IVOD_ID |
162662 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/162662 |
日期 |
2025-06-18 |
會議資料.會議代碼 |
聯席會議-11-3-19,26,22-1 |
會議資料.會議代碼:str |
第11屆第3會期經濟、社會福利及衛生環境、教育及文化三委員會第1次聯席會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
1 |
會議資料.種類 |
聯席會議 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼[1] |
26 |
會議資料.委員會代碼[2] |
22 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.委員會代碼:str[1] |
社會福利及衛生環境委員會 |
會議資料.委員會代碼:str[2] |
教育及文化委員會 |
會議資料.標題 |
第11屆第3會期經濟、社會福利及衛生環境、教育及文化三委員會第1次聯席會議 |
影片種類 |
Clip |
開始時間 |
2025-06-18T13:35:02+08:00 |
結束時間 |
2025-06-18T13:46:42+08:00 |
影片長度 |
00:11:40 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5617cf280bc2552ac0a32a23eb33cc405c8a36db9e18c27b9be1ababaaa47466f0e74eb070a3a03c5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
羅廷瑋 |
委員發言時間 |
13:35:02 - 13:46:42 |
會議時間 |
2025-06-18T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期經濟、社會福利及衛生環境、教育及文化三委員會第1次聯席會議(事由:審查:
一、行政院函請審議「外國專業人才延攬及僱用法修正草案」案。
二、本院委員何欣純等19人擬具「外國專業人才延攬及僱用法第十二條及第十四條條文修正草案」案。
三、本院委員陳亭妃等16人擬具「外國專業人才延攬及僱用法第四條、第六條及第十四條條文修正草案」案。
四、本院委員蔡易餘等17人擬具「外國專業人才延攬及僱用法修正草案」案。
五、本院委員羅美玲等16人擬具「外國專業人才延攬及僱用法修正草案」案。(詢答)
(第一案如未接獲議事處來函則不予審查。)) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
8.36721875 |
transcript.pyannote[0].end |
9.02534375 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
9.19409375 |
transcript.pyannote[1].end |
10.34159375 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
10.69596875 |
transcript.pyannote[2].end |
11.50596875 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
19.63971875 |
transcript.pyannote[3].end |
20.14596875 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
20.43284375 |
transcript.pyannote[4].end |
28.92096875 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
29.24159375 |
transcript.pyannote[5].end |
37.03784375 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
37.44284375 |
transcript.pyannote[6].end |
41.61096875 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
42.26909375 |
transcript.pyannote[7].end |
52.39409375 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
53.03534375 |
transcript.pyannote[8].end |
53.38971875 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
53.74409375 |
transcript.pyannote[9].end |
61.03409375 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
61.18596875 |
transcript.pyannote[10].end |
64.54409375 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
66.38346875 |
transcript.pyannote[11].end |
69.28596875 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
68.79659375 |
transcript.pyannote[12].end |
69.70784375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
71.04096875 |
transcript.pyannote[13].end |
72.25596875 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
72.89721875 |
transcript.pyannote[14].end |
73.18409375 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
73.65659375 |
transcript.pyannote[15].end |
74.78721875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
76.45784375 |
transcript.pyannote[16].end |
77.23409375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
77.68971875 |
transcript.pyannote[17].end |
78.63471875 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
79.07346875 |
transcript.pyannote[18].end |
80.47409375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
79.24221875 |
transcript.pyannote[19].end |
80.65971875 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
80.65971875 |
transcript.pyannote[20].end |
81.08159375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
81.08159375 |
transcript.pyannote[21].end |
81.35159375 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
81.35159375 |
transcript.pyannote[22].end |
84.15284375 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
84.94596875 |
transcript.pyannote[23].end |
89.77221875 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
90.05909375 |
transcript.pyannote[24].end |
92.03346875 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
92.55659375 |
transcript.pyannote[25].end |
102.31034375 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
102.32721875 |
transcript.pyannote[26].end |
116.02971875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
116.02971875 |
transcript.pyannote[27].end |
125.29409375 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
124.70346875 |
transcript.pyannote[28].end |
125.27721875 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
125.29409375 |
transcript.pyannote[29].end |
125.31096875 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
125.31096875 |
transcript.pyannote[30].end |
127.43721875 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
126.34034375 |
transcript.pyannote[31].end |
129.02346875 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
127.97721875 |
transcript.pyannote[32].end |
128.26409375 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
129.02346875 |
transcript.pyannote[33].end |
144.59909375 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
129.32721875 |
transcript.pyannote[34].end |
129.90096875 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
142.62471875 |
transcript.pyannote[35].end |
143.58659375 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
144.59909375 |
transcript.pyannote[36].end |
144.81846875 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
144.81846875 |
transcript.pyannote[37].end |
144.85221875 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
145.05471875 |
transcript.pyannote[38].end |
173.70846875 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
154.06596875 |
transcript.pyannote[39].end |
154.15034375 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
154.28534375 |
transcript.pyannote[40].end |
154.43721875 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
164.54534375 |
transcript.pyannote[41].end |
166.06409375 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
168.17346875 |
transcript.pyannote[42].end |
170.01284375 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
174.68721875 |
transcript.pyannote[43].end |
190.39784375 |
transcript.pyannote[44].speaker |
SPEAKER_01 |
transcript.pyannote[44].start |
182.95596875 |
transcript.pyannote[44].end |
183.54659375 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
190.39784375 |
transcript.pyannote[45].end |
191.98409375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
192.97971875 |
transcript.pyannote[46].end |
197.09721875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
197.51909375 |
transcript.pyannote[47].end |
199.54409375 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
197.65409375 |
transcript.pyannote[48].end |
198.26159375 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
199.66221875 |
transcript.pyannote[49].end |
201.97409375 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
199.83096875 |
transcript.pyannote[50].end |
200.91096875 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
201.56909375 |
transcript.pyannote[51].end |
208.47096875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
205.28159375 |
transcript.pyannote[52].end |
205.33221875 |
transcript.pyannote[53].speaker |
SPEAKER_01 |
transcript.pyannote[53].start |
209.23034375 |
transcript.pyannote[53].end |
213.06096875 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
213.61784375 |
transcript.pyannote[54].end |
215.03534375 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
215.49096875 |
transcript.pyannote[55].end |
219.52409375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
219.52409375 |
transcript.pyannote[56].end |
224.73846875 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
225.05909375 |
transcript.pyannote[57].end |
246.18659375 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
226.76346875 |
transcript.pyannote[58].end |
228.68721875 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
229.04159375 |
transcript.pyannote[59].end |
229.34534375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
246.45659375 |
transcript.pyannote[60].end |
250.15221875 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
249.88221875 |
transcript.pyannote[61].end |
253.94909375 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
254.52284375 |
transcript.pyannote[62].end |
257.86409375 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
258.08346875 |
transcript.pyannote[63].end |
269.65971875 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
269.65971875 |
transcript.pyannote[64].end |
278.18159375 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
278.46846875 |
transcript.pyannote[65].end |
283.04159375 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
281.20221875 |
transcript.pyannote[66].end |
283.02471875 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
283.04159375 |
transcript.pyannote[67].end |
283.31159375 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
283.31159375 |
transcript.pyannote[68].end |
285.35346875 |
transcript.pyannote[69].speaker |
SPEAKER_01 |
transcript.pyannote[69].start |
285.35346875 |
transcript.pyannote[69].end |
291.95159375 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
292.54221875 |
transcript.pyannote[70].end |
304.45596875 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
292.64346875 |
transcript.pyannote[71].end |
293.63909375 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
304.89471875 |
transcript.pyannote[72].end |
312.99471875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
312.99471875 |
transcript.pyannote[73].end |
324.73971875 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
318.10784375 |
transcript.pyannote[74].end |
318.61409375 |
transcript.pyannote[75].speaker |
SPEAKER_01 |
transcript.pyannote[75].start |
319.13721875 |
transcript.pyannote[75].end |
320.33534375 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
325.06034375 |
transcript.pyannote[76].end |
326.20784375 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
325.09409375 |
transcript.pyannote[77].end |
329.80221875 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
330.20721875 |
transcript.pyannote[78].end |
341.41221875 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
331.91159375 |
transcript.pyannote[79].end |
332.72159375 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
339.62346875 |
transcript.pyannote[80].end |
342.03659375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
342.03659375 |
transcript.pyannote[81].end |
343.26846875 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
342.05346875 |
transcript.pyannote[82].end |
342.22221875 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
343.60596875 |
transcript.pyannote[83].end |
346.96409375 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
347.23409375 |
transcript.pyannote[84].end |
350.00159375 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
349.49534375 |
transcript.pyannote[85].end |
350.55846875 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
350.55846875 |
transcript.pyannote[86].end |
351.82409375 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
350.86221875 |
transcript.pyannote[87].end |
351.08159375 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
352.71846875 |
transcript.pyannote[88].end |
353.10659375 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
353.66346875 |
transcript.pyannote[89].end |
359.48534375 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
360.05909375 |
transcript.pyannote[90].end |
361.81409375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
362.86034375 |
transcript.pyannote[91].end |
362.87721875 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
362.87721875 |
transcript.pyannote[92].end |
362.89409375 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
362.89409375 |
transcript.pyannote[93].end |
362.91096875 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
362.91096875 |
transcript.pyannote[94].end |
362.92784375 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
362.92784375 |
transcript.pyannote[95].end |
362.97846875 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
362.97846875 |
transcript.pyannote[96].end |
363.73784375 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
364.00784375 |
transcript.pyannote[97].end |
365.96534375 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
364.80096875 |
transcript.pyannote[98].end |
381.01784375 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
380.41034375 |
transcript.pyannote[99].end |
400.25534375 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
381.59159375 |
transcript.pyannote[100].end |
384.44346875 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
385.65846875 |
transcript.pyannote[101].end |
387.31221875 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
390.75471875 |
transcript.pyannote[102].end |
391.76721875 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
395.61471875 |
transcript.pyannote[103].end |
396.00284375 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
400.82909375 |
transcript.pyannote[104].end |
433.02659375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
417.56909375 |
transcript.pyannote[105].end |
417.85596875 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
418.46346875 |
transcript.pyannote[106].end |
419.03721875 |
transcript.pyannote[107].speaker |
SPEAKER_01 |
transcript.pyannote[107].start |
433.24596875 |
transcript.pyannote[107].end |
436.03034375 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
436.50284375 |
transcript.pyannote[108].end |
441.29534375 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
441.97034375 |
transcript.pyannote[109].end |
449.91846875 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
450.34034375 |
transcript.pyannote[110].end |
463.41846875 |
transcript.pyannote[111].speaker |
SPEAKER_01 |
transcript.pyannote[111].start |
463.92471875 |
transcript.pyannote[111].end |
464.97096875 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
465.51096875 |
transcript.pyannote[112].end |
476.51346875 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
477.18846875 |
transcript.pyannote[113].end |
478.26846875 |
transcript.pyannote[114].speaker |
SPEAKER_01 |
transcript.pyannote[114].start |
478.99409375 |
transcript.pyannote[114].end |
480.61409375 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
481.42409375 |
transcript.pyannote[115].end |
483.31409375 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
483.63471875 |
transcript.pyannote[116].end |
484.51221875 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
484.51221875 |
transcript.pyannote[117].end |
486.16596875 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
486.94221875 |
transcript.pyannote[118].end |
495.44721875 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
495.73409375 |
transcript.pyannote[119].end |
500.20596875 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
500.72909375 |
transcript.pyannote[120].end |
504.99846875 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
505.31909375 |
transcript.pyannote[121].end |
507.27659375 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
507.46221875 |
transcript.pyannote[122].end |
510.36471875 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
510.73596875 |
transcript.pyannote[123].end |
511.02284375 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
511.36034375 |
transcript.pyannote[124].end |
512.69346875 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
513.23346875 |
transcript.pyannote[125].end |
535.87971875 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
528.65721875 |
transcript.pyannote[126].end |
529.02846875 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
530.69909375 |
transcript.pyannote[127].end |
530.85096875 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
531.03659375 |
transcript.pyannote[128].end |
531.55971875 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
533.55096875 |
transcript.pyannote[129].end |
533.92221875 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
534.64784375 |
transcript.pyannote[130].end |
535.55909375 |
transcript.pyannote[131].speaker |
SPEAKER_01 |
transcript.pyannote[131].start |
535.87971875 |
transcript.pyannote[131].end |
538.41096875 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
538.96784375 |
transcript.pyannote[132].end |
541.02659375 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
541.19534375 |
transcript.pyannote[133].end |
541.93784375 |
transcript.pyannote[134].speaker |
SPEAKER_01 |
transcript.pyannote[134].start |
542.69721875 |
transcript.pyannote[134].end |
550.57784375 |
transcript.pyannote[135].speaker |
SPEAKER_01 |
transcript.pyannote[135].start |
551.21909375 |
transcript.pyannote[135].end |
562.47471875 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
562.89659375 |
transcript.pyannote[136].end |
567.92534375 |
transcript.pyannote[137].speaker |
SPEAKER_01 |
transcript.pyannote[137].start |
568.31346875 |
transcript.pyannote[137].end |
570.74346875 |
transcript.pyannote[138].speaker |
SPEAKER_01 |
transcript.pyannote[138].start |
570.97971875 |
transcript.pyannote[138].end |
572.32971875 |
transcript.pyannote[139].speaker |
SPEAKER_01 |
transcript.pyannote[139].start |
572.80221875 |
transcript.pyannote[139].end |
574.13534375 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
574.08471875 |
transcript.pyannote[140].end |
585.42471875 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
574.15221875 |
transcript.pyannote[141].end |
574.18596875 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
585.69471875 |
transcript.pyannote[142].end |
598.75596875 |
transcript.pyannote[143].speaker |
SPEAKER_01 |
transcript.pyannote[143].start |
598.36784375 |
transcript.pyannote[143].end |
598.80659375 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
598.80659375 |
transcript.pyannote[144].end |
598.97534375 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
598.97534375 |
transcript.pyannote[145].end |
599.02596875 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
599.02596875 |
transcript.pyannote[146].end |
599.04284375 |
transcript.pyannote[147].speaker |
SPEAKER_01 |
transcript.pyannote[147].start |
599.04284375 |
transcript.pyannote[147].end |
599.68409375 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
599.68409375 |
transcript.pyannote[148].end |
611.93534375 |
transcript.pyannote[149].speaker |
SPEAKER_01 |
transcript.pyannote[149].start |
599.71784375 |
transcript.pyannote[149].end |
599.88659375 |
transcript.pyannote[150].speaker |
SPEAKER_01 |
transcript.pyannote[150].start |
611.93534375 |
transcript.pyannote[150].end |
612.76221875 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
612.76221875 |
transcript.pyannote[151].end |
612.86346875 |
transcript.pyannote[152].speaker |
SPEAKER_01 |
transcript.pyannote[152].start |
612.86346875 |
transcript.pyannote[152].end |
624.16971875 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
614.93909375 |
transcript.pyannote[153].end |
615.34409375 |
transcript.pyannote[154].speaker |
SPEAKER_01 |
transcript.pyannote[154].start |
624.79409375 |
transcript.pyannote[154].end |
657.32909375 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
656.78909375 |
transcript.pyannote[155].end |
666.45846875 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
666.59346875 |
transcript.pyannote[156].end |
684.97034375 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
676.12784375 |
transcript.pyannote[157].end |
676.80284375 |
transcript.pyannote[158].speaker |
SPEAKER_01 |
transcript.pyannote[158].start |
684.97034375 |
transcript.pyannote[158].end |
699.46596875 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
686.25284375 |
transcript.pyannote[159].end |
687.01221875 |
transcript.pyannote[160].speaker |
SPEAKER_00 |
transcript.pyannote[160].start |
688.96971875 |
transcript.pyannote[160].end |
689.44221875 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
698.21721875 |
transcript.pyannote[161].end |
698.58846875 |
transcript.whisperx[0].start |
8.39 |
transcript.whisperx[0].end |
28.451 |
transcript.whisperx[0].text |
好 謝謝主席 有請國發會主委請主委好 主委好 今天我們在審外國專業人才延攬的僱用法修正草案幾個大方向先跟主委請教一下 |
transcript.whisperx[1].start |
29.369 |
transcript.whisperx[1].end |
49.85 |
transcript.whisperx[1].text |
那主委這個外國專業人才的延攬跟僱傭的相關辦法他的目標是增加外國專業人才來台從2018年上路以來目前吸引多少人來到台灣我們目前吸引外國專業人才吸引的55,677然後特定專業人才吸引的18,403 |
transcript.whisperx[2].start |
53.063 |
transcript.whisperx[2].end |
63.906 |
transcript.whisperx[2].text |
好那我這邊有一個數據想跟你請問那原本預計這個2025年的吸引外國專業人數有達到目標嗎2025年因為還沒有結束2024我們大概 |
transcript.whisperx[3].start |
76.499 |
transcript.whisperx[3].end |
98.054 |
transcript.whisperx[3].text |
你有達到目標?我們並沒有訂出那個目標啦那你有沒有覺得應該訂定一個目標呢?您認為這個辦法?因為我想不管是未來今年度的2025、2026、2027我們有沒有想說要怎麼樣精進這些辦法、方案然後來延攬更多的人? |
transcript.whisperx[4].start |
99.756 |
transcript.whisperx[4].end |
115.713 |
transcript.whisperx[4].text |
我們當然都希望越來越多人才來到台灣嘛那抓一個預計的一個目標數然後來看到底實際上修法對於這些目標數能夠大為提升能不能有一些精進的方案我想這個部分您有估計嗎 |
transcript.whisperx[5].start |
116.294 |
transcript.whisperx[5].end |
144.654 |
transcript.whisperx[5].text |
有關於針對本法的部分我們是希望透過這個法律讓我們每一年再增加六千六百多位六千六百多位對我們希望所以你就希望2025年能夠吸引大概六千六百多位這是第一個比去年度還多對那第二個事情是我們也訂定了一個國家人才競爭力方案我們也希望提升本國本國人在這個職場的競爭力多數是哪些國籍的外國人士呢 |
transcript.whisperx[6].start |
145.365 |
transcript.whisperx[6].end |
169.099 |
transcript.whisperx[6].text |
目前來到台灣目前我們現在有比較明確的是在就業金卡上面目前比例最高的是美國來的最高啦那美國佔了相當高的比例那第二高的是香港再來是日本再來是印度那新加坡、加拿大大概這幾個我們前十大大概就是再來馬來西亞、韓國跟德國對經濟領域在目前科技 |
transcript.whisperx[7].start |
174.804 |
transcript.whisperx[7].end |
191.662 |
transcript.whisperx[7].text |
再來科技對 可是這裡面的統計跟委員報告經濟裡面的部分是它經濟跟製造是合併統計OK 沒關係那這個製造部分就會也含到了包括半能力製造等等那科技領域是從國科會他們在科技人才的領域有去了解大概薪資待遇多少嗎 |
transcript.whisperx[8].start |
193.058 |
transcript.whisperx[8].end |
208.325 |
transcript.whisperx[8].text |
薪資待遇我們當時有定一個4700多萬的一個基準那金卡的部分是16萬金卡是要月薪16萬那雖然就業金卡以經濟領域發放的最多啦那最多但是很多的雇主都還是說找不到人 |
transcript.whisperx[9].start |
209.898 |
transcript.whisperx[9].end |
224.186 |
transcript.whisperx[9].text |
2024年台灣還被列為全球人才短缺最高的國家之一這顯示政策和實際產業的需求我認為有需要加強這個我跟委員解釋一下景氣也會帶動人潮的缺席 |
transcript.whisperx[10].start |
225.606 |
transcript.whisperx[10].end |
253.7 |
transcript.whisperx[10].text |
但是景氣應該也是帶動人才因為各國都因為我們經濟活了我們其實GDP成長高過這附近的很多國家甚至我們在上半年應該是亞洲第一去年大概也是亞洲第一所以景氣也會帶動的確台灣這幾年科技業的發展造成我們在科技人才的壓力會比較大那我們當然就積極在希望去吸引更多人才進來所以整體而言我就說現在產業缺人才很嚴重 |
transcript.whisperx[11].start |
254.58 |
transcript.whisperx[11].end |
277.695 |
transcript.whisperx[11].text |
那政府怎麼確保吸引他們能夠過來人才真的是產業需要的嗎有沒有跟產業界合作針對特定的領域來制定人才所謂的更精準的延攬的計畫這部分有嗎是的 跟委員報告我們現在的做法是放寬來的資格然後讓企業可以去徵選他所需要的人才 |
transcript.whisperx[12].start |
278.716 |
transcript.whisperx[12].end |
287.611 |
transcript.whisperx[12].text |
因為政府很難去幫每一家企業去找人當然所以就是要跟產業多溝通嘛讓他有機會找到他要的人那你覺得針對國際人才的競爭激烈現在都是一個趨勢各國都在搶人台灣的趨勢是什麼 |
transcript.whisperx[13].start |
293.211 |
transcript.whisperx[13].end |
311.439 |
transcript.whisperx[13].text |
川普有喊出五百萬美金可以購買金卡取得美國的永久居留權當然我不是要說台灣要跟川普比我只是舉一個案例我們跟鄰近的國家比如說日本韓國這兩個國家他們怎麼做我們現行辦法有沒有辦法跟日韓一起競爭來搶國際人才 |
transcript.whisperx[14].start |
313.08 |
transcript.whisperx[14].end |
324.469 |
transcript.whisperx[14].text |
是的,我們現在新的辦法就參考了日本的JSK,日本的JFUN我們也參考了韓國,我們參考了英國,包括澳洲等等我們參考了他們就定定的 |
transcript.whisperx[15].start |
325.188 |
transcript.whisperx[15].end |
351.093 |
transcript.whisperx[15].text |
所以你覺得修法之後對於全球纜財的市場會有優勢會有一定的競爭力在這幾個國家你說優勢我們當然我們有很多的優勢包括我們的生活條件沒有說修法後修法後的優勢對修法後我們修法後就是我們的條件放寬然後呢可以比較讓企業可以找到人會更有吸引度嗎會放寬以後 |
transcript.whisperx[16].start |
353.707 |
transcript.whisperx[16].end |
361.681 |
transcript.whisperx[16].text |
这个多少会有因为我们的条件放宽了企业可以找到的人才会更多那他的面向会更广 |
transcript.whisperx[17].start |
363.095 |
transcript.whisperx[17].end |
382.605 |
transcript.whisperx[17].text |
我覺得今天會提到這個另外我們提供的永久居留參考了日本這些國家的做法那也提供一定的吸引條件那台灣還有一個那我們也善用台灣既有的條件我們既有條件像我們在醫療保險的能力包括我們在那個是台灣我們先天一些政策 |
transcript.whisperx[18].start |
383.465 |
transcript.whisperx[18].end |
399.984 |
transcript.whisperx[18].text |
然後我們生活的便利性這是我們的特殊的優勢嘛但今天我要講的是說第一當然就是產業多溝通啦符合產業需求那產業目前還是一直在缺工這是不可否認的一個事實第二跟鄰近國家相比因為我們的對手 |
transcript.whisperx[19].start |
401.059 |
transcript.whisperx[19].end |
418.25 |
transcript.whisperx[19].text |
這些競爭國家一定要先去了如指掌他們的戰術戰略策略還有他們的法那來做一個修法我覺得才會更加精準不是我們修我們自己的我們放寬我們只跟過去一年的台灣來比而是我們要跟鄰近國家要去比較這是我要提醒的 |
transcript.whisperx[20].start |
418.79 |
transcript.whisperx[20].end |
440.659 |
transcript.whisperx[20].text |
那跟這位談一下外籍數位的專業人才數位領域人才當然是希望越多越好但是這是趨勢但是外籍數位專業人士也可能會接觸到國人的相關個資那這個個資要如何能夠確保新版的這個院版草案納入數位遊牧的簽證 |
transcript.whisperx[21].start |
442.02 |
transcript.whisperx[21].end |
462.681 |
transcript.whisperx[21].text |
停留的期間最長六個月延長至兩年主委先前也表示過根據估算全球約有3500萬名的數位遊牧若能放寬相關規定就能夠把他拉進台灣在家工作第一步達到觀光消費如果愛上台灣就會留下來希望進來可以有10萬人 |
transcript.whisperx[22].start |
464.002 |
transcript.whisperx[22].end |
479.126 |
transcript.whisperx[22].text |
可以留下一萬人那十萬人可以留下一萬人這就是政策目標我想請問主委數位遊牧的簽證2025一月上市已經上路了十四半年來實際核發的簽證人數 |
transcript.whisperx[23].start |
481.482 |
transcript.whisperx[23].end |
499.668 |
transcript.whisperx[23].text |
停留人數、國籍分佈可不可以分享一下各位我們報告喔停留人數在這個數位牧民的網站裡面有一個網站它可以讓大家填報現在在哪裡做數位牧民那我們從那個網站我們在兩週前看到的是三千人在台灣 |
transcript.whisperx[24].start |
500.808 |
transcript.whisperx[24].end |
515.514 |
transcript.whisperx[24].text |
那第二個部分是我們去年我們在推動這個樹惡牧民的時候我們並沒有改變法令所以我們是利用現有的簽證條件來吸引那這些人他可以有不同的管道進來因為結局是一樣的 |
transcript.whisperx[25].start |
516.374 |
transcript.whisperx[25].end |
541.716 |
transcript.whisperx[25].text |
那我們希望透過這次的修法讓他可以比較到東南亞的國家延長到一年甚至到兩年去就會具備吸引力條件那就會有比較多的人利用數位牧民簽證進來否則在有些國家他是免簽你剛說兩千多人他會免簽就直接進來你剛說兩千多人目前有三千三千多人在系統上面那主委剛剛講了十萬留一萬台灣的觀光對數位牧民 |
transcript.whisperx[26].start |
542.877 |
transcript.whisperx[26].end |
572.117 |
transcript.whisperx[26].text |
有什麼樣留下來的誘因我想這個你我大概都知道啦那可是我還是要講就是說數位遊牧的這些人才在台生活稅務金融住宿等實際需求政府有沒有什麼配套有沒有跨部會去做如何防止政策流於短期的觀光而真正非流財那我們有沒有對於這樣的部分去做一個盤點台灣對韓國有何的優勢因為韓國也在推所謂的類似政策 |
transcript.whisperx[27].start |
573.097 |
transcript.whisperx[27].end |
595.527 |
transcript.whisperx[27].text |
這個部分你也有研究嗎?有的,我們現在是做了幾件事,也跟委員報告,第一個我們有一個一站式的服務,在我們的Talent Taiwan的網站,那吸引數位牧民,那第二個部分是我們跟韓國跟日本也變成策略聯盟,就是我們三個國家會互相介紹,在那邊呆滿,在日本呆滿的會介紹到我們這裡來,韓國呆滿的會介紹到這裡來, |
transcript.whisperx[28].start |
598.548 |
transcript.whisperx[28].end |
623.958 |
transcript.whisperx[28].text |
類似轉機就對了我們在兩週前我們有一個宣誓大會那另外我們在台南跟台東都已經各縣市政府合作開始一起共同經營數位牧民的發展數位牧民這個你剛說一戰四大我覺得那是基本需求那就不再說了但是我要講是說短期觀光我們常常在講台灣的住宿很貴國人都不留在台灣玩都寧願跑去日本 |
transcript.whisperx[29].start |
624.858 |
transcript.whisperx[29].end |
652.178 |
transcript.whisperx[29].text |
根據台灣金卡辦公室2023外國人才的調查摘要銀行議題語言障礙分別為專業的人士外國的這些專業人士認為在台灣生活最大的困難處這些是我剛剛在這個辦公室所拿到的這些資料調查的摘要那您提到了一戰事然後還有韓國日本相互介紹但我要講的是說我們還是要注意這些語言障礙銀行議題 |
transcript.whisperx[30].start |
653.419 |
transcript.whisperx[30].end |
675.432 |
transcript.whisperx[30].text |
他們也有可能會成為他短期觀光的時候有一些遇到的困難沒錯 這些我們都調查了解我們其實會透過我們的雙語政策同時在協助譬如說我們最近在協調55688因為外國人做Uber只有大都市才有他坐計程車是很困難的那我們希望55688會有英文版本提供外國人比較便利的生活 |
transcript.whisperx[31].start |
676.092 |
transcript.whisperx[31].end |
698.278 |
transcript.whisperx[31].text |
那我們現在有一連串的政策在建立這樣的生態系統都是針對我們對外國人士調查的結果啦主席已經站起來了那我想就是提醒你在這個部分上多溝通那多了解那實際上還是要記得亞洲的競爭日韓是我們最主要的是的一定要先了解競爭對手才可以知道我們修法怎麼樣更實際可以運用好嗎謝謝 |