iVOD / 162659

Field Value
IVOD_ID 162659
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/162659
日期 2025-06-18
會議資料.會議代碼 委員會-11-3-26-17
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第17次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 17
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第17次全體委員會議
影片種類 Clip
開始時間 2025-06-18T13:06:43+08:00
結束時間 2025-06-18T13:28:59+08:00
影片長度 00:22:16
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5617cf280bc2552a077fb58a667851a6242af1fd96f582309be1ababaaa47466dd502cc2602e8e7f5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 陳瑩
委員發言時間 13:06:43 - 13:28:59
會議時間 2025-06-18T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第17次全體委員會議(事由:邀請勞動部部長就「營造友善職場育兒環境,落實照顧不離職政策規劃」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 2.61284375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 15.65721875
transcript.pyannote[1].end 19.80846875
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 26.22096875
transcript.pyannote[2].end 26.23784375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 26.23784375
transcript.pyannote[3].end 26.86221875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 26.91284375
transcript.pyannote[4].end 28.12784375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 57.87846875
transcript.pyannote[5].end 64.64534375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 65.20221875
transcript.pyannote[6].end 85.89096875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 86.36346875
transcript.pyannote[7].end 86.75159375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 87.57846875
transcript.pyannote[8].end 88.91159375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 89.08034375
transcript.pyannote[9].end 93.01221875
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 93.87284375
transcript.pyannote[10].end 95.32409375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 95.29034375
transcript.pyannote[11].end 98.05784375
transcript.pyannote[12].speaker SPEAKER_03
transcript.pyannote[12].start 96.15096875
transcript.pyannote[12].end 98.59784375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 99.08721875
transcript.pyannote[13].end 99.44159375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 99.82971875
transcript.pyannote[14].end 101.46659375
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 101.39909375
transcript.pyannote[15].end 101.41596875
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 101.46659375
transcript.pyannote[16].end 102.25971875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 101.93909375
transcript.pyannote[17].end 102.32721875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 102.58034375
transcript.pyannote[18].end 103.03596875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 103.45784375
transcript.pyannote[19].end 104.36909375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 104.70659375
transcript.pyannote[20].end 108.46971875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 108.68909375
transcript.pyannote[21].end 114.74721875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 115.65846875
transcript.pyannote[22].end 116.23221875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 116.56971875
transcript.pyannote[23].end 118.52721875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 119.37096875
transcript.pyannote[24].end 119.89409375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 120.53534375
transcript.pyannote[25].end 123.82596875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 124.29846875
transcript.pyannote[26].end 126.59346875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 127.84221875
transcript.pyannote[27].end 130.27221875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 130.89659375
transcript.pyannote[28].end 131.31846875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 131.80784375
transcript.pyannote[29].end 133.22534375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 134.15346875
transcript.pyannote[30].end 136.97159375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 137.52846875
transcript.pyannote[31].end 139.28346875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 139.89096875
transcript.pyannote[32].end 141.86534375
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 146.64096875
transcript.pyannote[33].end 152.24346875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 152.20971875
transcript.pyannote[34].end 154.31909375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 154.89284375
transcript.pyannote[35].end 155.34846875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 156.76596875
transcript.pyannote[36].end 158.62221875
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 159.28034375
transcript.pyannote[37].end 159.66846875
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 159.92159375
transcript.pyannote[38].end 161.17034375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 162.73971875
transcript.pyannote[39].end 163.68471875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 163.68471875
transcript.pyannote[40].end 163.70159375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 164.47784375
transcript.pyannote[41].end 165.03471875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 165.03471875
transcript.pyannote[42].end 166.18221875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 166.90784375
transcript.pyannote[43].end 167.63346875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 167.83596875
transcript.pyannote[44].end 176.77971875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 171.53159375
transcript.pyannote[45].end 172.02096875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 176.67846875
transcript.pyannote[46].end 178.53471875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 176.84721875
transcript.pyannote[47].end 178.19721875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 179.14221875
transcript.pyannote[48].end 180.47534375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 181.06596875
transcript.pyannote[49].end 183.02346875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 183.02346875
transcript.pyannote[50].end 184.03596875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 183.09096875
transcript.pyannote[51].end 183.59721875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 184.27221875
transcript.pyannote[52].end 186.66846875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 184.52534375
transcript.pyannote[53].end 185.18346875
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 187.83284375
transcript.pyannote[54].end 190.70159375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 187.90034375
transcript.pyannote[55].end 188.17034375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 188.17034375
transcript.pyannote[56].end 188.18721875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 191.19096875
transcript.pyannote[57].end 194.70096875
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 196.84409375
transcript.pyannote[58].end 200.33721875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 200.45534375
transcript.pyannote[59].end 207.28971875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 207.72846875
transcript.pyannote[60].end 210.36096875
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 210.19221875
transcript.pyannote[61].end 214.36034375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 212.48721875
transcript.pyannote[62].end 212.82471875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 213.28034375
transcript.pyannote[63].end 218.47784375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 218.71409375
transcript.pyannote[64].end 220.28346875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 220.41846875
transcript.pyannote[65].end 224.45159375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 225.09284375
transcript.pyannote[66].end 233.47971875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 235.03221875
transcript.pyannote[67].end 240.66846875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 241.54596875
transcript.pyannote[68].end 243.31784375
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 243.72284375
transcript.pyannote[69].end 244.53284375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 244.46534375
transcript.pyannote[70].end 248.83596875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 249.40971875
transcript.pyannote[71].end 261.88034375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 262.23471875
transcript.pyannote[72].end 271.22909375
transcript.pyannote[73].speaker SPEAKER_03
transcript.pyannote[73].start 272.71409375
transcript.pyannote[73].end 275.73471875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 276.44346875
transcript.pyannote[74].end 276.56159375
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 276.93284375
transcript.pyannote[75].end 278.68784375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 277.92846875
transcript.pyannote[76].end 278.80596875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 279.34596875
transcript.pyannote[77].end 280.30784375
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 280.30784375
transcript.pyannote[78].end 283.21034375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 281.45534375
transcript.pyannote[79].end 282.68721875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 283.51409375
transcript.pyannote[80].end 284.32409375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 284.89784375
transcript.pyannote[81].end 285.60659375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 285.97784375
transcript.pyannote[82].end 288.08721875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 288.69471875
transcript.pyannote[83].end 307.72971875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 309.07971875
transcript.pyannote[84].end 312.18471875
transcript.pyannote[85].speaker SPEAKER_03
transcript.pyannote[85].start 312.38721875
transcript.pyannote[85].end 316.13346875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 316.08284375
transcript.pyannote[86].end 319.10346875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 320.38596875
transcript.pyannote[87].end 325.98846875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 327.72659375
transcript.pyannote[88].end 336.92346875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 337.98659375
transcript.pyannote[89].end 344.60159375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 346.86284375
transcript.pyannote[90].end 348.73596875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 349.27596875
transcript.pyannote[91].end 351.33471875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 352.44846875
transcript.pyannote[92].end 353.98409375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 354.55784375
transcript.pyannote[93].end 389.01659375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 389.48909375
transcript.pyannote[94].end 394.93971875
transcript.pyannote[95].speaker SPEAKER_03
transcript.pyannote[95].start 398.02784375
transcript.pyannote[95].end 403.19159375
transcript.pyannote[96].speaker SPEAKER_03
transcript.pyannote[96].start 404.22096875
transcript.pyannote[96].end 407.22471875
transcript.pyannote[97].speaker SPEAKER_03
transcript.pyannote[97].start 407.51159375
transcript.pyannote[97].end 415.86471875
transcript.pyannote[98].speaker SPEAKER_03
transcript.pyannote[98].start 416.62409375
transcript.pyannote[98].end 431.59221875
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 432.14909375
transcript.pyannote[99].end 434.46096875
transcript.pyannote[100].speaker SPEAKER_03
transcript.pyannote[100].start 434.64659375
transcript.pyannote[100].end 437.46471875
transcript.pyannote[101].speaker SPEAKER_03
transcript.pyannote[101].start 438.49409375
transcript.pyannote[101].end 441.04221875
transcript.pyannote[102].speaker SPEAKER_03
transcript.pyannote[102].start 441.32909375
transcript.pyannote[102].end 441.78471875
transcript.pyannote[103].speaker SPEAKER_03
transcript.pyannote[103].start 442.72971875
transcript.pyannote[103].end 444.95721875
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 445.49721875
transcript.pyannote[104].end 456.63471875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 456.48284375
transcript.pyannote[105].end 462.16971875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 462.27096875
transcript.pyannote[106].end 463.08096875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 463.99221875
transcript.pyannote[107].end 467.82284375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 468.14346875
transcript.pyannote[108].end 479.02784375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 479.55096875
transcript.pyannote[109].end 479.92221875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 480.81659375
transcript.pyannote[110].end 484.10721875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 484.47846875
transcript.pyannote[111].end 489.13596875
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 487.81971875
transcript.pyannote[112].end 489.91221875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 489.47346875
transcript.pyannote[113].end 500.17221875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 500.86409375
transcript.pyannote[114].end 505.21784375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 505.52159375
transcript.pyannote[115].end 526.75034375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 526.09221875
transcript.pyannote[116].end 526.49721875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 527.15534375
transcript.pyannote[117].end 527.37471875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 527.72909375
transcript.pyannote[118].end 528.06659375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 528.37034375
transcript.pyannote[119].end 540.14909375
transcript.pyannote[120].speaker SPEAKER_03
transcript.pyannote[120].start 540.55409375
transcript.pyannote[120].end 541.00971875
transcript.pyannote[121].speaker SPEAKER_03
transcript.pyannote[121].start 541.26284375
transcript.pyannote[121].end 542.24159375
transcript.pyannote[122].speaker SPEAKER_03
transcript.pyannote[122].start 542.83221875
transcript.pyannote[122].end 550.81409375
transcript.pyannote[123].speaker SPEAKER_03
transcript.pyannote[123].start 550.89846875
transcript.pyannote[123].end 556.85534375
transcript.pyannote[124].speaker SPEAKER_03
transcript.pyannote[124].start 557.91846875
transcript.pyannote[124].end 558.10409375
transcript.pyannote[125].speaker SPEAKER_03
transcript.pyannote[125].start 559.30221875
transcript.pyannote[125].end 559.52159375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 559.52159375
transcript.pyannote[126].end 559.75784375
transcript.pyannote[127].speaker SPEAKER_03
transcript.pyannote[127].start 560.78721875
transcript.pyannote[127].end 561.12471875
transcript.pyannote[128].speaker SPEAKER_03
transcript.pyannote[128].start 561.71534375
transcript.pyannote[128].end 564.34784375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 565.41096875
transcript.pyannote[129].end 568.19534375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 568.60034375
transcript.pyannote[130].end 570.10221875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 569.35971875
transcript.pyannote[131].end 569.54534375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 570.10221875
transcript.pyannote[132].end 570.38909375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 570.38909375
transcript.pyannote[133].end 570.42284375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 570.87846875
transcript.pyannote[134].end 571.92471875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 572.59971875
transcript.pyannote[135].end 578.30346875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 578.48909375
transcript.pyannote[136].end 580.46346875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 580.95284375
transcript.pyannote[137].end 585.91409375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 583.12971875
transcript.pyannote[138].end 584.64846875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 586.72409375
transcript.pyannote[139].end 586.77471875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 586.77471875
transcript.pyannote[140].end 588.24284375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 589.25534375
transcript.pyannote[141].end 590.45346875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 591.53346875
transcript.pyannote[142].end 602.16471875
transcript.pyannote[143].speaker SPEAKER_03
transcript.pyannote[143].start 597.32159375
transcript.pyannote[143].end 598.97534375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 598.97534375
transcript.pyannote[144].end 599.83596875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 602.70471875
transcript.pyannote[145].end 612.07034375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 612.76221875
transcript.pyannote[146].end 617.72346875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 617.77409375
transcript.pyannote[147].end 622.78596875
transcript.pyannote[148].speaker SPEAKER_03
transcript.pyannote[148].start 625.03034375
transcript.pyannote[148].end 632.94471875
transcript.pyannote[149].speaker SPEAKER_03
transcript.pyannote[149].start 633.28221875
transcript.pyannote[149].end 640.35284375
transcript.pyannote[150].speaker SPEAKER_03
transcript.pyannote[150].start 640.92659375
transcript.pyannote[150].end 643.39034375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 643.39034375
transcript.pyannote[151].end 662.94846875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 663.20159375
transcript.pyannote[152].end 666.15471875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 666.72846875
transcript.pyannote[153].end 667.53846875
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 667.60596875
transcript.pyannote[154].end 668.85471875
transcript.pyannote[155].speaker SPEAKER_03
transcript.pyannote[155].start 669.68159375
transcript.pyannote[155].end 670.50846875
transcript.pyannote[156].speaker SPEAKER_03
transcript.pyannote[156].start 671.30159375
transcript.pyannote[156].end 673.56284375
transcript.pyannote[157].speaker SPEAKER_03
transcript.pyannote[157].start 674.57534375
transcript.pyannote[157].end 678.10221875
transcript.pyannote[158].speaker SPEAKER_03
transcript.pyannote[158].start 678.42284375
transcript.pyannote[158].end 682.05096875
transcript.pyannote[159].speaker SPEAKER_03
transcript.pyannote[159].start 683.33346875
transcript.pyannote[159].end 687.88971875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 687.48471875
transcript.pyannote[160].end 695.09534375
transcript.pyannote[161].speaker SPEAKER_03
transcript.pyannote[161].start 691.12971875
transcript.pyannote[161].end 691.50096875
transcript.pyannote[162].speaker SPEAKER_03
transcript.pyannote[162].start 693.50909375
transcript.pyannote[162].end 697.28909375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 695.66909375
transcript.pyannote[163].end 699.26346875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 699.53346875
transcript.pyannote[164].end 701.25471875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 701.71034375
transcript.pyannote[165].end 703.80284375
transcript.pyannote[166].speaker SPEAKER_03
transcript.pyannote[166].start 703.85346875
transcript.pyannote[166].end 704.27534375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 704.24159375
transcript.pyannote[167].end 716.74596875
transcript.pyannote[168].speaker SPEAKER_03
transcript.pyannote[168].start 719.68221875
transcript.pyannote[168].end 720.13784375
transcript.pyannote[169].speaker SPEAKER_03
transcript.pyannote[169].start 721.06596875
transcript.pyannote[169].end 732.22034375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 733.21596875
transcript.pyannote[170].end 733.62096875
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 735.03846875
transcript.pyannote[171].end 735.88221875
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 736.99596875
transcript.pyannote[172].end 764.40096875
transcript.pyannote[173].speaker SPEAKER_03
transcript.pyannote[173].start 766.81409375
transcript.pyannote[173].end 784.70159375
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 781.78221875
transcript.pyannote[174].end 782.13659375
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 783.38534375
transcript.pyannote[175].end 789.27471875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 792.51471875
transcript.pyannote[176].end 795.26534375
transcript.pyannote[177].speaker SPEAKER_03
transcript.pyannote[177].start 793.62846875
transcript.pyannote[177].end 795.34971875
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 796.15971875
transcript.pyannote[178].end 799.39971875
transcript.pyannote[179].speaker SPEAKER_03
transcript.pyannote[179].start 798.77534375
transcript.pyannote[179].end 799.90596875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 799.93971875
transcript.pyannote[180].end 800.39534375
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 801.54284375
transcript.pyannote[181].end 805.12034375
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 806.72346875
transcript.pyannote[182].end 808.22534375
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 808.36034375
transcript.pyannote[183].end 810.65534375
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 811.46534375
transcript.pyannote[184].end 817.97909375
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 823.19346875
transcript.pyannote[185].end 823.86846875
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 824.20596875
transcript.pyannote[186].end 832.27221875
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 824.25659375
transcript.pyannote[187].end 824.77971875
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 827.73284375
transcript.pyannote[188].end 828.15471875
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 828.91409375
transcript.pyannote[189].end 831.47909375
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 832.49159375
transcript.pyannote[190].end 838.04346875
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 838.21221875
transcript.pyannote[191].end 840.57471875
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 841.41846875
transcript.pyannote[192].end 843.08909375
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 847.12221875
transcript.pyannote[193].end 847.69596875
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 848.21909375
transcript.pyannote[194].end 876.58596875
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 874.49346875
transcript.pyannote[195].end 887.40284375
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 887.95971875
transcript.pyannote[196].end 889.52909375
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 889.96784375
transcript.pyannote[197].end 891.08159375
transcript.pyannote[198].speaker SPEAKER_03
transcript.pyannote[198].start 891.35159375
transcript.pyannote[198].end 892.80284375
transcript.pyannote[199].speaker SPEAKER_01
transcript.pyannote[199].start 892.65096875
transcript.pyannote[199].end 893.78159375
transcript.pyannote[200].speaker SPEAKER_03
transcript.pyannote[200].start 893.51159375
transcript.pyannote[200].end 897.19034375
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 895.97534375
transcript.pyannote[201].end 896.22846875
transcript.pyannote[202].speaker SPEAKER_01
transcript.pyannote[202].start 897.19034375
transcript.pyannote[202].end 898.32096875
transcript.pyannote[203].speaker SPEAKER_01
transcript.pyannote[203].start 898.87784375
transcript.pyannote[203].end 899.48534375
transcript.pyannote[204].speaker SPEAKER_01
transcript.pyannote[204].start 899.73846875
transcript.pyannote[204].end 907.07909375
transcript.pyannote[205].speaker SPEAKER_01
transcript.pyannote[205].start 907.63596875
transcript.pyannote[205].end 908.56409375
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 909.77909375
transcript.pyannote[206].end 910.72409375
transcript.pyannote[207].speaker SPEAKER_01
transcript.pyannote[207].start 911.12909375
transcript.pyannote[207].end 911.77034375
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 912.66471875
transcript.pyannote[208].end 913.30596875
transcript.pyannote[209].speaker SPEAKER_01
transcript.pyannote[209].start 914.14971875
transcript.pyannote[209].end 914.82471875
transcript.pyannote[210].speaker SPEAKER_01
transcript.pyannote[210].start 916.81596875
transcript.pyannote[210].end 917.84534375
transcript.pyannote[211].speaker SPEAKER_03
transcript.pyannote[211].start 916.83284375
transcript.pyannote[211].end 922.01346875
transcript.pyannote[212].speaker SPEAKER_01
transcript.pyannote[212].start 924.02159375
transcript.pyannote[212].end 933.91034375
transcript.pyannote[213].speaker SPEAKER_01
transcript.pyannote[213].start 935.69909375
transcript.pyannote[213].end 942.56721875
transcript.pyannote[214].speaker SPEAKER_01
transcript.pyannote[214].start 943.29284375
transcript.pyannote[214].end 944.69346875
transcript.pyannote[215].speaker SPEAKER_01
transcript.pyannote[215].start 945.67221875
transcript.pyannote[215].end 946.39784375
transcript.pyannote[216].speaker SPEAKER_01
transcript.pyannote[216].start 946.80284375
transcript.pyannote[216].end 948.65909375
transcript.pyannote[217].speaker SPEAKER_01
transcript.pyannote[217].start 949.04721875
transcript.pyannote[217].end 952.81034375
transcript.pyannote[218].speaker SPEAKER_01
transcript.pyannote[218].start 953.24909375
transcript.pyannote[218].end 954.24471875
transcript.pyannote[219].speaker SPEAKER_01
transcript.pyannote[219].start 955.66221875
transcript.pyannote[219].end 958.39596875
transcript.pyannote[220].speaker SPEAKER_00
transcript.pyannote[220].start 955.88159375
transcript.pyannote[220].end 956.43846875
transcript.pyannote[221].speaker SPEAKER_00
transcript.pyannote[221].start 959.25659375
transcript.pyannote[221].end 968.89221875
transcript.pyannote[222].speaker SPEAKER_01
transcript.pyannote[222].start 966.83346875
transcript.pyannote[222].end 994.03596875
transcript.pyannote[223].speaker SPEAKER_01
transcript.pyannote[223].start 994.18784375
transcript.pyannote[223].end 995.90909375
transcript.pyannote[224].speaker SPEAKER_00
transcript.pyannote[224].start 997.36034375
transcript.pyannote[224].end 1003.06409375
transcript.pyannote[225].speaker SPEAKER_00
transcript.pyannote[225].start 1003.70534375
transcript.pyannote[225].end 1009.20659375
transcript.pyannote[226].speaker SPEAKER_00
transcript.pyannote[226].start 1009.44284375
transcript.pyannote[226].end 1016.51346875
transcript.pyannote[227].speaker SPEAKER_01
transcript.pyannote[227].start 1014.08346875
transcript.pyannote[227].end 1016.56409375
transcript.pyannote[228].speaker SPEAKER_00
transcript.pyannote[228].start 1016.56409375
transcript.pyannote[228].end 1016.96909375
transcript.pyannote[229].speaker SPEAKER_01
transcript.pyannote[229].start 1016.96909375
transcript.pyannote[229].end 1025.42346875
transcript.pyannote[230].speaker SPEAKER_01
transcript.pyannote[230].start 1026.38534375
transcript.pyannote[230].end 1035.04221875
transcript.pyannote[231].speaker SPEAKER_01
transcript.pyannote[231].start 1035.78471875
transcript.pyannote[231].end 1036.57784375
transcript.pyannote[232].speaker SPEAKER_01
transcript.pyannote[232].start 1038.14721875
transcript.pyannote[232].end 1040.91471875
transcript.pyannote[233].speaker SPEAKER_01
transcript.pyannote[233].start 1041.35346875
transcript.pyannote[233].end 1042.60221875
transcript.pyannote[234].speaker SPEAKER_01
transcript.pyannote[234].start 1043.12534375
transcript.pyannote[234].end 1044.49221875
transcript.pyannote[235].speaker SPEAKER_01
transcript.pyannote[235].start 1045.21784375
transcript.pyannote[235].end 1046.06159375
transcript.pyannote[236].speaker SPEAKER_01
transcript.pyannote[236].start 1051.27596875
transcript.pyannote[236].end 1056.97971875
transcript.pyannote[237].speaker SPEAKER_03
transcript.pyannote[237].start 1057.57034375
transcript.pyannote[237].end 1070.64846875
transcript.pyannote[238].speaker SPEAKER_01
transcript.pyannote[238].start 1070.58096875
transcript.pyannote[238].end 1082.62971875
transcript.pyannote[239].speaker SPEAKER_01
transcript.pyannote[239].start 1082.93346875
transcript.pyannote[239].end 1083.30471875
transcript.pyannote[240].speaker SPEAKER_01
transcript.pyannote[240].start 1083.42284375
transcript.pyannote[240].end 1084.09784375
transcript.pyannote[241].speaker SPEAKER_01
transcript.pyannote[241].start 1084.16534375
transcript.pyannote[241].end 1086.03846875
transcript.pyannote[242].speaker SPEAKER_01
transcript.pyannote[242].start 1086.52784375
transcript.pyannote[242].end 1087.30409375
transcript.pyannote[243].speaker SPEAKER_01
transcript.pyannote[243].start 1087.67534375
transcript.pyannote[243].end 1116.04221875
transcript.pyannote[244].speaker SPEAKER_01
transcript.pyannote[244].start 1116.71721875
transcript.pyannote[244].end 1140.64596875
transcript.pyannote[245].speaker SPEAKER_01
transcript.pyannote[245].start 1140.93284375
transcript.pyannote[245].end 1145.62409375
transcript.pyannote[246].speaker SPEAKER_01
transcript.pyannote[246].start 1145.97846875
transcript.pyannote[246].end 1150.07909375
transcript.pyannote[247].speaker SPEAKER_01
transcript.pyannote[247].start 1150.46721875
transcript.pyannote[247].end 1163.52846875
transcript.pyannote[248].speaker SPEAKER_01
transcript.pyannote[248].start 1164.42284375
transcript.pyannote[248].end 1168.72596875
transcript.pyannote[249].speaker SPEAKER_03
transcript.pyannote[249].start 1167.13971875
transcript.pyannote[249].end 1170.26159375
transcript.pyannote[250].speaker SPEAKER_01
transcript.pyannote[250].start 1169.63721875
transcript.pyannote[250].end 1172.77596875
transcript.pyannote[251].speaker SPEAKER_03
transcript.pyannote[251].start 1171.49346875
transcript.pyannote[251].end 1171.91534375
transcript.pyannote[252].speaker SPEAKER_01
transcript.pyannote[252].start 1172.99534375
transcript.pyannote[252].end 1175.84721875
transcript.pyannote[253].speaker SPEAKER_01
transcript.pyannote[253].start 1177.21409375
transcript.pyannote[253].end 1186.69784375
transcript.pyannote[254].speaker SPEAKER_01
transcript.pyannote[254].start 1186.98471875
transcript.pyannote[254].end 1211.92596875
transcript.pyannote[255].speaker SPEAKER_03
transcript.pyannote[255].start 1212.39846875
transcript.pyannote[255].end 1214.84534375
transcript.pyannote[256].speaker SPEAKER_03
transcript.pyannote[256].start 1214.96346875
transcript.pyannote[256].end 1219.62096875
transcript.pyannote[257].speaker SPEAKER_01
transcript.pyannote[257].start 1218.37221875
transcript.pyannote[257].end 1221.07221875
transcript.pyannote[258].speaker SPEAKER_03
transcript.pyannote[258].start 1220.46471875
transcript.pyannote[258].end 1226.92784375
transcript.pyannote[259].speaker SPEAKER_03
transcript.pyannote[259].start 1227.31596875
transcript.pyannote[259].end 1233.89721875
transcript.pyannote[260].speaker SPEAKER_03
transcript.pyannote[260].start 1234.16721875
transcript.pyannote[260].end 1240.02284375
transcript.pyannote[261].speaker SPEAKER_03
transcript.pyannote[261].start 1240.29284375
transcript.pyannote[261].end 1240.54596875
transcript.pyannote[262].speaker SPEAKER_01
transcript.pyannote[262].start 1241.37284375
transcript.pyannote[262].end 1245.94596875
transcript.pyannote[263].speaker SPEAKER_01
transcript.pyannote[263].start 1246.45221875
transcript.pyannote[263].end 1253.11784375
transcript.pyannote[264].speaker SPEAKER_01
transcript.pyannote[264].start 1253.47221875
transcript.pyannote[264].end 1256.15534375
transcript.pyannote[265].speaker SPEAKER_01
transcript.pyannote[265].start 1256.42534375
transcript.pyannote[265].end 1273.03034375
transcript.pyannote[266].speaker SPEAKER_01
transcript.pyannote[266].start 1273.11471875
transcript.pyannote[266].end 1307.50596875
transcript.pyannote[267].speaker SPEAKER_01
transcript.pyannote[267].start 1307.94471875
transcript.pyannote[267].end 1314.15471875
transcript.pyannote[268].speaker SPEAKER_01
transcript.pyannote[268].start 1314.76221875
transcript.pyannote[268].end 1315.04909375
transcript.pyannote[269].speaker SPEAKER_03
transcript.pyannote[269].start 1315.67346875
transcript.pyannote[269].end 1318.54221875
transcript.pyannote[270].speaker SPEAKER_03
transcript.pyannote[270].start 1318.79534375
transcript.pyannote[270].end 1320.83721875
transcript.pyannote[271].speaker SPEAKER_03
transcript.pyannote[271].start 1321.61346875
transcript.pyannote[271].end 1323.14909375
transcript.pyannote[272].speaker SPEAKER_01
transcript.pyannote[272].start 1321.69784375
transcript.pyannote[272].end 1324.34721875
transcript.pyannote[273].speaker SPEAKER_01
transcript.pyannote[273].start 1325.59596875
transcript.pyannote[273].end 1329.03846875
transcript.pyannote[274].speaker SPEAKER_01
transcript.pyannote[274].start 1329.52784375
transcript.pyannote[274].end 1333.47659375
transcript.pyannote[275].speaker SPEAKER_01
transcript.pyannote[275].start 1333.62846875
transcript.pyannote[275].end 1336.96971875
transcript.whisperx[0].start 0.029
transcript.whisperx[0].end 2.09
transcript.whisperx[0].text 現在主席麻煩請我們那個勞動部的紅部長陳委員好部長好
transcript.whisperx[1].start 58.135
transcript.whisperx[1].end 69.441
transcript.whisperx[1].text 抱歉 想請教部長我們看一下第一個簡報110年台灣外勞勤領勞保生育給付的3632人111年4900人前年112年是5687人到了去年的113年應該有突破6000人了
transcript.whisperx[2].start 89.249
transcript.whisperx[2].end 109.817
transcript.whisperx[2].text 呃應該我不知道部長你們那邊有沒有這個統計人數有我們其實113年113年目前的數字應該是6000人好你們也抓6000是不是對差不多好那呃這邊這個數字當中齁呃我是有注意到就是說112年比111年多了1268人
transcript.whisperx[3].start 115.714
transcript.whisperx[3].end 141.391
transcript.whisperx[3].text 那其實這個增加是比這個111年到112年要等一下就是等一下100有他112年那一年他就是增加的特別多比之前還要多很多你們有注意到是什麼原因嗎
transcript.whisperx[4].start 146.65
transcript.whisperx[4].end 160.988
transcript.whisperx[4].text 因為其實移工的人數也一直在增加其實這幾年其實移工的人數增加的也很快可是他後面是減少的啊地檢我只是說那一年就特別多可能是因為疫情
transcript.whisperx[5].start 162.796
transcript.whisperx[5].end 181.389
transcript.whisperx[5].text 因為疫情所以大家都跑去生小孩有關邊境管制的時候所以人數有略低那後來的人數比較高應該是回到之前比較高的水準對 但後面又下降啊112年111年到112年又我們112跟113是逐年上升現在從110年之後應該都是逐年上升的
transcript.whisperx[6].start 191.24
transcript.whisperx[6].end 193.166
transcript.whisperx[6].text 但我這邊沒有看到下降我是說110年到
transcript.whisperx[7].start 197.274
transcript.whisperx[7].end 223.963
transcript.whisperx[7].text 160年到113年就是委員你的數據其實看起來都是上升的都有上升沒錯啦那我是說上升有一年就是多了突然多了1000多人啦那部長說因為疫情的關係也包括可能有移工的人數那跟邊境的管制沒關係我想這個只是我在看這個數據的時候發現的一個有趣的一個數字那想知道原因所以你們可能後續
transcript.whisperx[8].start 225.163
transcript.whisperx[8].end 248.483
transcript.whisperx[8].text 整理一下看是研究一下看是怎么样明确的原因我想这个是值得研究那也请你们再关心一下就其中未婚的有多少人然后已婚的又有多少这样子你们现在应该没有这个数据吧我们可能没有好可以了解一下他会告诉你很多事的数字会说话好
transcript.whisperx[9].start 249.474
transcript.whisperx[9].end 270.983
transcript.whisperx[9].text 那因為這個社福外勞不能參加勞保所以光是這個產業女性外勞14萬人呢每年新生兒人數就超過6000人了那部長我國今年5月份的年初出生率為4.25那請問這個外籍勞工的這個初出生率是多少
transcript.whisperx[10].start 272.728
transcript.whisperx[10].end 287.542
transcript.whisperx[10].text 我想我們可能沒有去統計外籍勞工的這個出生率的部分你們沒有統計喔我們目前有的就是關於他的清零生育給付好沒關係我們有幫你們試算了
transcript.whisperx[11].start 289.224
transcript.whisperx[11].end 305.399
transcript.whisperx[11].text 這個看一下簡報的部分因為我國男女比例大概就是1比1所以標準化之後呢這個外籍勞工換算起來他們的出生率為每千人21.43那是我們台灣4.25的5倍看來部長應該沒有掌握這樣的一個數字
transcript.whisperx[12].start 313.058
transcript.whisperx[12].end 336.112
transcript.whisperx[12].text 這個可能換算不一定能夠這樣直接換算沒有直接換算是因為這個還要這個是有公式的我們是套公式下去換算的好這個是因為這個計算公式這個出生率是年出生人數要除以這個年平均人口數碼
transcript.whisperx[13].start 338.038
transcript.whisperx[13].end 351.067
transcript.whisperx[13].text 所以這個部分你們可以自己去試算一下那我們算出來是大概是這樣那如果你們覺得有什麼問題你們可以找人再算一下
transcript.whisperx[14].start 352.469
transcript.whisperx[14].end 371.389
transcript.whisperx[14].text 那是這樣子在部長接任之初外界有曾經質疑過部長就是說在過去力挺這個外籍勞工的態度當時部長的回答是說身為勞動部挺移工那還有就是說勞工是理所當然的
transcript.whisperx[15].start 371.969
transcript.whisperx[15].end 394.677
transcript.whisperx[15].text 那么今天的题目要营造职场友善育儿环境就应该不分彼此也要支持社福外籍劳工能够因为育儿不离职才对所以呢在下一个简报就是说部长支持社福外籍劳工在台湾也能够自由生养小孩吗
transcript.whisperx[16].start 399.058
transcript.whisperx[16].end 412.602
transcript.whisperx[16].text 呃應該是說這個我想想想跟委員說外籍勞工因為其實有很多時候我們這個外籍勞工其實進來臺灣以後他其實有些真的是還在就是說20幾歲20幾歲30幾歲是那
transcript.whisperx[17].start 416.687
transcript.whisperx[17].end 440.826
transcript.whisperx[17].text 所以他可能真的會有他會生小孩的狀況這可能是他的人權所以我們的角度不是說支持或鼓勵他生小孩而是他如果生小孩的話我們要怎麼來整個整個社會怎麼來去協助這件事情所以鼓勵他生小孩我們我們的態度並不是要去鼓勵他生小孩或這個到底不是這樣可是當
transcript.whisperx[18].start 443.039
transcript.whisperx[18].end 462.675
transcript.whisperx[18].text 這個年齡的勞工他如果遇到生小孩的狀況的時候怎麼樣子我們從人道的角度從各種人權的角度我們怎麼樣來去協助不要變成是人道上面的困境我們的角度是這個部長是這樣我想我今天的質詢我並沒有就是說
transcript.whisperx[19].start 464.036
transcript.whisperx[19].end 478.229
transcript.whisperx[19].text 沒有什麼惡意是好那我們因為在必須要指出台灣目前我們面臨的一個狀況那就是說其實部長剛剛回的很好就是說你剛剛講說病
transcript.whisperx[20].start 481.331
transcript.whisperx[20].end 499.656
transcript.whisperx[20].text 應該我這樣聽起來我應該沒有希望沒有理解錯誤部長應該沒有鼓勵他們對你沒有鼓勵我們的政策並不是鼓勵但是部長是講政策沒有鼓勵但我們後續會去檢視實際上我們政策是不是真的確實指鼓勵了
transcript.whisperx[21].start 500.916
transcript.whisperx[21].end 524.501
transcript.whisperx[21].text 大家都去生孩子你可能不理解我等一下繼續講你就會知道所以我們基本上不鼓勵但是因為這個剛好是在健康適合生育的年齡所以會遇到這樣的狀況所以我們政府就必須來面臨這些外籍勞工在台灣生產的這個狀況生育的這個狀況
transcript.whisperx[22].start 527.202
transcript.whisperx[22].end 556.466
transcript.whisperx[22].text 好那但是我要指出的是說但是他們沒有勞保那不能請領這個生育給付那所以這個部分部長要如何去處理這個攝服外籍勞工的生育問題但是有人講到比方說是講到家庭的康護工現在比較他沒有強制性的勞保那當然我們其實也希望我們也跟部長說如果要幫他保勞這並不是他不可以有勞保
transcript.whisperx[23].start 561.794
transcript.whisperx[23].end 584.627
transcript.whisperx[23].text 我們其實現在有相關的安置的中心在處理我聽起來聽沒有很明白你們要協助回答一下嗎有關外籍義工在台生子的部分因為他們有這樣的需求所以我們目前在桃園、彰化跟高雄設有三處義工的婦幼中心等一下那個不是我問的問題
transcript.whisperx[24].start 587.158
transcript.whisperx[24].end 611.761
transcript.whisperx[24].text 呃我只是說對因為他們不能不能申請這個生育給付因為沒有勞保嘛那產業產業的可以申請我現在只是點出這個落差啦好那所以當然這個落差之後我們接下來他們在在這個呃生育給付的請領就會有不同啊
transcript.whisperx[25].start 613.513
transcript.whisperx[25].end 637.958
transcript.whisperx[25].text 我現在要點出是這樣啦那沒關係我們先繼續就是說那本勞的這個出生率這麼低部長要怎麼看待確實本勞的應該是說整體台灣的出生率都降低那這降低我想從勞動部角度我們當然很願意我們也在研擬相關的政策怎麼樣職場能夠對於這個
transcript.whisperx[26].start 641.039
transcript.whisperx[26].end 668.639
transcript.whisperx[26].text 育嬰育兒的勞工能夠更加的友善沒錯好那我們來看一下啊外籍勞工在台灣懷孕的話可以去北中南區的婦幼關懷中心待產剛剛說的那每個月呢有15000元的安置費用生產後呢每個月18000元但是呢我們本國的勞工就沒有這樣子是不是不到底有沒有公平
transcript.whisperx[27].start 671.841
transcript.whisperx[27].end 681.857
transcript.whisperx[27].text 根本說明其實就這個本國的勞工的部分其實我們當然也是有一些社福的資源但這個社福社政的資源可能主要會是來自衛福部
transcript.whisperx[28].start 683.379
transcript.whisperx[28].end 697.015
transcript.whisperx[28].text 所以並不是說本國的勞工就沒有相關的資源來去但是因為畢竟那個也是我們的勞工本國的勞工也是更是我們應該要照顧的對象所以並不是本國的勞工就沒有相關的資源好沒有關係我們再繼續談就是說不知道你知道台灣
transcript.whisperx[29].start 702.001
transcript.whisperx[29].end 715.889
transcript.whisperx[29].text 還有很多的這個黑戶寶寶有六個關愛之家在照顧那因為是黑戶那他們的父母親是不是也可以享受這個勞動部營造的友善職場育兒環境來落實照顧不離職的政策規劃
transcript.whisperx[30].start 721.113
transcript.whisperx[30].end 731.183
transcript.whisperx[30].text 我想我們整個照顧不理的政策其實當然比較是針對現在主要的規劃但是現在是從本勞的狀況來去做做做做規劃的好
transcript.whisperx[31].start 737.05
transcript.whisperx[31].end 764.185
transcript.whisperx[31].text 那個回答我沒有很滿意但沒關係我們再繼續往下那部長知道就是說在某些外籍勞工在台灣非法生子在他們的來源國如果是這樣的狀況是觸犯刑法的那面對這樣的問題部長是如何看待外籍勞工在台灣生小孩的問題然後又如何來保障他們的友善職場育兒環境呢
transcript.whisperx[32].start 767.383
transcript.whisperx[32].end 789.252
transcript.whisperx[32].text 跟文說我們基本上現在相關的措施一樣還是剛剛在講的原則我們其實並不是要鼓勵外籍勞工生小孩我們是當如果真的遇到這個狀況的話我們怎麼從人道上面從人權上面可以協助我們的原則我再請教就是說外籍勞工生養小孩是不是雇主的責任應該不是啦除非這個孩子是雇主的
transcript.whisperx[33].start 796.85
transcript.whisperx[33].end 817.767
transcript.whisperx[33].text 那雇主能不能要求禁止 雇主能不能要求禁止外籍勞工生養小孩應該也不行啦 那我們可以在勞動契約規範嗎也不可以 好那假設因為生養小孩無法提供勞務的時候那雇主能不能要求解雇
transcript.whisperx[34].start 823.243
transcript.whisperx[34].end 842.456
transcript.whisperx[34].text 包委員這個移工在國內同樣是用性平法規定那在性平法裡面規定他必須要不能隨意支錢好那那個假設這個他們因為要生養小孩那可以要求可以要求離職是不是就是說他們可以要求離職嗎
transcript.whisperx[35].start 847.185
transcript.whisperx[35].end 874.13
transcript.whisperx[35].text 包圍雇主不能單方面去要求離職那如果移工他因為生育無法去履行他的勞動契約還有雇主他沒有辦法這個這個他已經有要求應該要移工要一約來履約但是後來雙方有協議這個履約在上面有困難的話那這個部分經雙方合意可以去終止聘僱關係但是勞動部這邊還是會
transcript.whisperx[36].start 875.51
transcript.whisperx[36].end 898.09
transcript.whisperx[36].text 我的問題是我現在不是說要終止我現在只是說暫停因為中間就是說他可能要待產或育兒他可能就要求要就是需要這個離開一段時間暫停的話是可以的但是暫停跟解雇不一樣他如果一
transcript.whisperx[37].start 899.812
transcript.whisperx[37].end 921.953
transcript.whisperx[37].text 她如果中間一離職因為要立刻離開台灣但是一回國可能又要觸犯法律嘛好算那這個這個要怎麼辦如果她是就法規上面來說她是不能夠因為懷孕而要求她離職或解雇的
transcript.whisperx[38].start 924.073
transcript.whisperx[38].end 932.41
transcript.whisperx[38].text 但是如果是帶就說好我們回來如果是待產他他就沒辦法繼續工作待產或有一些特殊狀態要養育一段時間這段時間
transcript.whisperx[39].start 935.748
transcript.whisperx[39].end 957.4
transcript.whisperx[39].text 但因為會有這個人力缺乏的問題 因為他是一對一啊 僱主跟這個社福 跟這個我們的家事外勞是一對一這不像 不像那個工廠有很多的勞工一起這個人力資源上會出現問題嗎
transcript.whisperx[40].start 959.298
transcript.whisperx[40].end 985.433
transcript.whisperx[40].text 委員這個可能是透過勞資雙方協議如果說資方願意讓這個勞方在國內待產或者是產後因為我現在點出這些問題假如你們沒有很確定也都沒有關係你就說我們可能這個狀況過去沒有遇到還是我們常遇到我們沒有好好討論那就是說因為他可能面臨就是說好他一離職他就要立刻離開台灣可是一回國又可能又觸犯法律嘛
transcript.whisperx[41].start 985.993
transcript.whisperx[41].end 1002.333
transcript.whisperx[41].text 好所以我們就他可能也不曉得該怎麼辦那會不會就是立刻又逃逸了或者把小孩送到這個關愛之家好這樣到底合不合適有合適嗎委員其實移工在台灣生產他是可以依照我們相關的規定
transcript.whisperx[42].start 1004.017
transcript.whisperx[42].end 1025.028
transcript.whisperx[42].text 呃在國內他是可以呃生養他的孩子但是很多移工因為考慮到他養育的成本所以他會讓孩子返國或者希子返國那生產完畢之後再返好沒關係你現在講都是一個很理想的狀態啦但是我們我們的社會裡存在著很多的迫不得已好那所以就是說
transcript.whisperx[43].start 1027.191
transcript.whisperx[43].end 1044.059
transcript.whisperx[43].text 基於我剛點出的這些 這個我們外籍勞工生養小孩的立場所以勞動部秉持著不鼓勵不支持 不鼓勵 不鼓勵但是我們支持他必須能夠繼續生活
transcript.whisperx[44].start 1051.328
transcript.whisperx[44].end 1056.753
transcript.whisperx[44].text 因為你們對於生養小孩的立場不然我問你你們對於生養小孩立場到底是支持還是不支持
transcript.whisperx[45].start 1057.828
transcript.whisperx[45].end 1085.65
transcript.whisperx[45].text 應該是說其實他有他相關的權利這不是我支持或鼓勵的問題而是他會有他相關的權利這其實涉及到他的人權的狀況所以我們會要讓他的人權跟他的權利會要留有一些空間好謝謝部長因為我們畢竟所有的政策看起來確實都有做到這些而且是非常支持因為畢竟在你們的文宣跟實際行動上其實都是支持的那我想今天
transcript.whisperx[46].start 1088.772
transcript.whisperx[46].end 1115.412
transcript.whisperx[46].text 結論 部長今天像你們詢問勞動部對於外籍勞工生養小孩的立場其實我是要釐清一個嚴肅的問題就是如果勞動部是支持的話那麼勞動部就要有一個支持的政策那也就是要保障他們在職場的友善工作環境但是友善的環境營造的主體還是要靠雇主來落實
transcript.whisperx[47].start 1116.753
transcript.whisperx[47].end 1144.958
transcript.whisperx[47].text 那但是呢雇主不見得是能夠支持的我這樣講你們應該很清楚啦那特別是這個社福外籍勞工的雇主因為會影響到影響這個勞務的提供所以這個部分可能就產生衝突需要你們的勞動部明確的態度跟解決還有的方法跟做法所以在未來呢社福的部分社福的這些外籍勞工
transcript.whisperx[48].start 1147.799
transcript.whisperx[48].end 1175.478
transcript.whisperx[48].text 因應這個就是說我們接下來80歲以上的長者可以申請外籍看護那勞動部你們就是推估啦將近20萬的這個這個外籍看護進來那所以生育率10萬也是很多啦所以生育率也會跟著增加
transcript.whisperx[49].start 1178.099
transcript.whisperx[49].end 1183.12
transcript.whisperx[49].text 我趕快點出這個問題你們要正視到因此勞動部面對這個問題應該要很嚴肅來看待第一步就是要統計各個外籍勞工族群的實際生育人數並且讓勞保局公開統計這個數據
transcript.whisperx[50].start 1198.405
transcript.whisperx[50].end 1210.657
transcript.whisperx[50].text 那這樣你才能夠估計未來成長的幅度提出一個正確友善的職場的這個政策規劃這一點部長你同意嗎你同意公開這些數據嗎
transcript.whisperx[51].start 1213.182
transcript.whisperx[51].end 1239.498
transcript.whisperx[51].text 我想現在一些數據當然其實在大家外界是都有的就像剛剛這個申請起訴的數據你確定都有很容易查尋到嗎我是想跟委員說明我覺得我們怎麼樣在這過程裡面其實多不管是外籍勞工或者是雇主其實在這上面會有一些權益上面的這個要怎麼其實能夠去維護到彼此的一些權益我想我們是可以在這邊我們再多做一些研討
transcript.whisperx[52].start 1242.268
transcript.whisperx[52].end 1254.592
transcript.whisperx[52].text 我想我在這邊要強調的就是這個就業服務法的條文到今天都沒有移工兩個字只有外國人另外在52條第三項
transcript.whisperx[53].start 1256.713
transcript.whisperx[53].end 1271.585
transcript.whisperx[53].text 還是有這個外籍勞工警戒指標的用詞那基於本席尊重法令所以剛才呢從一開始有很多的時候我使用了外勞這樣的一個名詞來討論
transcript.whisperx[54].start 1273.766
transcript.whisperx[54].end 1298.539
transcript.whisperx[54].text 那並沒有任何歧視的意思如果你們認為外勞有歧視的意思的話那我們就也請你們就趕快來提案修訂好不好不然我每次在台上我到底要講什麼我講移工可是我們的這個法律用詞又不是這樣那我們又立法委員我們有時候用詞又要精準那我到底要講什麼
transcript.whisperx[55].start 1299.499
transcript.whisperx[55].end 1324.079
transcript.whisperx[55].text 講了等一下不用移工又被批評用了移工又不專業那到底是什麼東西你們趕快把這個這個名詞做一個法律上的修訂嘛這樣大家就統一比較有個依據啊好我們對我們來其實我們都看到會有人使用啊對外籍勞工或移工都會有人但也都會有人批評啦
transcript.whisperx[56].start 1326.802
transcript.whisperx[56].end 1332.972
transcript.whisperx[56].text 那那個罵就有一點就是啊到底我們就遵守法規啊就這樣好謝謝好謝謝謝謝陳以為