iVOD / 162605

Field Value
IVOD_ID 162605
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/162605
日期 2025-06-18
會議資料.會議代碼 委員會-11-3-26-17
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第17次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 17
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第17次全體委員會議
影片種類 Clip
開始時間 2025-06-18T10:57:09+08:00
結束時間 2025-06-18T11:15:07+08:00
影片長度 00:17:58
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5617cf280bc2552ad6de2e72c12eec83242af1fd96f582304c29659fdfe1d1e8a776b5aef8effbec5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 劉建國
委員發言時間 10:57:09 - 11:15:07
會議時間 2025-06-18T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第17次全體委員會議(事由:邀請勞動部部長就「營造友善職場育兒環境,落實照顧不離職政策規劃」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 5.24534375
transcript.pyannote[0].end 5.56596875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 5.98784375
transcript.pyannote[1].end 9.54846875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 17.17596875
transcript.pyannote[2].end 17.93534375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 17.93534375
transcript.pyannote[3].end 32.68409375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 17.95221875
transcript.pyannote[4].end 18.01971875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 18.03659375
transcript.pyannote[5].end 18.39096875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 34.47284375
transcript.pyannote[6].end 41.03721875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 41.40846875
transcript.pyannote[7].end 47.78721875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 47.98971875
transcript.pyannote[8].end 57.74346875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 58.63784375
transcript.pyannote[9].end 76.40721875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 77.33534375
transcript.pyannote[10].end 81.28409375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 82.14471875
transcript.pyannote[11].end 89.02971875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 89.16471875
transcript.pyannote[12].end 89.95784375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 90.31221875
transcript.pyannote[13].end 91.67909375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 93.53534375
transcript.pyannote[14].end 94.54784375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 94.80096875
transcript.pyannote[15].end 96.52221875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 96.75846875
transcript.pyannote[16].end 98.31096875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 100.20096875
transcript.pyannote[17].end 100.84221875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 101.38221875
transcript.pyannote[18].end 102.49596875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 104.85846875
transcript.pyannote[19].end 122.96534375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 122.98221875
transcript.pyannote[20].end 122.99909375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 123.04971875
transcript.pyannote[21].end 125.90159375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 126.01971875
transcript.pyannote[22].end 136.02659375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 137.03909375
transcript.pyannote[23].end 140.63346875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 141.30846875
transcript.pyannote[24].end 145.39221875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 145.67909375
transcript.pyannote[25].end 146.42159375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 146.94471875
transcript.pyannote[26].end 148.93596875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 148.63221875
transcript.pyannote[27].end 169.32096875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 169.32096875
transcript.pyannote[28].end 187.22534375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 170.35034375
transcript.pyannote[29].end 170.48534375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 179.34471875
transcript.pyannote[30].end 179.85096875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 187.19159375
transcript.pyannote[31].end 194.53221875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 194.76846875
transcript.pyannote[32].end 199.32471875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 199.62846875
transcript.pyannote[33].end 200.79284375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 201.34971875
transcript.pyannote[34].end 202.63221875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 203.50971875
transcript.pyannote[35].end 204.40409375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 205.58534375
transcript.pyannote[36].end 206.63159375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 207.17159375
transcript.pyannote[37].end 208.20096875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 208.43721875
transcript.pyannote[38].end 210.24284375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 210.34409375
transcript.pyannote[39].end 210.71534375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 211.01909375
transcript.pyannote[40].end 216.97596875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 214.41096875
transcript.pyannote[41].end 214.64721875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 217.49909375
transcript.pyannote[42].end 241.69784375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 241.69784375
transcript.pyannote[43].end 241.74846875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 241.86659375
transcript.pyannote[44].end 242.00159375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 242.00159375
transcript.pyannote[45].end 249.51096875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 250.72596875
transcript.pyannote[46].end 251.73846875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 252.10971875
transcript.pyannote[47].end 254.48909375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 254.86034375
transcript.pyannote[48].end 255.43409375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 256.17659375
transcript.pyannote[49].end 257.07096875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 257.62784375
transcript.pyannote[50].end 259.02846875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 259.29846875
transcript.pyannote[51].end 260.66534375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 261.64409375
transcript.pyannote[52].end 262.97721875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 263.34846875
transcript.pyannote[53].end 266.55471875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 266.90909375
transcript.pyannote[54].end 269.82846875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 270.06471875
transcript.pyannote[55].end 271.17846875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 272.41034375
transcript.pyannote[56].end 273.54096875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 275.02596875
transcript.pyannote[57].end 275.95409375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 276.37596875
transcript.pyannote[58].end 277.54034375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 277.64159375
transcript.pyannote[59].end 279.31221875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 279.53159375
transcript.pyannote[60].end 281.59034375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 281.99534375
transcript.pyannote[61].end 284.54346875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 285.85971875
transcript.pyannote[62].end 286.29846875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 287.34471875
transcript.pyannote[63].end 288.28971875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 288.94784375
transcript.pyannote[64].end 290.12909375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 290.44971875
transcript.pyannote[65].end 291.25971875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 291.58034375
transcript.pyannote[66].end 293.23409375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 293.60534375
transcript.pyannote[67].end 300.60846875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 301.85721875
transcript.pyannote[68].end 314.96909375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 316.57221875
transcript.pyannote[69].end 322.03971875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 321.56721875
transcript.pyannote[70].end 330.42659375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 330.54471875
transcript.pyannote[71].end 331.54034375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 331.91159375
transcript.pyannote[72].end 333.66659375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 335.92784375
transcript.pyannote[73].end 335.94471875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 335.97846875
transcript.pyannote[74].end 336.01221875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 336.23159375
transcript.pyannote[75].end 338.10471875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 338.20596875
transcript.pyannote[76].end 348.29721875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 342.59346875
transcript.pyannote[77].end 345.09096875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 347.52096875
transcript.pyannote[78].end 350.11971875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 351.43596875
transcript.pyannote[79].end 356.81909375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 356.97096875
transcript.pyannote[80].end 358.59096875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 358.69221875
transcript.pyannote[81].end 360.49784375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 360.70034375
transcript.pyannote[82].end 362.74221875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 363.26534375
transcript.pyannote[83].end 365.39159375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 365.08784375
transcript.pyannote[84].end 366.31971875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 366.57284375
transcript.pyannote[85].end 369.93096875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 370.67346875
transcript.pyannote[86].end 386.33346875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 386.33346875
transcript.pyannote[87].end 386.62034375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 386.62034375
transcript.pyannote[88].end 386.97471875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 386.97471875
transcript.pyannote[89].end 439.57409375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 401.84159375
transcript.pyannote[90].end 402.29721875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 439.99596875
transcript.pyannote[91].end 457.95096875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 458.37284375
transcript.pyannote[92].end 461.62971875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 462.32159375
transcript.pyannote[93].end 479.61846875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 479.53409375
transcript.pyannote[94].end 492.29159375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 479.87159375
transcript.pyannote[95].end 479.92221875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 479.97284375
transcript.pyannote[96].end 480.27659375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 489.28784375
transcript.pyannote[97].end 490.41846875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 490.51971875
transcript.pyannote[98].end 492.27471875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 492.29159375
transcript.pyannote[99].end 492.96659375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 492.96659375
transcript.pyannote[100].end 493.03409375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 493.03409375
transcript.pyannote[101].end 493.57409375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 493.57409375
transcript.pyannote[102].end 512.28846875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 493.65846875
transcript.pyannote[103].end 493.77659375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 493.82721875
transcript.pyannote[104].end 493.86096875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 513.04784375
transcript.pyannote[105].end 513.08159375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 513.08159375
transcript.pyannote[106].end 515.17409375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 515.74784375
transcript.pyannote[107].end 516.76034375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 517.09784375
transcript.pyannote[108].end 518.04284375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 518.24534375
transcript.pyannote[109].end 519.27471875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 519.40971875
transcript.pyannote[110].end 520.00034375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 520.60784375
transcript.pyannote[111].end 521.73846875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 521.92409375
transcript.pyannote[112].end 524.91096875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 525.33284375
transcript.pyannote[113].end 526.73346875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 527.05409375
transcript.pyannote[114].end 528.31971875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 528.85971875
transcript.pyannote[115].end 540.09846875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 532.03221875
transcript.pyannote[116].end 532.43721875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 533.56784375
transcript.pyannote[117].end 533.65221875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 535.17096875
transcript.pyannote[118].end 535.89659375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 536.13284375
transcript.pyannote[119].end 536.18346875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 540.97596875
transcript.pyannote[120].end 541.41471875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 541.78596875
transcript.pyannote[121].end 543.00096875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 543.28784375
transcript.pyannote[122].end 544.03034375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 544.38471875
transcript.pyannote[123].end 545.17784375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 546.00471875
transcript.pyannote[124].end 547.05096875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 547.55721875
transcript.pyannote[125].end 551.21909375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 551.52284375
transcript.pyannote[126].end 554.81346875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 555.08346875
transcript.pyannote[127].end 556.66971875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 557.05784375
transcript.pyannote[128].end 559.69034375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 559.89284375
transcript.pyannote[129].end 560.33159375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 560.87159375
transcript.pyannote[130].end 565.29284375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 565.74846875
transcript.pyannote[131].end 569.27534375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 569.51159375
transcript.pyannote[132].end 572.07659375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 572.26221875
transcript.pyannote[133].end 574.20284375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 574.65846875
transcript.pyannote[134].end 575.23221875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 575.58659375
transcript.pyannote[135].end 576.31221875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 577.10534375
transcript.pyannote[136].end 577.32471875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 577.69596875
transcript.pyannote[137].end 578.86034375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 579.50159375
transcript.pyannote[138].end 580.93596875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 581.45909375
transcript.pyannote[139].end 582.70784375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 583.41659375
transcript.pyannote[140].end 584.04096875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 584.46284375
transcript.pyannote[141].end 585.49221875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 585.79596875
transcript.pyannote[142].end 587.70284375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 588.09096875
transcript.pyannote[143].end 589.17096875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 591.78659375
transcript.pyannote[144].end 592.61346875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 593.67659375
transcript.pyannote[145].end 595.00971875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 595.44846875
transcript.pyannote[146].end 602.40096875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 602.83971875
transcript.pyannote[147].end 609.87659375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 610.16346875
transcript.pyannote[148].end 625.99221875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 626.34659375
transcript.pyannote[149].end 633.28221875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 633.68721875
transcript.pyannote[150].end 634.56471875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 634.98659375
transcript.pyannote[151].end 635.49284375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 635.79659375
transcript.pyannote[152].end 637.45034375
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 637.85534375
transcript.pyannote[153].end 640.45409375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 640.72409375
transcript.pyannote[154].end 642.95159375
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 643.42409375
transcript.pyannote[155].end 644.45346875
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 644.80784375
transcript.pyannote[156].end 650.51159375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 650.89971875
transcript.pyannote[157].end 655.27034375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 656.46846875
transcript.pyannote[158].end 682.92846875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 675.95909375
transcript.pyannote[159].end 675.97596875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 675.97596875
transcript.pyannote[160].end 676.21221875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 676.21221875
transcript.pyannote[161].end 676.29659375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 679.84034375
transcript.pyannote[162].end 679.85721875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 679.85721875
transcript.pyannote[163].end 680.68409375
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 683.01284375
transcript.pyannote[164].end 692.78346875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 692.96909375
transcript.pyannote[165].end 703.51596875
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 704.07284375
transcript.pyannote[166].end 733.53659375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 733.53659375
transcript.pyannote[167].end 759.64221875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 744.67409375
transcript.pyannote[168].end 744.97784375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 759.92909375
transcript.pyannote[169].end 761.14409375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 761.88659375
transcript.pyannote[170].end 762.81471875
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 764.02971875
transcript.pyannote[171].end 764.78909375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 765.00846875
transcript.pyannote[172].end 765.78471875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 766.49346875
transcript.pyannote[173].end 767.38784375
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 768.85596875
transcript.pyannote[174].end 769.71659375
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 770.10471875
transcript.pyannote[175].end 770.77971875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 770.88096875
transcript.pyannote[176].end 771.37034375
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 773.27721875
transcript.pyannote[177].end 776.80409375
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 777.12471875
transcript.pyannote[178].end 778.42409375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 778.60971875
transcript.pyannote[179].end 779.79096875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 779.97659375
transcript.pyannote[180].end 781.66409375
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 782.23784375
transcript.pyannote[181].end 792.17721875
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 790.92846875
transcript.pyannote[182].end 791.33346875
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 792.17721875
transcript.pyannote[183].end 796.69971875
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 792.21096875
transcript.pyannote[184].end 792.48096875
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 793.64534375
transcript.pyannote[185].end 797.35784375
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 797.47596875
transcript.pyannote[186].end 809.92971875
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 810.57096875
transcript.pyannote[187].end 811.43159375
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 811.43159375
transcript.pyannote[188].end 811.44846875
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 812.03909375
transcript.pyannote[189].end 813.03471875
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 813.03471875
transcript.pyannote[190].end 813.18659375
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 814.03034375
transcript.pyannote[191].end 814.04721875
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 814.04721875
transcript.pyannote[192].end 818.63721875
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 818.63721875
transcript.pyannote[193].end 818.92409375
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 818.92409375
transcript.pyannote[194].end 824.15534375
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 824.15534375
transcript.pyannote[195].end 825.52221875
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 825.52221875
transcript.pyannote[196].end 825.55596875
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 825.87659375
transcript.pyannote[197].end 825.89346875
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 825.89346875
transcript.pyannote[198].end 828.74534375
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 830.95596875
transcript.pyannote[199].end 835.19159375
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 835.29284375
transcript.pyannote[200].end 841.53659375
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 841.80659375
transcript.pyannote[201].end 849.36659375
transcript.pyannote[202].speaker SPEAKER_01
transcript.pyannote[202].start 849.34971875
transcript.pyannote[202].end 858.25971875
transcript.pyannote[203].speaker SPEAKER_01
transcript.pyannote[203].start 858.54659375
transcript.pyannote[203].end 859.84596875
transcript.pyannote[204].speaker SPEAKER_01
transcript.pyannote[204].start 860.03159375
transcript.pyannote[204].end 866.62971875
transcript.pyannote[205].speaker SPEAKER_01
transcript.pyannote[205].start 866.69721875
transcript.pyannote[205].end 870.25784375
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 868.85721875
transcript.pyannote[206].end 871.97909375
transcript.pyannote[207].speaker SPEAKER_01
transcript.pyannote[207].start 871.84409375
transcript.pyannote[207].end 873.88596875
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 874.81409375
transcript.pyannote[208].end 879.92721875
transcript.pyannote[209].speaker SPEAKER_01
transcript.pyannote[209].start 882.18846875
transcript.pyannote[209].end 882.57659375
transcript.pyannote[210].speaker SPEAKER_01
transcript.pyannote[210].start 883.03221875
transcript.pyannote[210].end 887.03159375
transcript.pyannote[211].speaker SPEAKER_01
transcript.pyannote[211].start 887.28471875
transcript.pyannote[211].end 892.87034375
transcript.pyannote[212].speaker SPEAKER_01
transcript.pyannote[212].start 894.15284375
transcript.pyannote[212].end 896.32971875
transcript.pyannote[213].speaker SPEAKER_01
transcript.pyannote[213].start 896.95409375
transcript.pyannote[213].end 897.49409375
transcript.pyannote[214].speaker SPEAKER_01
transcript.pyannote[214].start 898.10159375
transcript.pyannote[214].end 899.01284375
transcript.pyannote[215].speaker SPEAKER_01
transcript.pyannote[215].start 900.22784375
transcript.pyannote[215].end 901.03784375
transcript.pyannote[216].speaker SPEAKER_01
transcript.pyannote[216].start 902.26971875
transcript.pyannote[216].end 902.65784375
transcript.pyannote[217].speaker SPEAKER_01
transcript.pyannote[217].start 902.92784375
transcript.pyannote[217].end 903.38346875
transcript.pyannote[218].speaker SPEAKER_01
transcript.pyannote[218].start 904.14284375
transcript.pyannote[218].end 904.93596875
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 905.93159375
transcript.pyannote[219].end 908.24346875
transcript.pyannote[220].speaker SPEAKER_02
transcript.pyannote[220].start 908.32784375
transcript.pyannote[220].end 908.64846875
transcript.pyannote[221].speaker SPEAKER_02
transcript.pyannote[221].start 908.98596875
transcript.pyannote[221].end 910.77471875
transcript.pyannote[222].speaker SPEAKER_01
transcript.pyannote[222].start 910.77471875
transcript.pyannote[222].end 910.80846875
transcript.pyannote[223].speaker SPEAKER_01
transcript.pyannote[223].start 912.56346875
transcript.pyannote[223].end 925.28721875
transcript.pyannote[224].speaker SPEAKER_01
transcript.pyannote[224].start 925.82721875
transcript.pyannote[224].end 926.63721875
transcript.pyannote[225].speaker SPEAKER_00
transcript.pyannote[225].start 927.27846875
transcript.pyannote[225].end 927.44721875
transcript.pyannote[226].speaker SPEAKER_01
transcript.pyannote[226].start 927.44721875
transcript.pyannote[226].end 929.10096875
transcript.pyannote[227].speaker SPEAKER_00
transcript.pyannote[227].start 929.10096875
transcript.pyannote[227].end 939.42846875
transcript.pyannote[228].speaker SPEAKER_00
transcript.pyannote[228].start 939.73221875
transcript.pyannote[228].end 948.57471875
transcript.pyannote[229].speaker SPEAKER_00
transcript.pyannote[229].start 948.62534375
transcript.pyannote[229].end 959.81346875
transcript.pyannote[230].speaker SPEAKER_00
transcript.pyannote[230].start 959.93159375
transcript.pyannote[230].end 962.29409375
transcript.pyannote[231].speaker SPEAKER_00
transcript.pyannote[231].start 962.46284375
transcript.pyannote[231].end 965.55096875
transcript.pyannote[232].speaker SPEAKER_00
transcript.pyannote[232].start 965.65221875
transcript.pyannote[232].end 967.57596875
transcript.pyannote[233].speaker SPEAKER_00
transcript.pyannote[233].start 967.69409375
transcript.pyannote[233].end 971.03534375
transcript.pyannote[234].speaker SPEAKER_00
transcript.pyannote[234].start 971.06909375
transcript.pyannote[234].end 973.46534375
transcript.pyannote[235].speaker SPEAKER_01
transcript.pyannote[235].start 973.95471875
transcript.pyannote[235].end 978.79784375
transcript.pyannote[236].speaker SPEAKER_01
transcript.pyannote[236].start 979.27034375
transcript.pyannote[236].end 980.04659375
transcript.pyannote[237].speaker SPEAKER_01
transcript.pyannote[237].start 980.51909375
transcript.pyannote[237].end 983.26971875
transcript.pyannote[238].speaker SPEAKER_01
transcript.pyannote[238].start 984.31596875
transcript.pyannote[238].end 985.22721875
transcript.pyannote[239].speaker SPEAKER_01
transcript.pyannote[239].start 985.66596875
transcript.pyannote[239].end 986.72909375
transcript.pyannote[240].speaker SPEAKER_01
transcript.pyannote[240].start 987.57284375
transcript.pyannote[240].end 994.72784375
transcript.pyannote[241].speaker SPEAKER_02
transcript.pyannote[241].start 988.68659375
transcript.pyannote[241].end 988.77096875
transcript.pyannote[242].speaker SPEAKER_02
transcript.pyannote[242].start 990.30659375
transcript.pyannote[242].end 990.96471875
transcript.pyannote[243].speaker SPEAKER_00
transcript.pyannote[243].start 990.96471875
transcript.pyannote[243].end 991.43721875
transcript.pyannote[244].speaker SPEAKER_01
transcript.pyannote[244].start 995.23409375
transcript.pyannote[244].end 1000.36409375
transcript.pyannote[245].speaker SPEAKER_01
transcript.pyannote[245].start 1000.97159375
transcript.pyannote[245].end 1002.84471875
transcript.pyannote[246].speaker SPEAKER_02
transcript.pyannote[246].start 1002.35534375
transcript.pyannote[246].end 1004.14409375
transcript.pyannote[247].speaker SPEAKER_01
transcript.pyannote[247].start 1003.57034375
transcript.pyannote[247].end 1003.89096875
transcript.pyannote[248].speaker SPEAKER_01
transcript.pyannote[248].start 1004.14409375
transcript.pyannote[248].end 1004.92034375
transcript.pyannote[249].speaker SPEAKER_02
transcript.pyannote[249].start 1004.92034375
transcript.pyannote[249].end 1012.58159375
transcript.pyannote[250].speaker SPEAKER_01
transcript.pyannote[250].start 1005.57846875
transcript.pyannote[250].end 1006.01721875
transcript.pyannote[251].speaker SPEAKER_01
transcript.pyannote[251].start 1012.58159375
transcript.pyannote[251].end 1018.69034375
transcript.pyannote[252].speaker SPEAKER_02
transcript.pyannote[252].start 1016.64846875
transcript.pyannote[252].end 1021.08659375
transcript.pyannote[253].speaker SPEAKER_01
transcript.pyannote[253].start 1018.94346875
transcript.pyannote[253].end 1020.09096875
transcript.pyannote[254].speaker SPEAKER_02
transcript.pyannote[254].start 1021.57596875
transcript.pyannote[254].end 1038.38346875
transcript.pyannote[255].speaker SPEAKER_02
transcript.pyannote[255].start 1039.09221875
transcript.pyannote[255].end 1039.61534375
transcript.pyannote[256].speaker SPEAKER_02
transcript.pyannote[256].start 1040.05409375
transcript.pyannote[256].end 1053.31784375
transcript.pyannote[257].speaker SPEAKER_01
transcript.pyannote[257].start 1053.45284375
transcript.pyannote[257].end 1069.51784375
transcript.pyannote[258].speaker SPEAKER_02
transcript.pyannote[258].start 1067.91471875
transcript.pyannote[258].end 1074.96846875
transcript.pyannote[259].speaker SPEAKER_01
transcript.pyannote[259].start 1070.09159375
transcript.pyannote[259].end 1071.18846875
transcript.pyannote[260].speaker SPEAKER_01
transcript.pyannote[260].start 1074.63096875
transcript.pyannote[260].end 1074.86721875
transcript.pyannote[261].speaker SPEAKER_01
transcript.pyannote[261].start 1074.96846875
transcript.pyannote[261].end 1076.58846875
transcript.pyannote[262].speaker SPEAKER_02
transcript.pyannote[262].start 1075.00221875
transcript.pyannote[262].end 1076.62221875
transcript.whisperx[0].start 6.248
transcript.whisperx[0].end 32.487
transcript.whisperx[0].text 好 謝謝主席 謝謝有請部長今天照理安排這個營造友善職場與環境若是照顧不離子的政策規劃這非常重要非常好了然後我要進入這個主題之前本席有一個數據要請部長看一下
transcript.whisperx[1].start 35.1
transcript.whisperx[1].end 51.048
transcript.whisperx[1].text 從這個數據大致上可以看出每年的畢業生畢業之後沒有立即進入職場的狀況從108年以前大約沒有在這個表格上但是108年前大約平均是落在12%左右但從109年、110年一直到111年就從14%、15%一直到112年的18%
transcript.whisperx[2].start 58.9
transcript.whisperx[2].end 68.226
transcript.whisperx[2].text 這個是畢業生對下面這個數據我講的是未投保率但是你看到了去年從112年的18%一直到113年馬上跳升到將近快到33%幾乎是80%的成長
transcript.whisperx[3].start 82.216
transcript.whisperx[3].end 91.38
transcript.whisperx[3].text 也就是說當年度的畢業生未投保率竟然從12年的18%跳到113年的33%部長有掌握到這個訊息嗎?謝謝委員提供這個資訊今年的畢業季會不會再成長?未投保率未投保率代表什麼?
transcript.whisperx[4].start 105.068
transcript.whisperx[4].end 130.041
transcript.whisperx[4].text 報告委員就是這個數據的這個32%未投保率這個是畢業生他在半年內還沒有這個投保的一個比例那他在歷年的情況是其實都是差異不大的那不過因為這個半年呢是因為畢業生他可能是會準備在升學或者是進修那在畢業後一年那他其實投保率就是有達到
transcript.whisperx[5].start 131.803
transcript.whisperx[5].end 145.843
transcript.whisperx[5].text 7成75%那這個其實是歷年是差不多的所以你的掌握現在回答我是如此就對了是不是就是你的掌握是這樣就是說你們是看一年的你們不是在看半年的是這樣嗎
transcript.whisperx[6].start 147.208
transcript.whisperx[6].end 169.083
transcript.whisperx[6].text 我們在歷年這個還是你要跟我講說我現在提供給部長給你看的這個數據109到113就是這五年嘛對不對好那你下面說前面差不多但是109到12起始就清不是差不多了109是14到12就變成18是增加了4%到113你看增加了將近快80%以上了
transcript.whisperx[7].start 170.304
transcript.whisperx[7].end 192.096
transcript.whisperx[7].text 我們回去確認一下我們其實這個相關的數據跟這個數據統計的這個每一個去那個應用的狀況是那我們跟來跟在跟留言這邊把我們我們確認的數據來跟留言這邊來再做一些討論好部長所以我剛剛第一句話問說部長這個有沒有掌握嘛對不對那第二個這樣的數據凸顯什麼樣的問題的存在
transcript.whisperx[8].start 194.858
transcript.whisperx[8].end 204.049
transcript.whisperx[8].text 那剛剛他回答我是說前面是差不多很平均但一年過後一年過後的數據就不是如此嗎
transcript.whisperx[9].start 205.626
transcript.whisperx[9].end 226.49
transcript.whisperx[9].text 你到底有沒有掌握嗎你要回答我這個問題然後這個數據代表什麼意思嗎劉仁我自己確實第一次看到這個數據我是第一次看到這個數據不過如果這個數據有劉仁目前要提醒的這個趨勢的話那這確實是需要注意的這個狀況所以我剛剛也請同仁我們再把這個數據的統計的
transcript.whisperx[10].start 229.471
transcript.whisperx[10].end 248.003
transcript.whisperx[10].text 的代表性跟統計的各種應用的狀況我們會來再做一輪釐清如果有像現在委員長提醒的這個狀況的話我想我們當然是必須注意也要有所因應對 我是想說未投保率在這一個對照確認度它是提高了將近80幾%
transcript.whisperx[11].start 250.782
transcript.whisperx[11].end 273.331
transcript.whisperx[11].text 位投保率當年度的畢業生的位投保率差一年既然高達提高了八十幾%這代表什麼意義啊主席要回答我這個問題啊你要掌握相關的數據要用一年的對照表我都沒有意見但是請部長要答覆我我的問題很簡單嘛位投保率當年度的畢業生節節上升
transcript.whisperx[12].start 276.417
transcript.whisperx[12].end 300.288
transcript.whisperx[12].text 然後今年對照 對不起 113年對照12年增加到這是113年對照12114還沒有嘛 對不對今年畢業生已經即將來臨你們預估又是幾%我第二個問題第一個問題部長要回去再釐清再去掌握我沒有意見那第二個為投保率代表什麼意義那第三個那今年度你們的掌握是怎麼樣
transcript.whisperx[13].start 303.112
transcript.whisperx[13].end 314.377
transcript.whisperx[13].text 這個未投保當然可能有很多的不同的原因那但是當然他如果沒有投保的話其實代表可能他是不是他就業上面會比較不順利或者是他
transcript.whisperx[14].start 316.616
transcript.whisperx[14].end 334.351
transcript.whisperx[14].text 可能各種的原因就他除非升學或其實可能有很多不同的原因我知道啊 總是有主因的比例嘛對不對有主因跟次因嘛那你們過去累積這麼多年來的這樣的一個調查評估掌握主因是什麼嘛啊次因是什麼嘛簡單簡單解一下好不好報告委員因為那個如果
transcript.whisperx[15].start 338.359
transcript.whisperx[15].end 349.841
transcript.whisperx[15].text 要再分次序的話大概我們可以再進一步研究那他其實原來什麼你們叫做進一步研究你也幫幫忙就是再去做一個分析比較那因為其實他為什麼到現在才要再做一次的分析
transcript.whisperx[16].start 351.742
transcript.whisperx[16].end 370.854
transcript.whisperx[16].text 他的原因就會包含說升學那或者是進修或者是出國這些事都有可能的那照排序上的話我們就是會再依照委員的再來做這個排序的一個了解很不好意思今天如果不是飆升這麼多我想這個問題也不會突顯出來嘛
transcript.whisperx[17].start 372.554
transcript.whisperx[17].end 401.693
transcript.whisperx[17].text 那今天竟然飆升這麼多你應該知道非常清楚知道是什麼原因而且這是113年對照112年我現在請部長來預防114年會不會再如此的飆升發生我知道我也想提醒的事情這數據裡面是不是透露著因為就這篇媒體報導上面其實當然他是在暗示說是不是有很多我們的青年畢業以後其實是不想工作的是想要躺平的
transcript.whisperx[18].start 403.194
transcript.whisperx[18].end 425.839
transcript.whisperx[18].text 那大家是不是就業的意願降低很多其實他是在提示會不會有這個問題是所以我說我們必須從這個數據的在更詳細的調查裡面去看一下數據的釐清的狀況但是我想關於青年就業的意願的狀況其實我們這幾年來看的話其實青年整體的失業率並沒有比較高是
transcript.whisperx[19].start 426.499
transcript.whisperx[19].end 451.145
transcript.whisperx[19].text 我們如果從青年的失業率來看的話這幾年青年失業率並沒有比較高所以就這個指標來說的話跟那個報導想要提示的事情看起來又不太一樣的地方部長你不能用報導來跟我講如果你要用報導來跟我講那今天就更糟糕了我提供這項數據你還沒辦法打復活你旁邊那一位也沒辦法打復活主要原因那你也不應該只有講說
transcript.whisperx[20].start 452.805
transcript.whisperx[20].end 479.071
transcript.whisperx[20].text 我們的畢業生畢業之後只是不想工作 只是想談評絕對不是只有這些因素嘛我們的職場有不友善 你剛才是這麼打我 你小心喔真的喔 我們的職場有不友善 難道不是主要的研究嗎我們的薪資到底符不符合現在的畢業生他們的期待還是他們還在等待這個是不是你們主要調查去做的相關的面向的一個研究嘛 對不對
transcript.whisperx[21].start 479.731
transcript.whisperx[21].end 492.327
transcript.whisperx[21].text 很掌握我們可以讓我再說明我剛才說講到躺平這兩個字是因為當時的是這篇報導上面他的標題上面用了這兩個字所以你不應該用報導來答覆我因為我的問題並沒有去提到這樣嘛應該是這麼講嘛對不對我剛才的說明裡面我是說到說
transcript.whisperx[22].start 497.513
transcript.whisperx[22].end 512.023
transcript.whisperx[22].text 這一個數據裡面是不是有比方說青年的就業意願降低那就意願降低可能就有很多的原因存在那職場有不友善當然這裡面會是其中之一的
transcript.whisperx[23].start 513.137
transcript.whisperx[23].end 540.055
transcript.whisperx[23].text 七年的就業不高在他畢業之後你們要去抓半年、一年、兩年相關的數據希望提供給委員做參考但是應該我現在在循序的時候應該是可以馬上打我如果你們沒有馬上打我是很奇怪一件事情我們是有數據的為什麼不打我那第二個七年的就業一直不高但是市場一直在缺工是不是
transcript.whisperx[24].start 542.095
transcript.whisperx[24].end 545.007
transcript.whisperx[24].text 那這兩兆的衝突兩兆矛盾
transcript.whisperx[25].start 546.055
transcript.whisperx[25].end 561.279
transcript.whisperx[25].text 到底發生什麼事情所以今天要虛說年輕人他可能不願工作他可能怎麼樣那要不要來回歸來討論今天張偉排的主題我們的職場友善嗎我簡單用一個例子啦齁因為時間的關係啦齁你看這個月十四號桃園市舉行清潔隊隊員的徵選徵選啦齁徵選對不起435個職缺那一共開出一共有4143人來報名
transcript.whisperx[26].start 574.882
transcript.whisperx[26].end 588.952
transcript.whisperx[26].text 錄取率才12%這麼辛苦的清潔隊員的工作還是這麼多人去擠啊去排嘛因為最主要他一個月最高可以看到上看4萬5這是什麼情況
transcript.whisperx[27].start 593.715
transcript.whisperx[27].end 608.444
transcript.whisperx[27].text 我給部長當一個思考嘛九居總署在11日的時候公布喔也是這個事情而已喔要看報導我們大家用報導來討論這事情嘛114年4月的時候全體受雇員工的薪資每年經常限的薪資平均是17807嗎
transcript.whisperx[28].start 610.265
transcript.whisperx[28].end 632.692
transcript.whisperx[28].text 一個是4萬多對不對那經常信的這個薪資中益數是3萬8千多顯示多數的薪資能低於這個平均嘛這也是一個不爭的事實嘛對不對好如果再對照你們勞動部公布的全台各縣市薪資排行榜齁各位發現全國有9個縣市薪資水平是連中益數都沒有連3萬8都沒有的一個狀況
transcript.whisperx[29].start 633.752
transcript.whisperx[29].end 655.041
transcript.whisperx[29].text 所以勞動部每年都有在調整這個最低工資但這隨著這個最低工資的上漲啦更有個業兼常性的工資也應該有相對的提升才對嘛所以我說這個整個國家的職場這個環境可能他就會越來越糟嘛畢業生要馬上投入職場的意願他可能就大大降低嘛
transcript.whisperx[30].start 656.633
transcript.whisperx[30].end 681.725
transcript.whisperx[30].text 我要表達是這樣但是這個畢業生未托保率怎麼會在113年對照12年的時候從18%熊熊變成32%那前面可能一年多了1% 2%大致如此那你要用一年的數據來跟我講我可以接受但你要馬上提供出來你如果沒有馬上提供出來我就覺得你們這樣掌握都是有問題的然後最主要原因為什麼
transcript.whisperx[31].start 683.126
transcript.whisperx[31].end 703.386
transcript.whisperx[31].text 沒有辦法馬上進入到職場,絕對不是只有什麼要再進修啦,要出國,絕對不是,不只這些原因嘛,主因到底是什麼嘛,是不是我們的職場不夠友善,是不是我們薪資還一直維持,沒有辦法超越過這個主計處公告的平均薪資的中位數以上嘛。
transcript.whisperx[32].start 704.527
transcript.whisperx[32].end 715.577
transcript.whisperx[32].text 我先把我們其實現在手邊關於大專畢業生半年後為統計的基礎為投保率的數據我提供了大概從109年到113年基本上大概都是在31%30%32%大概在
transcript.whisperx[33].start 720.661
transcript.whisperx[33].end 740.312
transcript.whisperx[33].text 30%到32%之間的區間但這是以半年為統計的基礎這是我們手上有的數據是這樣所以確實跟剛剛的那個數據之間好像看起來是有些落差所以我們去釐清那個落差的來源好像有一些落差這個落差不是好像是落差太大了是實際上落差是太大了過去
transcript.whisperx[34].start 741.392
transcript.whisperx[34].end 764.624
transcript.whisperx[34].text 108年我剛剛有講表格沒有做出來因為我是做五年的表格嘛是平均都在12%嘛那確實它每年有逐漸在上升嘛對不對但是很奇怪1.2到1.3熊熊變成就是從18起來32左右嘛不是 我的問題最後一個問題最簡單嘛我就請教一下你今年的掌握怎麼樣今年的掌握一樣是32是35是變成40
transcript.whisperx[35].start 769.008
transcript.whisperx[35].end 781.204
transcript.whisperx[35].text 還是你可以回到12年的18因為你們有做相關的配套相關的積極的政策引導讓我們的畢業生可以儘早投入他選擇友善的職場
transcript.whisperx[36].start 782.304
transcript.whisperx[36].end 811.187
transcript.whisperx[36].text 那個跟我說明因為確實從比方說如果從青年失業率來看的話青年失業率並沒有顯著的改變但是我提醒部長嘛青年失業率不高但是青年市場上也一直在缺工嘛對不對因為這幾年來青年的失業率現在是歷年來最低的狀況所以因為青年失業率相對是最低的狀況跟剛剛的這個數據本身其實看起來的訊息不太一致
transcript.whisperx[37].start 812.108
transcript.whisperx[37].end 822.957
transcript.whisperx[37].text 今年來現在是失業率最低的狀態我要肯定勞動部嘛現在這個數據我們是確定的我現在提供這個未投保率這個數據是假的嗎所以我們要看一下統計的方式那個統計是來自於我們對於大專畢業生
transcript.whisperx[38].start 835.444
transcript.whisperx[38].end 859.174
transcript.whisperx[38].text 去做的一個就業流向調查那去區分這一群的這個畢業生他在畢業的隨著期間的拉長的一個投保的狀況所以這個的母體跟這個青年的失業率的母體也是兩個是不能這樣等同吃嘛對不對你們是講總TOTAL嘛這個是在講大專嘛對不對你要打呼我是這樣嘛那一樣道理啊你回答我這個問題啊
transcript.whisperx[39].start 860.154
transcript.whisperx[39].end 879.722
transcript.whisperx[39].text 我問你大專畢業生為什麼投保率節節上升而且是80%的為投保率的增加你要回答我這個問題啊因為你為什麼不掌握啊我問你應該是可以馬上答問我啊不是跟我講說不願意工作啊不是跟我講他們去修他們去建修啊他們去出國啊
transcript.whisperx[40].start 882.213
transcript.whisperx[40].end 910.024
transcript.whisperx[40].text 部長這樣好不好對整體薪資的改善我想勞動部還是有一定程度的責任啦可以可不可以提供一個具體的一個方案啦一個月內啦這個其一那其二大專你講大專我們就講大專今年度有沒有辦法降低還是一樣維持節節升高現在已經32這個我們來請郵單位來檢討這事情有沒有辦法降低到30%嘛
transcript.whisperx[41].start 912.608
transcript.whisperx[41].end 924.782
transcript.whisperx[41].text 你要先了解什麼原因節節上升嘛18變成32你應該有辦法答問我嘛你知道在大中的這一塊領域它為什麼會投保率會從1要變成113的時候從18變成32嘛你最起碼有辦法答問我這個問題吧
transcript.whisperx[42].start 929.147
transcript.whisperx[42].end 954.026
transcript.whisperx[42].text 委員我們是不是補充一下 剛才會看到數據的差異其實是統計時間點的一個落差那為什麼呢因為這個譬如說以112年他這一群的畢業生到現在這個統計時間為止他其實對他來說已經經歷了畢業兩年的一個時間那所以他的未投保率當然是下降的那如果以113年這個統計時間點來說他的未投保率是高的
transcript.whisperx[43].start 957.388
transcript.whisperx[43].end 981.116
transcript.whisperx[43].text 那所以我們其實要比較的應該會是說這個畢業生他同樣在這個畢業半年內他的一個投保率情況這個在歷年的比較是差不多的都是在剛才的30到30百分之30到32之間不是啦你這麼講很奇怪對不起回到那個表格主席我不好意思我叫阿伯還有問題我把這題問到旁邊
transcript.whisperx[44].start 984.346
transcript.whisperx[44].end 991.65
transcript.whisperx[44].text 他有母宿啊可工作人口啊這個有問題嗎這個有問題嗎他一直要打我還是平均在30%嗎所以你就要把我現在提供這樣的一個數據他是有問題的
transcript.whisperx[45].start 1001.545
transcript.whisperx[45].end 1006.45
transcript.whisperx[45].text 你是不是要這樣子不是不是你就針對我的問題答誤就好我的意思是說這個數據比方109年的未投保率來說的話它其實會隨著時間這樣我知道啦我知道它會隨著時間啦做這個表格一定有一個同一個時間嘛我的意思是說
transcript.whisperx[46].start 1021.687
transcript.whisperx[46].end 1037.887
transcript.whisperx[46].text 意思是說這個假設109年的這個表格這個的話14.2他會隨著時間降低因為當時間拉長的時候他去就業的機會就越來越多所以當你離這個時間畢業的時間比較近的時候他的未投保率都會比較
transcript.whisperx[47].start 1039.161
transcript.whisperx[47].end 1053.1
transcript.whisperx[47].text 高那這是為什麼剛剛說如果以半年如果都是用半年畢業後半年來看的話基本上都在30%的上下如果從這個角度來看的話其實他並沒有顯著的高或低這樣子
transcript.whisperx[48].start 1054.742
transcript.whisperx[48].end 1074.604
transcript.whisperx[48].text 我是覺得你們答覆我的我都聽懂啦我要問的問題你們好像一直聽不懂好 那沒關係那你們就把相關的統計數據怎樣做一個對照提供給委員會來做參考可不可以一個禮拜內我們提供給委員然後包括我們如果有需要檢討的地方我們也把檢討的措施都提供給委員好 謝謝主席