IVOD_ID |
162674 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/162674 |
日期 |
2025-06-18 |
會議資料.會議代碼 |
聯席會議-11-3-19,26,22-1 |
會議資料.會議代碼:str |
第11屆第3會期經濟、社會福利及衛生環境、教育及文化三委員會第1次聯席會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
1 |
會議資料.種類 |
聯席會議 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼[1] |
26 |
會議資料.委員會代碼[2] |
22 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.委員會代碼:str[1] |
社會福利及衛生環境委員會 |
會議資料.委員會代碼:str[2] |
教育及文化委員會 |
會議資料.標題 |
第11屆第3會期經濟、社會福利及衛生環境、教育及文化三委員會第1次聯席會議 |
影片種類 |
Clip |
開始時間 |
2025-06-18T12:25:34+08:00 |
結束時間 |
2025-06-18T12:34:34+08:00 |
影片長度 |
00:09:00 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5617cf280bc2552acd0b8dd2289fef1b5c8a36db9e18c27b944e3ca7709b1a2f277aaf2a4e3413f65ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
陳超明 |
委員發言時間 |
12:25:34 - 12:34:34 |
會議時間 |
2025-06-18T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期經濟、社會福利及衛生環境、教育及文化三委員會第1次聯席會議(事由:審查:
一、行政院函請審議「外國專業人才延攬及僱用法修正草案」案。
二、本院委員何欣純等19人擬具「外國專業人才延攬及僱用法第十二條及第十四條條文修正草案」案。
三、本院委員陳亭妃等16人擬具「外國專業人才延攬及僱用法第四條、第六條及第十四條條文修正草案」案。
四、本院委員蔡易餘等17人擬具「外國專業人才延攬及僱用法修正草案」案。
五、本院委員羅美玲等16人擬具「外國專業人才延攬及僱用法修正草案」案。(詢答)
(第一案如未接獲議事處來函則不予審查。)) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
4.97534375 |
transcript.pyannote[0].end |
6.07221875 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
10.29096875 |
transcript.pyannote[1].end |
11.42159375 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
18.40784375 |
transcript.pyannote[2].end |
19.11659375 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
21.22596875 |
transcript.pyannote[3].end |
21.78284375 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
21.78284375 |
transcript.pyannote[4].end |
21.79971875 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
22.54221875 |
transcript.pyannote[5].end |
23.11596875 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
23.52096875 |
transcript.pyannote[6].end |
26.18721875 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
26.50784375 |
transcript.pyannote[7].end |
27.16596875 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
27.16596875 |
transcript.pyannote[8].end |
27.19971875 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
27.58784375 |
transcript.pyannote[9].end |
27.60471875 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
27.60471875 |
transcript.pyannote[10].end |
30.01784375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
27.62159375 |
transcript.pyannote[11].end |
29.73096875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
30.49034375 |
transcript.pyannote[12].end |
34.25346875 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
35.01284375 |
transcript.pyannote[13].end |
36.29534375 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
36.98721875 |
transcript.pyannote[14].end |
39.99096875 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
41.00346875 |
transcript.pyannote[15].end |
46.09971875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
46.26846875 |
transcript.pyannote[16].end |
52.95096875 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
53.38971875 |
transcript.pyannote[17].end |
55.71846875 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
57.05159375 |
transcript.pyannote[18].end |
59.56596875 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
60.02159375 |
transcript.pyannote[19].end |
63.17721875 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
63.90284375 |
transcript.pyannote[20].end |
65.53971875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
65.82659375 |
transcript.pyannote[21].end |
74.02784375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
74.90534375 |
transcript.pyannote[22].end |
77.23409375 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
77.55471875 |
transcript.pyannote[23].end |
78.61784375 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
79.68096875 |
transcript.pyannote[24].end |
81.84096875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
81.97596875 |
transcript.pyannote[25].end |
91.71284375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
92.18534375 |
transcript.pyannote[26].end |
94.19346875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
95.03721875 |
transcript.pyannote[27].end |
97.41659375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
97.88909375 |
transcript.pyannote[28].end |
99.08721875 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
99.52596875 |
transcript.pyannote[29].end |
106.14096875 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
106.27596875 |
transcript.pyannote[30].end |
108.79034375 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
109.17846875 |
transcript.pyannote[31].end |
115.86096875 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
116.51909375 |
transcript.pyannote[32].end |
119.86034375 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
120.48471875 |
transcript.pyannote[33].end |
122.02034375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
122.25659375 |
transcript.pyannote[34].end |
123.20159375 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
124.04534375 |
transcript.pyannote[35].end |
124.68659375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
124.99034375 |
transcript.pyannote[36].end |
128.26409375 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
129.14159375 |
transcript.pyannote[37].end |
134.38971875 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
135.04784375 |
transcript.pyannote[38].end |
137.34284375 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
137.91659375 |
transcript.pyannote[39].end |
142.25346875 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
142.79346875 |
transcript.pyannote[40].end |
146.37096875 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
147.21471875 |
transcript.pyannote[41].end |
148.19346875 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
148.21034375 |
transcript.pyannote[42].end |
151.31534375 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
151.75409375 |
transcript.pyannote[43].end |
155.01096875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
155.50034375 |
transcript.pyannote[44].end |
156.58034375 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
156.88409375 |
transcript.pyannote[45].end |
159.71909375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
160.12409375 |
transcript.pyannote[46].end |
164.10659375 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
164.46096875 |
transcript.pyannote[47].end |
166.21596875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
166.82346875 |
transcript.pyannote[48].end |
168.61221875 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
169.21971875 |
transcript.pyannote[49].end |
171.10971875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
171.63284375 |
transcript.pyannote[50].end |
176.56034375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
176.84721875 |
transcript.pyannote[51].end |
180.55971875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
180.69471875 |
transcript.pyannote[52].end |
190.36409375 |
transcript.pyannote[53].speaker |
SPEAKER_01 |
transcript.pyannote[53].start |
190.36409375 |
transcript.pyannote[53].end |
191.07284375 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
190.61721875 |
transcript.pyannote[54].end |
193.16534375 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
193.35096875 |
transcript.pyannote[55].end |
195.03846875 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
195.25784375 |
transcript.pyannote[56].end |
197.82284375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
198.12659375 |
transcript.pyannote[57].end |
199.13909375 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
199.29096875 |
transcript.pyannote[58].end |
199.96596875 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
199.96596875 |
transcript.pyannote[59].end |
203.62784375 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
204.01596875 |
transcript.pyannote[60].end |
206.22659375 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
206.66534375 |
transcript.pyannote[61].end |
208.97721875 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
207.12096875 |
transcript.pyannote[62].end |
207.22221875 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
208.97721875 |
transcript.pyannote[63].end |
211.99784375 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
209.09534375 |
transcript.pyannote[64].end |
210.93471875 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
212.40284375 |
transcript.pyannote[65].end |
215.55846875 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
215.55846875 |
transcript.pyannote[66].end |
215.87909375 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
215.87909375 |
transcript.pyannote[67].end |
221.31284375 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
222.51096875 |
transcript.pyannote[68].end |
226.49346875 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
226.94909375 |
transcript.pyannote[69].end |
228.56909375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
229.21034375 |
transcript.pyannote[70].end |
231.01596875 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
231.69096875 |
transcript.pyannote[71].end |
233.61471875 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
234.13784375 |
transcript.pyannote[72].end |
235.62284375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
235.80846875 |
transcript.pyannote[73].end |
236.92221875 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
237.54659375 |
transcript.pyannote[74].end |
238.96409375 |
transcript.pyannote[75].speaker |
SPEAKER_01 |
transcript.pyannote[75].start |
239.35221875 |
transcript.pyannote[75].end |
244.58346875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
242.18721875 |
transcript.pyannote[76].end |
246.32159375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
246.67596875 |
transcript.pyannote[77].end |
249.49409375 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
249.74721875 |
transcript.pyannote[78].end |
257.13846875 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
253.25721875 |
transcript.pyannote[79].end |
254.70846875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
257.57721875 |
transcript.pyannote[80].end |
258.45471875 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
259.33221875 |
transcript.pyannote[81].end |
262.03221875 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
262.55534375 |
transcript.pyannote[82].end |
264.17534375 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
264.44534375 |
transcript.pyannote[83].end |
264.76596875 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
264.71534375 |
transcript.pyannote[84].end |
268.15784375 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
268.76534375 |
transcript.pyannote[85].end |
273.91221875 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
274.19909375 |
transcript.pyannote[86].end |
274.46909375 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
275.61659375 |
transcript.pyannote[87].end |
275.97096875 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
275.97096875 |
transcript.pyannote[88].end |
276.03846875 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
276.03846875 |
transcript.pyannote[89].end |
276.20721875 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
276.20721875 |
transcript.pyannote[90].end |
276.22409375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
276.22409375 |
transcript.pyannote[91].end |
276.24096875 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
276.47721875 |
transcript.pyannote[92].end |
276.49409375 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
276.49409375 |
transcript.pyannote[93].end |
276.52784375 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
276.52784375 |
transcript.pyannote[94].end |
276.96659375 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
276.96659375 |
transcript.pyannote[95].end |
277.03409375 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
277.03409375 |
transcript.pyannote[96].end |
277.96221875 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
277.96221875 |
transcript.pyannote[97].end |
278.02971875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
278.02971875 |
transcript.pyannote[98].end |
278.04659375 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
278.16471875 |
transcript.pyannote[99].end |
278.19846875 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
278.19846875 |
transcript.pyannote[100].end |
278.97471875 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
278.97471875 |
transcript.pyannote[101].end |
279.02534375 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
279.02534375 |
transcript.pyannote[102].end |
279.76784375 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
280.74659375 |
transcript.pyannote[103].end |
280.76346875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
280.76346875 |
transcript.pyannote[104].end |
282.36659375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
282.99096875 |
transcript.pyannote[105].end |
285.35346875 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
285.77534375 |
transcript.pyannote[106].end |
290.77034375 |
transcript.pyannote[107].speaker |
SPEAKER_01 |
transcript.pyannote[107].start |
290.77034375 |
transcript.pyannote[107].end |
290.85471875 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
290.85471875 |
transcript.pyannote[108].end |
295.69784375 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
294.31409375 |
transcript.pyannote[109].end |
295.81596875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
296.40659375 |
transcript.pyannote[110].end |
296.54159375 |
transcript.pyannote[111].speaker |
SPEAKER_01 |
transcript.pyannote[111].start |
296.54159375 |
transcript.pyannote[111].end |
296.57534375 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
297.23346875 |
transcript.pyannote[112].end |
299.15721875 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
299.46096875 |
transcript.pyannote[113].end |
299.59596875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
299.59596875 |
transcript.pyannote[114].end |
300.49034375 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
301.45221875 |
transcript.pyannote[115].end |
302.63346875 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
302.83596875 |
transcript.pyannote[116].end |
303.22409375 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
303.29159375 |
transcript.pyannote[117].end |
304.27034375 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
304.82721875 |
transcript.pyannote[118].end |
306.16034375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
306.61596875 |
transcript.pyannote[119].end |
307.64534375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
308.89409375 |
transcript.pyannote[120].end |
310.49721875 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
310.93596875 |
transcript.pyannote[121].end |
313.60221875 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
314.24346875 |
transcript.pyannote[122].end |
316.18409375 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
316.48784375 |
transcript.pyannote[123].end |
327.38909375 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
327.55784375 |
transcript.pyannote[124].end |
335.05034375 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
335.43846875 |
transcript.pyannote[125].end |
338.42534375 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
339.82596875 |
transcript.pyannote[126].end |
339.97784375 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
339.97784375 |
transcript.pyannote[127].end |
340.61909375 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
341.19284375 |
transcript.pyannote[128].end |
341.20971875 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
341.20971875 |
transcript.pyannote[129].end |
341.71596875 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
342.05346875 |
transcript.pyannote[130].end |
346.66034375 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
346.66034375 |
transcript.pyannote[131].end |
348.02721875 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
346.98096875 |
transcript.pyannote[132].end |
347.01471875 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
347.03159375 |
transcript.pyannote[133].end |
348.28034375 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
348.28034375 |
transcript.pyannote[134].end |
354.82784375 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
355.19909375 |
transcript.pyannote[135].end |
362.52284375 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
362.64096875 |
transcript.pyannote[136].end |
363.31596875 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
363.97409375 |
transcript.pyannote[137].end |
366.85971875 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
367.60221875 |
transcript.pyannote[138].end |
369.15471875 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
369.82971875 |
transcript.pyannote[139].end |
372.47909375 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
373.22159375 |
transcript.pyannote[140].end |
377.10284375 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
377.62596875 |
transcript.pyannote[141].end |
378.79034375 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
379.27971875 |
transcript.pyannote[142].end |
381.79409375 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
382.38471875 |
transcript.pyannote[143].end |
384.27471875 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
384.83159375 |
transcript.pyannote[144].end |
387.24471875 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
387.97034375 |
transcript.pyannote[145].end |
404.03534375 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
405.03096875 |
transcript.pyannote[146].end |
406.00971875 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
406.38096875 |
transcript.pyannote[147].end |
409.99221875 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
410.22846875 |
transcript.pyannote[148].end |
412.06784375 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
412.47284375 |
transcript.pyannote[149].end |
413.23221875 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
414.10971875 |
transcript.pyannote[150].end |
416.03346875 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
416.16846875 |
transcript.pyannote[151].end |
449.15909375 |
transcript.pyannote[152].speaker |
SPEAKER_00 |
transcript.pyannote[152].start |
449.95221875 |
transcript.pyannote[152].end |
460.58346875 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
461.41034375 |
transcript.pyannote[153].end |
473.02034375 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
473.18909375 |
transcript.pyannote[154].end |
477.47534375 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
478.06596875 |
transcript.pyannote[155].end |
480.90096875 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
480.96846875 |
transcript.pyannote[156].end |
481.01909375 |
transcript.pyannote[157].speaker |
SPEAKER_00 |
transcript.pyannote[157].start |
481.30596875 |
transcript.pyannote[157].end |
484.29284375 |
transcript.pyannote[158].speaker |
SPEAKER_01 |
transcript.pyannote[158].start |
483.80346875 |
transcript.pyannote[158].end |
485.87909375 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
484.49534375 |
transcript.pyannote[159].end |
488.59596875 |
transcript.pyannote[160].speaker |
SPEAKER_00 |
transcript.pyannote[160].start |
489.33846875 |
transcript.pyannote[160].end |
493.70909375 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
494.29971875 |
transcript.pyannote[161].end |
495.09284375 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
495.58221875 |
transcript.pyannote[162].end |
496.96596875 |
transcript.pyannote[163].speaker |
SPEAKER_00 |
transcript.pyannote[163].start |
497.57346875 |
transcript.pyannote[163].end |
500.03721875 |
transcript.pyannote[164].speaker |
SPEAKER_00 |
transcript.pyannote[164].start |
500.29034375 |
transcript.pyannote[164].end |
504.77909375 |
transcript.pyannote[165].speaker |
SPEAKER_00 |
transcript.pyannote[165].start |
505.25159375 |
transcript.pyannote[165].end |
506.87159375 |
transcript.pyannote[166].speaker |
SPEAKER_00 |
transcript.pyannote[166].start |
507.22596875 |
transcript.pyannote[166].end |
508.18784375 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
508.87971875 |
transcript.pyannote[167].end |
509.43659375 |
transcript.pyannote[168].speaker |
SPEAKER_00 |
transcript.pyannote[168].start |
510.34784375 |
transcript.pyannote[168].end |
511.41096875 |
transcript.pyannote[169].speaker |
SPEAKER_00 |
transcript.pyannote[169].start |
511.51221875 |
transcript.pyannote[169].end |
511.59659375 |
transcript.pyannote[170].speaker |
SPEAKER_00 |
transcript.pyannote[170].start |
512.27159375 |
transcript.pyannote[170].end |
514.09409375 |
transcript.pyannote[171].speaker |
SPEAKER_00 |
transcript.pyannote[171].start |
514.49909375 |
transcript.pyannote[171].end |
518.04284375 |
transcript.pyannote[172].speaker |
SPEAKER_00 |
transcript.pyannote[172].start |
518.71784375 |
transcript.pyannote[172].end |
525.07971875 |
transcript.pyannote[173].speaker |
SPEAKER_00 |
transcript.pyannote[173].start |
525.58596875 |
transcript.pyannote[173].end |
527.88096875 |
transcript.pyannote[174].speaker |
SPEAKER_00 |
transcript.pyannote[174].start |
528.38721875 |
transcript.pyannote[174].end |
535.76159375 |
transcript.pyannote[175].speaker |
SPEAKER_01 |
transcript.pyannote[175].start |
536.33534375 |
transcript.pyannote[175].end |
538.22534375 |
transcript.pyannote[176].speaker |
SPEAKER_01 |
transcript.pyannote[176].start |
538.54596875 |
transcript.pyannote[176].end |
540.13221875 |
transcript.whisperx[0].start |
5.479 |
transcript.whisperx[0].end |
11.215 |
transcript.whisperx[0].text |
請主席請主委 |
transcript.whisperx[1].start |
18.447 |
transcript.whisperx[1].end |
24.592 |
transcript.whisperx[1].text |
這是6月16號《經濟日報》所寫的國科會規劃涉科學研究首選國有定 |
transcript.whisperx[2].start |
41.255 |
transcript.whisperx[2].end |
62.855 |
transcript.whisperx[2].text |
裡面說因應國際政策派適變化,為耕留台灣在2050年前,國會會議計開發2000公頃科學園區,2000公頃的科學園區那科學園區每個地方都要搶,新設的科學園區會落腳在哪裡? |
transcript.whisperx[3].start |
64.211 |
transcript.whisperx[3].end |
73.403 |
transcript.whisperx[3].text |
根據國科會的規劃說優先評估水與國營水的土地加以活化利用你有這個規劃嗎這可能要問那個國科會 |
transcript.whisperx[4].start |
82.885 |
transcript.whisperx[4].end |
93.76 |
transcript.whisperx[4].text |
要說國營四月臺堂是全臺最大的地址但是要兩層公廳也要國務法院的同意和認可因為大街尾都在那裡 |
transcript.whisperx[5].start |
95.121 |
transcript.whisperx[5].end |
122.874 |
transcript.whisperx[5].text |
他說台塘規劃產業專業用區土地都在雲林、嘉義、屏東所以陳安之秀他就很好康的,我們的社會雲林也有、嘉義、屏東也有所以說第二次會提出修正我重點是說他要兩層、兩層國科會我今天一直跟你們合調一直跟你們拜託那個大四股計畫在苗栗縣 |
transcript.whisperx[6].start |
124.076 |
transcript.whisperx[6].end |
127.293 |
transcript.whisperx[6].text |
有一個自然科學研究第二期的擴編計畫 |
transcript.whisperx[7].start |
129.432 |
transcript.whisperx[7].end |
154.251 |
transcript.whisperx[7].text |
還有一個投入的科學研區它是在都市計畫內 這個沒有問題還有一個貨農產業專區但是我們現在都要發動了 要做事了 要怎麼去做但是你看我們的政府多可憐 多擔心我要看我 會到你們大溪谷計畫行政院合併我要找一個目的事業主管機關 |
transcript.whisperx[8].start |
155.552 |
transcript.whisperx[8].end |
164.997 |
transcript.whisperx[8].text |
我找不到,我來拜託你國安會幫我協調我拜託行政院長、國民司長、國安處理員都到那裡,你們沒有人要理他們自己發一個公文,請依照法令去找那個目的事的主管機關我想不到,國科會要205年要兩千公頃 |
transcript.whisperx[9].start |
180.845 |
transcript.whisperx[9].end |
199.879 |
transcript.whisperx[9].text |
我這樣把它開發起來大概38公頃我已經在動 已經核定你們沒人要插是不是顏色不備才有這樣的問題我是很不相信你的喔因為你真的做事情但是我一直跟你們拜託你們都沒人要插有有 現在齁 向委員報告齁我們現在後龍產業園區齁那個我知道 |
transcript.whisperx[10].start |
204.363 |
transcript.whisperx[10].end |
220.481 |
transcript.whisperx[10].text |
已經合併就是經濟部做合併了 已經合併很恐慌啊 怕把這個計畫取消掉再來質問科學研究第二期你合併這個目的社會主管機關要誰 |
transcript.whisperx[11].start |
222.554 |
transcript.whisperx[11].end |
231.918 |
transcript.whisperx[11].text |
科學園區一定是國科會啦他就不在這裡啊要拿那兩千公頃還要幫我們綁條所以你看你能不能拜託我幫我做一個公職的我會很感謝你要不要幫我們協調 |
transcript.whisperx[12].start |
240.302 |
transcript.whisperx[12].end |
255.093 |
transcript.whisperx[12].text |
我們去協調看看啦 不能看看啦 要完成啦行政院核定的計畫哪裡有看看的你先給我跟國客會先談一下好 你先講一下 因為我很信任你 |
transcript.whisperx[13].start |
259.389 |
transcript.whisperx[13].end |
273.647 |
transcript.whisperx[13].text |
我一直思索出來都是很有能力的人這個搞不好很丟臉的事如果你沒人要做不去授權給我們苗栗縣政府我們來開發不可以這樣嘛這樣一直拖著我們前進不得後退也不得 |
transcript.whisperx[14].start |
275.8 |
transcript.whisperx[14].end |
283.762 |
transcript.whisperx[14].text |
我先跟國會會討論一下你帶我跟國會會一邊討論你先給我兩禮拜我先講好我相信你喔要給我辦完先看你這個國會會主委有夠了沒夠了就看你一條關於今天我們討論的那個 |
transcript.whisperx[15].start |
301.539 |
transcript.whisperx[15].end |
307.315 |
transcript.whisperx[15].text |
招攬人才啊 男才裝潢我是非常支持 我非常讚賞 |
transcript.whisperx[16].start |
308.939 |
transcript.whisperx[16].end |
336.658 |
transcript.whisperx[16].text |
但是你只要招攬人才,除了你講下條件,我相信大家都知道但是你這個如何啊,這個租稅優惠調整,來他的稅,你要求多少要安裝,因為你一點沒有列在裡面,你的效果應該會差了很多,尤其你們會計事務所,你們是國際會計事務所,你們裡面都有列人頭的公司在,你們有優稅條約,我覺得功效會減低, |
transcript.whisperx[17].start |
339.9 |
transcript.whisperx[17].end |
362.972 |
transcript.whisperx[17].text |
是,的確就這個部分我們是在租稅上面我們會輸給新加坡跟香港啦你賭人家的租稅還是所得收入都減這麼多你這樣如果變成國家級的劣財的計畫,我感覺要再去加強啦不要只收到一半啦這問題可以提到財政部看看 |
transcript.whisperx[18].start |
363.752 |
transcript.whisperx[18].end |
366.934 |
transcript.whisperx[18].text |
劣財計畫,我現在是改變什麼東西我們的劣財計畫會變成我們是職業訓練中心我們是職業介紹所,我們台灣不一定的處境是這樣你會記得,往高處爬,水往低處流 |
transcript.whisperx[19].start |
382.446 |
transcript.whisperx[19].end |
403.635 |
transcript.whisperx[19].text |
你應該就了解,台灣現在所有的科技人才,美國公司來台灣做的,好,那心碎特別管管到把台積電人才拉走,台積電會提高損失台積電要抓人才,從蓮花科那邊全部來抓人才,又到那一邊 |
transcript.whisperx[20].start |
405.12 |
transcript.whisperx[20].end |
419.71 |
transcript.whisperx[20].text |
一些人才回去之後 研發科開始找每一個科技公司你現在人才出來 你要了解所以你現在這樣來 跟台積電 要在美國接觸 要在日本接觸 要在法國接觸 要在德國接觸 |
transcript.whisperx[21].start |
423.573 |
transcript.whisperx[21].end |
448.932 |
transcript.whisperx[21].text |
我們台灣並做訓練所那邊的薪水高到那邊我們台灣培養訓練所你現在外來人才你怎麼會留在台灣大概兩年三年他覺得協力有成外國公司又來挖角我們台灣的薪水也不是跟我一樣雖然台積電是高但是跟國外比起來容纳還是差了一大截 |
transcript.whisperx[22].start |
449.973 |
transcript.whisperx[22].end |
459.821 |
transcript.whisperx[22].text |
你怎麼去撈這些人才因為企業界所碰到的就是這樣的情形我們的計畫很宏偉我也希望找最優秀的人才拉過來 |
transcript.whisperx[23].start |
461.602 |
transcript.whisperx[23].end |
486.495 |
transcript.whisperx[23].text |
我不知道這些人才現在怎麼好人才都在後面那邊因為他們薪水太高各種環境比較好我們要再去新加坡新加坡又有優惠條件我們要去那邊你知道新百貨現在薪水高得不得了那隻大會去啊他我們能吃的除了你大餐是人家吃的大所以我覺得你這個計畫我們台灣很可憐的主委 |
transcript.whisperx[24].start |
489.532 |
transcript.whisperx[24].end |
517.821 |
transcript.whisperx[24].text |
志祺站起來了他陪人講話就不站起來我講的時間到了我告訴你農兵是信念手希望你這個地方再加強注意你從外國招來的人才希望人才留在台灣不然你搞不好一場空我們變成我講的職業信念手不然就是職業介紹手世界的人頭要找科技找AI都在台灣至少 |
transcript.whisperx[25].start |
519.026 |
transcript.whisperx[25].end |
532.539 |
transcript.whisperx[25].text |
我們這個汗柴處用啊 柴柴什麼用就會變成這樣的情形我跟你們講 這個情形一定會發生所以你們染柴計畫 國家集團應該要好好的考慮這一塊謝謝 |