IVOD_ID |
162455 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/162455 |
日期 |
2025-06-11 |
會議資料.會議代碼 |
聯席會議-11-3-19,20-3 |
會議資料.會議代碼:str |
第11屆第3會期經濟、財政兩委員會第3次聯席會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
3 |
會議資料.種類 |
聯席會議 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼[1] |
20 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.委員會代碼:str[1] |
財政委員會 |
會議資料.標題 |
第11屆第3會期經濟、財政兩委員會第3次聯席會議 |
影片種類 |
Clip |
開始時間 |
2025-06-11T12:20:17+08:00 |
結束時間 |
2025-06-11T12:32:45+08:00 |
影片長度 |
00:12:28 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5b5dae1827dbf6c90d0eaeb501b4bcc6b4fab53e924c0ec1dea46edf933af680f1fcc3062aedd04a5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
邱志偉 |
委員發言時間 |
12:20:17 - 12:32:45 |
會議時間 |
2025-06-11T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期經濟、財政兩委員會第3次聯席會議(事由:審查:
一、本院委員謝衣鳯等16人擬具「農業保險法第十條條文修正草案」案。
二、本院委員邱若華等21人擬具「農業保險法第二條及第十條條文修正草案」案。
三、本院台灣民眾黨黨團擬具「農業保險法第二條及第十條條文修正草案」案。(詢答)) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
9.63284375 |
transcript.pyannote[0].end |
14.54346875 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
14.64471875 |
transcript.pyannote[1].end |
15.21846875 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
20.53409375 |
transcript.pyannote[2].end |
21.98534375 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
20.58471875 |
transcript.pyannote[3].end |
21.34409375 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
22.30596875 |
transcript.pyannote[4].end |
29.15721875 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
29.52846875 |
transcript.pyannote[5].end |
31.51971875 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
32.00909375 |
transcript.pyannote[6].end |
36.10971875 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
36.46409375 |
transcript.pyannote[7].end |
40.66596875 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
40.95284375 |
transcript.pyannote[8].end |
52.46159375 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
52.71471875 |
transcript.pyannote[9].end |
55.70159375 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
56.07284375 |
transcript.pyannote[10].end |
57.08534375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
57.28784375 |
transcript.pyannote[11].end |
82.87034375 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
63.97034375 |
transcript.pyannote[12].end |
64.78034375 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
83.19096875 |
transcript.pyannote[13].end |
87.93284375 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
88.70909375 |
transcript.pyannote[14].end |
92.03346875 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
92.03346875 |
transcript.pyannote[15].end |
96.06659375 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
96.15096875 |
transcript.pyannote[16].end |
96.52221875 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
96.65721875 |
transcript.pyannote[17].end |
98.91846875 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
99.27284375 |
transcript.pyannote[18].end |
113.59971875 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
113.70096875 |
transcript.pyannote[19].end |
115.96221875 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
115.96221875 |
transcript.pyannote[20].end |
138.11909375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
120.02909375 |
transcript.pyannote[21].end |
120.73784375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
121.53096875 |
transcript.pyannote[22].end |
123.62346875 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
124.21409375 |
transcript.pyannote[23].end |
124.77096875 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
125.54721875 |
transcript.pyannote[24].end |
125.74971875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
134.33909375 |
transcript.pyannote[25].end |
135.23346875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
135.46971875 |
transcript.pyannote[26].end |
137.74784375 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
138.42284375 |
transcript.pyannote[27].end |
140.56596875 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
141.02159375 |
transcript.pyannote[28].end |
142.52346875 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
143.48534375 |
transcript.pyannote[29].end |
145.24034375 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
146.11784375 |
transcript.pyannote[30].end |
151.11284375 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
151.66971875 |
transcript.pyannote[31].end |
155.66909375 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
156.56346875 |
transcript.pyannote[32].end |
157.03596875 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
157.03596875 |
transcript.pyannote[33].end |
157.39034375 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
158.45346875 |
transcript.pyannote[34].end |
158.47034375 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
158.47034375 |
transcript.pyannote[35].end |
168.56159375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
169.47284375 |
transcript.pyannote[36].end |
176.47596875 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
177.01596875 |
transcript.pyannote[37].end |
181.84221875 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
182.24721875 |
transcript.pyannote[38].end |
197.77221875 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
188.15346875 |
transcript.pyannote[39].end |
188.57534375 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
192.16971875 |
transcript.pyannote[40].end |
192.60846875 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
198.31221875 |
transcript.pyannote[41].end |
199.42596875 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
199.81409375 |
transcript.pyannote[42].end |
201.13034375 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
201.56909375 |
transcript.pyannote[43].end |
203.29034375 |
transcript.pyannote[44].speaker |
SPEAKER_01 |
transcript.pyannote[44].start |
203.77971875 |
transcript.pyannote[44].end |
205.11284375 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
205.26471875 |
transcript.pyannote[45].end |
207.50909375 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
207.67784375 |
transcript.pyannote[46].end |
216.03096875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
212.57159375 |
transcript.pyannote[47].end |
212.68971875 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
216.14909375 |
transcript.pyannote[48].end |
216.21659375 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
216.23346875 |
transcript.pyannote[49].end |
230.88096875 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
231.37034375 |
transcript.pyannote[50].end |
231.40409375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
231.40409375 |
transcript.pyannote[51].end |
231.45471875 |
transcript.pyannote[52].speaker |
SPEAKER_01 |
transcript.pyannote[52].start |
231.45471875 |
transcript.pyannote[52].end |
233.02409375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
233.02409375 |
transcript.pyannote[53].end |
233.90159375 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
233.54721875 |
transcript.pyannote[54].end |
233.93534375 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
233.93534375 |
transcript.pyannote[55].end |
238.13721875 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
234.13784375 |
transcript.pyannote[56].end |
234.30659375 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
237.46221875 |
transcript.pyannote[57].end |
237.86721875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
239.16659375 |
transcript.pyannote[58].end |
247.53659375 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
246.60846875 |
transcript.pyannote[59].end |
252.56534375 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
252.98721875 |
transcript.pyannote[60].end |
253.39221875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
253.39221875 |
transcript.pyannote[61].end |
253.79721875 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
253.79721875 |
transcript.pyannote[62].end |
263.46659375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
254.86034375 |
transcript.pyannote[63].end |
254.92784375 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
257.22284375 |
transcript.pyannote[64].end |
257.30721875 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
263.56784375 |
transcript.pyannote[65].end |
266.80784375 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
267.06096875 |
transcript.pyannote[66].end |
270.45284375 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
270.75659375 |
transcript.pyannote[67].end |
273.08534375 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
273.45659375 |
transcript.pyannote[68].end |
275.11034375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
274.38471875 |
transcript.pyannote[69].end |
274.43534375 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
275.56596875 |
transcript.pyannote[70].end |
283.02471875 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
283.26096875 |
transcript.pyannote[71].end |
290.19659375 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
290.29784375 |
transcript.pyannote[72].end |
294.90471875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
290.38221875 |
transcript.pyannote[73].end |
290.44971875 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
290.46659375 |
transcript.pyannote[74].end |
290.55096875 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
295.39409375 |
transcript.pyannote[75].end |
298.39784375 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
295.63034375 |
transcript.pyannote[76].end |
297.08159375 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
298.02659375 |
transcript.pyannote[77].end |
299.78159375 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
300.28784375 |
transcript.pyannote[78].end |
304.94534375 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
304.54034375 |
transcript.pyannote[79].end |
304.79346875 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
305.08034375 |
transcript.pyannote[80].end |
307.89846875 |
transcript.pyannote[81].speaker |
SPEAKER_01 |
transcript.pyannote[81].start |
308.10096875 |
transcript.pyannote[81].end |
311.56034375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
308.64096875 |
transcript.pyannote[82].end |
309.97409375 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
311.84721875 |
transcript.pyannote[83].end |
319.66034375 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
315.39096875 |
transcript.pyannote[84].end |
315.45846875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
315.74534375 |
transcript.pyannote[85].end |
315.79596875 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
319.99784375 |
transcript.pyannote[86].end |
328.31721875 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
328.80659375 |
transcript.pyannote[87].end |
338.15534375 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
338.91471875 |
transcript.pyannote[88].end |
340.82159375 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
341.19284375 |
transcript.pyannote[89].end |
342.94784375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
343.26846875 |
transcript.pyannote[90].end |
344.09534375 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
344.41596875 |
transcript.pyannote[91].end |
348.02721875 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
348.02721875 |
transcript.pyannote[92].end |
372.85034375 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
371.82096875 |
transcript.pyannote[93].end |
373.60971875 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
373.60971875 |
transcript.pyannote[94].end |
383.16096875 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
373.69409375 |
transcript.pyannote[95].end |
373.96409375 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
380.79846875 |
transcript.pyannote[96].end |
383.39721875 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
383.39721875 |
transcript.pyannote[97].end |
383.43096875 |
transcript.pyannote[98].speaker |
SPEAKER_01 |
transcript.pyannote[98].start |
383.43096875 |
transcript.pyannote[98].end |
383.46471875 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
383.46471875 |
transcript.pyannote[99].end |
383.48159375 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
383.48159375 |
transcript.pyannote[100].end |
383.56596875 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
383.56596875 |
transcript.pyannote[101].end |
383.97096875 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
383.97096875 |
transcript.pyannote[102].end |
391.69971875 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
391.36221875 |
transcript.pyannote[103].end |
392.20596875 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
392.56034375 |
transcript.pyannote[104].end |
395.04096875 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
395.34471875 |
transcript.pyannote[105].end |
395.58096875 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
395.98596875 |
transcript.pyannote[106].end |
398.98971875 |
transcript.pyannote[107].speaker |
SPEAKER_01 |
transcript.pyannote[107].start |
400.45784375 |
transcript.pyannote[107].end |
407.08971875 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
407.12346875 |
transcript.pyannote[108].end |
407.54534375 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
407.98409375 |
transcript.pyannote[109].end |
410.04284375 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
410.41409375 |
transcript.pyannote[110].end |
411.02159375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
411.02159375 |
transcript.pyannote[111].end |
411.03846875 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
411.37596875 |
transcript.pyannote[112].end |
411.40971875 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
411.40971875 |
transcript.pyannote[113].end |
412.11846875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
412.62471875 |
transcript.pyannote[114].end |
419.35784375 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
419.84721875 |
transcript.pyannote[115].end |
420.57284375 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
420.99471875 |
transcript.pyannote[116].end |
425.88846875 |
transcript.pyannote[117].speaker |
SPEAKER_01 |
transcript.pyannote[117].start |
426.05721875 |
transcript.pyannote[117].end |
426.34409375 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
426.88409375 |
transcript.pyannote[118].end |
427.05284375 |
transcript.pyannote[119].speaker |
SPEAKER_01 |
transcript.pyannote[119].start |
428.36909375 |
transcript.pyannote[119].end |
428.60534375 |
transcript.pyannote[120].speaker |
SPEAKER_01 |
transcript.pyannote[120].start |
428.80784375 |
transcript.pyannote[120].end |
430.91721875 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
431.44034375 |
transcript.pyannote[121].end |
434.14034375 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
434.96721875 |
transcript.pyannote[122].end |
443.06721875 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
443.42159375 |
transcript.pyannote[123].end |
444.58596875 |
transcript.pyannote[124].speaker |
SPEAKER_01 |
transcript.pyannote[124].start |
445.21034375 |
transcript.pyannote[124].end |
451.48784375 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
452.06159375 |
transcript.pyannote[125].end |
458.60909375 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
458.84534375 |
transcript.pyannote[126].end |
461.35971875 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
461.71409375 |
transcript.pyannote[127].end |
463.36784375 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
463.53659375 |
transcript.pyannote[128].end |
468.68346875 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
469.78034375 |
transcript.pyannote[129].end |
471.02909375 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
471.02909375 |
transcript.pyannote[130].end |
471.29909375 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
473.62784375 |
transcript.pyannote[131].end |
478.70721875 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
479.01096875 |
transcript.pyannote[132].end |
490.94159375 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
481.28909375 |
transcript.pyannote[133].end |
481.64346875 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
483.80346875 |
transcript.pyannote[134].end |
484.02284375 |
transcript.pyannote[135].speaker |
SPEAKER_01 |
transcript.pyannote[135].start |
491.48159375 |
transcript.pyannote[135].end |
494.04659375 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
494.50221875 |
transcript.pyannote[136].end |
496.27409375 |
transcript.pyannote[137].speaker |
SPEAKER_01 |
transcript.pyannote[137].start |
496.83096875 |
transcript.pyannote[137].end |
501.31971875 |
transcript.pyannote[138].speaker |
SPEAKER_01 |
transcript.pyannote[138].start |
501.75846875 |
transcript.pyannote[138].end |
506.82096875 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
504.08721875 |
transcript.pyannote[139].end |
504.42471875 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
506.82096875 |
transcript.pyannote[140].end |
507.12471875 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
507.12471875 |
transcript.pyannote[141].end |
508.39034375 |
transcript.pyannote[142].speaker |
SPEAKER_01 |
transcript.pyannote[142].start |
509.06534375 |
transcript.pyannote[142].end |
514.54971875 |
transcript.pyannote[143].speaker |
SPEAKER_01 |
transcript.pyannote[143].start |
514.90409375 |
transcript.pyannote[143].end |
518.19471875 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
518.19471875 |
transcript.pyannote[144].end |
522.27846875 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
522.36284375 |
transcript.pyannote[145].end |
535.96409375 |
transcript.pyannote[146].speaker |
SPEAKER_01 |
transcript.pyannote[146].start |
532.70721875 |
transcript.pyannote[146].end |
532.89284375 |
transcript.pyannote[147].speaker |
SPEAKER_01 |
transcript.pyannote[147].start |
532.94346875 |
transcript.pyannote[147].end |
533.33159375 |
transcript.pyannote[148].speaker |
SPEAKER_01 |
transcript.pyannote[148].start |
535.96409375 |
transcript.pyannote[148].end |
539.28846875 |
transcript.pyannote[149].speaker |
SPEAKER_01 |
transcript.pyannote[149].start |
539.87909375 |
transcript.pyannote[149].end |
541.38096875 |
transcript.pyannote[150].speaker |
SPEAKER_01 |
transcript.pyannote[150].start |
542.15721875 |
transcript.pyannote[150].end |
548.38409375 |
transcript.pyannote[151].speaker |
SPEAKER_01 |
transcript.pyannote[151].start |
549.00846875 |
transcript.pyannote[151].end |
554.83034375 |
transcript.pyannote[152].speaker |
SPEAKER_01 |
transcript.pyannote[152].start |
555.20159375 |
transcript.pyannote[152].end |
558.20534375 |
transcript.pyannote[153].speaker |
SPEAKER_01 |
transcript.pyannote[153].start |
559.04909375 |
transcript.pyannote[153].end |
560.65221875 |
transcript.pyannote[154].speaker |
SPEAKER_01 |
transcript.pyannote[154].start |
560.73659375 |
transcript.pyannote[154].end |
562.89659375 |
transcript.pyannote[155].speaker |
SPEAKER_01 |
transcript.pyannote[155].start |
564.19596875 |
transcript.pyannote[155].end |
566.05221875 |
transcript.pyannote[156].speaker |
SPEAKER_01 |
transcript.pyannote[156].start |
567.14909375 |
transcript.pyannote[156].end |
570.54096875 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
570.62534375 |
transcript.pyannote[157].end |
572.05971875 |
transcript.pyannote[158].speaker |
SPEAKER_01 |
transcript.pyannote[158].start |
573.35909375 |
transcript.pyannote[158].end |
576.80159375 |
transcript.pyannote[159].speaker |
SPEAKER_01 |
transcript.pyannote[159].start |
577.20659375 |
transcript.pyannote[159].end |
577.59471875 |
transcript.pyannote[160].speaker |
SPEAKER_01 |
transcript.pyannote[160].start |
578.69159375 |
transcript.pyannote[160].end |
580.00784375 |
transcript.pyannote[161].speaker |
SPEAKER_01 |
transcript.pyannote[161].start |
580.53096875 |
transcript.pyannote[161].end |
583.02846875 |
transcript.pyannote[162].speaker |
SPEAKER_01 |
transcript.pyannote[162].start |
583.06221875 |
transcript.pyannote[162].end |
586.03221875 |
transcript.pyannote[163].speaker |
SPEAKER_00 |
transcript.pyannote[163].start |
586.03221875 |
transcript.pyannote[163].end |
591.41534375 |
transcript.pyannote[164].speaker |
SPEAKER_00 |
transcript.pyannote[164].start |
591.85409375 |
transcript.pyannote[164].end |
595.16159375 |
transcript.pyannote[165].speaker |
SPEAKER_00 |
transcript.pyannote[165].start |
595.33034375 |
transcript.pyannote[165].end |
606.16409375 |
transcript.pyannote[166].speaker |
SPEAKER_01 |
transcript.pyannote[166].start |
604.94909375 |
transcript.pyannote[166].end |
609.57284375 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
608.89784375 |
transcript.pyannote[167].end |
617.08221875 |
transcript.pyannote[168].speaker |
SPEAKER_00 |
transcript.pyannote[168].start |
617.67284375 |
transcript.pyannote[168].end |
618.97221875 |
transcript.pyannote[169].speaker |
SPEAKER_01 |
transcript.pyannote[169].start |
618.97221875 |
transcript.pyannote[169].end |
620.49096875 |
transcript.pyannote[170].speaker |
SPEAKER_01 |
transcript.pyannote[170].start |
620.67659375 |
transcript.pyannote[170].end |
632.67471875 |
transcript.pyannote[171].speaker |
SPEAKER_01 |
transcript.pyannote[171].start |
633.48471875 |
transcript.pyannote[171].end |
639.42471875 |
transcript.pyannote[172].speaker |
SPEAKER_00 |
transcript.pyannote[172].start |
639.42471875 |
transcript.pyannote[172].end |
639.45846875 |
transcript.pyannote[173].speaker |
SPEAKER_01 |
transcript.pyannote[173].start |
639.69471875 |
transcript.pyannote[173].end |
639.72846875 |
transcript.pyannote[174].speaker |
SPEAKER_00 |
transcript.pyannote[174].start |
639.72846875 |
transcript.pyannote[174].end |
648.41909375 |
transcript.pyannote[175].speaker |
SPEAKER_00 |
transcript.pyannote[175].start |
648.79034375 |
transcript.pyannote[175].end |
649.31346875 |
transcript.pyannote[176].speaker |
SPEAKER_00 |
transcript.pyannote[176].start |
649.88721875 |
transcript.pyannote[176].end |
675.30096875 |
transcript.pyannote[177].speaker |
SPEAKER_01 |
transcript.pyannote[177].start |
659.99534375 |
transcript.pyannote[177].end |
661.21034375 |
transcript.pyannote[178].speaker |
SPEAKER_01 |
transcript.pyannote[178].start |
663.77534375 |
transcript.pyannote[178].end |
663.96096875 |
transcript.pyannote[179].speaker |
SPEAKER_01 |
transcript.pyannote[179].start |
664.12971875 |
transcript.pyannote[179].end |
664.14659375 |
transcript.pyannote[180].speaker |
SPEAKER_01 |
transcript.pyannote[180].start |
664.48409375 |
transcript.pyannote[180].end |
665.14221875 |
transcript.pyannote[181].speaker |
SPEAKER_01 |
transcript.pyannote[181].start |
674.50784375 |
transcript.pyannote[181].end |
679.06409375 |
transcript.pyannote[182].speaker |
SPEAKER_01 |
transcript.pyannote[182].start |
679.24971875 |
transcript.pyannote[182].end |
686.21909375 |
transcript.pyannote[183].speaker |
SPEAKER_00 |
transcript.pyannote[183].start |
681.39284375 |
transcript.pyannote[183].end |
683.60346875 |
transcript.pyannote[184].speaker |
SPEAKER_00 |
transcript.pyannote[184].start |
686.21909375 |
transcript.pyannote[184].end |
701.32221875 |
transcript.pyannote[185].speaker |
SPEAKER_01 |
transcript.pyannote[185].start |
687.06284375 |
transcript.pyannote[185].end |
687.61971875 |
transcript.pyannote[186].speaker |
SPEAKER_01 |
transcript.pyannote[186].start |
687.70409375 |
transcript.pyannote[186].end |
688.56471875 |
transcript.pyannote[187].speaker |
SPEAKER_01 |
transcript.pyannote[187].start |
699.95534375 |
transcript.pyannote[187].end |
705.92909375 |
transcript.pyannote[188].speaker |
SPEAKER_00 |
transcript.pyannote[188].start |
702.77346875 |
transcript.pyannote[188].end |
703.49909375 |
transcript.pyannote[189].speaker |
SPEAKER_00 |
transcript.pyannote[189].start |
704.83221875 |
transcript.pyannote[189].end |
714.68721875 |
transcript.pyannote[190].speaker |
SPEAKER_01 |
transcript.pyannote[190].start |
707.51534375 |
transcript.pyannote[190].end |
707.83596875 |
transcript.pyannote[191].speaker |
SPEAKER_01 |
transcript.pyannote[191].start |
714.90659375 |
transcript.pyannote[191].end |
715.91909375 |
transcript.pyannote[192].speaker |
SPEAKER_00 |
transcript.pyannote[192].start |
715.17659375 |
transcript.pyannote[192].end |
716.18909375 |
transcript.pyannote[193].speaker |
SPEAKER_01 |
transcript.pyannote[193].start |
716.18909375 |
transcript.pyannote[193].end |
716.94846875 |
transcript.pyannote[194].speaker |
SPEAKER_00 |
transcript.pyannote[194].start |
716.56034375 |
transcript.pyannote[194].end |
717.10034375 |
transcript.pyannote[195].speaker |
SPEAKER_01 |
transcript.pyannote[195].start |
717.10034375 |
transcript.pyannote[195].end |
717.15096875 |
transcript.pyannote[196].speaker |
SPEAKER_00 |
transcript.pyannote[196].start |
717.57284375 |
transcript.pyannote[196].end |
718.97346875 |
transcript.pyannote[197].speaker |
SPEAKER_01 |
transcript.pyannote[197].start |
718.97346875 |
transcript.pyannote[197].end |
726.49971875 |
transcript.pyannote[198].speaker |
SPEAKER_00 |
transcript.pyannote[198].start |
721.01534375 |
transcript.pyannote[198].end |
723.61409375 |
transcript.pyannote[199].speaker |
SPEAKER_00 |
transcript.pyannote[199].start |
726.49971875 |
transcript.pyannote[199].end |
731.62971875 |
transcript.pyannote[200].speaker |
SPEAKER_01 |
transcript.pyannote[200].start |
727.15784375 |
transcript.pyannote[200].end |
728.71034375 |
transcript.pyannote[201].speaker |
SPEAKER_01 |
transcript.pyannote[201].start |
731.62971875 |
transcript.pyannote[201].end |
731.84909375 |
transcript.pyannote[202].speaker |
SPEAKER_00 |
transcript.pyannote[202].start |
731.84909375 |
transcript.pyannote[202].end |
731.86596875 |
transcript.pyannote[203].speaker |
SPEAKER_00 |
transcript.pyannote[203].start |
732.16971875 |
transcript.pyannote[203].end |
736.35471875 |
transcript.pyannote[204].speaker |
SPEAKER_00 |
transcript.pyannote[204].start |
736.70909375 |
transcript.pyannote[204].end |
742.71659375 |
transcript.pyannote[205].speaker |
SPEAKER_01 |
transcript.pyannote[205].start |
738.00846875 |
transcript.pyannote[205].end |
738.31221875 |
transcript.pyannote[206].speaker |
SPEAKER_01 |
transcript.pyannote[206].start |
740.67471875 |
transcript.pyannote[206].end |
740.97846875 |
transcript.pyannote[207].speaker |
SPEAKER_01 |
transcript.pyannote[207].start |
741.48471875 |
transcript.pyannote[207].end |
741.85596875 |
transcript.pyannote[208].speaker |
SPEAKER_00 |
transcript.pyannote[208].start |
743.84721875 |
transcript.pyannote[208].end |
748.20096875 |
transcript.whisperx[0].start |
10.014 |
transcript.whisperx[0].end |
15.071 |
transcript.whisperx[0].text |
主席我是不是请农业部陈部长然后渔业署王署长王署长 |
transcript.whisperx[1].start |
23.342 |
transcript.whisperx[1].end |
44.9 |
transcript.whisperx[1].text |
上個月經濟委員會考察到北高雄選區的一些漁業建設我想謝謝王署長全程參與這部分每一項工程我都親自去看過都有急迫性跟必要性對移民的幫助也大 |
transcript.whisperx[2].start |
45.66 |
transcript.whisperx[2].end |
67.72 |
transcript.whisperx[2].text |
所以集中在延安、彌德跟嘉甸保溫是在歐來這都是養殖漁業專區所以這保溫大家都很重要先請教一下王署長您也都有陪我去看過每一項您都會提出寶貴的意見漁業署也都全力支持 |
transcript.whisperx[3].start |
68.2 |
transcript.whisperx[3].end |
95.643 |
transcript.whisperx[3].text |
那現在說我今天再利用這個質詢的機會再請部長能夠更了解署長很認真很用心每一項的建設工程我邀請他他都親身參與而且他都提出專業的意見所以這些高行是不是可以請他補充請農業部全力支持漁業署把這個九項這個工程依序把它完成我想以農業部來講一定會支持 |
transcript.whisperx[4].start |
96.741 |
transcript.whisperx[4].end |
124.587 |
transcript.whisperx[4].text |
然後現在就是牽涉到經費看夠不夠我會後面去看這個經費夠的話因為這裡可能有一些分年的嘛如果沒記錯好像署長說應該沒有問題啦對它有的是分年如果分年的話就比較沒問題啦如果同一年的話可能可能經費會不夠分年當然是它有它有這個比方說有年限有三年期或者是兩年期所以這個回去我想基本上我們會支持但是緊急必要的這個優先來做譬如說那個 |
transcript.whisperx[5].start |
126.947 |
transcript.whisperx[5].end |
136.21 |
transcript.whisperx[5].text |
LNG海水管線的擴充工程這部分尤其3.5那有共識那有討論過這個可以優先處理這個我們會來協助那這個謝謝署長署長請先回那第二個是關於保險這個我們天災救助未來有沒有可能做一些轉變天災救助如果轉型成這個免費的農業保險 |
transcript.whisperx[6].start |
158.538 |
transcript.whisperx[6].end |
180.935 |
transcript.whisperx[6].text |
我們也曾經考慮過就是逐步把天然災害救助轉為農業保險那水稻是一個先行的案例那它有一個前提就是原來天然災害可能過去三年過去五年平均的農損的金額要直接轉到那個保險基金來而不是 金費沒有到位的話未來如果理賠的話是沒有經費理賠的 |
transcript.whisperx[7].start |
182.556 |
transcript.whisperx[7].end |
197.027 |
transcript.whisperx[7].text |
我們從一個數據來對照我們的農業保險的這個保費的補助這個支出在整體補助的比重大概只有一趴啦這跟美國比較起來是天差地遠所以大家想說我們的農業安全網 |
transcript.whisperx[8].start |
198.356 |
transcript.whisperx[8].end |
213.442 |
transcript.whisperx[8].text |
它整個架構你這偏重於產品以及要素的補貼所以這部分反而整個農業保險政策在你們整體的施政裡面還不是相對重要的一個角色你要想面對 |
transcript.whisperx[9].start |
214.623 |
transcript.whisperx[9].end |
237.882 |
transcript.whisperx[9].text |
這個氣候變遷跟貿易自由化農業安全往下面的農業保險是非常重要所以要有前瞻性跟有韌性所以這部分是不是可以往這方面去思考吧天然救助的轉型成免費農業保險可行性品 你也先做一個可行性品對 我們可以先做看哪一些品項可以 |
transcript.whisperx[10].start |
239.229 |
transcript.whisperx[10].end |
258.362 |
transcript.whisperx[10].text |
由天然災害的保險轉到農業的保險這個我想我們可以來評估然後比較可行的我們也許可以現在示範這個部分是不是可以請三個月之內提出一個可行性評估你們初步的規劃一個月三個月三個月可以三個月做出一個比較詳細的評估報告你們以及未來的初步規劃繼續再請教部長還有我們署長 |
transcript.whisperx[11].start |
267.788 |
transcript.whisperx[11].end |
293.283 |
transcript.whisperx[11].text |
這個如果農保把強勢性的納保把它扣除事實上我們負保率啊 覆蓋率20.7現在20.7啦 是OK 我們數據沒有更新所以那整體的覆蓋率是五成多啦所以代表說你扣掉強勢性納保比如說水道 那個水道 那個住宿保險所以只要20點多那部分高風險 譬如說酒盤儀 |
transcript.whisperx[12].start |
296.985 |
transcript.whisperx[12].end |
310.17 |
transcript.whisperx[12].text |
平均才2.7而已?九板魚養殖的年期大概要5、6年如果霸王級的寒流好像2017年的時候造成整個石斑魚是大崩盤所以這個有保險制度你要針對比如說九板魚 |
transcript.whisperx[13].start |
320.094 |
transcript.whisperx[13].end |
338.093 |
transcript.whisperx[13].text |
芒果、木瓜、洋楓這個基本上是零頭保或者低頭保但是它是一個高災損只要發生天然氣候變遷或者造成氣候嚴重的傷害他們基本上沒有得到保險的cover |
transcript.whisperx[14].start |
338.974 |
transcript.whisperx[14].end |
358.107 |
transcript.whisperx[14].text |
所以這部分你們有沒有怎麼樣去做調整把這些漁業長期處於低頭飽的狀態把它能夠有效提升我跟委員報告剛才就是扣掉強制性的話只有20.7%其中漁業的部分才2.7%是最直接的 |
transcript.whisperx[15].start |
358.647 |
transcript.whisperx[15].end |
381.934 |
transcript.whisperx[15].text |
那我們現在我初步的想法可能還要跟那個漁業署他們去討論喔我覺得比較高產值高風險的如果一旦出現他損失特別高的這個部分可能要另外拉出來去設計一套方法石斑魚就是嘛石斑魚高風險然後他是高度依賴外銷高風險的跟一般風險或者低風險的他的寶貝的設計設計應該是不一樣的啦你現狀來看石斑魚我要幫你報告 |
transcript.whisperx[16].start |
388.016 |
transcript.whisperx[16].end |
391.141 |
transcript.whisperx[16].text |
106我們推銷已經要幾年了7、8年了對不對現在投保面積不到100公頃全台中央面積2%以下 |
transcript.whisperx[17].start |
400.526 |
transcript.whisperx[17].end |
425.466 |
transcript.whisperx[17].text |
那這種狀況你要把那個高風險石斑魚高風險然後依賴外銷的這些產業把它納入農保的範圍您認為呢我想我們剛才說的我們在三個月一併評估天然災害一方面可能天然災害轉過來另外一方面就是像我剛才說的把這些用風險值去分高中低然後設計不同的一些保險的這些規範是好 |
transcript.whisperx[18].start |
428.867 |
transcript.whisperx[18].end |
442.418 |
transcript.whisperx[18].text |
按照這個脈絡繼續再請教您你們在這個設計農業保單的時候這個相關的這個你們的政策大概傾向於重視的你保單數量要怎麼成長 理賠的金額累計來評估做一個成效的評估 |
transcript.whisperx[19].start |
445.27 |
transcript.whisperx[19].end |
470.973 |
transcript.whisperx[19].text |
但是你要從需求面還有品項公平性來切入才是比較符合農民的期待所以保險制度應該是對小農跟非主力的產業作為有更多的保障但目前現狀是保障非常的薄弱所以你應該從風險程度跟災害頻率以及產業脆弱性的連動做一個補助的設計牡蠣有沒有保險 |
transcript.whisperx[20].start |
473.827 |
transcript.whisperx[20].end |
478.561 |
transcript.whisperx[20].text |
現在沒有 最主要是他的保費太高現在以他們保險工程算出來的那個保費太高啦 |
transcript.whisperx[21].start |
479.342 |
transcript.whisperx[21].end |
508.002 |
transcript.whisperx[21].text |
外藝術工你要有差異化差異化的補助條件不是這個花一條線就是它補助標準都一樣照這個天候所以這個部分不能有固定的補助比例應該用產業的特性這個品項的特性來做這個差異性的補助條件的設計以及它災損的頻率評估機制有些農產品它災損頻率很低有些是很高 |
transcript.whisperx[22].start |
509.107 |
transcript.whisperx[22].end |
526.699 |
transcript.whisperx[22].text |
因為傷害這個輕重只要一衝擊一來有些傷害很重有些傷害相對沒那麼重所以是不是能夠有差異化的這個補助條件設計我想非常認同委員所提到的差異化的補助包括它的自災的風險還有包括它的一個相關的災損的程度 |
transcript.whisperx[23].start |
527.459 |
transcript.whisperx[23].end |
538.788 |
transcript.whisperx[23].text |
那這個部分如果用加權的方式去處理的話應該可以設計出另外一個遊戲規則我覺得我們可以朝這方面來努力謝謝部長 我們繼續努力那另外這個國產羊肉 |
transcript.whisperx[24].start |
542.216 |
transcript.whisperx[24].end |
560.301 |
transcript.whisperx[24].text |
江山市這個有名就是江山羊肉,柏柳你有沒有吃過?我吃過那目前國產羊肉市占率是5%而已啦,但是它有季節性的消費傾向是多一梯牛肉肉比較好消,對不對?多一梯就比較不好消,現在的這個價格,國產羊這個拍賣行情 |
transcript.whisperx[25].start |
567.216 |
transcript.whisperx[25].end |
575.344 |
transcript.whisperx[25].text |
最近跌幅到180所以有時候到170幾跌幅到三成多每次一樣成本是2.3萬啊 二或兩萬三啊 |
transcript.whisperx[26].start |
578.717 |
transcript.whisperx[26].end |
603.982 |
transcript.whisperx[26].text |
你賣一支賠一支那針對這個部分農業部有沒有什麼相關的補救措施我們現在啟動了一個機制就是先有協助他們做宰殺凍存先做凍存做一個產期的調節啦後來你同時這樣繼續下去價格會越來越低所以有一些東西不一定要上市直接用凍存的方式去調節它上市的量 |
transcript.whisperx[27].start |
604.562 |
transcript.whisperx[27].end |
632.009 |
transcript.whisperx[27].text |
那這個部分我們現在已經在做相關的團體跟羊農有做過這個接觸對 已經有跟他們做討論他們知道說政府有在提供對 他們也接受這樣的一個方法他們也覺得這個方法是可以接受的好 最後一個問題啊我再花這個一分鐘來跟部長請教就是說台日米食的鏈結這個很重要但是需要一個制度性的長期合作的機制的那像日本釋出廚備米 |
transcript.whisperx[28].start |
633.527 |
transcript.whisperx[28].end |
648.917 |
transcript.whisperx[28].text |
阿對台灣的這個米出口會不會有這個比較屬於中長期的影響你們評估怎麼樣我們個人就是內部的一個評估齁就是我們其實每年稻米的外銷大概是平均大概3500日本啦3500噸左右那 |
transcript.whisperx[29].start |
649.978 |
transcript.whisperx[29].end |
678.426 |
transcript.whisperx[29].text |
今年會比較高有一部分原因是因為他們日本缺米但是我們長期來看我們不能依靠著他缺米才增加我們的銷售所以要建立一個供應鏈要長期的合作協定一定要有一個協議包括有在進行嗎有在進行而且我們像今年我們也邀請了他們很多大商社來這邊希望說能夠能夠定期的去企作或是直接跟我們這個政策是跟商社去談就好還是要通過農林水產省 |
transcript.whisperx[30].start |
679.326 |
transcript.whisperx[30].end |
708.137 |
transcript.whisperx[30].text |
沒有 我們透過商社直接去做長期通路他們政府有沒有 農林水產省有沒有真的總和關稅的品質現在就是商社給我們回報就是他打特定的族群的時候就算關稅外的那個金額他們吸收都還有賺頭他們就願意我們不要是因為只要缺名的時候我們這個數量增加對 就是這樣子常態性的合作 這很重要對 常態性的合作就是要通路 鏈結如果需要國會我們可以去拜訪他們的農林水產省 |
transcript.whisperx[31].start |
708.777 |
transcript.whisperx[31].end |
726.04 |
transcript.whisperx[31].text |
我們曾經談過啦 但是日本對米的那個額度配額跟我們一樣堅持啦就不讓步啦但是這個台日友好這個是最近幾年那個所以我們現在用銅鑼之間這樣我想他們對台灣會非常非常比較友善啦 |
transcript.whisperx[32].start |
727.201 |
transcript.whisperx[32].end |
728.102 |
transcript.whisperx[32].text |
我們現在請徐富奎委員做詢問 |