iVOD / 162626

Field Value
IVOD_ID 162626
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/162626
日期 2025-06-18
會議資料.會議代碼 委員會-11-3-26-17
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第17次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 17
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第17次全體委員會議
影片種類 Clip
開始時間 2025-06-18T11:48:41+08:00
結束時間 2025-06-18T12:09:28+08:00
影片長度 00:20:47
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5617cf280bc2552a9cccf378e52ce464242af1fd96f58230a48dd392130a673609fd7804f724e0895ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 林淑芬
委員發言時間 11:48:41 - 12:09:28
會議時間 2025-06-18T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第17次全體委員會議(事由:邀請勞動部部長就「營造友善職場育兒環境,落實照顧不離職政策規劃」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 1.02659375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 1.26284375
transcript.pyannote[1].end 1.73534375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 10.49346875
transcript.pyannote[2].end 11.82659375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 12.04596875
transcript.pyannote[3].end 13.75034375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 13.86846875
transcript.pyannote[4].end 28.27971875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 20.77034375
transcript.pyannote[5].end 21.56346875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 33.62909375
transcript.pyannote[6].end 34.21971875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 34.27034375
transcript.pyannote[7].end 65.32034375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 67.42971875
transcript.pyannote[8].end 67.93596875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 67.93596875
transcript.pyannote[9].end 68.45909375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 69.69096875
transcript.pyannote[10].end 72.12096875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 70.01159375
transcript.pyannote[11].end 71.15909375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 72.61034375
transcript.pyannote[12].end 75.91784375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 77.21721875
transcript.pyannote[13].end 79.09034375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 79.74846875
transcript.pyannote[14].end 85.21596875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 86.26221875
transcript.pyannote[15].end 87.07221875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 87.10596875
transcript.pyannote[16].end 88.84409375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 88.74284375
transcript.pyannote[17].end 94.27784375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 91.27409375
transcript.pyannote[18].end 91.81409375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 95.03721875
transcript.pyannote[19].end 96.87659375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 96.04971875
transcript.pyannote[20].end 101.07846875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 98.63159375
transcript.pyannote[21].end 103.42409375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 104.40284375
transcript.pyannote[22].end 113.02596875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 113.53221875
transcript.pyannote[23].end 140.02596875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 140.09346875
transcript.pyannote[24].end 142.48971875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 143.33346875
transcript.pyannote[25].end 144.63284375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 144.63284375
transcript.pyannote[26].end 146.10096875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 146.23596875
transcript.pyannote[27].end 149.18909375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 149.74596875
transcript.pyannote[28].end 182.09534375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 182.11221875
transcript.pyannote[29].end 225.98721875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 226.57784375
transcript.pyannote[30].end 238.91346875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 239.43659375
transcript.pyannote[31].end 240.49971875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 240.78659375
transcript.pyannote[32].end 267.90471875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 268.39409375
transcript.pyannote[33].end 278.40096875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 278.68784375
transcript.pyannote[34].end 294.78659375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 295.71471875
transcript.pyannote[35].end 315.20534375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 315.34034375
transcript.pyannote[36].end 318.09096875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 318.19221875
transcript.pyannote[37].end 332.02971875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 332.29971875
transcript.pyannote[38].end 336.85596875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 337.66596875
transcript.pyannote[39].end 340.65284375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 341.69909375
transcript.pyannote[40].end 343.31909375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 344.06159375
transcript.pyannote[41].end 358.86096875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 359.13096875
transcript.pyannote[42].end 359.73846875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 360.19409375
transcript.pyannote[43].end 362.86034375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 363.23159375
transcript.pyannote[44].end 365.12159375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 365.69534375
transcript.pyannote[45].end 379.34721875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 379.66784375
transcript.pyannote[46].end 401.67284375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 402.02721875
transcript.pyannote[47].end 414.59909375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 415.44284375
transcript.pyannote[48].end 421.63596875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 421.83846875
transcript.pyannote[49].end 440.56971875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 441.10971875
transcript.pyannote[50].end 444.67034375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 445.29471875
transcript.pyannote[51].end 445.83471875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 446.79659375
transcript.pyannote[52].end 449.80034375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 451.52159375
transcript.pyannote[53].end 453.63096875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 453.79971875
transcript.pyannote[54].end 454.71096875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 453.96846875
transcript.pyannote[55].end 458.05221875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 459.26721875
transcript.pyannote[56].end 459.89159375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 459.26721875
transcript.pyannote[57].end 462.81096875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 462.89534375
transcript.pyannote[58].end 472.96971875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 472.29471875
transcript.pyannote[59].end 487.70159375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 487.83659375
transcript.pyannote[60].end 493.45596875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 493.74284375
transcript.pyannote[61].end 509.80784375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 510.76971875
transcript.pyannote[62].end 511.10721875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 514.06034375
transcript.pyannote[63].end 516.55784375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 517.51971875
transcript.pyannote[64].end 520.10159375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 520.30409375
transcript.pyannote[65].end 522.86909375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 523.56096875
transcript.pyannote[66].end 525.21471875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 526.32846875
transcript.pyannote[67].end 528.91034375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 527.49284375
transcript.pyannote[68].end 527.91471875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 529.46721875
transcript.pyannote[69].end 530.85096875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 530.58096875
transcript.pyannote[70].end 531.01971875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 531.01971875
transcript.pyannote[71].end 533.77034375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 535.15409375
transcript.pyannote[72].end 535.50846875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 536.97659375
transcript.pyannote[73].end 541.33034375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 541.33034375
transcript.pyannote[74].end 541.83659375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 543.18659375
transcript.pyannote[75].end 546.71346875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 546.30846875
transcript.pyannote[76].end 549.19409375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 547.64159375
transcript.pyannote[77].end 548.08034375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 548.53596875
transcript.pyannote[78].end 563.03159375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 563.72346875
transcript.pyannote[79].end 566.03534375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 566.03534375
transcript.pyannote[80].end 566.13659375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 566.13659375
transcript.pyannote[81].end 566.35596875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 566.35596875
transcript.pyannote[82].end 569.08971875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 567.23346875
transcript.pyannote[83].end 567.70596875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 569.41034375
transcript.pyannote[84].end 570.20346875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 570.35534375
transcript.pyannote[85].end 578.03346875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 578.38784375
transcript.pyannote[86].end 580.22721875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 580.93596875
transcript.pyannote[87].end 587.68596875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 588.46221875
transcript.pyannote[88].end 591.65159375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 592.03971875
transcript.pyannote[89].end 592.79909375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 594.08159375
transcript.pyannote[90].end 597.03471875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 598.21596875
transcript.pyannote[91].end 600.54471875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 601.38846875
transcript.pyannote[92].end 602.62034375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 602.77221875
transcript.pyannote[93].end 612.32346875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 612.49221875
transcript.pyannote[94].end 614.04471875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 615.29346875
transcript.pyannote[95].end 617.26784375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 618.09471875
transcript.pyannote[96].end 619.32659375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 620.72721875
transcript.pyannote[97].end 621.55409375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 622.85346875
transcript.pyannote[98].end 625.62096875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 626.61659375
transcript.pyannote[99].end 628.33784375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 628.69221875
transcript.pyannote[100].end 638.73284375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 639.89721875
transcript.pyannote[101].end 643.28909375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 644.35221875
transcript.pyannote[102].end 676.56659375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 677.08971875
transcript.pyannote[103].end 685.47659375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 686.15159375
transcript.pyannote[104].end 694.52159375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 695.12909375
transcript.pyannote[105].end 707.00909375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 707.05971875
transcript.pyannote[106].end 716.94846875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 717.43784375
transcript.pyannote[107].end 724.27221875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 724.40721875
transcript.pyannote[108].end 725.40284375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 726.01034375
transcript.pyannote[109].end 727.73159375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 727.73159375
transcript.pyannote[110].end 728.32221875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 728.59221875
transcript.pyannote[111].end 730.38096875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 730.66784375
transcript.pyannote[112].end 734.14409375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 734.38034375
transcript.pyannote[113].end 740.06721875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 740.40471875
transcript.pyannote[114].end 748.35284375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 748.94346875
transcript.pyannote[115].end 751.57596875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 751.82909375
transcript.pyannote[116].end 758.96721875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 759.67596875
transcript.pyannote[117].end 765.19409375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 766.47659375
transcript.pyannote[118].end 769.58159375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 769.58159375
transcript.pyannote[119].end 773.56409375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 774.25596875
transcript.pyannote[120].end 776.01096875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 776.90534375
transcript.pyannote[121].end 790.27034375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 790.47284375
transcript.pyannote[122].end 797.61096875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 798.96096875
transcript.pyannote[123].end 800.12534375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 800.71596875
transcript.pyannote[124].end 801.40784375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 801.94784375
transcript.pyannote[125].end 802.89284375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 803.17971875
transcript.pyannote[126].end 804.83346875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 805.98096875
transcript.pyannote[127].end 808.22534375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 808.51221875
transcript.pyannote[128].end 814.50284375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 808.66409375
transcript.pyannote[129].end 808.90034375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 814.58721875
transcript.pyannote[130].end 817.08471875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 817.99596875
transcript.pyannote[131].end 818.77221875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 818.87346875
transcript.pyannote[132].end 820.12221875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 820.62846875
transcript.pyannote[133].end 827.56409375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 828.59346875
transcript.pyannote[134].end 829.28534375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 830.23034375
transcript.pyannote[135].end 843.84846875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 843.89909375
transcript.pyannote[136].end 843.91596875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 843.96659375
transcript.pyannote[137].end 848.43846875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 848.94471875
transcript.pyannote[138].end 870.98346875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 872.06346875
transcript.pyannote[139].end 883.42034375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 883.74096875
transcript.pyannote[140].end 884.90534375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 885.98534375
transcript.pyannote[141].end 889.61346875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 890.17034375
transcript.pyannote[142].end 897.98346875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 898.70909375
transcript.pyannote[143].end 904.36221875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 904.81784375
transcript.pyannote[144].end 907.83846875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 908.83409375
transcript.pyannote[145].end 909.81284375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 910.25159375
transcript.pyannote[146].end 912.10784375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 912.64784375
transcript.pyannote[147].end 915.38159375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 915.75284375
transcript.pyannote[148].end 917.50784375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 919.97159375
transcript.pyannote[149].end 932.50971875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 932.84721875
transcript.pyannote[150].end 935.26034375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 936.00284375
transcript.pyannote[151].end 936.99846875
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 937.77471875
transcript.pyannote[152].end 945.19971875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 945.58784375
transcript.pyannote[153].end 947.17409375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 947.96721875
transcript.pyannote[154].end 954.02534375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 954.46409375
transcript.pyannote[155].end 962.90159375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 963.07034375
transcript.pyannote[156].end 963.98159375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 964.33596875
transcript.pyannote[157].end 966.73221875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 967.62659375
transcript.pyannote[158].end 970.86659375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 971.35596875
transcript.pyannote[159].end 972.43596875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 972.84096875
transcript.pyannote[160].end 975.47346875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 975.82784375
transcript.pyannote[161].end 976.97534375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 977.48159375
transcript.pyannote[162].end 978.49409375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 981.43034375
transcript.pyannote[163].end 984.61971875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 984.97409375
transcript.pyannote[164].end 986.89784375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 987.48846875
transcript.pyannote[165].end 996.09471875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 994.13721875
transcript.pyannote[166].end 996.22971875
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 996.39846875
transcript.pyannote[167].end 1001.24159375
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 1001.88284375
transcript.pyannote[168].end 1007.94096875
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 1008.27846875
transcript.pyannote[169].end 1012.32846875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 1012.96971875
transcript.pyannote[170].end 1013.59409375
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 1013.27346875
transcript.pyannote[171].end 1014.72471875
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 1017.08721875
transcript.pyannote[172].end 1017.71159375
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 1017.96471875
transcript.pyannote[173].end 1021.22159375
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 1021.45784375
transcript.pyannote[174].end 1024.42784375
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 1024.79909375
transcript.pyannote[175].end 1034.11409375
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 1034.56971875
transcript.pyannote[176].end 1041.26909375
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 1041.72471875
transcript.pyannote[177].end 1049.16659375
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 1050.07784375
transcript.pyannote[178].end 1060.55721875
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 1061.43471875
transcript.pyannote[179].end 1073.11221875
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 1073.58471875
transcript.pyannote[180].end 1084.89096875
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 1085.44784375
transcript.pyannote[181].end 1087.25346875
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 1087.89471875
transcript.pyannote[182].end 1093.15971875
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 1093.56471875
transcript.pyannote[183].end 1097.78346875
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 1098.22221875
transcript.pyannote[184].end 1101.47909375
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 1102.30596875
transcript.pyannote[185].end 1111.16534375
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 1111.40159375
transcript.pyannote[186].end 1119.02909375
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 1119.38346875
transcript.pyannote[187].end 1122.26909375
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 1122.47159375
transcript.pyannote[188].end 1129.72784375
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 1130.50409375
transcript.pyannote[189].end 1132.44471875
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 1132.83284375
transcript.pyannote[190].end 1144.45971875
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 1145.10096875
transcript.pyannote[191].end 1145.57346875
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 1145.84346875
transcript.pyannote[192].end 1147.91909375
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 1147.91909375
transcript.pyannote[193].end 1148.74596875
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 1149.11721875
transcript.pyannote[194].end 1155.22596875
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 1155.61409375
transcript.pyannote[195].end 1156.12034375
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 1157.03159375
transcript.pyannote[196].end 1158.29721875
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 1158.73596875
transcript.pyannote[197].end 1165.75596875
transcript.pyannote[198].speaker SPEAKER_00
transcript.pyannote[198].start 1165.58721875
transcript.pyannote[198].end 1167.64596875
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 1169.60346875
transcript.pyannote[199].end 1170.63284375
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 1171.34159375
transcript.pyannote[200].end 1172.23596875
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 1171.98284375
transcript.pyannote[201].end 1174.26096875
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 1174.56471875
transcript.pyannote[202].end 1176.37034375
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 1177.70346875
transcript.pyannote[203].end 1179.91409375
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 1179.96471875
transcript.pyannote[204].end 1181.36534375
transcript.pyannote[205].speaker SPEAKER_01
transcript.pyannote[205].start 1181.36534375
transcript.pyannote[205].end 1181.70284375
transcript.pyannote[206].speaker SPEAKER_00
transcript.pyannote[206].start 1181.70284375
transcript.pyannote[206].end 1188.03096875
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 1188.21659375
transcript.pyannote[207].end 1197.83534375
transcript.pyannote[208].speaker SPEAKER_00
transcript.pyannote[208].start 1199.16846875
transcript.pyannote[208].end 1206.28971875
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 1206.55971875
transcript.pyannote[209].end 1211.09909375
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 1212.01034375
transcript.pyannote[210].end 1220.34659375
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 1220.97096875
transcript.pyannote[211].end 1225.30784375
transcript.pyannote[212].speaker SPEAKER_00
transcript.pyannote[212].start 1225.98284375
transcript.pyannote[212].end 1227.99096875
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 1229.37471875
transcript.pyannote[213].end 1231.02846875
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 1231.73721875
transcript.pyannote[214].end 1232.59784375
transcript.pyannote[215].speaker SPEAKER_00
transcript.pyannote[215].start 1233.12096875
transcript.pyannote[215].end 1233.50909375
transcript.pyannote[216].speaker SPEAKER_00
transcript.pyannote[216].start 1234.92659375
transcript.pyannote[216].end 1235.31471875
transcript.pyannote[217].speaker SPEAKER_00
transcript.pyannote[217].start 1235.50034375
transcript.pyannote[217].end 1237.98096875
transcript.pyannote[218].speaker SPEAKER_00
transcript.pyannote[218].start 1238.18346875
transcript.pyannote[218].end 1242.65534375
transcript.pyannote[219].speaker SPEAKER_00
transcript.pyannote[219].start 1242.95909375
transcript.pyannote[219].end 1243.73534375
transcript.whisperx[0].start 0.029
transcript.whisperx[0].end 2.231
transcript.whisperx[0].text 好 謝謝主席喔我再去邀功一下這個我們的警員在國道上面配備有緩衝車標配是我要求的是我提案的 以前都沒有好 那個這個跟今天無關那我們是不是還是請洪部長
transcript.whisperx[1].start 34.426
transcript.whisperx[1].end 50.713
transcript.whisperx[1].text 部長營造友善的職場育兒環境要落實照顧不離職的政策那我現在要問你第一個問題你知道現在什麼都漲的時代只有剩下人力和社畜的薪水最便宜都不太漲
transcript.whisperx[2].start 51.713
transcript.whisperx[2].end 65.085
transcript.whisperx[2].text 但生養小孩啊我要問你第一個問題連教育基金都是年年增加你知道養一個小孩大概要多少的教育基金嗎教育基金就好了那如果你不知道的話你知道嗎我可能有人會抓高一點有人抓低一點吧
transcript.whisperx[3].start 77.267
transcript.whisperx[3].end 102.359
transcript.whisperx[3].text 你講這個不是空話嗎我現在顯然你不知道教育金要準備多少那你這樣養一個小孩要多少錢嗎這有高一點的跟低一點的部長你就說你不知道就好了你為什麼要這樣子胡扯呢都跟你講剛剛講空話有些人不是胡扯啊就是有些人有些小孩有些人高一點有些人低一點你叫阿嬤或狗來講也會講
transcript.whisperx[4].start 104.434
transcript.whisperx[4].end 111.856
transcript.whisperx[4].text 我現在跟你講喔 那你要大概一個概念嘛 你不能讓人家說你吃飯卡中 寶釘兩枚 四個孩子要開多少錢 都不知道所以我們 我也是很訝異啊 因為我個人覺得沒花這麼多但是呢 還是有人講喔 那如果有一個民間的保存人壽他們去做2024年的教育金準備大調查 因為準備嘛 可能從
transcript.whisperx[5].start 129.921
transcript.whisperx[5].end 142.205
transcript.whisperx[5].text 幼兒園一路準備到他要出國留學如果到家的出國留學我肯定不是這個數字啊你知道如果要準備小孩出國留學一年要多少錢嗎到美國留學一年要花多少錢到英國要多少錢可能兩三百以上
transcript.whisperx[6].start 146.543
transcript.whisperx[6].end 160.996
transcript.whisperx[6].text 兩三百以上那不可能啊不夠一年不夠那我們就不講出國留學就是說從小的幼兒園到大學畢業那他們的調查顯示每位子女的教育準備金在2023年是459萬那2024年增加了22萬要481萬而且有30%
transcript.whisperx[7].start 173.267
transcript.whisperx[7].end 189.841
transcript.whisperx[7].text 8%的受訪者認為需要準備到500萬元以上如果你要留學一年還要再增加400萬元一年啦至少啦到美國400萬跑不掉除非他拿公費補助除非他留學的時候說我
transcript.whisperx[8].start 191.002
transcript.whisperx[8].end 196.723
transcript.whisperx[8].text 我要去打工這樣子所以我們今天要討論一個營造友善職場育兒環境之前我們希望我們的政府要了解為什麼現在的年輕人不想婚婚了以後不想生因為生一個小孩光是教育成本要為他準備的就要這麼多在這種狀況裡面我們希望說照顧不離職
transcript.whisperx[9].start 219.127
transcript.whisperx[9].end 221.349
transcript.whisperx[9].text 不能離職,可是如果你沒有足夠的配套給他支持的話,事實上他就只能選擇不生
transcript.whisperx[10].start 239.46
transcript.whisperx[10].end 264.019
transcript.whisperx[10].text 不生啊所以我們來講營造友善職場的育兒環境前提是他願意生他生了以後我們需要這個國家來介入所以為什麼現在女性啊她絕對不會想說我沒有獨立的經濟經濟考量是影響生育決策的很重要的一個因素那我在這裡跟你講其實經濟負擔最大的還是房子房貸
transcript.whisperx[11].start 268.442
transcript.whisperx[11].end 294.421
transcript.whisperx[11].text 所以請你回去行政院跟他們講願意婚生的婦女願意婚生的年輕夫妻要打造一條龍式的然後打五折的社會住宅社會住宅裡面就有幼兒園就有托嬰中心然後甚至還有老人家長輩的安置的日照
transcript.whisperx[12].start 296.108
transcript.whisperx[12].end 314.709
transcript.whisperx[12].text 這樣子一條龍才能夠真正的鼓勵人家來婚生所以這我要打造一個讓家長安心生養的環境很重要那我們知道職業不中斷呢除了我剛剛講最務實的一條龍式的打五折的社會住宅以外
transcript.whisperx[13].start 315.61
transcript.whisperx[13].end 336.774
transcript.whisperx[13].text 當然是勞動環境勞動條件而我們檢視一個政府做的好不好啊很簡單大家講拿出來講兩個指標一個是出生率一個指標就是勞參率勞動參與率出生率出生率部長你知道現在出生率是怎麼一回事啊現在出生率是是很低的每況愈下
transcript.whisperx[14].start 344.113
transcript.whisperx[14].end 352.264
transcript.whisperx[14].text 每況愈下我說過古尼龍尼龍年生的小孩應該會多有史以來專呆玩的狼專呆玩的狼從來長眼睛沒見過龍年出生的小孩逼氣骨厚頭爪
transcript.whisperx[15].start 363.354
transcript.whisperx[15].end 378.079
transcript.whisperx[15].text 比他們還要低這是一個非常大的警訊我們要講說如果不講出生率檢視你友善又育兒政策的另外一個指標就是勞參率
transcript.whisperx[16].start 379.719
transcript.whisperx[16].end 389.667
transcript.whisperx[16].text 那根據112年勞動部的性別勞動統計表分析男女勞動的參與率的差距這10年裡面他本來差距了16.28%現在下降到15.23%顯然看起來好像女性的勞參率多了1%
transcript.whisperx[17].start 402.316
transcript.whisperx[17].end 413.972
transcript.whisperx[17].text 看起來好像有進步那等一下再來講可是我們還有一個看有配偶或同居的男性勞參率有65.12相對的有配偶或同居的女性勞參率
transcript.whisperx[18].start 415.492
transcript.whisperx[18].end 428.362
transcript.whisperx[18].text 女郎還是49.34差了15.78個百分點那如果再講單離婚的分居的上偶的變成單親的這個單身的男性勞參率51.96然後女性
transcript.whisperx[19].start 434.966
transcript.whisperx[19].end 449.754
transcript.whisperx[19].text 上偶的離婚的分居的女性的勞參率30.18%遠遠男生高出了21.78%這個到底是怎麼一回事啊部長你覺得呢目前現在看起來確實單身的男性的勞參率遠遠高於女性
transcript.whisperx[20].start 459.329
transcript.whisperx[20].end 479.03
transcript.whisperx[20].text 比一般平均的男女的勞參率還要更高目前看到確實女性的勞參率在20歲以前其實相對是維持著很不錯的可是30歲以後就會快速的蠻快速的降低我不是問你這個問題我是問你離婚分居和上偶老實說因為我想不懂因為這是你們統計數字嘛
transcript.whisperx[21].start 480.552
transcript.whisperx[21].end 509.346
transcript.whisperx[21].text 如果這些你們的統計數字那顯然是有意義的為什麼離婚分居尚偶的性別的勞參率勞參率的這個性別的差異會擴大為什麼你們這個統計的人你們自己要出來給我們解說啊但我要問你啦如果我們去思考說從這裡面的男女性的勞參率的數字這裡面有子女的人有沒有差異有沒有差異
transcript.whisperx[22].start 514.117
transcript.whisperx[22].end 533.613
transcript.whisperx[22].text 不然你們做這個統計是在做什麼心臟的你們的統計單位做這間統計的人你們在做什麼異議的意思是什麼你們自己在做你們不知道甘委員你是問句嗎對我在問你們啊你們的性別勞動統計分析報告的啊蛤
transcript.whisperx[23].start 537.028
transcript.whisperx[23].end 562.807
transcript.whisperx[23].text 你們自己做統計分析你們不知道你們做這個變數的意義是什麼因為你剛才講的好幾個數據我要講離婚分居上我們現在確實是看到我覺得很明顯的事情是女性的勞參率低於男性一個很大的原因是因為他必須要從自己的職場給離開去做家庭的照顧不管是顧小或顧老
transcript.whisperx[24].start 563.803
transcript.whisperx[24].end 587.32
transcript.whisperx[24].text 都會涵蓋在這裡面所以這也是這個我們大家都知道啦但是我要跟你講我剛剛講2002到2020抱歉102年到112年看起來女性勞參率好像上升對不對可是不要忘囉不要忘囉102年到112年女性勞參率上升的同時女性的生育率是下降的小孩的出生人口數是下降的這有沒有意義
transcript.whisperx[25].start 594.127
transcript.whisperx[25].end 596.808
transcript.whisperx[25].text 不要看得好像你們勞參與增加很開心很開心不生小孩啦所以這是什麼意思這是說所有的女性有工作在職場的女性還是必須在工作跟生小孩之間做抉擇啊只能擇一啊如果你要工作可能你就會選擇不生小孩
transcript.whisperx[26].start 623.018
transcript.whisperx[26].end 625.2
transcript.whisperx[26].text 這一趴顯示的有這個現象啊那為什麼這樣子所以在這裡大家都在講說
transcript.whisperx[27].start 645.184
transcript.whisperx[27].end 654.009
transcript.whisperx[27].text 104銀行也有講 因為剛才林月琴委員有諮詢29歲以下他的職業來中斷 職場的瓶頸是什麼29歲以下就跟人家煩惱要生孩子 會中斷嗎30到39歲當中有58%是白天上班 晚上顧家 疲於奔命 影響工作表現或身心俱疲還有一個也是生孩子
transcript.whisperx[28].start 670.819
transcript.whisperx[28].end 693.091
transcript.whisperx[28].text 40到49歲將近六成也是白天上班晚上顧家疲於奔命影響工作表現或俱疲到50歲以上67%就是職業中斷以後想重返職場因年紀大或專業過時而無法銜接所以這個裡面其實大家顯示出來都很累很累大家不分年紀就是很累很累很累
transcript.whisperx[29].start 695.202
transcript.whisperx[29].end 712.739
transcript.whisperx[29].text 無論顧小或顧老 其實就是要這樣子 就是這樣子那我們現在在講說 玩意心的 玩意心的 讓他們友善一點 國家做一點什麼國家做一點什麼 我舉一個例子 你知道為什麼需要彈性輕職價嗎我再問你自己的問題啦 你知道
transcript.whisperx[30].start 717.523
transcript.whisperx[30].end 723.427
transcript.whisperx[30].text 台北市去年的托嬰中心因為腸病毒而停課的天數是幾天嗎
transcript.whisperx[31].start 726.032
transcript.whisperx[31].end 747.481
transcript.whisperx[31].text 大概20天出頭我告訴你平均公立的托嬰中心19.9天私立的托嬰中心平均一年停課18.9天那我要舉喔這個台北市有這個幾大行政區域嘛松山區公立的平均一年停課天數
transcript.whisperx[32].start 749.863
transcript.whisperx[32].end 775.64
transcript.whisperx[32].text 28天28天私立平均一年停課天數在南港區也是28天28天你知道一個腸病毒就這麼多天那你知道六都其他五都的平均多少天嗎就我看到的數據是比台北市低一些新北市平均一年停課11天高雄公立
transcript.whisperx[33].start 776.983
transcript.whisperx[33].end 789.825
transcript.whisperx[33].text 新北市統計數字比較粗糙啦但高雄公立的平均一年停課天數25天私立的一年平均停課天數22天請問你 請問你 保定我們要去哪每一個勞工 女性勞工年輕父母要去哪 28天 25天 22天啊我們要請什麼假 請特休特休是什麼 特休是讓這個勞工
transcript.whisperx[34].start 806.284
transcript.whisperx[34].end 816.254
transcript.whisperx[34].text 幾年來身心俱肥讓他能休息一下現在大家特殊都不是拿來自己充電再出發的大家特殊都拿來照顧孩子因為不要講這個空中的大便有新家庭照顧這麼不可能那一年滾下去不可能的啦所以
transcript.whisperx[35].start 830.273
transcript.whisperx[35].end 845.222
transcript.whisperx[35].text 不但如此 政府沒有配套然後沒有作為就算了 現在還落井下石雪上加霜你知道要做什麼嗎政府的政策跨部會之間都不協調為什麼不協調 你知道嗎利益良善缺乏配套加重家長的負擔變成不敢生今年4月我們衛福部修正了 預告了
transcript.whisperx[36].start 856.989
transcript.whisperx[36].end 870.22
transcript.whisperx[36].text 托嬰中心定型化契約應記載及不得記載事項新增加了一款如果兒童健康不佳時托嬰中心有權要求家長配合接回照顧
transcript.whisperx[37].start 872.353
transcript.whisperx[37].end 882.5
transcript.whisperx[37].text 這個修正方向其實是好的 我覺得是好的自己小孩生病 趕快自己接回去照顧這也是基於公共衛生防疫需求 利益良善啦但是我問你 只藏病毒的28天20天啊小孩健康不佳 我這有經驗了小孩剛從保姆到幼兒園的時候 一個月整天都在生病
transcript.whisperx[38].start 898.77
transcript.whisperx[38].end 907.616
transcript.whisperx[38].text 健康不佳托嬰中心就有權利要求家長接回去自己照顧啊我要去吃架出來保電我問你啦沒有配套然後你要保護孩子沒有錯這些家長要去哪裡長出那個架啦要去哪裡長出來啦
transcript.whisperx[39].start 920.037
transcript.whisperx[39].end 944.569
transcript.whisperx[39].text 所以就算透映中心的停課規定放寬了每年的停課日數有可能下降到平均只有十多天但是因為你們定型化契約這樣子一改下去所以大家家長都要很緊繃的本來是大家都覺得說願意升了結果法律上沒有配套就說你就要坐等 家長都要坐等這大家就不要死啊
transcript.whisperx[40].start 948.055
transcript.whisperx[40].end 966.428
transcript.whisperx[40].text 雪上加霜你們在有生育意願的這個年輕父母身上雪上加霜啊讓他們情何以堪啊所以我剛剛講說特休假本來是為了工作及生活平衡結果因為生了孩子以後特休假
transcript.whisperx[41].start 967.674
transcript.whisperx[41].end 976.862
transcript.whisperx[41].text 不要忘了 年輕父母的特休假天數最少因為之前嘛 結果特休假全部要用來照顧小孩情何以堪啊 寶釘 你看勒
transcript.whisperx[42].start 981.965
transcript.whisperx[42].end 995.87
transcript.whisperx[42].text 所以這部分我們為什麼正在研議這個雲流亭希望能夠更多更時間更短的可以讓大家可以請休的原因就是希望要去補足這部分你講的很有道理啊我們的法案躺在那裡已經躺兩三年了躺好幾年了啦
transcript.whisperx[43].start 1001.889
transcript.whisperx[43].end 1011.773
transcript.whisperx[43].text 但是呢 我問你 你的現憑工作平等法你的就業保險法 你的修法你說就是要 那請問你什麼時候要拿出來修什麼時候要排審查 張偉什麼時候要排審查
transcript.whisperx[44].start 1017.39
transcript.whisperx[44].end 1020.492
transcript.whisperx[44].text 對啊 我沒有增加天數 沒有讓僱主多付錢欸我把育嬰留庭的那幾天育嬰留庭增加一個月啦那我們再把這一個月從0到3歲給他放到0到8歲或是0到12歲然後呢 請假的方法 不同說限制1個月1年1個月到2年你都通通給他鬆綁掉 彈性化了
transcript.whisperx[45].start 1044.656
transcript.whisperx[45].end 1066.947
transcript.whisperx[45].text 沒有增加天數欸沒有增加這個錢欸這種狀況你都沒有辦法做然後你說你就是靠這個配套要來幫家長解決問題可是你口惠實不至連法案都沒有拿出來審我們已經提案多久了都沒有提出來審我上一屆就提 大家上一屆都提了提到這一屆還繼續提好 因為你叫我時間到了我現在跟你說 國家做了什麼
transcript.whisperx[46].start 1073.969
transcript.whisperx[46].end 1100.821
transcript.whisperx[46].text 國家做了什麼 沒有所以年輕世代這個年輕世代我告訴大家沒有人會為了生兒育女而放棄工作沒有人如果這個要育兒而且不要放棄工作的話只能很辛苦很辛苦的在那裡撐著大家都想要繼續工作大家都想要繼續賺錢養家大家都覺得經濟很困難
transcript.whisperx[47].start 1102.695
transcript.whisperx[47].end 1129.049
transcript.whisperx[47].text 這個是事實所以在這種狀況裡面女人要照顧小的然後到40歲左右又要照顧老的在這種狀況裡面在身心俱疲而你能做的政策面你能端出來的有限啊我告訴你台姓親職價這種最簡單的你今天說一件事都說你自己你的法案沒有排審
transcript.whisperx[48].start 1130.578
transcript.whisperx[48].end 1155.704
transcript.whisperx[48].text 法案都沒有排審欸提案提多久了什麼時候要拿出來審什麼時候要通過這才是真正的真正的落實你的口會沒有實質啊對不對保定我講這個沒道理那個有根文說我們前面階段我們會先從在可以不修法的範圍內我們會先做那
transcript.whisperx[49].start 1157.222
transcript.whisperx[49].end 1167.626
transcript.whisperx[49].text 以日請休或者是這幾相關的談心話目前可以做我覺得我們會在先第一段先來這部分我們會來還是往這個方向我們要修法你支不支持問的就簡單咧我們的價沒有增加天數我們的錢沒有增加
transcript.whisperx[50].start 1177.905
transcript.whisperx[50].end 1191.355
transcript.whisperx[50].text 當然是雇主的行政成本 它是增加的就是這樣子 如果錢跟天數都沒有增加了這樣子你們都沒有辦法協調我告訴你國安危機內 去年13萬 今年22萬阿拉美礦獄下你留步先倒 全國大家一起倒
transcript.whisperx[51].start 1199.689
transcript.whisperx[51].end 1224.821
transcript.whisperx[51].text 事情很嚴重到現在我們還不願意正視這個國家沒有人要生孩子這個國家國家的政策端不出友善育兒的制度來誰願意生啊我再告訴你我再說一遍年輕人沒有人會放棄工作因為我們都必須工作才有飯吃沒有人要放棄工作只能放棄不生小孩只能放棄生小孩
transcript.whisperx[52].start 1229.397
transcript.whisperx[52].end 1229.817
transcript.whisperx[52].text 這件事很嚴重 到現在你們還在拚拚拚拚拚拚拚拚拚拚拚