannote[37].end 148.07534375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 148.71659375
transcript.pyannote[38].end 152.42909375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 153.03659375
transcript.pyannote[39].end 154.25159375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 154.85909375
transcript.pyannote[40].end 157.98096875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 158.65596875
transcript.pyannote[41].end 160.79909375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 161.40659375
transcript.pyannote[42].end 165.25409375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 166.03034375
transcript.pyannote[43].end 182.07846875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 182.51721875
transcript.pyannote[44].end 183.27659375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 184.32284375
transcript.pyannote[45].end 190.02659375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 190.54971875
transcript.pyannote[46].end 193.51971875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 193.89096875
transcript.pyannote[47].end 197.72159375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 199.03784375
transcript.pyannote[48].end 199.34159375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 200.57346875
transcript.pyannote[49].end 205.12971875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 205.75409375
transcript.pyannote[50].end 217.56659375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 218.00534375
transcript.pyannote[51].end 224.23221875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 225.26159375
transcript.pyannote[52].end 227.53971875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 227.75909375
transcript.pyannote[53].end 228.83909375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 229.21034375
transcript.pyannote[54].end 232.19721875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 232.48409375
transcript.pyannote[55].end 233.42909375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 234.32346875
transcript.pyannote[56].end 235.15034375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 235.77471875
transcript.pyannote[57].end 238.03596875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 239.25096875
transcript.pyannote[58].end 243.03096875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 243.09846875
transcript.pyannote[59].end 244.06034375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 244.73534375
transcript.pyannote[60].end 246.16971875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 246.55784375
transcript.pyannote[61].end 248.24534375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 248.75159375
transcript.pyannote[62].end 249.32534375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 249.79784375
transcript.pyannote[63].end 251.26596875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 252.46409375
transcript.pyannote[64].end 253.35846875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 254.08409375
transcript.pyannote[65].end 256.44659375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 256.76721875
transcript.pyannote[66].end 259.87221875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 260.26034375
transcript.pyannote[67].end 261.47534375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 261.91409375
transcript.pyannote[68].end 263.83784375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 265.05284375
transcript.pyannote[69].end 265.99784375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 267.01034375
transcript.pyannote[70].end 273.60846875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 274.23284375
transcript.pyannote[71].end 274.70534375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 275.14409375
transcript.pyannote[72].end 278.80596875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 279.90284375
transcript.pyannote[73].end 280.84784375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 281.67471875
transcript.pyannote[74].end 284.84721875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 285.31971875
transcript.pyannote[75].end 290.14596875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 290.78721875
transcript.pyannote[76].end 294.66846875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 295.20846875
transcript.pyannote[77].end 297.95909375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 298.60034375
transcript.pyannote[78].end 300.42284375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 301.77284375
transcript.pyannote[79].end 304.62471875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 305.14784375
transcript.pyannote[80].end 306.46409375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 306.78471875
transcript.pyannote[81].end 307.54409375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 310.12596875
transcript.pyannote[82].end 312.52221875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 312.70784375
transcript.pyannote[83].end 313.85534375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 313.93971875
transcript.pyannote[84].end 315.17159375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 315.71159375
transcript.pyannote[85].end 316.67346875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 316.99409375
transcript.pyannote[86].end 318.07409375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 318.24284375
transcript.pyannote[87].end 319.59284375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 320.09909375
transcript.pyannote[88].end 332.35034375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 334.00409375
transcript.pyannote[89].end 336.68721875
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 336.99096875
transcript.pyannote[90].end 337.22721875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 337.27784375
transcript.pyannote[91].end 345.25971875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 345.34409375
transcript.pyannote[92].end 347.90909375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 348.53346875
transcript.pyannote[93].end 354.16971875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 354.23721875
transcript.pyannote[94].end 360.95346875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 361.56096875
transcript.pyannote[95].end 362.35409375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 363.01221875
transcript.pyannote[96].end 393.77534375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 394.18034375
transcript.pyannote[97].end 395.22659375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 396.22221875
transcript.pyannote[98].end 405.40221875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 406.78596875
transcript.pyannote[99].end 409.14846875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 409.53659375
transcript.pyannote[100].end 412.50659375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 413.19846875
transcript.pyannote[101].end 419.44221875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 414.46409375
transcript.pyannote[102].end 414.76784375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 415.91534375
transcript.pyannote[103].end 416.03346875
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 416.03346875
transcript.pyannote[104].end 417.87284375
transcript.pyannote[105].speaker SPEAKER_03
transcript.pyannote[105].start 418.12596875
transcript.pyannote[105].end 418.29471875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 419.64471875
transcript.pyannote[106].end 424.75784375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 425.50034375
transcript.pyannote[107].end 430.32659375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 430.81596875
transcript.pyannote[108].end 433.33034375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 432.58784375
transcript.pyannote[109].end 433.14471875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 433.97159375
transcript.pyannote[110].end 434.69721875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 434.86596875
transcript.pyannote[111].end 453.88409375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 454.03596875
transcript.pyannote[112].end 463.53659375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 460.46534375
transcript.pyannote[113].end 460.87034375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 463.41846875
transcript.pyannote[114].end 464.86971875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 464.34659375
transcript.pyannote[115].end 464.88659375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 464.88659375
transcript.pyannote[116].end 464.93721875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 464.93721875
transcript.pyannote[117].end 465.27471875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 465.27471875
transcript.pyannote[118].end 467.29971875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 467.56971875
transcript.pyannote[119].end 471.07971875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 471.50159375
transcript.pyannote[120].end 474.06659375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 475.26471875
transcript.pyannote[121].end 477.15471875
transcript.pyannote[122].speaker SPEAKER_03
transcript.pyannote[122].start 475.60221875
transcript.pyannote[122].end 475.77096875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 477.52596875
transcript.pyannote[123].end 485.10284375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 485.87909375
transcript.pyannote[124].end 487.24596875
transcript.pyannote[125].speaker SPEAKER_03
transcript.pyannote[125].start 486.48659375
transcript.pyannote[125].end 486.99284375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 488.10659375
transcript.pyannote[126].end 490.68846875
transcript.pyannote[127].speaker SPEAKER_03
transcript.pyannote[127].start 490.67159375
transcript.pyannote[127].end 491.17784375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 490.70534375
transcript.pyannote[128].end 490.72221875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 491.11034375
transcript.pyannote[129].end 494.90721875
transcript.pyannote[130].speaker SPEAKER_03
transcript.pyannote[130].start 494.83971875
transcript.pyannote[130].end 495.19409375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 495.19409375
transcript.pyannote[131].end 501.67409375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 502.24784375
transcript.pyannote[132].end 505.40346875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 506.23034375
transcript.pyannote[133].end 507.02346875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 507.24284375
transcript.pyannote[134].end 507.32721875
transcript.pyannote[135].speaker SPEAKER_03
transcript.pyannote[135].start 507.32721875
transcript.pyannote[135].end 509.79096875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 508.69409375
transcript.pyannote[136].end 508.96409375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 509.79096875
transcript.pyannote[137].end 510.02721875
transcript.pyannote[138].speaker SPEAKER_03
transcript.pyannote[138].start 510.02721875
transcript.pyannote[138].end 520.82721875
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 521.08034375
transcript.pyannote[139].end 521.67096875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 521.67096875
transcript.pyannote[140].end 521.80596875
transcript.pyannote[141].speaker SPEAKER_03
transcript.pyannote[141].start 521.80596875
transcript.pyannote[141].end 521.82284375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 522.17721875
transcript.pyannote[142].end 522.97034375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 523.59471875
transcript.pyannote[143].end 526.48034375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 527.52659375
transcript.pyannote[144].end 536.35221875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 536.84159375
transcript.pyannote[145].end 537.39846875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 537.83721875
transcript.pyannote[146].end 538.74846875
transcript.pyannote[147].speaker SPEAKER_03
transcript.pyannote[147].start 539.11971875
transcript.pyannote[147].end 545.70096875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 545.70096875
transcript.pyannote[148].end 547.00034375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 547.70909375
transcript.pyannote[149].end 550.57784375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 551.18534375
transcript.pyannote[150].end 556.12971875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 557.66534375
transcript.pyannote[151].end 565.81596875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 566.30534375
transcript.pyannote[152].end 571.92471875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 572.54909375
transcript.pyannote[153].end 576.80159375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 577.24034375
transcript.pyannote[154].end 581.03721875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 582.65721875
transcript.pyannote[155].end 588.27659375
transcript.pyannote[156].speaker SPEAKER_03
transcript.pyannote[156].start 587.92221875
transcript.pyannote[156].end 588.10784375
transcript.pyannote[157].speaker SPEAKER_03
transcript.pyannote[157].start 589.49159375
transcript.pyannote[157].end 591.04409375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 591.04409375
transcript.pyannote[158].end 591.92159375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 591.92159375
transcript.pyannote[159].end 596.64659375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 597.03471875
transcript.pyannote[160].end 601.10159375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 600.71346875
transcript.pyannote[161].end 600.79784375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 600.84846875
transcript.pyannote[162].end 600.88221875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 600.91596875
transcript.pyannote[163].end 600.98346875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 601.10159375
transcript.pyannote[164].end 601.23659375
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 601.23659375
transcript.pyannote[165].end 605.16846875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 603.54846875
transcript.pyannote[166].end 604.00409375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 604.98284375
transcript.pyannote[167].end 605.10096875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 605.16846875
transcript.pyannote[168].end 606.02909375
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 605.20221875
transcript.pyannote[169].end 605.94471875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 606.02909375
transcript.pyannote[170].end 606.06284375
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 606.18096875
transcript.pyannote[171].end 607.95284375
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 608.45909375
transcript.pyannote[172].end 609.87659375
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 610.61909375
transcript.pyannote[173].end 618.36471875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 615.49596875
transcript.pyannote[174].end 616.30596875
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 618.82034375
transcript.pyannote[175].end 619.15784375
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 619.63034375
transcript.pyannote[176].end 622.39784375
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 622.53284375
transcript.pyannote[177].end 622.83659375
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 623.62971875
transcript.pyannote[178].end 626.16096875
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 626.61659375
transcript.pyannote[179].end 629.21534375
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 629.95784375
transcript.pyannote[180].end 631.84784375
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 632.25284375
transcript.pyannote[181].end 658.81409375
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 658.29096875
transcript.pyannote[182].end 660.72096875
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 660.72096875
transcript.pyannote[183].end 675.58784375
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 673.52909375
transcript.pyannote[184].end 674.15346875
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 675.46971875
transcript.pyannote[185].end 676.49909375
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 676.92096875
transcript.pyannote[186].end 677.57909375
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 678.11909375
transcript.pyannote[187].end 681.69659375
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 682.72596875
transcript.pyannote[188].end 685.79721875
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 682.89471875
transcript.pyannote[189].end 684.05909375
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 684.75096875
transcript.pyannote[190].end 686.94471875
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 687.83909375
transcript.pyannote[191].end 687.85596875
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 687.85596875
transcript.pyannote[192].end 690.01596875
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 687.87284375
transcript.pyannote[193].end 688.51409375
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 690.13409375
transcript.pyannote[194].end 693.76221875
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 690.33659375
transcript.pyannote[195].end 690.75846875
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 693.66096875
transcript.pyannote[196].end 696.07409375
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 696.78284375
transcript.pyannote[197].end 704.25846875
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 704.78159375
transcript.pyannote[198].end 715.54784375
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 716.00346875
transcript.pyannote[199].end 718.90596875
transcript.pyannote[200].speaker SPEAKER_02
transcript.pyannote[200].start 719.39534375
transcript.pyannote[200].end 721.72409375
transcript.pyannote[201].speaker SPEAKER_02
transcript.pyannote[201].start 722.60159375
transcript.pyannote[201].end 725.52096875
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 725.72346875
transcript.pyannote[202].end 733.40159375
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 735.39284375
transcript.pyannote[203].end 741.24846875
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 741.36659375
transcript.pyannote[204].end 750.09096875
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 750.25971875
transcript.pyannote[205].end 756.19971875
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 756.65534375
transcript.pyannote[206].end 761.21159375
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 761.21159375
transcript.pyannote[207].end 773.34471875
transcript.pyannote[208].speaker SPEAKER_02
transcript.pyannote[208].start 773.98596875
transcript.pyannote[208].end 776.71971875
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 777.24284375
transcript.pyannote[209].end 779.08221875
transcript.pyannote[210].speaker SPEAKER_02
transcript.pyannote[210].start 779.67284375
transcript.pyannote[210].end 786.87846875
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 787.99221875
transcript.pyannote[211].end 801.66096875
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 802.35284375
transcript.pyannote[212].end 802.97721875
transcript.pyannote[213].speaker SPEAKER_02
transcript.pyannote[213].start 803.12909375
transcript.pyannote[213].end 804.10784375
transcript.pyannote[214].speaker SPEAKER_02
transcript.pyannote[214].start 804.66471875
transcript.pyannote[214].end 805.03596875
transcript.pyannote[215].speaker SPEAKER_03
transcript.pyannote[215].start 805.77846875
transcript.pyannote[215].end 805.96409375
transcript.pyannote[216].speaker SPEAKER_03
transcript.pyannote[216].start 806.52096875
transcript.pyannote[216].end 813.22034375
transcript.pyannote[217].speaker SPEAKER_03
transcript.pyannote[217].start 813.77721875
transcript.pyannote[217].end 829.72409375
transcript.pyannote[218].speaker SPEAKER_03
transcript.pyannote[218].start 830.14596875
transcript.pyannote[218].end 834.71909375
transcript.pyannote[219].speaker SPEAKER_03
transcript.pyannote[219].start 835.02284375
transcript.pyannote[219].end 845.31659375
transcript.pyannote[220].speaker SPEAKER_03
transcript.pyannote[220].start 846.21096875
transcript.pyannote[220].end 871.82721875
transcript.pyannote[221].speaker SPEAKER_03
transcript.pyannote[221].start 872.18159375
transcript.pyannote[221].end 872.38409375
transcript.pyannote[222].speaker SPEAKER_03
transcript.pyannote[222].start 872.75534375
transcript.pyannote[222].end 875.48909375
transcript.pyannote[223].speaker SPEAKER_03
transcript.pyannote[223].start 876.48471875
transcript.pyannote[223].end 878.96534375
transcript.whisperx[0].start 0.069
transcript.whisperx[0].end 7.478
transcript.whisperx[0].text 謝謝主席,我請部長跟次長
transcript.whisperx[1].start 20.113
transcript.whisperx[1].end 42.179
transcript.whisperx[1].text 今天這簡單要用兩條第一條就是平健制度的老人福利法48條另外一個是實境障礙者保障法53條就是不愛做我很詳細的聽每一位委員部長本身也當過召委都知道我先問
transcript.whisperx[2].start 43.857
transcript.whisperx[2].end 50.864
transcript.whisperx[2].text 你老了,你會想住安養院嗎?市長你有想要住嗎?我才一陣子沒去想到這個問題
transcript.whisperx[3].start 57.236
transcript.whisperx[3].end 75.486
transcript.whisperx[3].text 我覺得醫療人員好像沒有什麼退休年齡我事實上我這幾年從第八屆、第九屆、第十屆、現在十一屆第八屆我們先搞那個長照服務法到現在我跑北歐跑哪裡都看了我總歸一個結論日本比較跟我們比較貼切所以日本這個制度比較貼切那北歐那是看送的而已
transcript.whisperx[4].start 86.618
transcript.whisperx[4].end 111.098
transcript.whisperx[4].text 因為要吃大菜之類的我跟部長講我們看了日本名古屋到處看也跟他們詳細討論現在日本的安養院像我們去看八王子區看哪裡有其中一家就是差不多差不多,裡面蠻溫馨的硬體設備也不錯
transcript.whisperx[5].start 112.722
transcript.whisperx[5].end 140.544
transcript.whisperx[5].text 他們的私人房他們借物保險在我看的時候就已經一年借物保險的費用就10兆日幣10兆日幣喔,這合台幣也多少那日本政府挨挨救啊從安倍的時代就想把借物保險跟醫療保險把它mix在一起結果搞到現在好像也沒有,還是分開那是怎樣?你覺得有什麼原因?
transcript.whisperx[6].start 141.807
transcript.whisperx[6].end 153.877
transcript.whisperx[6].text 因為兩個姓氏不一樣他們的四人房,我看那間是他的床位有三百七十幾床然後有一個醫師,退休的醫師就來這邊當院民
transcript.whisperx[7].start 159.057
transcript.whisperx[7].end 181.629
transcript.whisperx[7].text 請說要當住院的醫生那他住不用錢還可以拿一點薪水那裡面的護理師也是一樣退休之後就住在那邊當院民要順便當護理師我覺得這個很好這個老的 照顧更老的我們現在就是在推這個嘛儲存時數等等那都很難
transcript.whisperx[8].start 184.729
transcript.whisperx[8].end 205.021
transcript.whisperx[8].text 這裏的護理師老,就直接做,做到不做,我覺得這樣很好,我們大陸可能搞不好會這樣啦,我也要把我們屏東那裏的護理師,或是醫生、衛生所退休,我說你們倆要怎麼辦?公共醫師要遵守H65,所以退休,隔天就在我們法人上班了。
transcript.whisperx[9].start 205.939
transcript.whisperx[9].end 233.129
transcript.whisperx[9].text 那護理師也是一樣的退休之後就在那邊有的當志工有的當那個在廠商在那邊做我覺得布朗的話你找不到人啦所以布朗這個是可以考量的那他們的私人房一年的一個月差不多合台幣差不多三萬六三萬七差不多啊沒差不多啊那兩人房差不多五萬二左右我都講台幣齁那單人房
transcript.whisperx[10].start 234.726
transcript.whisperx[10].end 250.994
transcript.whisperx[10].text 7萬多塊政府付的差不多3萬多塊這樣如果去看歐洲不可能的事情我跟你講赫爾辛基在芬蘭我們去看還有去瑞典瑞典首都那個叫什麼斯德哥摩
transcript.whisperx[11].start 254.127
transcript.whisperx[11].end 263.65
transcript.whisperx[11].text 你知道那個安養院 安養院喔他一個月政府付給那個業者一個月一個人 付差不多24萬台幣一個月喔然後如果是精神科的那些不處理是這樣一個月付35萬台幣給吼 我說我們的安養機構如果一個月付25萬 我大家都叫爸爸大家都這樣吼
transcript.whisperx[12].start 281.704
transcript.whisperx[12].end 300.473
transcript.whisperx[12].text 不可能我們付不起嘛,因為所得稅60%所得稅所以我們要去學費,那個是亂搞啦,不要講那個那現在回到日本這邊他的住宿機構提供的房數也差不多三成而已那間三百多層的安養機構,外面白堆買一百,八百多
transcript.whisperx[13].start 310.571
transcript.whisperx[13].end 332.078
transcript.whisperx[13].text 死一個補一個,死一個補一個所以人家老人家,我在民國有看,都在家比較多因為冬天他們又冷,那他們的日本人的習性跟我們台灣人又不太一樣台灣人的嘻嘻嘩嘩,老人家說我唱歌跳舞,我唱什麼比較不會失智啊,對不對?那不是啊,都一口吐一口大吐,看電視死在家裡面,五天,沒人知道
transcript.whisperx[14].start 337.409
transcript.whisperx[14].end 346.392
transcript.whisperx[14].text 所以他們的社工雜貨都一直在卡電話而已,他們都外面不想出來,所以他們的時薪跟我們看不一樣所以長壽,然後又不喜歡出來,又天氣又冷所以我們台灣這個是蠻適合,我們老人會要叫他們出來啊,我覺得那個都非常好但是咧,我們的長照機構,大陸人第一次一個月補六千、八千、補一萬嘛,現在一萬嗎?
transcript.whisperx[15].start 363.086
transcript.whisperx[15].end 387.493
transcript.whisperx[15].text 要一個要三萬多塊你補一萬所以你的費用是遠遠不足啦所以團團王一鳴在說你現在那個規模是太少了啦所以如果長照保險在第八屆我們我跟那個劉建國王一鳴我們都努力過但是那個時候有反對所以那個推不過那現在應該如果他的規模越來越長到3.0
transcript.whisperx[16].start 389.774
transcript.whisperx[16].end 405.108
transcript.whisperx[16].text 規模越大事實上是要考量今天這個老人福利法這個評鑑制度因為很多來陳情我想每個人都談過了我也在開過協調會醫院評鑑以前也是優等特優、優等、合格、不合格
transcript.whisperx[17].start 413.697
transcript.whisperx[17].end 418.42
transcript.whisperx[17].text 不然就改成合格不合格這樣比較簡單啦你常常在這裡熬午飯吃一餅丁又休等那個是以前
transcript.whisperx[18].start 426.68
transcript.whisperx[18].end 453.565
transcript.whisperx[18].text 該換 護理事項的評鑑也是用合格不合格還是兩套標準現在是怎樣 市長感受一下來 那個委員報告啦 我也知道現在大家都覺得說這樣一國多製 我的委員報告所以我們現在提出的就是說我們現在就是全部一致就把它區分成合格跟不合格我們就不區分成甲乙丙丁我們就是在這個部分我們來來朝這個方 我們就是確定啦
transcript.whisperx[19].start 454.125
transcript.whisperx[19].end 473.505
transcript.whisperx[19].text 也確定啦那就是用這個方向 這樣比較簡單 你像說他的簡單易行 這樣讓大家好做事情來時間用來好好照顧我們的東北 這樣比較重要對啦 對啦 這樣就 感謝 謝謝再來就是這個身心障礙者保護保障法這個不愛做這個 現在要開始優先做 董隊你還有意見
transcript.whisperx[20].start 475.582
transcript.whisperx[20].end 488.889
transcript.whisperx[20].text 這以前我們在武衛村,我們是10%一個車廂裡面要10%現在不然又提高到20%15%喔?我每天都在坐高鐵,我每天通勤的那高鐵剛才沒人坐,沒有要坐的人沒人坐,大家拍攝就去坐所以有時候年輕人坐在裡面,老的來,他老的不要老的,要幫忙怎麼樣
transcript.whisperx[21].start 502.321
transcript.whisperx[21].end 520.321
transcript.whisperx[21].text 常常看到糾紛,所以你現在該做什麼?Priority Seat,優先洗優先洗,就是說反應的什麼都可以嘛就是說有需要的啦,按照有需要的,有的人表面上看好好,其實他是生病的啦,會有慢性病的
transcript.whisperx[22].start 523.664
transcript.whisperx[22].end 548.099
transcript.whisperx[22].text 主席不要煩惱,今天這兩條,簡單啦其他的骨肉骨粟的不用我請罵啦有什麼請助理請什麼,那比較有課稅啦那要花錢啦,市長、部長,那要花很多錢我們會站在人民的需求上為最高點然後整個國家的一個財政...你現在住在那個機構安養的,現在有10萬床
transcript.whisperx[23].start 551.241
transcript.whisperx[23].end 555.962
transcript.whisperx[23].text 那十萬床如果一個月補一萬塊,現在如果叫你補兩萬塊,你就倒了就幾十億了,所以我們要量力而為啦好,最後一個問題我要問你,失智現在這兩天有夠嚴重,我自己的表姐、三個都一直下去現在65歲,以上失智的有35萬人
transcript.whisperx[24].start 577.404
transcript.whisperx[24].end 580.926
transcript.whisperx[24].text 65%是PRECIS,DEMENTIA,超過了多少?有65%是對的?15%我們早期15%,所以委員關心的是失智症的新藥液體
transcript.whisperx[25].start 597.079
transcript.whisperx[25].end 608.968
transcript.whisperx[25].text 65歲以上比較Dementia65歲以下是Prescina我講的沒錯吧Prescina有多少人這裡35萬 這裡呢跟65歲以上比起來大概15-20%以台灣的數據所以就是35萬就乘以15-20%所以早發性的差不多也有7-8萬人那是很多
transcript.whisperx[26].start 624.949
transcript.whisperx[26].end 631.558
transcript.whisperx[26].text 那你現在這個藥用打的開始打了 智慧這個藥是用每個禮拜打還是怎樣
transcript.whisperx[27].start 632.561
transcript.whisperx[27].end 660.405
transcript.whisperx[27].text 跟委員報告這個藥在美國是去年7月才上市那目前是這個我都在做精準的評估那台灣大概是今天在亞東醫院會開打還是用自費來做那它是需要在失智症的非常早期這是第一個條件第二個條件是說它的那個Apple E4必須要陰性因為如果是Apple E陽性的話它比較容易腦水腫那第三個部分是財務評估我們時事處長已經對外講了所以這個部分要啟動這個HDA來做評估那是每個月打一次還是
transcript.whisperx[28].start 660.945
transcript.whisperx[28].end 685.54
transcript.whisperx[28].text 目前有兩個藥提出申請因為我不能透露是哪個藥那其中一種藥是每個月打那後續還要追蹤MRI看他那個Amyloid的這個Plague他有沒有清楚就是那個類蛋白的這個堆積堆積有沒有清楚以上沒有清楚所以有的一個月打一次有的是打一支冬季的藥對有兩週的有一個月的但是因為我
transcript.whisperx[29].start 691.168
transcript.whisperx[29].end 703.504
transcript.whisperx[29].text 因為我不能透露是哪一個有申請 抱歉沒關係啦 我們人苦事要人來做我覺得我在看我們這些親戚還有我們看到這個林院長林院長第八屆的時候站在那邊被質詢
transcript.whisperx[30].start 705.084
transcript.whisperx[30].end 710.707
transcript.whisperx[30].text 我就看他比較內向,跟他很熟,你也很熟靈智營我更熟,我也是這個靈智營就比較厲害靈智營是點柱柱所以我看內向的人,精神科內向的人比較會中點柱柱的人
transcript.whisperx[31].start 722.688
transcript.whisperx[31].end 749.836
transcript.whisperx[31].text 每天花謝罵人的人,我看待會兒目前的研究,人格特質跟失智症的發生比較沒有關係,跟基因跟環境後天生活習慣關係性比較大,以上補充所以是類蛋白的堆積,AMLOID的堆積在涅涅的地方,是不是?目前兩個學理論,一個是AMLOID的堆積就類蛋白,另外一個是Tau protein的堆積,那目前兩個理論都有在用,兩個都有藥物研發,以上
transcript.whisperx[32].start 750.336
transcript.whisperx[32].end 777.764
transcript.whisperx[32].text 所以你這個藥是要清除那個類蛋白在腦部的堆積現在是這樣嗎?是所以喔好那要做基因的類型什麼藥嗎?是要做基因的檢測主要是為了副作用擔心他這個藥物引起的腦水腫那目前美國的研究是有33%所以排除了那個相關的基因型他腦水腫的副作用會比較小主要是為了病人安全以上補充所以我覺得每一個人都要保持頭腦動一動
transcript.whisperx[33].start 779.984
transcript.whisperx[33].end 801.091
transcript.whisperx[33].text 打麻將啦,找人吵架啦,這個也是有效,所以普通話,每天找你學妹,你就不會好歹啦這個很嚴重,我覺得非常非常嚴重,太多啦有的是輕輕的,有的是越來越嚴重,所以看了都很怕,所以這個要出來真的是福音啦
transcript.whisperx[34].start 802.409
transcript.whisperx[34].end 828.162
transcript.whisperx[34].text 智慧 健保不給物 柏定首先我們要評估他本土的資料這個也很重要 我想因為我們要驗證他的效果然後再評估一個財務的benefit跟burden這樣子就是利弊得失那我覺得照顧失智我們要多元化 趙偉你說的
transcript.whisperx[35].start 830.447
transcript.whisperx[35].end 844.915
transcript.whisperx[35].text 腦筋要多動多運動要瘦薄一點營養精衡可能這個都是可以預防的那政府在這個部分不管是在工廠中心據點那這個部分都有都已經有準備其實那一種
transcript.whisperx[36].start 846.257
transcript.whisperx[36].end 873.887
transcript.whisperx[36].text 你做專研會 意思說專研會是我們辦很多長照開始訓練 人臉訓練所以那個時候的題目就叫做失智的一個計畫表示一日十當中我們就要去關心未來的照顧但是那是後面 我個人覺得怎麼樣早期來診斷 早期來預防可能也是一個重點 跟趙偉的意見一樣好 我們大家一起努力啦 謝謝感謝 謝謝
transcript.whisperx[37].start 876.584
transcript.whisperx[37].end 876.604
transcript.whisperx[37].text 好 謝謝