IVOD_ID |
162605 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/162605 |
日期 |
2025-06-18 |
會議資料.會議代碼 |
委員會-11-3-26-17 |
會議資料.會議代碼:str |
第11屆第3會期社會福利及衛生環境委員會第17次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
17 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第3會期社會福利及衛生環境委員會第17次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-06-18T10:57:09+08:00 |
結束時間 |
2025-06-18T11:15:07+08:00 |
影片長度 |
00:17:58 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5617cf280bc2552ad6de2e72c12eec83242af1fd96f582304c29659fdfe1d1e8a776b5aef8effbec5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
劉建國 |
委員發言時間 |
10:57:09 - 11:15:07 |
會議時間 |
2025-06-18T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期社會福利及衛生環境委員會第17次全體委員會議(事由:邀請勞動部部長就「營造友善職場育兒環境,落實照顧不離職政策規劃」進行專題報告,並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
5.24534375 |
transcript.pyannote[0].end |
5.56596875 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
5.98784375 |
transcript.pyannote[1].end |
9.54846875 |
transcript.pyannote[2].speaker |
SPEAKER_02 |
transcript.pyannote[2].start |
17.17596875 |
transcript.pyannote[2].end |
17.93534375 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
17.93534375 |
transcript.pyannote[3].end |
32.68409375 |
transcript.pyannote[4].speaker |
SPEAKER_02 |
transcript.pyannote[4].start |
17.95221875 |
transcript.pyannote[4].end |
18.01971875 |
transcript.pyannote[5].speaker |
SPEAKER_02 |
transcript.pyannote[5].start |
18.03659375 |
transcript.pyannote[5].end |
18.39096875 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
34.47284375 |
transcript.pyannote[6].end |
41.03721875 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
41.40846875 |
transcript.pyannote[7].end |
47.78721875 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
47.98971875 |
transcript.pyannote[8].end |
57.74346875 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
58.63784375 |
transcript.pyannote[9].end |
76.40721875 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
77.33534375 |
transcript.pyannote[10].end |
81.28409375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
82.14471875 |
transcript.pyannote[11].end |
89.02971875 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
89.16471875 |
transcript.pyannote[12].end |
89.95784375 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
90.31221875 |
transcript.pyannote[13].end |
91.67909375 |
transcript.pyannote[14].speaker |
SPEAKER_02 |
transcript.pyannote[14].start |
93.53534375 |
transcript.pyannote[14].end |
94.54784375 |
transcript.pyannote[15].speaker |
SPEAKER_02 |
transcript.pyannote[15].start |
94.80096875 |
transcript.pyannote[15].end |
96.52221875 |
transcript.pyannote[16].speaker |
SPEAKER_01 |
transcript.pyannote[16].start |
96.75846875 |
transcript.pyannote[16].end |
98.31096875 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
100.20096875 |
transcript.pyannote[17].end |
100.84221875 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
101.38221875 |
transcript.pyannote[18].end |
102.49596875 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
104.85846875 |
transcript.pyannote[19].end |
122.96534375 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
122.98221875 |
transcript.pyannote[20].end |
122.99909375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
123.04971875 |
transcript.pyannote[21].end |
125.90159375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
126.01971875 |
transcript.pyannote[22].end |
136.02659375 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
137.03909375 |
transcript.pyannote[23].end |
140.63346875 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
141.30846875 |
transcript.pyannote[24].end |
145.39221875 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
145.67909375 |
transcript.pyannote[25].end |
146.42159375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
146.94471875 |
transcript.pyannote[26].end |
148.93596875 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
148.63221875 |
transcript.pyannote[27].end |
169.32096875 |
transcript.pyannote[28].speaker |
SPEAKER_02 |
transcript.pyannote[28].start |
169.32096875 |
transcript.pyannote[28].end |
187.22534375 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
170.35034375 |
transcript.pyannote[29].end |
170.48534375 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
179.34471875 |
transcript.pyannote[30].end |
179.85096875 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
187.19159375 |
transcript.pyannote[31].end |
194.53221875 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
194.76846875 |
transcript.pyannote[32].end |
199.32471875 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
199.62846875 |
transcript.pyannote[33].end |
200.79284375 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
201.34971875 |
transcript.pyannote[34].end |
202.63221875 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
203.50971875 |
transcript.pyannote[35].end |
204.40409375 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
205.58534375 |
transcript.pyannote[36].end |
206.63159375 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
207.17159375 |
transcript.pyannote[37].end |
208.20096875 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
208.43721875 |
transcript.pyannote[38].end |
210.24284375 |
transcript.pyannote[39].speaker |
SPEAKER_02 |
transcript.pyannote[39].start |
210.34409375 |
transcript.pyannote[39].end |
210.71534375 |
transcript.pyannote[40].speaker |
SPEAKER_02 |
transcript.pyannote[40].start |
211.01909375 |
transcript.pyannote[40].end |
216.97596875 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
214.41096875 |
transcript.pyannote[41].end |
214.64721875 |
transcript.pyannote[42].speaker |
SPEAKER_02 |
transcript.pyannote[42].start |
217.49909375 |
transcript.pyannote[42].end |
241.69784375 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
241.69784375 |
transcript.pyannote[43].end |
241.74846875 |
transcript.pyannote[44].speaker |
SPEAKER_02 |
transcript.pyannote[44].start |
241.86659375 |
transcript.pyannote[44].end |
242.00159375 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
242.00159375 |
transcript.pyannote[45].end |
249.51096875 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
250.72596875 |
transcript.pyannote[46].end |
251.73846875 |
transcript.pyannote[47].speaker |
SPEAKER_01 |
transcript.pyannote[47].start |
252.10971875 |
transcript.pyannote[47].end |
254.48909375 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
254.86034375 |
transcript.pyannote[48].end |
255.43409375 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
256.17659375 |
transcript.pyannote[49].end |
257.07096875 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
257.62784375 |
transcript.pyannote[50].end |
259.02846875 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
259.29846875 |
transcript.pyannote[51].end |
260.66534375 |
transcript.pyannote[52].speaker |
SPEAKER_01 |
transcript.pyannote[52].start |
261.64409375 |
transcript.pyannote[52].end |
262.97721875 |
transcript.pyannote[53].speaker |
SPEAKER_01 |
transcript.pyannote[53].start |
263.34846875 |
transcript.pyannote[53].end |
266.55471875 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
266.90909375 |
transcript.pyannote[54].end |
269.82846875 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
270.06471875 |
transcript.pyannote[55].end |
271.17846875 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
272.41034375 |
transcript.pyannote[56].end |
273.54096875 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
275.02596875 |
transcript.pyannote[57].end |
275.95409375 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
276.37596875 |
transcript.pyannote[58].end |
277.54034375 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
277.64159375 |
transcript.pyannote[59].end |
279.31221875 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
279.53159375 |
transcript.pyannote[60].end |
281.59034375 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
281.99534375 |
transcript.pyannote[61].end |
284.54346875 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
285.85971875 |
transcript.pyannote[62].end |
286.29846875 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
287.34471875 |
transcript.pyannote[63].end |
288.28971875 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
288.94784375 |
transcript.pyannote[64].end |
290.12909375 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
290.44971875 |
transcript.pyannote[65].end |
291.25971875 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
291.58034375 |
transcript.pyannote[66].end |
293.23409375 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
293.60534375 |
transcript.pyannote[67].end |
300.60846875 |
transcript.pyannote[68].speaker |
SPEAKER_02 |
transcript.pyannote[68].start |
301.85721875 |
transcript.pyannote[68].end |
314.96909375 |
transcript.pyannote[69].speaker |
SPEAKER_02 |
transcript.pyannote[69].start |
316.57221875 |
transcript.pyannote[69].end |
322.03971875 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
321.56721875 |
transcript.pyannote[70].end |
330.42659375 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
330.54471875 |
transcript.pyannote[71].end |
331.54034375 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
331.91159375 |
transcript.pyannote[72].end |
333.66659375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
335.92784375 |
transcript.pyannote[73].end |
335.94471875 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
335.97846875 |
transcript.pyannote[74].end |
336.01221875 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
336.23159375 |
transcript.pyannote[75].end |
338.10471875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
338.20596875 |
transcript.pyannote[76].end |
348.29721875 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
342.59346875 |
transcript.pyannote[77].end |
345.09096875 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
347.52096875 |
transcript.pyannote[78].end |
350.11971875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
351.43596875 |
transcript.pyannote[79].end |
356.81909375 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
356.97096875 |
transcript.pyannote[80].end |
358.59096875 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
358.69221875 |
transcript.pyannote[81].end |
360.49784375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
360.70034375 |
transcript.pyannote[82].end |
362.74221875 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
363.26534375 |
transcript.pyannote[83].end |
365.39159375 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
365.08784375 |
transcript.pyannote[84].end |
366.31971875 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
366.57284375 |
transcript.pyannote[85].end |
369.93096875 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
370.67346875 |
transcript.pyannote[86].end |
386.33346875 |
transcript.pyannote[87].speaker |
SPEAKER_02 |
transcript.pyannote[87].start |
386.33346875 |
transcript.pyannote[87].end |
386.62034375 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
386.62034375 |
transcript.pyannote[88].end |
386.97471875 |
transcript.pyannote[89].speaker |
SPEAKER_02 |
transcript.pyannote[89].start |
386.97471875 |
transcript.pyannote[89].end |
439.57409375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
401.84159375 |
transcript.pyannote[90].end |
402.29721875 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
439.99596875 |
transcript.pyannote[91].end |
457.95096875 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
458.37284375 |
transcript.pyannote[92].end |
461.62971875 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
462.32159375 |
transcript.pyannote[93].end |
479.61846875 |
transcript.pyannote[94].speaker |
SPEAKER_02 |
transcript.pyannote[94].start |
479.53409375 |
transcript.pyannote[94].end |
492.29159375 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
479.87159375 |
transcript.pyannote[95].end |
479.92221875 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
479.97284375 |
transcript.pyannote[96].end |
480.27659375 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
489.28784375 |
transcript.pyannote[97].end |
490.41846875 |
transcript.pyannote[98].speaker |
SPEAKER_01 |
transcript.pyannote[98].start |
490.51971875 |
transcript.pyannote[98].end |
492.27471875 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
492.29159375 |
transcript.pyannote[99].end |
492.96659375 |
transcript.pyannote[100].speaker |
SPEAKER_02 |
transcript.pyannote[100].start |
492.96659375 |
transcript.pyannote[100].end |
493.03409375 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
493.03409375 |
transcript.pyannote[101].end |
493.57409375 |
transcript.pyannote[102].speaker |
SPEAKER_02 |
transcript.pyannote[102].start |
493.57409375 |
transcript.pyannote[102].end |
512.28846875 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
493.65846875 |
transcript.pyannote[103].end |
493.77659375 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
493.82721875 |
transcript.pyannote[104].end |
493.86096875 |
transcript.pyannote[105].speaker |
SPEAKER_02 |
transcript.pyannote[105].start |
513.04784375 |
transcript.pyannote[105].end |
513.08159375 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
513.08159375 |
transcript.pyannote[106].end |
515.17409375 |
transcript.pyannote[107].speaker |
SPEAKER_01 |
transcript.pyannote[107].start |
515.74784375 |
transcript.pyannote[107].end |
516.76034375 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
517.09784375 |
transcript.pyannote[108].end |
518.04284375 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
518.24534375 |
transcript.pyannote[109].end |
519.27471875 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
519.40971875 |
transcript.pyannote[110].end |
520.00034375 |
transcript.pyannote[111].speaker |
SPEAKER_01 |
transcript.pyannote[111].start |
520.60784375 |
transcript.pyannote[111].end |
521.73846875 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
521.92409375 |
transcript.pyannote[112].end |
524.91096875 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
525.33284375 |
transcript.pyannote[113].end |
526.73346875 |
transcript.pyannote[114].speaker |
SPEAKER_01 |
transcript.pyannote[114].start |
527.05409375 |
transcript.pyannote[114].end |
528.31971875 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
528.85971875 |
transcript.pyannote[115].end |
540.09846875 |
transcript.pyannote[116].speaker |
SPEAKER_02 |
transcript.pyannote[116].start |
532.03221875 |
transcript.pyannote[116].end |
532.43721875 |
transcript.pyannote[117].speaker |
SPEAKER_02 |
transcript.pyannote[117].start |
533.56784375 |
transcript.pyannote[117].end |
533.65221875 |
transcript.pyannote[118].speaker |
SPEAKER_02 |
transcript.pyannote[118].start |
535.17096875 |
transcript.pyannote[118].end |
535.89659375 |
transcript.pyannote[119].speaker |
SPEAKER_02 |
transcript.pyannote[119].start |
536.13284375 |
transcript.pyannote[119].end |
536.18346875 |
transcript.pyannote[120].speaker |
SPEAKER_01 |
transcript.pyannote[120].start |
540.97596875 |
transcript.pyannote[120].end |
541.41471875 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
541.78596875 |
transcript.pyannote[121].end |
543.00096875 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
543.28784375 |
transcript.pyannote[122].end |
544.03034375 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
544.38471875 |
transcript.pyannote[123].end |
545.17784375 |
transcript.pyannote[124].speaker |
SPEAKER_01 |
transcript.pyannote[124].start |
546.00471875 |
transcript.pyannote[124].end |
547.05096875 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
547.55721875 |
transcript.pyannote[125].end |
551.21909375 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
551.52284375 |
transcript.pyannote[126].end |
554.81346875 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
555.08346875 |
transcript.pyannote[127].end |
556.66971875 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
557.05784375 |
transcript.pyannote[128].end |
559.69034375 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
559.89284375 |
transcript.pyannote[129].end |
560.33159375 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
560.87159375 |
transcript.pyannote[130].end |
565.29284375 |
transcript.pyannote[131].speaker |
SPEAKER_01 |
transcript.pyannote[131].start |
565.74846875 |
transcript.pyannote[131].end |
569.27534375 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
569.51159375 |
transcript.pyannote[132].end |
572.07659375 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
572.26221875 |
transcript.pyannote[133].end |
574.20284375 |
transcript.pyannote[134].speaker |
SPEAKER_01 |
transcript.pyannote[134].start |
574.65846875 |
transcript.pyannote[134].end |
575.23221875 |
transcript.pyannote[135].speaker |
SPEAKER_01 |
transcript.pyannote[135].start |
575.58659375 |
transcript.pyannote[135].end |
576.31221875 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
577.10534375 |
transcript.pyannote[136].end |
577.32471875 |
transcript.pyannote[137].speaker |
SPEAKER_01 |
transcript.pyannote[137].start |
577.69596875 |
transcript.pyannote[137].end |
578.86034375 |
transcript.pyannote[138].speaker |
SPEAKER_01 |
transcript.pyannote[138].start |
579.50159375 |
transcript.pyannote[138].end |
580.93596875 |
transcript.pyannote[139].speaker |
SPEAKER_01 |
transcript.pyannote[139].start |
581.45909375 |
transcript.pyannote[139].end |
582.70784375 |
transcript.pyannote[140].speaker |
SPEAKER_01 |
transcript.pyannote[140].start |
583.41659375 |
transcript.pyannote[140].end |
584.04096875 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
584.46284375 |
transcript.pyannote[141].end |
585.49221875 |
transcript.pyannote[142].speaker |
SPEAKER_01 |
transcript.pyannote[142].start |
585.79596875 |
transcript.pyannote[142].end |
587.70284375 |
transcript.pyannote[143].speaker |
SPEAKER_01 |
transcript.pyannote[143].start |
588.09096875 |
transcript.pyannote[143].end |
589.17096875 |
transcript.pyannote[144].speaker |
SPEAKER_01 |
transcript.pyannote[144].start |
591.78659375 |
transcript.pyannote[144].end |
592.61346875 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
593.67659375 |
transcript.pyannote[145].end |
595.00971875 |
transcript.pyannote[146].speaker |
SPEAKER_01 |
transcript.pyannote[146].start |
595.44846875 |
transcript.pyannote[146].end |
602.40096875 |
transcript.pyannote[147].speaker |
SPEAKER_01 |
transcript.pyannote[147].start |
602.83971875 |
transcript.pyannote[147].end |
609.87659375 |
transcript.pyannote[148].speaker |
SPEAKER_01 |
transcript.pyannote[148].start |
610.16346875 |
transcript.pyannote[148].end |
625.99221875 |
transcript.pyannote[149].speaker |
SPEAKER_01 |
transcript.pyannote[149].start |
626.34659375 |
transcript.pyannote[149].end |
633.28221875 |
transcript.pyannote[150].speaker |
SPEAKER_01 |
transcript.pyannote[150].start |
633.68721875 |
transcript.pyannote[150].end |
634.56471875 |
transcript.pyannote[151].speaker |
SPEAKER_01 |
transcript.pyannote[151].start |
634.98659375 |
transcript.pyannote[151].end |
635.49284375 |
transcript.pyannote[152].speaker |
SPEAKER_01 |
transcript.pyannote[152].start |
635.79659375 |
transcript.pyannote[152].end |
637.45034375 |
transcript.pyannote[153].speaker |
SPEAKER_01 |
transcript.pyannote[153].start |
637.85534375 |
transcript.pyannote[153].end |
640.45409375 |
transcript.pyannote[154].speaker |
SPEAKER_01 |
transcript.pyannote[154].start |
640.72409375 |
transcript.pyannote[154].end |
642.95159375 |
transcript.pyannote[155].speaker |
SPEAKER_01 |
transcript.pyannote[155].start |
643.42409375 |
transcript.pyannote[155].end |
644.45346875 |
transcript.pyannote[156].speaker |
SPEAKER_01 |
transcript.pyannote[156].start |
644.80784375 |
transcript.pyannote[156].end |
650.51159375 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
650.89971875 |
transcript.pyannote[157].end |
655.27034375 |
transcript.pyannote[158].speaker |
SPEAKER_01 |
transcript.pyannote[158].start |
656.46846875 |
transcript.pyannote[158].end |
682.92846875 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
675.95909375 |
transcript.pyannote[159].end |
675.97596875 |
transcript.pyannote[160].speaker |
SPEAKER_02 |
transcript.pyannote[160].start |
675.97596875 |
transcript.pyannote[160].end |
676.21221875 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
676.21221875 |
transcript.pyannote[161].end |
676.29659375 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
679.84034375 |
transcript.pyannote[162].end |
679.85721875 |
transcript.pyannote[163].speaker |
SPEAKER_02 |
transcript.pyannote[163].start |
679.85721875 |
transcript.pyannote[163].end |
680.68409375 |
transcript.pyannote[164].speaker |
SPEAKER_01 |
transcript.pyannote[164].start |
683.01284375 |
transcript.pyannote[164].end |
692.78346875 |
transcript.pyannote[165].speaker |
SPEAKER_01 |
transcript.pyannote[165].start |
692.96909375 |
transcript.pyannote[165].end |
703.51596875 |
transcript.pyannote[166].speaker |
SPEAKER_02 |
transcript.pyannote[166].start |
704.07284375 |
transcript.pyannote[166].end |
733.53659375 |
transcript.pyannote[167].speaker |
SPEAKER_01 |
transcript.pyannote[167].start |
733.53659375 |
transcript.pyannote[167].end |
759.64221875 |
transcript.pyannote[168].speaker |
SPEAKER_00 |
transcript.pyannote[168].start |
744.67409375 |
transcript.pyannote[168].end |
744.97784375 |
transcript.pyannote[169].speaker |
SPEAKER_01 |
transcript.pyannote[169].start |
759.92909375 |
transcript.pyannote[169].end |
761.14409375 |
transcript.pyannote[170].speaker |
SPEAKER_01 |
transcript.pyannote[170].start |
761.88659375 |
transcript.pyannote[170].end |
762.81471875 |
transcript.pyannote[171].speaker |
SPEAKER_01 |
transcript.pyannote[171].start |
764.02971875 |
transcript.pyannote[171].end |
764.78909375 |
transcript.pyannote[172].speaker |
SPEAKER_01 |
transcript.pyannote[172].start |
765.00846875 |
transcript.pyannote[172].end |
765.78471875 |
transcript.pyannote[173].speaker |
SPEAKER_01 |
transcript.pyannote[173].start |
766.49346875 |
transcript.pyannote[173].end |
767.38784375 |
transcript.pyannote[174].speaker |
SPEAKER_01 |
transcript.pyannote[174].start |
768.85596875 |
transcript.pyannote[174].end |
769.71659375 |
transcript.pyannote[175].speaker |
SPEAKER_01 |
transcript.pyannote[175].start |
770.10471875 |
transcript.pyannote[175].end |
770.77971875 |
transcript.pyannote[176].speaker |
SPEAKER_01 |
transcript.pyannote[176].start |
770.88096875 |
transcript.pyannote[176].end |
771.37034375 |
transcript.pyannote[177].speaker |
SPEAKER_01 |
transcript.pyannote[177].start |
773.27721875 |
transcript.pyannote[177].end |
776.80409375 |
transcript.pyannote[178].speaker |
SPEAKER_01 |
transcript.pyannote[178].start |
777.12471875 |
transcript.pyannote[178].end |
778.42409375 |
transcript.pyannote[179].speaker |
SPEAKER_01 |
transcript.pyannote[179].start |
778.60971875 |
transcript.pyannote[179].end |
779.79096875 |
transcript.pyannote[180].speaker |
SPEAKER_01 |
transcript.pyannote[180].start |
779.97659375 |
transcript.pyannote[180].end |
781.66409375 |
transcript.pyannote[181].speaker |
SPEAKER_02 |
transcript.pyannote[181].start |
782.23784375 |
transcript.pyannote[181].end |
792.17721875 |
transcript.pyannote[182].speaker |
SPEAKER_01 |
transcript.pyannote[182].start |
790.92846875 |
transcript.pyannote[182].end |
791.33346875 |
transcript.pyannote[183].speaker |
SPEAKER_01 |
transcript.pyannote[183].start |
792.17721875 |
transcript.pyannote[183].end |
796.69971875 |
transcript.pyannote[184].speaker |
SPEAKER_02 |
transcript.pyannote[184].start |
792.21096875 |
transcript.pyannote[184].end |
792.48096875 |
transcript.pyannote[185].speaker |
SPEAKER_02 |
transcript.pyannote[185].start |
793.64534375 |
transcript.pyannote[185].end |
797.35784375 |
transcript.pyannote[186].speaker |
SPEAKER_02 |
transcript.pyannote[186].start |
797.47596875 |
transcript.pyannote[186].end |
809.92971875 |
transcript.pyannote[187].speaker |
SPEAKER_02 |
transcript.pyannote[187].start |
810.57096875 |
transcript.pyannote[187].end |
811.43159375 |
transcript.pyannote[188].speaker |
SPEAKER_01 |
transcript.pyannote[188].start |
811.43159375 |
transcript.pyannote[188].end |
811.44846875 |
transcript.pyannote[189].speaker |
SPEAKER_02 |
transcript.pyannote[189].start |
812.03909375 |
transcript.pyannote[189].end |
813.03471875 |
transcript.pyannote[190].speaker |
SPEAKER_01 |
transcript.pyannote[190].start |
813.03471875 |
transcript.pyannote[190].end |
813.18659375 |
transcript.pyannote[191].speaker |
SPEAKER_02 |
transcript.pyannote[191].start |
814.03034375 |
transcript.pyannote[191].end |
814.04721875 |
transcript.pyannote[192].speaker |
SPEAKER_01 |
transcript.pyannote[192].start |
814.04721875 |
transcript.pyannote[192].end |
818.63721875 |
transcript.pyannote[193].speaker |
SPEAKER_02 |
transcript.pyannote[193].start |
818.63721875 |
transcript.pyannote[193].end |
818.92409375 |
transcript.pyannote[194].speaker |
SPEAKER_01 |
transcript.pyannote[194].start |
818.92409375 |
transcript.pyannote[194].end |
824.15534375 |
transcript.pyannote[195].speaker |
SPEAKER_02 |
transcript.pyannote[195].start |
824.15534375 |
transcript.pyannote[195].end |
825.52221875 |
transcript.pyannote[196].speaker |
SPEAKER_01 |
transcript.pyannote[196].start |
825.52221875 |
transcript.pyannote[196].end |
825.55596875 |
transcript.pyannote[197].speaker |
SPEAKER_01 |
transcript.pyannote[197].start |
825.87659375 |
transcript.pyannote[197].end |
825.89346875 |
transcript.pyannote[198].speaker |
SPEAKER_02 |
transcript.pyannote[198].start |
825.89346875 |
transcript.pyannote[198].end |
828.74534375 |
transcript.pyannote[199].speaker |
SPEAKER_00 |
transcript.pyannote[199].start |
830.95596875 |
transcript.pyannote[199].end |
835.19159375 |
transcript.pyannote[200].speaker |
SPEAKER_00 |
transcript.pyannote[200].start |
835.29284375 |
transcript.pyannote[200].end |
841.53659375 |
transcript.pyannote[201].speaker |
SPEAKER_00 |
transcript.pyannote[201].start |
841.80659375 |
transcript.pyannote[201].end |
849.36659375 |
transcript.pyannote[202].speaker |
SPEAKER_01 |
transcript.pyannote[202].start |
849.34971875 |
transcript.pyannote[202].end |
858.25971875 |
transcript.pyannote[203].speaker |
SPEAKER_01 |
transcript.pyannote[203].start |
858.54659375 |
transcript.pyannote[203].end |
859.84596875 |
transcript.pyannote[204].speaker |
SPEAKER_01 |
transcript.pyannote[204].start |
860.03159375 |
transcript.pyannote[204].end |
866.62971875 |
transcript.pyannote[205].speaker |
SPEAKER_01 |
transcript.pyannote[205].start |
866.69721875 |
transcript.pyannote[205].end |
870.25784375 |
transcript.pyannote[206].speaker |
SPEAKER_02 |
transcript.pyannote[206].start |
868.85721875 |
transcript.pyannote[206].end |
871.97909375 |
transcript.pyannote[207].speaker |
SPEAKER_01 |
transcript.pyannote[207].start |
871.84409375 |
transcript.pyannote[207].end |
873.88596875 |
transcript.pyannote[208].speaker |
SPEAKER_01 |
transcript.pyannote[208].start |
874.81409375 |
transcript.pyannote[208].end |
879.92721875 |
transcript.pyannote[209].speaker |
SPEAKER_01 |
transcript.pyannote[209].start |
882.18846875 |
transcript.pyannote[209].end |
882.57659375 |
transcript.pyannote[210].speaker |
SPEAKER_01 |
transcript.pyannote[210].start |
883.03221875 |
transcript.pyannote[210].end |
887.03159375 |
transcript.pyannote[211].speaker |
SPEAKER_01 |
transcript.pyannote[211].start |
887.28471875 |
transcript.pyannote[211].end |
892.87034375 |
transcript.pyannote[212].speaker |
SPEAKER_01 |
transcript.pyannote[212].start |
894.15284375 |
transcript.pyannote[212].end |
896.32971875 |
transcript.pyannote[213].speaker |
SPEAKER_01 |
transcript.pyannote[213].start |
896.95409375 |
transcript.pyannote[213].end |
897.49409375 |
transcript.pyannote[214].speaker |
SPEAKER_01 |
transcript.pyannote[214].start |
898.10159375 |
transcript.pyannote[214].end |
899.01284375 |
transcript.pyannote[215].speaker |
SPEAKER_01 |
transcript.pyannote[215].start |
900.22784375 |
transcript.pyannote[215].end |
901.03784375 |
transcript.pyannote[216].speaker |
SPEAKER_01 |
transcript.pyannote[216].start |
902.26971875 |
transcript.pyannote[216].end |
902.65784375 |
transcript.pyannote[217].speaker |
SPEAKER_01 |
transcript.pyannote[217].start |
902.92784375 |
transcript.pyannote[217].end |
903.38346875 |
transcript.pyannote[218].speaker |
SPEAKER_01 |
transcript.pyannote[218].start |
904.14284375 |
transcript.pyannote[218].end |
904.93596875 |
transcript.pyannote[219].speaker |
SPEAKER_02 |
transcript.pyannote[219].start |
905.93159375 |
transcript.pyannote[219].end |
908.24346875 |
transcript.pyannote[220].speaker |
SPEAKER_02 |
transcript.pyannote[220].start |
908.32784375 |
transcript.pyannote[220].end |
908.64846875 |
transcript.pyannote[221].speaker |
SPEAKER_02 |
transcript.pyannote[221].start |
908.98596875 |
transcript.pyannote[221].end |
910.77471875 |
transcript.pyannote[222].speaker |
SPEAKER_01 |
transcript.pyannote[222].start |
910.77471875 |
transcript.pyannote[222].end |
910.80846875 |
transcript.pyannote[223].speaker |
SPEAKER_01 |
transcript.pyannote[223].start |
912.56346875 |
transcript.pyannote[223].end |
925.28721875 |
transcript.pyannote[224].speaker |
SPEAKER_01 |
transcript.pyannote[224].start |
925.82721875 |
transcript.pyannote[224].end |
926.63721875 |
transcript.pyannote[225].speaker |
SPEAKER_00 |
transcript.pyannote[225].start |
927.27846875 |
transcript.pyannote[225].end |
927.44721875 |
transcript.pyannote[226].speaker |
SPEAKER_01 |
transcript.pyannote[226].start |
927.44721875 |
transcript.pyannote[226].end |
929.10096875 |
transcript.pyannote[227].speaker |
SPEAKER_00 |
transcript.pyannote[227].start |
929.10096875 |
transcript.pyannote[227].end |
939.42846875 |
transcript.pyannote[228].speaker |
SPEAKER_00 |
transcript.pyannote[228].start |
939.73221875 |
transcript.pyannote[228].end |
948.57471875 |
transcript.pyannote[229].speaker |
SPEAKER_00 |
transcript.pyannote[229].start |
948.62534375 |
transcript.pyannote[229].end |
959.81346875 |
transcript.pyannote[230].speaker |
SPEAKER_00 |
transcript.pyannote[230].start |
959.93159375 |
transcript.pyannote[230].end |
962.29409375 |
transcript.pyannote[231].speaker |
SPEAKER_00 |
transcript.pyannote[231].start |
962.46284375 |
transcript.pyannote[231].end |
965.55096875 |
transcript.pyannote[232].speaker |
SPEAKER_00 |
transcript.pyannote[232].start |
965.65221875 |
transcript.pyannote[232].end |
967.57596875 |
transcript.pyannote[233].speaker |
SPEAKER_00 |
transcript.pyannote[233].start |
967.69409375 |
transcript.pyannote[233].end |
971.03534375 |
transcript.pyannote[234].speaker |
SPEAKER_00 |
transcript.pyannote[234].start |
971.06909375 |
transcript.pyannote[234].end |
973.46534375 |
transcript.pyannote[235].speaker |
SPEAKER_01 |
transcript.pyannote[235].start |
973.95471875 |
transcript.pyannote[235].end |
978.79784375 |
transcript.pyannote[236].speaker |
SPEAKER_01 |
transcript.pyannote[236].start |
979.27034375 |
transcript.pyannote[236].end |
980.04659375 |
transcript.pyannote[237].speaker |
SPEAKER_01 |
transcript.pyannote[237].start |
980.51909375 |
transcript.pyannote[237].end |
983.26971875 |
transcript.pyannote[238].speaker |
SPEAKER_01 |
transcript.pyannote[238].start |
984.31596875 |
transcript.pyannote[238].end |
985.22721875 |
transcript.pyannote[239].speaker |
SPEAKER_01 |
transcript.pyannote[239].start |
985.66596875 |
transcript.pyannote[239].end |
986.72909375 |
transcript.pyannote[240].speaker |
SPEAKER_01 |
transcript.pyannote[240].start |
987.57284375 |
transcript.pyannote[240].end |
994.72784375 |
transcript.pyannote[241].speaker |
SPEAKER_02 |
transcript.pyannote[241].start |
988.68659375 |
transcript.pyannote[241].end |
988.77096875 |
transcript.pyannote[242].speaker |
SPEAKER_02 |
transcript.pyannote[242].start |
990.30659375 |
transcript.pyannote[242].end |
990.96471875 |
transcript.pyannote[243].speaker |
SPEAKER_00 |
transcript.pyannote[243].start |
990.96471875 |
transcript.pyannote[243].end |
991.43721875 |
transcript.pyannote[244].speaker |
SPEAKER_01 |
transcript.pyannote[244].start |
995.23409375 |
transcript.pyannote[244].end |
1000.36409375 |
transcript.pyannote[245].speaker |
SPEAKER_01 |
transcript.pyannote[245].start |
1000.97159375 |
transcript.pyannote[245].end |
1002.84471875 |
transcript.pyannote[246].speaker |
SPEAKER_02 |
transcript.pyannote[246].start |
1002.35534375 |
transcript.pyannote[246].end |
1004.14409375 |
transcript.pyannote[247].speaker |
SPEAKER_01 |
transcript.pyannote[247].start |
1003.57034375 |
transcript.pyannote[247].end |
1003.89096875 |
transcript.pyannote[248].speaker |
SPEAKER_01 |
transcript.pyannote[248].start |
1004.14409375 |
transcript.pyannote[248].end |
1004.92034375 |
transcript.pyannote[249].speaker |
SPEAKER_02 |
transcript.pyannote[249].start |
1004.92034375 |
transcript.pyannote[249].end |
1012.58159375 |
transcript.pyannote[250].speaker |
SPEAKER_01 |
transcript.pyannote[250].start |
1005.57846875 |
transcript.pyannote[250].end |
1006.01721875 |
transcript.pyannote[251].speaker |
SPEAKER_01 |
transcript.pyannote[251].start |
1012.58159375 |
transcript.pyannote[251].end |
1018.69034375 |
transcript.pyannote[252].speaker |
SPEAKER_02 |
transcript.pyannote[252].start |
1016.64846875 |
transcript.pyannote[252].end |
1021.08659375 |
transcript.pyannote[253].speaker |
SPEAKER_01 |
transcript.pyannote[253].start |
1018.94346875 |
transcript.pyannote[253].end |
1020.09096875 |
transcript.pyannote[254].speaker |
SPEAKER_02 |
transcript.pyannote[254].start |
1021.57596875 |
transcript.pyannote[254].end |
1038.38346875 |
transcript.pyannote[255].speaker |
SPEAKER_02 |
transcript.pyannote[255].start |
1039.09221875 |
transcript.pyannote[255].end |
1039.61534375 |
transcript.pyannote[256].speaker |
SPEAKER_02 |
transcript.pyannote[256].start |
1040.05409375 |
transcript.pyannote[256].end |
1053.31784375 |
transcript.pyannote[257].speaker |
SPEAKER_01 |
transcript.pyannote[257].start |
1053.45284375 |
transcript.pyannote[257].end |
1069.51784375 |
transcript.pyannote[258].speaker |
SPEAKER_02 |
transcript.pyannote[258].start |
1067.91471875 |
transcript.pyannote[258].end |
1074.96846875 |
transcript.pyannote[259].speaker |
SPEAKER_01 |
transcript.pyannote[259].start |
1070.09159375 |
transcript.pyannote[259].end |
1071.18846875 |
transcript.pyannote[260].speaker |
SPEAKER_01 |
transcript.pyannote[260].start |
1074.63096875 |
transcript.pyannote[260].end |
1074.86721875 |
transcript.pyannote[261].speaker |
SPEAKER_01 |
transcript.pyannote[261].start |
1074.96846875 |
transcript.pyannote[261].end |
1076.58846875 |
transcript.pyannote[262].speaker |
SPEAKER_02 |
transcript.pyannote[262].start |
1075.00221875 |
transcript.pyannote[262].end |
1076.62221875 |
transcript.whisperx[0].start |
6.248 |
transcript.whisperx[0].end |
32.487 |
transcript.whisperx[0].text |
好 謝謝主席 謝謝有請部長今天照理安排這個營造友善職場與環境若是照顧不離子的政策規劃這非常重要非常好了然後我要進入這個主題之前本席有一個數據要請部長看一下 |
transcript.whisperx[1].start |
35.1 |
transcript.whisperx[1].end |
51.048 |
transcript.whisperx[1].text |
從這個數據大致上可以看出每年的畢業生畢業之後沒有立即進入職場的狀況從108年以前大約沒有在這個表格上但是108年前大約平均是落在12%左右但從109年、110年一直到111年就從14%、15%一直到112年的18% |
transcript.whisperx[2].start |
58.9 |
transcript.whisperx[2].end |
68.226 |
transcript.whisperx[2].text |
這個是畢業生對下面這個數據我講的是未投保率但是你看到了去年從112年的18%一直到113年馬上跳升到將近快到33%幾乎是80%的成長 |
transcript.whisperx[3].start |
82.216 |
transcript.whisperx[3].end |
91.38 |
transcript.whisperx[3].text |
也就是說當年度的畢業生未投保率竟然從12年的18%跳到113年的33%部長有掌握到這個訊息嗎?謝謝委員提供這個資訊今年的畢業季會不會再成長?未投保率未投保率代表什麼? |
transcript.whisperx[4].start |
105.068 |
transcript.whisperx[4].end |
130.041 |
transcript.whisperx[4].text |
報告委員就是這個數據的這個32%未投保率這個是畢業生他在半年內還沒有這個投保的一個比例那他在歷年的情況是其實都是差異不大的那不過因為這個半年呢是因為畢業生他可能是會準備在升學或者是進修那在畢業後一年那他其實投保率就是有達到 |
transcript.whisperx[5].start |
131.803 |
transcript.whisperx[5].end |
145.843 |
transcript.whisperx[5].text |
7成75%那這個其實是歷年是差不多的所以你的掌握現在回答我是如此就對了是不是就是你的掌握是這樣就是說你們是看一年的你們不是在看半年的是這樣嗎 |
transcript.whisperx[6].start |
147.208 |
transcript.whisperx[6].end |
169.083 |
transcript.whisperx[6].text |
我們在歷年這個還是你要跟我講說我現在提供給部長給你看的這個數據109到113就是這五年嘛對不對好那你下面說前面差不多但是109到12起始就清不是差不多了109是14到12就變成18是增加了4%到113你看增加了將近快80%以上了 |
transcript.whisperx[7].start |
170.304 |
transcript.whisperx[7].end |
192.096 |
transcript.whisperx[7].text |
我們回去確認一下我們其實這個相關的數據跟這個數據統計的這個每一個去那個應用的狀況是那我們跟來跟在跟留言這邊把我們我們確認的數據來跟留言這邊來再做一些討論好部長所以我剛剛第一句話問說部長這個有沒有掌握嘛對不對那第二個這樣的數據凸顯什麼樣的問題的存在 |
transcript.whisperx[8].start |
194.858 |
transcript.whisperx[8].end |
204.049 |
transcript.whisperx[8].text |
那剛剛他回答我是說前面是差不多很平均但一年過後一年過後的數據就不是如此嗎 |
transcript.whisperx[9].start |
205.626 |
transcript.whisperx[9].end |
226.49 |
transcript.whisperx[9].text |
你到底有沒有掌握嗎你要回答我這個問題然後這個數據代表什麼意思嗎劉仁我自己確實第一次看到這個數據我是第一次看到這個數據不過如果這個數據有劉仁目前要提醒的這個趨勢的話那這確實是需要注意的這個狀況所以我剛剛也請同仁我們再把這個數據的統計的 |
transcript.whisperx[10].start |
229.471 |
transcript.whisperx[10].end |
248.003 |
transcript.whisperx[10].text |
的代表性跟統計的各種應用的狀況我們會來再做一輪釐清如果有像現在委員長提醒的這個狀況的話我想我們當然是必須注意也要有所因應對 我是想說未投保率在這一個對照確認度它是提高了將近80幾% |
transcript.whisperx[11].start |
250.782 |
transcript.whisperx[11].end |
273.331 |
transcript.whisperx[11].text |
位投保率當年度的畢業生的位投保率差一年既然高達提高了八十幾%這代表什麼意義啊主席要回答我這個問題啊你要掌握相關的數據要用一年的對照表我都沒有意見但是請部長要答覆我我的問題很簡單嘛位投保率當年度的畢業生節節上升 |
transcript.whisperx[12].start |
276.417 |
transcript.whisperx[12].end |
300.288 |
transcript.whisperx[12].text |
然後今年對照 對不起 113年對照12年增加到這是113年對照12114還沒有嘛 對不對今年畢業生已經即將來臨你們預估又是幾%我第二個問題第一個問題部長要回去再釐清再去掌握我沒有意見那第二個為投保率代表什麼意義那第三個那今年度你們的掌握是怎麼樣 |
transcript.whisperx[13].start |
303.112 |
transcript.whisperx[13].end |
314.377 |
transcript.whisperx[13].text |
這個未投保當然可能有很多的不同的原因那但是當然他如果沒有投保的話其實代表可能他是不是他就業上面會比較不順利或者是他 |
transcript.whisperx[14].start |
316.616 |
transcript.whisperx[14].end |
334.351 |
transcript.whisperx[14].text |
可能各種的原因就他除非升學或其實可能有很多不同的原因我知道啊 總是有主因的比例嘛對不對有主因跟次因嘛那你們過去累積這麼多年來的這樣的一個調查評估掌握主因是什麼嘛啊次因是什麼嘛簡單簡單解一下好不好報告委員因為那個如果 |
transcript.whisperx[15].start |
338.359 |
transcript.whisperx[15].end |
349.841 |
transcript.whisperx[15].text |
要再分次序的話大概我們可以再進一步研究那他其實原來什麼你們叫做進一步研究你也幫幫忙就是再去做一個分析比較那因為其實他為什麼到現在才要再做一次的分析 |
transcript.whisperx[16].start |
351.742 |
transcript.whisperx[16].end |
370.854 |
transcript.whisperx[16].text |
他的原因就會包含說升學那或者是進修或者是出國這些事都有可能的那照排序上的話我們就是會再依照委員的再來做這個排序的一個了解很不好意思今天如果不是飆升這麼多我想這個問題也不會突顯出來嘛 |
transcript.whisperx[17].start |
372.554 |
transcript.whisperx[17].end |
401.693 |
transcript.whisperx[17].text |
那今天竟然飆升這麼多你應該知道非常清楚知道是什麼原因而且這是113年對照112年我現在請部長來預防114年會不會再如此的飆升發生我知道我也想提醒的事情這數據裡面是不是透露著因為就這篇媒體報導上面其實當然他是在暗示說是不是有很多我們的青年畢業以後其實是不想工作的是想要躺平的 |
transcript.whisperx[18].start |
403.194 |
transcript.whisperx[18].end |
425.839 |
transcript.whisperx[18].text |
那大家是不是就業的意願降低很多其實他是在提示會不會有這個問題是所以我說我們必須從這個數據的在更詳細的調查裡面去看一下數據的釐清的狀況但是我想關於青年就業的意願的狀況其實我們這幾年來看的話其實青年整體的失業率並沒有比較高是 |
transcript.whisperx[19].start |
426.499 |
transcript.whisperx[19].end |
451.145 |
transcript.whisperx[19].text |
我們如果從青年的失業率來看的話這幾年青年失業率並沒有比較高所以就這個指標來說的話跟那個報導想要提示的事情看起來又不太一樣的地方部長你不能用報導來跟我講如果你要用報導來跟我講那今天就更糟糕了我提供這項數據你還沒辦法打復活你旁邊那一位也沒辦法打復活主要原因那你也不應該只有講說 |
transcript.whisperx[20].start |
452.805 |
transcript.whisperx[20].end |
479.071 |
transcript.whisperx[20].text |
我們的畢業生畢業之後只是不想工作 只是想談評絕對不是只有這些因素嘛我們的職場有不友善 你剛才是這麼打我 你小心喔真的喔 我們的職場有不友善 難道不是主要的研究嗎我們的薪資到底符不符合現在的畢業生他們的期待還是他們還在等待這個是不是你們主要調查去做的相關的面向的一個研究嘛 對不對 |
transcript.whisperx[21].start |
479.731 |
transcript.whisperx[21].end |
492.327 |
transcript.whisperx[21].text |
很掌握我們可以讓我再說明我剛才說講到躺平這兩個字是因為當時的是這篇報導上面他的標題上面用了這兩個字所以你不應該用報導來答覆我因為我的問題並沒有去提到這樣嘛應該是這麼講嘛對不對我剛才的說明裡面我是說到說 |
transcript.whisperx[22].start |
497.513 |
transcript.whisperx[22].end |
512.023 |
transcript.whisperx[22].text |
這一個數據裡面是不是有比方說青年的就業意願降低那就意願降低可能就有很多的原因存在那職場有不友善當然這裡面會是其中之一的 |
transcript.whisperx[23].start |
513.137 |
transcript.whisperx[23].end |
540.055 |
transcript.whisperx[23].text |
七年的就業不高在他畢業之後你們要去抓半年、一年、兩年相關的數據希望提供給委員做參考但是應該我現在在循序的時候應該是可以馬上打我如果你們沒有馬上打我是很奇怪一件事情我們是有數據的為什麼不打我那第二個七年的就業一直不高但是市場一直在缺工是不是 |
transcript.whisperx[24].start |
542.095 |
transcript.whisperx[24].end |
545.007 |
transcript.whisperx[24].text |
那這兩兆的衝突兩兆矛盾 |
transcript.whisperx[25].start |
546.055 |
transcript.whisperx[25].end |
561.279 |
transcript.whisperx[25].text |
到底發生什麼事情所以今天要虛說年輕人他可能不願工作他可能怎麼樣那要不要來回歸來討論今天張偉排的主題我們的職場友善嗎我簡單用一個例子啦齁因為時間的關係啦齁你看這個月十四號桃園市舉行清潔隊隊員的徵選徵選啦齁徵選對不起435個職缺那一共開出一共有4143人來報名 |
transcript.whisperx[26].start |
574.882 |
transcript.whisperx[26].end |
588.952 |
transcript.whisperx[26].text |
錄取率才12%這麼辛苦的清潔隊員的工作還是這麼多人去擠啊去排嘛因為最主要他一個月最高可以看到上看4萬5這是什麼情況 |
transcript.whisperx[27].start |
593.715 |
transcript.whisperx[27].end |
608.444 |
transcript.whisperx[27].text |
我給部長當一個思考嘛九居總署在11日的時候公布喔也是這個事情而已喔要看報導我們大家用報導來討論這事情嘛114年4月的時候全體受雇員工的薪資每年經常限的薪資平均是17807嗎 |
transcript.whisperx[28].start |
610.265 |
transcript.whisperx[28].end |
632.692 |
transcript.whisperx[28].text |
一個是4萬多對不對那經常信的這個薪資中益數是3萬8千多顯示多數的薪資能低於這個平均嘛這也是一個不爭的事實嘛對不對好如果再對照你們勞動部公布的全台各縣市薪資排行榜齁各位發現全國有9個縣市薪資水平是連中益數都沒有連3萬8都沒有的一個狀況 |
transcript.whisperx[29].start |
633.752 |
transcript.whisperx[29].end |
655.041 |
transcript.whisperx[29].text |
所以勞動部每年都有在調整這個最低工資但這隨著這個最低工資的上漲啦更有個業兼常性的工資也應該有相對的提升才對嘛所以我說這個整個國家的職場這個環境可能他就會越來越糟嘛畢業生要馬上投入職場的意願他可能就大大降低嘛 |
transcript.whisperx[30].start |
656.633 |
transcript.whisperx[30].end |
681.725 |
transcript.whisperx[30].text |
我要表達是這樣但是這個畢業生未托保率怎麼會在113年對照12年的時候從18%熊熊變成32%那前面可能一年多了1% 2%大致如此那你要用一年的數據來跟我講我可以接受但你要馬上提供出來你如果沒有馬上提供出來我就覺得你們這樣掌握都是有問題的然後最主要原因為什麼 |
transcript.whisperx[31].start |
683.126 |
transcript.whisperx[31].end |
703.386 |
transcript.whisperx[31].text |
沒有辦法馬上進入到職場,絕對不是只有什麼要再進修啦,要出國,絕對不是,不只這些原因嘛,主因到底是什麼嘛,是不是我們的職場不夠友善,是不是我們薪資還一直維持,沒有辦法超越過這個主計處公告的平均薪資的中位數以上嘛。 |
transcript.whisperx[32].start |
704.527 |
transcript.whisperx[32].end |
715.577 |
transcript.whisperx[32].text |
我先把我們其實現在手邊關於大專畢業生半年後為統計的基礎為投保率的數據我提供了大概從109年到113年基本上大概都是在31%30%32%大概在 |
transcript.whisperx[33].start |
720.661 |
transcript.whisperx[33].end |
740.312 |
transcript.whisperx[33].text |
30%到32%之間的區間但這是以半年為統計的基礎這是我們手上有的數據是這樣所以確實跟剛剛的那個數據之間好像看起來是有些落差所以我們去釐清那個落差的來源好像有一些落差這個落差不是好像是落差太大了是實際上落差是太大了過去 |
transcript.whisperx[34].start |
741.392 |
transcript.whisperx[34].end |
764.624 |
transcript.whisperx[34].text |
108年我剛剛有講表格沒有做出來因為我是做五年的表格嘛是平均都在12%嘛那確實它每年有逐漸在上升嘛對不對但是很奇怪1.2到1.3熊熊變成就是從18起來32左右嘛不是 我的問題最後一個問題最簡單嘛我就請教一下你今年的掌握怎麼樣今年的掌握一樣是32是35是變成40 |
transcript.whisperx[35].start |
769.008 |
transcript.whisperx[35].end |
781.204 |
transcript.whisperx[35].text |
還是你可以回到12年的18因為你們有做相關的配套相關的積極的政策引導讓我們的畢業生可以儘早投入他選擇友善的職場 |
transcript.whisperx[36].start |
782.304 |
transcript.whisperx[36].end |
811.187 |
transcript.whisperx[36].text |
那個跟我說明因為確實從比方說如果從青年失業率來看的話青年失業率並沒有顯著的改變但是我提醒部長嘛青年失業率不高但是青年市場上也一直在缺工嘛對不對因為這幾年來青年的失業率現在是歷年來最低的狀況所以因為青年失業率相對是最低的狀況跟剛剛的這個數據本身其實看起來的訊息不太一致 |
transcript.whisperx[37].start |
812.108 |
transcript.whisperx[37].end |
822.957 |
transcript.whisperx[37].text |
今年來現在是失業率最低的狀態我要肯定勞動部嘛現在這個數據我們是確定的我現在提供這個未投保率這個數據是假的嗎所以我們要看一下統計的方式那個統計是來自於我們對於大專畢業生 |
transcript.whisperx[38].start |
835.444 |
transcript.whisperx[38].end |
859.174 |
transcript.whisperx[38].text |
去做的一個就業流向調查那去區分這一群的這個畢業生他在畢業的隨著期間的拉長的一個投保的狀況所以這個的母體跟這個青年的失業率的母體也是兩個是不能這樣等同吃嘛對不對你們是講總TOTAL嘛這個是在講大專嘛對不對你要打呼我是這樣嘛那一樣道理啊你回答我這個問題啊 |
transcript.whisperx[39].start |
860.154 |
transcript.whisperx[39].end |
879.722 |
transcript.whisperx[39].text |
我問你大專畢業生為什麼投保率節節上升而且是80%的為投保率的增加你要回答我這個問題啊因為你為什麼不掌握啊我問你應該是可以馬上答問我啊不是跟我講說不願意工作啊不是跟我講他們去修他們去建修啊他們去出國啊 |
transcript.whisperx[40].start |
882.213 |
transcript.whisperx[40].end |
910.024 |
transcript.whisperx[40].text |
部長這樣好不好對整體薪資的改善我想勞動部還是有一定程度的責任啦可以可不可以提供一個具體的一個方案啦一個月內啦這個其一那其二大專你講大專我們就講大專今年度有沒有辦法降低還是一樣維持節節升高現在已經32這個我們來請郵單位來檢討這事情有沒有辦法降低到30%嘛 |
transcript.whisperx[41].start |
912.608 |
transcript.whisperx[41].end |
924.782 |
transcript.whisperx[41].text |
你要先了解什麼原因節節上升嘛18變成32你應該有辦法答問我嘛你知道在大中的這一塊領域它為什麼會投保率會從1要變成113的時候從18變成32嘛你最起碼有辦法答問我這個問題吧 |
transcript.whisperx[42].start |
929.147 |
transcript.whisperx[42].end |
954.026 |
transcript.whisperx[42].text |
委員我們是不是補充一下 剛才會看到數據的差異其實是統計時間點的一個落差那為什麼呢因為這個譬如說以112年他這一群的畢業生到現在這個統計時間為止他其實對他來說已經經歷了畢業兩年的一個時間那所以他的未投保率當然是下降的那如果以113年這個統計時間點來說他的未投保率是高的 |
transcript.whisperx[43].start |
957.388 |
transcript.whisperx[43].end |
981.116 |
transcript.whisperx[43].text |
那所以我們其實要比較的應該會是說這個畢業生他同樣在這個畢業半年內他的一個投保率情況這個在歷年的比較是差不多的都是在剛才的30到30百分之30到32之間不是啦你這麼講很奇怪對不起回到那個表格主席我不好意思我叫阿伯還有問題我把這題問到旁邊 |
transcript.whisperx[44].start |
984.346 |
transcript.whisperx[44].end |
991.65 |
transcript.whisperx[44].text |
他有母宿啊可工作人口啊這個有問題嗎這個有問題嗎他一直要打我還是平均在30%嗎所以你就要把我現在提供這樣的一個數據他是有問題的 |
transcript.whisperx[45].start |
1001.545 |
transcript.whisperx[45].end |
1006.45 |
transcript.whisperx[45].text |
你是不是要這樣子不是不是你就針對我的問題答誤就好我的意思是說這個數據比方109年的未投保率來說的話它其實會隨著時間這樣我知道啦我知道它會隨著時間啦做這個表格一定有一個同一個時間嘛我的意思是說 |
transcript.whisperx[46].start |
1021.687 |
transcript.whisperx[46].end |
1037.887 |
transcript.whisperx[46].text |
意思是說這個假設109年的這個表格這個的話14.2他會隨著時間降低因為當時間拉長的時候他去就業的機會就越來越多所以當你離這個時間畢業的時間比較近的時候他的未投保率都會比較 |
transcript.whisperx[47].start |
1039.161 |
transcript.whisperx[47].end |
1053.1 |
transcript.whisperx[47].text |
高那這是為什麼剛剛說如果以半年如果都是用半年畢業後半年來看的話基本上都在30%的上下如果從這個角度來看的話其實他並沒有顯著的高或低這樣子 |
transcript.whisperx[48].start |
1054.742 |
transcript.whisperx[48].end |
1074.604 |
transcript.whisperx[48].text |
我是覺得你們答覆我的我都聽懂啦我要問的問題你們好像一直聽不懂好 那沒關係那你們就把相關的統計數據怎樣做一個對照提供給委員會來做參考可不可以一個禮拜內我們提供給委員然後包括我們如果有需要檢討的地方我們也把檢討的措施都提供給委員好 謝謝主席 |