IVOD_ID |
162659 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/162659 |
日期 |
2025-06-18 |
會議資料.會議代碼 |
委員會-11-3-26-17 |
會議資料.會議代碼:str |
第11屆第3會期社會福利及衛生環境委員會第17次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
17 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第3會期社會福利及衛生環境委員會第17次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-06-18T13:06:43+08:00 |
結束時間 |
2025-06-18T13:28:59+08:00 |
影片長度 |
00:22:16 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5617cf280bc2552a077fb58a667851a6242af1fd96f582309be1ababaaa47466dd502cc2602e8e7f5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
陳瑩 |
委員發言時間 |
13:06:43 - 13:28:59 |
會議時間 |
2025-06-18T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期社會福利及衛生環境委員會第17次全體委員會議(事由:邀請勞動部部長就「營造友善職場育兒環境,落實照顧不離職政策規劃」進行專題報告,並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
0.03096875 |
transcript.pyannote[0].end |
2.61284375 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
15.65721875 |
transcript.pyannote[1].end |
19.80846875 |
transcript.pyannote[2].speaker |
SPEAKER_03 |
transcript.pyannote[2].start |
26.22096875 |
transcript.pyannote[2].end |
26.23784375 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
26.23784375 |
transcript.pyannote[3].end |
26.86221875 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
26.91284375 |
transcript.pyannote[4].end |
28.12784375 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
57.87846875 |
transcript.pyannote[5].end |
64.64534375 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
65.20221875 |
transcript.pyannote[6].end |
85.89096875 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
86.36346875 |
transcript.pyannote[7].end |
86.75159375 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
87.57846875 |
transcript.pyannote[8].end |
88.91159375 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
89.08034375 |
transcript.pyannote[9].end |
93.01221875 |
transcript.pyannote[10].speaker |
SPEAKER_03 |
transcript.pyannote[10].start |
93.87284375 |
transcript.pyannote[10].end |
95.32409375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
95.29034375 |
transcript.pyannote[11].end |
98.05784375 |
transcript.pyannote[12].speaker |
SPEAKER_03 |
transcript.pyannote[12].start |
96.15096875 |
transcript.pyannote[12].end |
98.59784375 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
99.08721875 |
transcript.pyannote[13].end |
99.44159375 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
99.82971875 |
transcript.pyannote[14].end |
101.46659375 |
transcript.pyannote[15].speaker |
SPEAKER_03 |
transcript.pyannote[15].start |
101.39909375 |
transcript.pyannote[15].end |
101.41596875 |
transcript.pyannote[16].speaker |
SPEAKER_03 |
transcript.pyannote[16].start |
101.46659375 |
transcript.pyannote[16].end |
102.25971875 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
101.93909375 |
transcript.pyannote[17].end |
102.32721875 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
102.58034375 |
transcript.pyannote[18].end |
103.03596875 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
103.45784375 |
transcript.pyannote[19].end |
104.36909375 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
104.70659375 |
transcript.pyannote[20].end |
108.46971875 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
108.68909375 |
transcript.pyannote[21].end |
114.74721875 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
115.65846875 |
transcript.pyannote[22].end |
116.23221875 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
116.56971875 |
transcript.pyannote[23].end |
118.52721875 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
119.37096875 |
transcript.pyannote[24].end |
119.89409375 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
120.53534375 |
transcript.pyannote[25].end |
123.82596875 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
124.29846875 |
transcript.pyannote[26].end |
126.59346875 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
127.84221875 |
transcript.pyannote[27].end |
130.27221875 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
130.89659375 |
transcript.pyannote[28].end |
131.31846875 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
131.80784375 |
transcript.pyannote[29].end |
133.22534375 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
134.15346875 |
transcript.pyannote[30].end |
136.97159375 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
137.52846875 |
transcript.pyannote[31].end |
139.28346875 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
139.89096875 |
transcript.pyannote[32].end |
141.86534375 |
transcript.pyannote[33].speaker |
SPEAKER_03 |
transcript.pyannote[33].start |
146.64096875 |
transcript.pyannote[33].end |
152.24346875 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
152.20971875 |
transcript.pyannote[34].end |
154.31909375 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
154.89284375 |
transcript.pyannote[35].end |
155.34846875 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
156.76596875 |
transcript.pyannote[36].end |
158.62221875 |
transcript.pyannote[37].speaker |
SPEAKER_03 |
transcript.pyannote[37].start |
159.28034375 |
transcript.pyannote[37].end |
159.66846875 |
transcript.pyannote[38].speaker |
SPEAKER_03 |
transcript.pyannote[38].start |
159.92159375 |
transcript.pyannote[38].end |
161.17034375 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
162.73971875 |
transcript.pyannote[39].end |
163.68471875 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
163.68471875 |
transcript.pyannote[40].end |
163.70159375 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
164.47784375 |
transcript.pyannote[41].end |
165.03471875 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
165.03471875 |
transcript.pyannote[42].end |
166.18221875 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
166.90784375 |
transcript.pyannote[43].end |
167.63346875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
167.83596875 |
transcript.pyannote[44].end |
176.77971875 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
171.53159375 |
transcript.pyannote[45].end |
172.02096875 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
176.67846875 |
transcript.pyannote[46].end |
178.53471875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
176.84721875 |
transcript.pyannote[47].end |
178.19721875 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
179.14221875 |
transcript.pyannote[48].end |
180.47534375 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
181.06596875 |
transcript.pyannote[49].end |
183.02346875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
183.02346875 |
transcript.pyannote[50].end |
184.03596875 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
183.09096875 |
transcript.pyannote[51].end |
183.59721875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
184.27221875 |
transcript.pyannote[52].end |
186.66846875 |
transcript.pyannote[53].speaker |
SPEAKER_01 |
transcript.pyannote[53].start |
184.52534375 |
transcript.pyannote[53].end |
185.18346875 |
transcript.pyannote[54].speaker |
SPEAKER_03 |
transcript.pyannote[54].start |
187.83284375 |
transcript.pyannote[54].end |
190.70159375 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
187.90034375 |
transcript.pyannote[55].end |
188.17034375 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
188.17034375 |
transcript.pyannote[56].end |
188.18721875 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
191.19096875 |
transcript.pyannote[57].end |
194.70096875 |
transcript.pyannote[58].speaker |
SPEAKER_03 |
transcript.pyannote[58].start |
196.84409375 |
transcript.pyannote[58].end |
200.33721875 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
200.45534375 |
transcript.pyannote[59].end |
207.28971875 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
207.72846875 |
transcript.pyannote[60].end |
210.36096875 |
transcript.pyannote[61].speaker |
SPEAKER_03 |
transcript.pyannote[61].start |
210.19221875 |
transcript.pyannote[61].end |
214.36034375 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
212.48721875 |
transcript.pyannote[62].end |
212.82471875 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
213.28034375 |
transcript.pyannote[63].end |
218.47784375 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
218.71409375 |
transcript.pyannote[64].end |
220.28346875 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
220.41846875 |
transcript.pyannote[65].end |
224.45159375 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
225.09284375 |
transcript.pyannote[66].end |
233.47971875 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
235.03221875 |
transcript.pyannote[67].end |
240.66846875 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
241.54596875 |
transcript.pyannote[68].end |
243.31784375 |
transcript.pyannote[69].speaker |
SPEAKER_03 |
transcript.pyannote[69].start |
243.72284375 |
transcript.pyannote[69].end |
244.53284375 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
244.46534375 |
transcript.pyannote[70].end |
248.83596875 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
249.40971875 |
transcript.pyannote[71].end |
261.88034375 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
262.23471875 |
transcript.pyannote[72].end |
271.22909375 |
transcript.pyannote[73].speaker |
SPEAKER_03 |
transcript.pyannote[73].start |
272.71409375 |
transcript.pyannote[73].end |
275.73471875 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
276.44346875 |
transcript.pyannote[74].end |
276.56159375 |
transcript.pyannote[75].speaker |
SPEAKER_03 |
transcript.pyannote[75].start |
276.93284375 |
transcript.pyannote[75].end |
278.68784375 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
277.92846875 |
transcript.pyannote[76].end |
278.80596875 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
279.34596875 |
transcript.pyannote[77].end |
280.30784375 |
transcript.pyannote[78].speaker |
SPEAKER_03 |
transcript.pyannote[78].start |
280.30784375 |
transcript.pyannote[78].end |
283.21034375 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
281.45534375 |
transcript.pyannote[79].end |
282.68721875 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
283.51409375 |
transcript.pyannote[80].end |
284.32409375 |
transcript.pyannote[81].speaker |
SPEAKER_01 |
transcript.pyannote[81].start |
284.89784375 |
transcript.pyannote[81].end |
285.60659375 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
285.97784375 |
transcript.pyannote[82].end |
288.08721875 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
288.69471875 |
transcript.pyannote[83].end |
307.72971875 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
309.07971875 |
transcript.pyannote[84].end |
312.18471875 |
transcript.pyannote[85].speaker |
SPEAKER_03 |
transcript.pyannote[85].start |
312.38721875 |
transcript.pyannote[85].end |
316.13346875 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
316.08284375 |
transcript.pyannote[86].end |
319.10346875 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
320.38596875 |
transcript.pyannote[87].end |
325.98846875 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
327.72659375 |
transcript.pyannote[88].end |
336.92346875 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
337.98659375 |
transcript.pyannote[89].end |
344.60159375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
346.86284375 |
transcript.pyannote[90].end |
348.73596875 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
349.27596875 |
transcript.pyannote[91].end |
351.33471875 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
352.44846875 |
transcript.pyannote[92].end |
353.98409375 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
354.55784375 |
transcript.pyannote[93].end |
389.01659375 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
389.48909375 |
transcript.pyannote[94].end |
394.93971875 |
transcript.pyannote[95].speaker |
SPEAKER_03 |
transcript.pyannote[95].start |
398.02784375 |
transcript.pyannote[95].end |
403.19159375 |
transcript.pyannote[96].speaker |
SPEAKER_03 |
transcript.pyannote[96].start |
404.22096875 |
transcript.pyannote[96].end |
407.22471875 |
transcript.pyannote[97].speaker |
SPEAKER_03 |
transcript.pyannote[97].start |
407.51159375 |
transcript.pyannote[97].end |
415.86471875 |
transcript.pyannote[98].speaker |
SPEAKER_03 |
transcript.pyannote[98].start |
416.62409375 |
transcript.pyannote[98].end |
431.59221875 |
transcript.pyannote[99].speaker |
SPEAKER_03 |
transcript.pyannote[99].start |
432.14909375 |
transcript.pyannote[99].end |
434.46096875 |
transcript.pyannote[100].speaker |
SPEAKER_03 |
transcript.pyannote[100].start |
434.64659375 |
transcript.pyannote[100].end |
437.46471875 |
transcript.pyannote[101].speaker |
SPEAKER_03 |
transcript.pyannote[101].start |
438.49409375 |
transcript.pyannote[101].end |
441.04221875 |
transcript.pyannote[102].speaker |
SPEAKER_03 |
transcript.pyannote[102].start |
441.32909375 |
transcript.pyannote[102].end |
441.78471875 |
transcript.pyannote[103].speaker |
SPEAKER_03 |
transcript.pyannote[103].start |
442.72971875 |
transcript.pyannote[103].end |
444.95721875 |
transcript.pyannote[104].speaker |
SPEAKER_03 |
transcript.pyannote[104].start |
445.49721875 |
transcript.pyannote[104].end |
456.63471875 |
transcript.pyannote[105].speaker |
SPEAKER_01 |
transcript.pyannote[105].start |
456.48284375 |
transcript.pyannote[105].end |
462.16971875 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
462.27096875 |
transcript.pyannote[106].end |
463.08096875 |
transcript.pyannote[107].speaker |
SPEAKER_01 |
transcript.pyannote[107].start |
463.99221875 |
transcript.pyannote[107].end |
467.82284375 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
468.14346875 |
transcript.pyannote[108].end |
479.02784375 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
479.55096875 |
transcript.pyannote[109].end |
479.92221875 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
480.81659375 |
transcript.pyannote[110].end |
484.10721875 |
transcript.pyannote[111].speaker |
SPEAKER_01 |
transcript.pyannote[111].start |
484.47846875 |
transcript.pyannote[111].end |
489.13596875 |
transcript.pyannote[112].speaker |
SPEAKER_03 |
transcript.pyannote[112].start |
487.81971875 |
transcript.pyannote[112].end |
489.91221875 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
489.47346875 |
transcript.pyannote[113].end |
500.17221875 |
transcript.pyannote[114].speaker |
SPEAKER_01 |
transcript.pyannote[114].start |
500.86409375 |
transcript.pyannote[114].end |
505.21784375 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
505.52159375 |
transcript.pyannote[115].end |
526.75034375 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
526.09221875 |
transcript.pyannote[116].end |
526.49721875 |
transcript.pyannote[117].speaker |
SPEAKER_01 |
transcript.pyannote[117].start |
527.15534375 |
transcript.pyannote[117].end |
527.37471875 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
527.72909375 |
transcript.pyannote[118].end |
528.06659375 |
transcript.pyannote[119].speaker |
SPEAKER_01 |
transcript.pyannote[119].start |
528.37034375 |
transcript.pyannote[119].end |
540.14909375 |
transcript.pyannote[120].speaker |
SPEAKER_03 |
transcript.pyannote[120].start |
540.55409375 |
transcript.pyannote[120].end |
541.00971875 |
transcript.pyannote[121].speaker |
SPEAKER_03 |
transcript.pyannote[121].start |
541.26284375 |
transcript.pyannote[121].end |
542.24159375 |
transcript.pyannote[122].speaker |
SPEAKER_03 |
transcript.pyannote[122].start |
542.83221875 |
transcript.pyannote[122].end |
550.81409375 |
transcript.pyannote[123].speaker |
SPEAKER_03 |
transcript.pyannote[123].start |
550.89846875 |
transcript.pyannote[123].end |
556.85534375 |
transcript.pyannote[124].speaker |
SPEAKER_03 |
transcript.pyannote[124].start |
557.91846875 |
transcript.pyannote[124].end |
558.10409375 |
transcript.pyannote[125].speaker |
SPEAKER_03 |
transcript.pyannote[125].start |
559.30221875 |
transcript.pyannote[125].end |
559.52159375 |
transcript.pyannote[126].speaker |
SPEAKER_02 |
transcript.pyannote[126].start |
559.52159375 |
transcript.pyannote[126].end |
559.75784375 |
transcript.pyannote[127].speaker |
SPEAKER_03 |
transcript.pyannote[127].start |
560.78721875 |
transcript.pyannote[127].end |
561.12471875 |
transcript.pyannote[128].speaker |
SPEAKER_03 |
transcript.pyannote[128].start |
561.71534375 |
transcript.pyannote[128].end |
564.34784375 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
565.41096875 |
transcript.pyannote[129].end |
568.19534375 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
568.60034375 |
transcript.pyannote[130].end |
570.10221875 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
569.35971875 |
transcript.pyannote[131].end |
569.54534375 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
570.10221875 |
transcript.pyannote[132].end |
570.38909375 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
570.38909375 |
transcript.pyannote[133].end |
570.42284375 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
570.87846875 |
transcript.pyannote[134].end |
571.92471875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
572.59971875 |
transcript.pyannote[135].end |
578.30346875 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
578.48909375 |
transcript.pyannote[136].end |
580.46346875 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
580.95284375 |
transcript.pyannote[137].end |
585.91409375 |
transcript.pyannote[138].speaker |
SPEAKER_01 |
transcript.pyannote[138].start |
583.12971875 |
transcript.pyannote[138].end |
584.64846875 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
586.72409375 |
transcript.pyannote[139].end |
586.77471875 |
transcript.pyannote[140].speaker |
SPEAKER_01 |
transcript.pyannote[140].start |
586.77471875 |
transcript.pyannote[140].end |
588.24284375 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
589.25534375 |
transcript.pyannote[141].end |
590.45346875 |
transcript.pyannote[142].speaker |
SPEAKER_01 |
transcript.pyannote[142].start |
591.53346875 |
transcript.pyannote[142].end |
602.16471875 |
transcript.pyannote[143].speaker |
SPEAKER_03 |
transcript.pyannote[143].start |
597.32159375 |
transcript.pyannote[143].end |
598.97534375 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
598.97534375 |
transcript.pyannote[144].end |
599.83596875 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
602.70471875 |
transcript.pyannote[145].end |
612.07034375 |
transcript.pyannote[146].speaker |
SPEAKER_01 |
transcript.pyannote[146].start |
612.76221875 |
transcript.pyannote[146].end |
617.72346875 |
transcript.pyannote[147].speaker |
SPEAKER_01 |
transcript.pyannote[147].start |
617.77409375 |
transcript.pyannote[147].end |
622.78596875 |
transcript.pyannote[148].speaker |
SPEAKER_03 |
transcript.pyannote[148].start |
625.03034375 |
transcript.pyannote[148].end |
632.94471875 |
transcript.pyannote[149].speaker |
SPEAKER_03 |
transcript.pyannote[149].start |
633.28221875 |
transcript.pyannote[149].end |
640.35284375 |
transcript.pyannote[150].speaker |
SPEAKER_03 |
transcript.pyannote[150].start |
640.92659375 |
transcript.pyannote[150].end |
643.39034375 |
transcript.pyannote[151].speaker |
SPEAKER_01 |
transcript.pyannote[151].start |
643.39034375 |
transcript.pyannote[151].end |
662.94846875 |
transcript.pyannote[152].speaker |
SPEAKER_01 |
transcript.pyannote[152].start |
663.20159375 |
transcript.pyannote[152].end |
666.15471875 |
transcript.pyannote[153].speaker |
SPEAKER_01 |
transcript.pyannote[153].start |
666.72846875 |
transcript.pyannote[153].end |
667.53846875 |
transcript.pyannote[154].speaker |
SPEAKER_01 |
transcript.pyannote[154].start |
667.60596875 |
transcript.pyannote[154].end |
668.85471875 |
transcript.pyannote[155].speaker |
SPEAKER_03 |
transcript.pyannote[155].start |
669.68159375 |
transcript.pyannote[155].end |
670.50846875 |
transcript.pyannote[156].speaker |
SPEAKER_03 |
transcript.pyannote[156].start |
671.30159375 |
transcript.pyannote[156].end |
673.56284375 |
transcript.pyannote[157].speaker |
SPEAKER_03 |
transcript.pyannote[157].start |
674.57534375 |
transcript.pyannote[157].end |
678.10221875 |
transcript.pyannote[158].speaker |
SPEAKER_03 |
transcript.pyannote[158].start |
678.42284375 |
transcript.pyannote[158].end |
682.05096875 |
transcript.pyannote[159].speaker |
SPEAKER_03 |
transcript.pyannote[159].start |
683.33346875 |
transcript.pyannote[159].end |
687.88971875 |
transcript.pyannote[160].speaker |
SPEAKER_01 |
transcript.pyannote[160].start |
687.48471875 |
transcript.pyannote[160].end |
695.09534375 |
transcript.pyannote[161].speaker |
SPEAKER_03 |
transcript.pyannote[161].start |
691.12971875 |
transcript.pyannote[161].end |
691.50096875 |
transcript.pyannote[162].speaker |
SPEAKER_03 |
transcript.pyannote[162].start |
693.50909375 |
transcript.pyannote[162].end |
697.28909375 |
transcript.pyannote[163].speaker |
SPEAKER_01 |
transcript.pyannote[163].start |
695.66909375 |
transcript.pyannote[163].end |
699.26346875 |
transcript.pyannote[164].speaker |
SPEAKER_01 |
transcript.pyannote[164].start |
699.53346875 |
transcript.pyannote[164].end |
701.25471875 |
transcript.pyannote[165].speaker |
SPEAKER_01 |
transcript.pyannote[165].start |
701.71034375 |
transcript.pyannote[165].end |
703.80284375 |
transcript.pyannote[166].speaker |
SPEAKER_03 |
transcript.pyannote[166].start |
703.85346875 |
transcript.pyannote[166].end |
704.27534375 |
transcript.pyannote[167].speaker |
SPEAKER_01 |
transcript.pyannote[167].start |
704.24159375 |
transcript.pyannote[167].end |
716.74596875 |
transcript.pyannote[168].speaker |
SPEAKER_03 |
transcript.pyannote[168].start |
719.68221875 |
transcript.pyannote[168].end |
720.13784375 |
transcript.pyannote[169].speaker |
SPEAKER_03 |
transcript.pyannote[169].start |
721.06596875 |
transcript.pyannote[169].end |
732.22034375 |
transcript.pyannote[170].speaker |
SPEAKER_01 |
transcript.pyannote[170].start |
733.21596875 |
transcript.pyannote[170].end |
733.62096875 |
transcript.pyannote[171].speaker |
SPEAKER_01 |
transcript.pyannote[171].start |
735.03846875 |
transcript.pyannote[171].end |
735.88221875 |
transcript.pyannote[172].speaker |
SPEAKER_01 |
transcript.pyannote[172].start |
736.99596875 |
transcript.pyannote[172].end |
764.40096875 |
transcript.pyannote[173].speaker |
SPEAKER_03 |
transcript.pyannote[173].start |
766.81409375 |
transcript.pyannote[173].end |
784.70159375 |
transcript.pyannote[174].speaker |
SPEAKER_01 |
transcript.pyannote[174].start |
781.78221875 |
transcript.pyannote[174].end |
782.13659375 |
transcript.pyannote[175].speaker |
SPEAKER_01 |
transcript.pyannote[175].start |
783.38534375 |
transcript.pyannote[175].end |
789.27471875 |
transcript.pyannote[176].speaker |
SPEAKER_01 |
transcript.pyannote[176].start |
792.51471875 |
transcript.pyannote[176].end |
795.26534375 |
transcript.pyannote[177].speaker |
SPEAKER_03 |
transcript.pyannote[177].start |
793.62846875 |
transcript.pyannote[177].end |
795.34971875 |
transcript.pyannote[178].speaker |
SPEAKER_01 |
transcript.pyannote[178].start |
796.15971875 |
transcript.pyannote[178].end |
799.39971875 |
transcript.pyannote[179].speaker |
SPEAKER_03 |
transcript.pyannote[179].start |
798.77534375 |
transcript.pyannote[179].end |
799.90596875 |
transcript.pyannote[180].speaker |
SPEAKER_01 |
transcript.pyannote[180].start |
799.93971875 |
transcript.pyannote[180].end |
800.39534375 |
transcript.pyannote[181].speaker |
SPEAKER_01 |
transcript.pyannote[181].start |
801.54284375 |
transcript.pyannote[181].end |
805.12034375 |
transcript.pyannote[182].speaker |
SPEAKER_01 |
transcript.pyannote[182].start |
806.72346875 |
transcript.pyannote[182].end |
808.22534375 |
transcript.pyannote[183].speaker |
SPEAKER_01 |
transcript.pyannote[183].start |
808.36034375 |
transcript.pyannote[183].end |
810.65534375 |
transcript.pyannote[184].speaker |
SPEAKER_01 |
transcript.pyannote[184].start |
811.46534375 |
transcript.pyannote[184].end |
817.97909375 |
transcript.pyannote[185].speaker |
SPEAKER_02 |
transcript.pyannote[185].start |
823.19346875 |
transcript.pyannote[185].end |
823.86846875 |
transcript.pyannote[186].speaker |
SPEAKER_02 |
transcript.pyannote[186].start |
824.20596875 |
transcript.pyannote[186].end |
832.27221875 |
transcript.pyannote[187].speaker |
SPEAKER_01 |
transcript.pyannote[187].start |
824.25659375 |
transcript.pyannote[187].end |
824.77971875 |
transcript.pyannote[188].speaker |
SPEAKER_01 |
transcript.pyannote[188].start |
827.73284375 |
transcript.pyannote[188].end |
828.15471875 |
transcript.pyannote[189].speaker |
SPEAKER_01 |
transcript.pyannote[189].start |
828.91409375 |
transcript.pyannote[189].end |
831.47909375 |
transcript.pyannote[190].speaker |
SPEAKER_01 |
transcript.pyannote[190].start |
832.49159375 |
transcript.pyannote[190].end |
838.04346875 |
transcript.pyannote[191].speaker |
SPEAKER_01 |
transcript.pyannote[191].start |
838.21221875 |
transcript.pyannote[191].end |
840.57471875 |
transcript.pyannote[192].speaker |
SPEAKER_01 |
transcript.pyannote[192].start |
841.41846875 |
transcript.pyannote[192].end |
843.08909375 |
transcript.pyannote[193].speaker |
SPEAKER_02 |
transcript.pyannote[193].start |
847.12221875 |
transcript.pyannote[193].end |
847.69596875 |
transcript.pyannote[194].speaker |
SPEAKER_02 |
transcript.pyannote[194].start |
848.21909375 |
transcript.pyannote[194].end |
876.58596875 |
transcript.pyannote[195].speaker |
SPEAKER_01 |
transcript.pyannote[195].start |
874.49346875 |
transcript.pyannote[195].end |
887.40284375 |
transcript.pyannote[196].speaker |
SPEAKER_01 |
transcript.pyannote[196].start |
887.95971875 |
transcript.pyannote[196].end |
889.52909375 |
transcript.pyannote[197].speaker |
SPEAKER_01 |
transcript.pyannote[197].start |
889.96784375 |
transcript.pyannote[197].end |
891.08159375 |
transcript.pyannote[198].speaker |
SPEAKER_03 |
transcript.pyannote[198].start |
891.35159375 |
transcript.pyannote[198].end |
892.80284375 |
transcript.pyannote[199].speaker |
SPEAKER_01 |
transcript.pyannote[199].start |
892.65096875 |
transcript.pyannote[199].end |
893.78159375 |
transcript.pyannote[200].speaker |
SPEAKER_03 |
transcript.pyannote[200].start |
893.51159375 |
transcript.pyannote[200].end |
897.19034375 |
transcript.pyannote[201].speaker |
SPEAKER_01 |
transcript.pyannote[201].start |
895.97534375 |
transcript.pyannote[201].end |
896.22846875 |
transcript.pyannote[202].speaker |
SPEAKER_01 |
transcript.pyannote[202].start |
897.19034375 |
transcript.pyannote[202].end |
898.32096875 |
transcript.pyannote[203].speaker |
SPEAKER_01 |
transcript.pyannote[203].start |
898.87784375 |
transcript.pyannote[203].end |
899.48534375 |
transcript.pyannote[204].speaker |
SPEAKER_01 |
transcript.pyannote[204].start |
899.73846875 |
transcript.pyannote[204].end |
907.07909375 |
transcript.pyannote[205].speaker |
SPEAKER_01 |
transcript.pyannote[205].start |
907.63596875 |
transcript.pyannote[205].end |
908.56409375 |
transcript.pyannote[206].speaker |
SPEAKER_01 |
transcript.pyannote[206].start |
909.77909375 |
transcript.pyannote[206].end |
910.72409375 |
transcript.pyannote[207].speaker |
SPEAKER_01 |
transcript.pyannote[207].start |
911.12909375 |
transcript.pyannote[207].end |
911.77034375 |
transcript.pyannote[208].speaker |
SPEAKER_01 |
transcript.pyannote[208].start |
912.66471875 |
transcript.pyannote[208].end |
913.30596875 |
transcript.pyannote[209].speaker |
SPEAKER_01 |
transcript.pyannote[209].start |
914.14971875 |
transcript.pyannote[209].end |
914.82471875 |
transcript.pyannote[210].speaker |
SPEAKER_01 |
transcript.pyannote[210].start |
916.81596875 |
transcript.pyannote[210].end |
917.84534375 |
transcript.pyannote[211].speaker |
SPEAKER_03 |
transcript.pyannote[211].start |
916.83284375 |
transcript.pyannote[211].end |
922.01346875 |
transcript.pyannote[212].speaker |
SPEAKER_01 |
transcript.pyannote[212].start |
924.02159375 |
transcript.pyannote[212].end |
933.91034375 |
transcript.pyannote[213].speaker |
SPEAKER_01 |
transcript.pyannote[213].start |
935.69909375 |
transcript.pyannote[213].end |
942.56721875 |
transcript.pyannote[214].speaker |
SPEAKER_01 |
transcript.pyannote[214].start |
943.29284375 |
transcript.pyannote[214].end |
944.69346875 |
transcript.pyannote[215].speaker |
SPEAKER_01 |
transcript.pyannote[215].start |
945.67221875 |
transcript.pyannote[215].end |
946.39784375 |
transcript.pyannote[216].speaker |
SPEAKER_01 |
transcript.pyannote[216].start |
946.80284375 |
transcript.pyannote[216].end |
948.65909375 |
transcript.pyannote[217].speaker |
SPEAKER_01 |
transcript.pyannote[217].start |
949.04721875 |
transcript.pyannote[217].end |
952.81034375 |
transcript.pyannote[218].speaker |
SPEAKER_01 |
transcript.pyannote[218].start |
953.24909375 |
transcript.pyannote[218].end |
954.24471875 |
transcript.pyannote[219].speaker |
SPEAKER_01 |
transcript.pyannote[219].start |
955.66221875 |
transcript.pyannote[219].end |
958.39596875 |
transcript.pyannote[220].speaker |
SPEAKER_00 |
transcript.pyannote[220].start |
955.88159375 |
transcript.pyannote[220].end |
956.43846875 |
transcript.pyannote[221].speaker |
SPEAKER_00 |
transcript.pyannote[221].start |
959.25659375 |
transcript.pyannote[221].end |
968.89221875 |
transcript.pyannote[222].speaker |
SPEAKER_01 |
transcript.pyannote[222].start |
966.83346875 |
transcript.pyannote[222].end |
994.03596875 |
transcript.pyannote[223].speaker |
SPEAKER_01 |
transcript.pyannote[223].start |
994.18784375 |
transcript.pyannote[223].end |
995.90909375 |
transcript.pyannote[224].speaker |
SPEAKER_00 |
transcript.pyannote[224].start |
997.36034375 |
transcript.pyannote[224].end |
1003.06409375 |
transcript.pyannote[225].speaker |
SPEAKER_00 |
transcript.pyannote[225].start |
1003.70534375 |
transcript.pyannote[225].end |
1009.20659375 |
transcript.pyannote[226].speaker |
SPEAKER_00 |
transcript.pyannote[226].start |
1009.44284375 |
transcript.pyannote[226].end |
1016.51346875 |
transcript.pyannote[227].speaker |
SPEAKER_01 |
transcript.pyannote[227].start |
1014.08346875 |
transcript.pyannote[227].end |
1016.56409375 |
transcript.pyannote[228].speaker |
SPEAKER_00 |
transcript.pyannote[228].start |
1016.56409375 |
transcript.pyannote[228].end |
1016.96909375 |
transcript.pyannote[229].speaker |
SPEAKER_01 |
transcript.pyannote[229].start |
1016.96909375 |
transcript.pyannote[229].end |
1025.42346875 |
transcript.pyannote[230].speaker |
SPEAKER_01 |
transcript.pyannote[230].start |
1026.38534375 |
transcript.pyannote[230].end |
1035.04221875 |
transcript.pyannote[231].speaker |
SPEAKER_01 |
transcript.pyannote[231].start |
1035.78471875 |
transcript.pyannote[231].end |
1036.57784375 |
transcript.pyannote[232].speaker |
SPEAKER_01 |
transcript.pyannote[232].start |
1038.14721875 |
transcript.pyannote[232].end |
1040.91471875 |
transcript.pyannote[233].speaker |
SPEAKER_01 |
transcript.pyannote[233].start |
1041.35346875 |
transcript.pyannote[233].end |
1042.60221875 |
transcript.pyannote[234].speaker |
SPEAKER_01 |
transcript.pyannote[234].start |
1043.12534375 |
transcript.pyannote[234].end |
1044.49221875 |
transcript.pyannote[235].speaker |
SPEAKER_01 |
transcript.pyannote[235].start |
1045.21784375 |
transcript.pyannote[235].end |
1046.06159375 |
transcript.pyannote[236].speaker |
SPEAKER_01 |
transcript.pyannote[236].start |
1051.27596875 |
transcript.pyannote[236].end |
1056.97971875 |
transcript.pyannote[237].speaker |
SPEAKER_03 |
transcript.pyannote[237].start |
1057.57034375 |
transcript.pyannote[237].end |
1070.64846875 |
transcript.pyannote[238].speaker |
SPEAKER_01 |
transcript.pyannote[238].start |
1070.58096875 |
transcript.pyannote[238].end |
1082.62971875 |
transcript.pyannote[239].speaker |
SPEAKER_01 |
transcript.pyannote[239].start |
1082.93346875 |
transcript.pyannote[239].end |
1083.30471875 |
transcript.pyannote[240].speaker |
SPEAKER_01 |
transcript.pyannote[240].start |
1083.42284375 |
transcript.pyannote[240].end |
1084.09784375 |
transcript.pyannote[241].speaker |
SPEAKER_01 |
transcript.pyannote[241].start |
1084.16534375 |
transcript.pyannote[241].end |
1086.03846875 |
transcript.pyannote[242].speaker |
SPEAKER_01 |
transcript.pyannote[242].start |
1086.52784375 |
transcript.pyannote[242].end |
1087.30409375 |
transcript.pyannote[243].speaker |
SPEAKER_01 |
transcript.pyannote[243].start |
1087.67534375 |
transcript.pyannote[243].end |
1116.04221875 |
transcript.pyannote[244].speaker |
SPEAKER_01 |
transcript.pyannote[244].start |
1116.71721875 |
transcript.pyannote[244].end |
1140.64596875 |
transcript.pyannote[245].speaker |
SPEAKER_01 |
transcript.pyannote[245].start |
1140.93284375 |
transcript.pyannote[245].end |
1145.62409375 |
transcript.pyannote[246].speaker |
SPEAKER_01 |
transcript.pyannote[246].start |
1145.97846875 |
transcript.pyannote[246].end |
1150.07909375 |
transcript.pyannote[247].speaker |
SPEAKER_01 |
transcript.pyannote[247].start |
1150.46721875 |
transcript.pyannote[247].end |
1163.52846875 |
transcript.pyannote[248].speaker |
SPEAKER_01 |
transcript.pyannote[248].start |
1164.42284375 |
transcript.pyannote[248].end |
1168.72596875 |
transcript.pyannote[249].speaker |
SPEAKER_03 |
transcript.pyannote[249].start |
1167.13971875 |
transcript.pyannote[249].end |
1170.26159375 |
transcript.pyannote[250].speaker |
SPEAKER_01 |
transcript.pyannote[250].start |
1169.63721875 |
transcript.pyannote[250].end |
1172.77596875 |
transcript.pyannote[251].speaker |
SPEAKER_03 |
transcript.pyannote[251].start |
1171.49346875 |
transcript.pyannote[251].end |
1171.91534375 |
transcript.pyannote[252].speaker |
SPEAKER_01 |
transcript.pyannote[252].start |
1172.99534375 |
transcript.pyannote[252].end |
1175.84721875 |
transcript.pyannote[253].speaker |
SPEAKER_01 |
transcript.pyannote[253].start |
1177.21409375 |
transcript.pyannote[253].end |
1186.69784375 |
transcript.pyannote[254].speaker |
SPEAKER_01 |
transcript.pyannote[254].start |
1186.98471875 |
transcript.pyannote[254].end |
1211.92596875 |
transcript.pyannote[255].speaker |
SPEAKER_03 |
transcript.pyannote[255].start |
1212.39846875 |
transcript.pyannote[255].end |
1214.84534375 |
transcript.pyannote[256].speaker |
SPEAKER_03 |
transcript.pyannote[256].start |
1214.96346875 |
transcript.pyannote[256].end |
1219.62096875 |
transcript.pyannote[257].speaker |
SPEAKER_01 |
transcript.pyannote[257].start |
1218.37221875 |
transcript.pyannote[257].end |
1221.07221875 |
transcript.pyannote[258].speaker |
SPEAKER_03 |
transcript.pyannote[258].start |
1220.46471875 |
transcript.pyannote[258].end |
1226.92784375 |
transcript.pyannote[259].speaker |
SPEAKER_03 |
transcript.pyannote[259].start |
1227.31596875 |
transcript.pyannote[259].end |
1233.89721875 |
transcript.pyannote[260].speaker |
SPEAKER_03 |
transcript.pyannote[260].start |
1234.16721875 |
transcript.pyannote[260].end |
1240.02284375 |
transcript.pyannote[261].speaker |
SPEAKER_03 |
transcript.pyannote[261].start |
1240.29284375 |
transcript.pyannote[261].end |
1240.54596875 |
transcript.pyannote[262].speaker |
SPEAKER_01 |
transcript.pyannote[262].start |
1241.37284375 |
transcript.pyannote[262].end |
1245.94596875 |
transcript.pyannote[263].speaker |
SPEAKER_01 |
transcript.pyannote[263].start |
1246.45221875 |
transcript.pyannote[263].end |
1253.11784375 |
transcript.pyannote[264].speaker |
SPEAKER_01 |
transcript.pyannote[264].start |
1253.47221875 |
transcript.pyannote[264].end |
1256.15534375 |
transcript.pyannote[265].speaker |
SPEAKER_01 |
transcript.pyannote[265].start |
1256.42534375 |
transcript.pyannote[265].end |
1273.03034375 |
transcript.pyannote[266].speaker |
SPEAKER_01 |
transcript.pyannote[266].start |
1273.11471875 |
transcript.pyannote[266].end |
1307.50596875 |
transcript.pyannote[267].speaker |
SPEAKER_01 |
transcript.pyannote[267].start |
1307.94471875 |
transcript.pyannote[267].end |
1314.15471875 |
transcript.pyannote[268].speaker |
SPEAKER_01 |
transcript.pyannote[268].start |
1314.76221875 |
transcript.pyannote[268].end |
1315.04909375 |
transcript.pyannote[269].speaker |
SPEAKER_03 |
transcript.pyannote[269].start |
1315.67346875 |
transcript.pyannote[269].end |
1318.54221875 |
transcript.pyannote[270].speaker |
SPEAKER_03 |
transcript.pyannote[270].start |
1318.79534375 |
transcript.pyannote[270].end |
1320.83721875 |
transcript.pyannote[271].speaker |
SPEAKER_03 |
transcript.pyannote[271].start |
1321.61346875 |
transcript.pyannote[271].end |
1323.14909375 |
transcript.pyannote[272].speaker |
SPEAKER_01 |
transcript.pyannote[272].start |
1321.69784375 |
transcript.pyannote[272].end |
1324.34721875 |
transcript.pyannote[273].speaker |
SPEAKER_01 |
transcript.pyannote[273].start |
1325.59596875 |
transcript.pyannote[273].end |
1329.03846875 |
transcript.pyannote[274].speaker |
SPEAKER_01 |
transcript.pyannote[274].start |
1329.52784375 |
transcript.pyannote[274].end |
1333.47659375 |
transcript.pyannote[275].speaker |
SPEAKER_01 |
transcript.pyannote[275].start |
1333.62846875 |
transcript.pyannote[275].end |
1336.96971875 |
transcript.whisperx[0].start |
0.029 |
transcript.whisperx[0].end |
2.09 |
transcript.whisperx[0].text |
現在主席麻煩請我們那個勞動部的紅部長陳委員好部長好 |
transcript.whisperx[1].start |
58.135 |
transcript.whisperx[1].end |
69.441 |
transcript.whisperx[1].text |
抱歉 想請教部長我們看一下第一個簡報110年台灣外勞勤領勞保生育給付的3632人111年4900人前年112年是5687人到了去年的113年應該有突破6000人了 |
transcript.whisperx[2].start |
89.249 |
transcript.whisperx[2].end |
109.817 |
transcript.whisperx[2].text |
呃應該我不知道部長你們那邊有沒有這個統計人數有我們其實113年113年目前的數字應該是6000人好你們也抓6000是不是對差不多好那呃這邊這個數字當中齁呃我是有注意到就是說112年比111年多了1268人 |
transcript.whisperx[3].start |
115.714 |
transcript.whisperx[3].end |
141.391 |
transcript.whisperx[3].text |
那其實這個增加是比這個111年到112年要等一下就是等一下100有他112年那一年他就是增加的特別多比之前還要多很多你們有注意到是什麼原因嗎 |
transcript.whisperx[4].start |
146.65 |
transcript.whisperx[4].end |
160.988 |
transcript.whisperx[4].text |
因為其實移工的人數也一直在增加其實這幾年其實移工的人數增加的也很快可是他後面是減少的啊地檢我只是說那一年就特別多可能是因為疫情 |
transcript.whisperx[5].start |
162.796 |
transcript.whisperx[5].end |
181.389 |
transcript.whisperx[5].text |
因為疫情所以大家都跑去生小孩有關邊境管制的時候所以人數有略低那後來的人數比較高應該是回到之前比較高的水準對 但後面又下降啊112年111年到112年又我們112跟113是逐年上升現在從110年之後應該都是逐年上升的 |
transcript.whisperx[6].start |
191.24 |
transcript.whisperx[6].end |
193.166 |
transcript.whisperx[6].text |
但我這邊沒有看到下降我是說110年到 |
transcript.whisperx[7].start |
197.274 |
transcript.whisperx[7].end |
223.963 |
transcript.whisperx[7].text |
160年到113年就是委員你的數據其實看起來都是上升的都有上升沒錯啦那我是說上升有一年就是多了突然多了1000多人啦那部長說因為疫情的關係也包括可能有移工的人數那跟邊境的管制沒關係我想這個只是我在看這個數據的時候發現的一個有趣的一個數字那想知道原因所以你們可能後續 |
transcript.whisperx[8].start |
225.163 |
transcript.whisperx[8].end |
248.483 |
transcript.whisperx[8].text |
整理一下看是研究一下看是怎么样明确的原因我想这个是值得研究那也请你们再关心一下就其中未婚的有多少人然后已婚的又有多少这样子你们现在应该没有这个数据吧我们可能没有好可以了解一下他会告诉你很多事的数字会说话好 |
transcript.whisperx[9].start |
249.474 |
transcript.whisperx[9].end |
270.983 |
transcript.whisperx[9].text |
那因為這個社福外勞不能參加勞保所以光是這個產業女性外勞14萬人呢每年新生兒人數就超過6000人了那部長我國今年5月份的年初出生率為4.25那請問這個外籍勞工的這個初出生率是多少 |
transcript.whisperx[10].start |
272.728 |
transcript.whisperx[10].end |
287.542 |
transcript.whisperx[10].text |
我想我們可能沒有去統計外籍勞工的這個出生率的部分你們沒有統計喔我們目前有的就是關於他的清零生育給付好沒關係我們有幫你們試算了 |
transcript.whisperx[11].start |
289.224 |
transcript.whisperx[11].end |
305.399 |
transcript.whisperx[11].text |
這個看一下簡報的部分因為我國男女比例大概就是1比1所以標準化之後呢這個外籍勞工換算起來他們的出生率為每千人21.43那是我們台灣4.25的5倍看來部長應該沒有掌握這樣的一個數字 |
transcript.whisperx[12].start |
313.058 |
transcript.whisperx[12].end |
336.112 |
transcript.whisperx[12].text |
這個可能換算不一定能夠這樣直接換算沒有直接換算是因為這個還要這個是有公式的我們是套公式下去換算的好這個是因為這個計算公式這個出生率是年出生人數要除以這個年平均人口數碼 |
transcript.whisperx[13].start |
338.038 |
transcript.whisperx[13].end |
351.067 |
transcript.whisperx[13].text |
所以這個部分你們可以自己去試算一下那我們算出來是大概是這樣那如果你們覺得有什麼問題你們可以找人再算一下 |
transcript.whisperx[14].start |
352.469 |
transcript.whisperx[14].end |
371.389 |
transcript.whisperx[14].text |
那是這樣子在部長接任之初外界有曾經質疑過部長就是說在過去力挺這個外籍勞工的態度當時部長的回答是說身為勞動部挺移工那還有就是說勞工是理所當然的 |
transcript.whisperx[15].start |
371.969 |
transcript.whisperx[15].end |
394.677 |
transcript.whisperx[15].text |
那么今天的题目要营造职场友善育儿环境就应该不分彼此也要支持社福外籍劳工能够因为育儿不离职才对所以呢在下一个简报就是说部长支持社福外籍劳工在台湾也能够自由生养小孩吗 |
transcript.whisperx[16].start |
399.058 |
transcript.whisperx[16].end |
412.602 |
transcript.whisperx[16].text |
呃應該是說這個我想想想跟委員說外籍勞工因為其實有很多時候我們這個外籍勞工其實進來臺灣以後他其實有些真的是還在就是說20幾歲20幾歲30幾歲是那 |
transcript.whisperx[17].start |
416.687 |
transcript.whisperx[17].end |
440.826 |
transcript.whisperx[17].text |
所以他可能真的會有他會生小孩的狀況這可能是他的人權所以我們的角度不是說支持或鼓勵他生小孩而是他如果生小孩的話我們要怎麼來整個整個社會怎麼來去協助這件事情所以鼓勵他生小孩我們我們的態度並不是要去鼓勵他生小孩或這個到底不是這樣可是當 |
transcript.whisperx[18].start |
443.039 |
transcript.whisperx[18].end |
462.675 |
transcript.whisperx[18].text |
這個年齡的勞工他如果遇到生小孩的狀況的時候怎麼樣子我們從人道的角度從各種人權的角度我們怎麼樣來去協助不要變成是人道上面的困境我們的角度是這個部長是這樣我想我今天的質詢我並沒有就是說 |
transcript.whisperx[19].start |
464.036 |
transcript.whisperx[19].end |
478.229 |
transcript.whisperx[19].text |
沒有什麼惡意是好那我們因為在必須要指出台灣目前我們面臨的一個狀況那就是說其實部長剛剛回的很好就是說你剛剛講說病 |
transcript.whisperx[20].start |
481.331 |
transcript.whisperx[20].end |
499.656 |
transcript.whisperx[20].text |
應該我這樣聽起來我應該沒有希望沒有理解錯誤部長應該沒有鼓勵他們對你沒有鼓勵我們的政策並不是鼓勵但是部長是講政策沒有鼓勵但我們後續會去檢視實際上我們政策是不是真的確實指鼓勵了 |
transcript.whisperx[21].start |
500.916 |
transcript.whisperx[21].end |
524.501 |
transcript.whisperx[21].text |
大家都去生孩子你可能不理解我等一下繼續講你就會知道所以我們基本上不鼓勵但是因為這個剛好是在健康適合生育的年齡所以會遇到這樣的狀況所以我們政府就必須來面臨這些外籍勞工在台灣生產的這個狀況生育的這個狀況 |
transcript.whisperx[22].start |
527.202 |
transcript.whisperx[22].end |
556.466 |
transcript.whisperx[22].text |
好那但是我要指出的是說但是他們沒有勞保那不能請領這個生育給付那所以這個部分部長要如何去處理這個攝服外籍勞工的生育問題但是有人講到比方說是講到家庭的康護工現在比較他沒有強制性的勞保那當然我們其實也希望我們也跟部長說如果要幫他保勞這並不是他不可以有勞保 |
transcript.whisperx[23].start |
561.794 |
transcript.whisperx[23].end |
584.627 |
transcript.whisperx[23].text |
我們其實現在有相關的安置的中心在處理我聽起來聽沒有很明白你們要協助回答一下嗎有關外籍義工在台生子的部分因為他們有這樣的需求所以我們目前在桃園、彰化跟高雄設有三處義工的婦幼中心等一下那個不是我問的問題 |
transcript.whisperx[24].start |
587.158 |
transcript.whisperx[24].end |
611.761 |
transcript.whisperx[24].text |
呃我只是說對因為他們不能不能申請這個生育給付因為沒有勞保嘛那產業產業的可以申請我現在只是點出這個落差啦好那所以當然這個落差之後我們接下來他們在在這個呃生育給付的請領就會有不同啊 |
transcript.whisperx[25].start |
613.513 |
transcript.whisperx[25].end |
637.958 |
transcript.whisperx[25].text |
我現在要點出是這樣啦那沒關係我們先繼續就是說那本勞的這個出生率這麼低部長要怎麼看待確實本勞的應該是說整體台灣的出生率都降低那這降低我想從勞動部角度我們當然很願意我們也在研擬相關的政策怎麼樣職場能夠對於這個 |
transcript.whisperx[26].start |
641.039 |
transcript.whisperx[26].end |
668.639 |
transcript.whisperx[26].text |
育嬰育兒的勞工能夠更加的友善沒錯好那我們來看一下啊外籍勞工在台灣懷孕的話可以去北中南區的婦幼關懷中心待產剛剛說的那每個月呢有15000元的安置費用生產後呢每個月18000元但是呢我們本國的勞工就沒有這樣子是不是不到底有沒有公平 |
transcript.whisperx[27].start |
671.841 |
transcript.whisperx[27].end |
681.857 |
transcript.whisperx[27].text |
根本說明其實就這個本國的勞工的部分其實我們當然也是有一些社福的資源但這個社福社政的資源可能主要會是來自衛福部 |
transcript.whisperx[28].start |
683.379 |
transcript.whisperx[28].end |
697.015 |
transcript.whisperx[28].text |
所以並不是說本國的勞工就沒有相關的資源來去但是因為畢竟那個也是我們的勞工本國的勞工也是更是我們應該要照顧的對象所以並不是本國的勞工就沒有相關的資源好沒有關係我們再繼續談就是說不知道你知道台灣 |
transcript.whisperx[29].start |
702.001 |
transcript.whisperx[29].end |
715.889 |
transcript.whisperx[29].text |
還有很多的這個黑戶寶寶有六個關愛之家在照顧那因為是黑戶那他們的父母親是不是也可以享受這個勞動部營造的友善職場育兒環境來落實照顧不離職的政策規劃 |
transcript.whisperx[30].start |
721.113 |
transcript.whisperx[30].end |
731.183 |
transcript.whisperx[30].text |
我想我們整個照顧不理的政策其實當然比較是針對現在主要的規劃但是現在是從本勞的狀況來去做做做做規劃的好 |
transcript.whisperx[31].start |
737.05 |
transcript.whisperx[31].end |
764.185 |
transcript.whisperx[31].text |
那個回答我沒有很滿意但沒關係我們再繼續往下那部長知道就是說在某些外籍勞工在台灣非法生子在他們的來源國如果是這樣的狀況是觸犯刑法的那面對這樣的問題部長是如何看待外籍勞工在台灣生小孩的問題然後又如何來保障他們的友善職場育兒環境呢 |
transcript.whisperx[32].start |
767.383 |
transcript.whisperx[32].end |
789.252 |
transcript.whisperx[32].text |
跟文說我們基本上現在相關的措施一樣還是剛剛在講的原則我們其實並不是要鼓勵外籍勞工生小孩我們是當如果真的遇到這個狀況的話我們怎麼從人道上面從人權上面可以協助我們的原則我再請教就是說外籍勞工生養小孩是不是雇主的責任應該不是啦除非這個孩子是雇主的 |
transcript.whisperx[33].start |
796.85 |
transcript.whisperx[33].end |
817.767 |
transcript.whisperx[33].text |
那雇主能不能要求禁止 雇主能不能要求禁止外籍勞工生養小孩應該也不行啦 那我們可以在勞動契約規範嗎也不可以 好那假設因為生養小孩無法提供勞務的時候那雇主能不能要求解雇 |
transcript.whisperx[34].start |
823.243 |
transcript.whisperx[34].end |
842.456 |
transcript.whisperx[34].text |
包委員這個移工在國內同樣是用性平法規定那在性平法裡面規定他必須要不能隨意支錢好那那個假設這個他們因為要生養小孩那可以要求可以要求離職是不是就是說他們可以要求離職嗎 |
transcript.whisperx[35].start |
847.185 |
transcript.whisperx[35].end |
874.13 |
transcript.whisperx[35].text |
包圍雇主不能單方面去要求離職那如果移工他因為生育無法去履行他的勞動契約還有雇主他沒有辦法這個這個他已經有要求應該要移工要一約來履約但是後來雙方有協議這個履約在上面有困難的話那這個部分經雙方合意可以去終止聘僱關係但是勞動部這邊還是會 |
transcript.whisperx[36].start |
875.51 |
transcript.whisperx[36].end |
898.09 |
transcript.whisperx[36].text |
我的問題是我現在不是說要終止我現在只是說暫停因為中間就是說他可能要待產或育兒他可能就要求要就是需要這個離開一段時間暫停的話是可以的但是暫停跟解雇不一樣他如果一 |
transcript.whisperx[37].start |
899.812 |
transcript.whisperx[37].end |
921.953 |
transcript.whisperx[37].text |
她如果中間一離職因為要立刻離開台灣但是一回國可能又要觸犯法律嘛好算那這個這個要怎麼辦如果她是就法規上面來說她是不能夠因為懷孕而要求她離職或解雇的 |
transcript.whisperx[38].start |
924.073 |
transcript.whisperx[38].end |
932.41 |
transcript.whisperx[38].text |
但是如果是帶就說好我們回來如果是待產他他就沒辦法繼續工作待產或有一些特殊狀態要養育一段時間這段時間 |
transcript.whisperx[39].start |
935.748 |
transcript.whisperx[39].end |
957.4 |
transcript.whisperx[39].text |
但因為會有這個人力缺乏的問題 因為他是一對一啊 僱主跟這個社福 跟這個我們的家事外勞是一對一這不像 不像那個工廠有很多的勞工一起這個人力資源上會出現問題嗎 |
transcript.whisperx[40].start |
959.298 |
transcript.whisperx[40].end |
985.433 |
transcript.whisperx[40].text |
委員這個可能是透過勞資雙方協議如果說資方願意讓這個勞方在國內待產或者是產後因為我現在點出這些問題假如你們沒有很確定也都沒有關係你就說我們可能這個狀況過去沒有遇到還是我們常遇到我們沒有好好討論那就是說因為他可能面臨就是說好他一離職他就要立刻離開台灣可是一回國又可能又觸犯法律嘛 |
transcript.whisperx[41].start |
985.993 |
transcript.whisperx[41].end |
1002.333 |
transcript.whisperx[41].text |
好所以我們就他可能也不曉得該怎麼辦那會不會就是立刻又逃逸了或者把小孩送到這個關愛之家好這樣到底合不合適有合適嗎委員其實移工在台灣生產他是可以依照我們相關的規定 |
transcript.whisperx[42].start |
1004.017 |
transcript.whisperx[42].end |
1025.028 |
transcript.whisperx[42].text |
呃在國內他是可以呃生養他的孩子但是很多移工因為考慮到他養育的成本所以他會讓孩子返國或者希子返國那生產完畢之後再返好沒關係你現在講都是一個很理想的狀態啦但是我們我們的社會裡存在著很多的迫不得已好那所以就是說 |
transcript.whisperx[43].start |
1027.191 |
transcript.whisperx[43].end |
1044.059 |
transcript.whisperx[43].text |
基於我剛點出的這些 這個我們外籍勞工生養小孩的立場所以勞動部秉持著不鼓勵不支持 不鼓勵 不鼓勵但是我們支持他必須能夠繼續生活 |
transcript.whisperx[44].start |
1051.328 |
transcript.whisperx[44].end |
1056.753 |
transcript.whisperx[44].text |
因為你們對於生養小孩的立場不然我問你你們對於生養小孩立場到底是支持還是不支持 |
transcript.whisperx[45].start |
1057.828 |
transcript.whisperx[45].end |
1085.65 |
transcript.whisperx[45].text |
應該是說其實他有他相關的權利這不是我支持或鼓勵的問題而是他會有他相關的權利這其實涉及到他的人權的狀況所以我們會要讓他的人權跟他的權利會要留有一些空間好謝謝部長因為我們畢竟所有的政策看起來確實都有做到這些而且是非常支持因為畢竟在你們的文宣跟實際行動上其實都是支持的那我想今天 |
transcript.whisperx[46].start |
1088.772 |
transcript.whisperx[46].end |
1115.412 |
transcript.whisperx[46].text |
結論 部長今天像你們詢問勞動部對於外籍勞工生養小孩的立場其實我是要釐清一個嚴肅的問題就是如果勞動部是支持的話那麼勞動部就要有一個支持的政策那也就是要保障他們在職場的友善工作環境但是友善的環境營造的主體還是要靠雇主來落實 |
transcript.whisperx[47].start |
1116.753 |
transcript.whisperx[47].end |
1144.958 |
transcript.whisperx[47].text |
那但是呢雇主不見得是能夠支持的我這樣講你們應該很清楚啦那特別是這個社福外籍勞工的雇主因為會影響到影響這個勞務的提供所以這個部分可能就產生衝突需要你們的勞動部明確的態度跟解決還有的方法跟做法所以在未來呢社福的部分社福的這些外籍勞工 |
transcript.whisperx[48].start |
1147.799 |
transcript.whisperx[48].end |
1175.478 |
transcript.whisperx[48].text |
因應這個就是說我們接下來80歲以上的長者可以申請外籍看護那勞動部你們就是推估啦將近20萬的這個這個外籍看護進來那所以生育率10萬也是很多啦所以生育率也會跟著增加 |
transcript.whisperx[49].start |
1178.099 |
transcript.whisperx[49].end |
1183.12 |
transcript.whisperx[49].text |
我趕快點出這個問題你們要正視到因此勞動部面對這個問題應該要很嚴肅來看待第一步就是要統計各個外籍勞工族群的實際生育人數並且讓勞保局公開統計這個數據 |
transcript.whisperx[50].start |
1198.405 |
transcript.whisperx[50].end |
1210.657 |
transcript.whisperx[50].text |
那這樣你才能夠估計未來成長的幅度提出一個正確友善的職場的這個政策規劃這一點部長你同意嗎你同意公開這些數據嗎 |
transcript.whisperx[51].start |
1213.182 |
transcript.whisperx[51].end |
1239.498 |
transcript.whisperx[51].text |
我想現在一些數據當然其實在大家外界是都有的就像剛剛這個申請起訴的數據你確定都有很容易查尋到嗎我是想跟委員說明我覺得我們怎麼樣在這過程裡面其實多不管是外籍勞工或者是雇主其實在這上面會有一些權益上面的這個要怎麼其實能夠去維護到彼此的一些權益我想我們是可以在這邊我們再多做一些研討 |
transcript.whisperx[52].start |
1242.268 |
transcript.whisperx[52].end |
1254.592 |
transcript.whisperx[52].text |
我想我在這邊要強調的就是這個就業服務法的條文到今天都沒有移工兩個字只有外國人另外在52條第三項 |
transcript.whisperx[53].start |
1256.713 |
transcript.whisperx[53].end |
1271.585 |
transcript.whisperx[53].text |
還是有這個外籍勞工警戒指標的用詞那基於本席尊重法令所以剛才呢從一開始有很多的時候我使用了外勞這樣的一個名詞來討論 |
transcript.whisperx[54].start |
1273.766 |
transcript.whisperx[54].end |
1298.539 |
transcript.whisperx[54].text |
那並沒有任何歧視的意思如果你們認為外勞有歧視的意思的話那我們就也請你們就趕快來提案修訂好不好不然我每次在台上我到底要講什麼我講移工可是我們的這個法律用詞又不是這樣那我們又立法委員我們有時候用詞又要精準那我到底要講什麼 |
transcript.whisperx[55].start |
1299.499 |
transcript.whisperx[55].end |
1324.079 |
transcript.whisperx[55].text |
講了等一下不用移工又被批評用了移工又不專業那到底是什麼東西你們趕快把這個這個名詞做一個法律上的修訂嘛這樣大家就統一比較有個依據啊好我們對我們來其實我們都看到會有人使用啊對外籍勞工或移工都會有人但也都會有人批評啦 |
transcript.whisperx[56].start |
1326.802 |
transcript.whisperx[56].end |
1332.972 |
transcript.whisperx[56].text |
那那個罵就有一點就是啊到底我們就遵守法規啊就這樣好謝謝好謝謝謝謝陳以為 |