IVOD_ID |
162449 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/162449 |
日期 |
2025-06-11 |
會議資料.會議代碼 |
聯席會議-11-3-19,20-3 |
會議資料.會議代碼:str |
第11屆第3會期經濟、財政兩委員會第3次聯席會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
3 |
會議資料.種類 |
聯席會議 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼[1] |
20 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.委員會代碼:str[1] |
財政委員會 |
會議資料.標題 |
第11屆第3會期經濟、財政兩委員會第3次聯席會議 |
影片種類 |
Clip |
開始時間 |
2025-06-11T11:47:18+08:00 |
結束時間 |
2025-06-11T11:59:21+08:00 |
影片長度 |
00:12:03 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5b5dae1827dbf6c9d6304e0a51120bb7b4fab53e924c0ec1dea46edf933af680235d1795ffdf2ae75ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
蔡易餘 |
委員發言時間 |
11:47:18 - 11:59:21 |
會議時間 |
2025-06-11T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期經濟、財政兩委員會第3次聯席會議(事由:審查:
一、本院委員謝衣鳯等16人擬具「農業保險法第十條條文修正草案」案。
二、本院委員邱若華等21人擬具「農業保險法第二條及第十條條文修正草案」案。
三、本院台灣民眾黨黨團擬具「農業保險法第二條及第十條條文修正草案」案。(詢答)) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
0.79034375 |
transcript.pyannote[0].end |
1.00971875 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
1.65096875 |
transcript.pyannote[1].end |
3.03471875 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
3.03471875 |
transcript.pyannote[2].end |
5.24534375 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
13.17659375 |
transcript.pyannote[3].end |
16.07909375 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
16.23096875 |
transcript.pyannote[4].end |
18.55971875 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
26.60909375 |
transcript.pyannote[5].end |
28.04346875 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
26.76096875 |
transcript.pyannote[6].end |
26.84534375 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
28.53284375 |
transcript.pyannote[7].end |
33.34221875 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
33.34221875 |
transcript.pyannote[8].end |
33.78096875 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
33.78096875 |
transcript.pyannote[9].end |
52.46159375 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
48.44534375 |
transcript.pyannote[10].end |
49.30596875 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
50.67284375 |
transcript.pyannote[11].end |
51.01034375 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
51.90471875 |
transcript.pyannote[12].end |
61.65846875 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
61.13534375 |
transcript.pyannote[13].end |
62.82284375 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
62.82284375 |
transcript.pyannote[14].end |
62.85659375 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
62.85659375 |
transcript.pyannote[15].end |
74.31471875 |
transcript.pyannote[16].speaker |
SPEAKER_01 |
transcript.pyannote[16].start |
67.02471875 |
transcript.pyannote[16].end |
67.63221875 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
70.41659375 |
transcript.pyannote[17].end |
71.32784375 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
72.69471875 |
transcript.pyannote[18].end |
74.23034375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
74.48346875 |
transcript.pyannote[19].end |
83.86596875 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
76.89659375 |
transcript.pyannote[20].end |
78.28034375 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
80.44034375 |
transcript.pyannote[21].end |
80.79471875 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
84.30471875 |
transcript.pyannote[22].end |
87.24096875 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
87.64596875 |
transcript.pyannote[23].end |
88.06784375 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
88.08471875 |
transcript.pyannote[24].end |
89.41784375 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
90.00846875 |
transcript.pyannote[25].end |
118.20659375 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
117.34596875 |
transcript.pyannote[26].end |
117.51471875 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
118.20659375 |
transcript.pyannote[27].end |
132.60096875 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
127.65659375 |
transcript.pyannote[28].end |
127.97721875 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
131.13284375 |
transcript.pyannote[29].end |
131.20034375 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
131.25096875 |
transcript.pyannote[30].end |
131.55471875 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
133.37721875 |
transcript.pyannote[31].end |
133.46159375 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
133.57971875 |
transcript.pyannote[32].end |
144.97034375 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
142.77659375 |
transcript.pyannote[33].end |
173.70846875 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
147.04596875 |
transcript.pyannote[34].end |
147.63659375 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
147.65346875 |
transcript.pyannote[35].end |
147.67034375 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
149.67846875 |
transcript.pyannote[36].end |
153.96471875 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
154.75784375 |
transcript.pyannote[37].end |
155.04471875 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
168.13971875 |
transcript.pyannote[38].end |
168.46034375 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
172.03784375 |
transcript.pyannote[39].end |
173.62409375 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
173.86034375 |
transcript.pyannote[40].end |
174.29909375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
174.51846875 |
transcript.pyannote[41].end |
176.03721875 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
176.12159375 |
transcript.pyannote[42].end |
186.66846875 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
186.87096875 |
transcript.pyannote[43].end |
187.14096875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
187.14096875 |
transcript.pyannote[44].end |
206.29409375 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
187.15784375 |
transcript.pyannote[45].end |
187.22534375 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
201.48471875 |
transcript.pyannote[46].end |
202.54784375 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
206.96909375 |
transcript.pyannote[47].end |
239.97659375 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
216.62159375 |
transcript.pyannote[48].end |
216.94221875 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
220.41846875 |
transcript.pyannote[49].end |
223.89471875 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
227.70846875 |
transcript.pyannote[50].end |
228.14721875 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
230.91471875 |
transcript.pyannote[51].end |
231.87659375 |
transcript.pyannote[52].speaker |
SPEAKER_01 |
transcript.pyannote[52].start |
232.02846875 |
transcript.pyannote[52].end |
233.63159375 |
transcript.pyannote[53].speaker |
SPEAKER_01 |
transcript.pyannote[53].start |
239.97659375 |
transcript.pyannote[53].end |
240.02721875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
240.02721875 |
transcript.pyannote[54].end |
240.04409375 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
240.04409375 |
transcript.pyannote[55].end |
240.22971875 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
240.22971875 |
transcript.pyannote[56].end |
240.28034375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
240.31409375 |
transcript.pyannote[57].end |
248.86971875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
249.08909375 |
transcript.pyannote[58].end |
250.45596875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
250.87784375 |
transcript.pyannote[59].end |
253.54409375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
253.89846875 |
transcript.pyannote[60].end |
255.95721875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
256.00784375 |
transcript.pyannote[61].end |
256.02471875 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
256.02471875 |
transcript.pyannote[62].end |
256.46346875 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
256.49721875 |
transcript.pyannote[63].end |
266.58846875 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
267.48284375 |
transcript.pyannote[64].end |
279.61596875 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
278.67096875 |
transcript.pyannote[65].end |
280.49346875 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
280.49346875 |
transcript.pyannote[66].end |
286.58534375 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
286.78784375 |
transcript.pyannote[67].end |
317.16284375 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
315.45846875 |
transcript.pyannote[68].end |
315.59346875 |
transcript.pyannote[69].speaker |
SPEAKER_01 |
transcript.pyannote[69].start |
317.16284375 |
transcript.pyannote[69].end |
327.08534375 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
327.40596875 |
transcript.pyannote[70].end |
330.19034375 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
330.51096875 |
transcript.pyannote[71].end |
339.62346875 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
340.41659375 |
transcript.pyannote[72].end |
340.73721875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
340.73721875 |
transcript.pyannote[73].end |
340.75409375 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
340.87221875 |
transcript.pyannote[74].end |
341.02409375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
341.02409375 |
transcript.pyannote[75].end |
348.53346875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
348.80346875 |
transcript.pyannote[76].end |
364.02471875 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
364.26096875 |
transcript.pyannote[77].end |
373.96409375 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
374.13284375 |
transcript.pyannote[78].end |
379.34721875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
379.75221875 |
transcript.pyannote[79].end |
393.04971875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
393.37034375 |
transcript.pyannote[80].end |
401.21721875 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
401.52096875 |
transcript.pyannote[81].end |
406.07721875 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
406.33034375 |
transcript.pyannote[82].end |
407.91659375 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
408.20346875 |
transcript.pyannote[83].end |
408.92909375 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
409.18221875 |
transcript.pyannote[84].end |
410.04284375 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
410.78534375 |
transcript.pyannote[85].end |
411.54471875 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
412.47284375 |
transcript.pyannote[86].end |
414.16034375 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
414.78471875 |
transcript.pyannote[87].end |
416.99534375 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
417.28221875 |
transcript.pyannote[88].end |
419.30721875 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
419.08784375 |
transcript.pyannote[89].end |
419.45909375 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
419.45909375 |
transcript.pyannote[90].end |
419.49284375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
419.54346875 |
transcript.pyannote[91].end |
435.76034375 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
435.92909375 |
transcript.pyannote[92].end |
436.38471875 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
436.67159375 |
transcript.pyannote[93].end |
443.21909375 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
443.48909375 |
transcript.pyannote[94].end |
443.91096875 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
444.19784375 |
transcript.pyannote[95].end |
445.44659375 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
446.57721875 |
transcript.pyannote[96].end |
448.65284375 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
449.22659375 |
transcript.pyannote[97].end |
450.67784375 |
transcript.pyannote[98].speaker |
SPEAKER_01 |
transcript.pyannote[98].start |
450.84659375 |
transcript.pyannote[98].end |
472.19346875 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
472.27784375 |
transcript.pyannote[99].end |
475.83846875 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
475.87221875 |
transcript.pyannote[100].end |
502.90596875 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
503.09159375 |
transcript.pyannote[101].end |
505.03221875 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
505.03221875 |
transcript.pyannote[102].end |
507.20909375 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
507.32721875 |
transcript.pyannote[103].end |
527.88096875 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
509.87534375 |
transcript.pyannote[104].end |
510.36471875 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
528.10034375 |
transcript.pyannote[105].end |
536.79096875 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
536.14971875 |
transcript.pyannote[106].end |
536.25096875 |
transcript.pyannote[107].speaker |
SPEAKER_01 |
transcript.pyannote[107].start |
536.79096875 |
transcript.pyannote[107].end |
537.16221875 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
537.16221875 |
transcript.pyannote[108].end |
553.71659375 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
553.34534375 |
transcript.pyannote[109].end |
553.53096875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
553.81784375 |
transcript.pyannote[110].end |
561.68159375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
561.96846875 |
transcript.pyannote[111].end |
562.47471875 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
562.79534375 |
transcript.pyannote[112].end |
562.82909375 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
562.82909375 |
transcript.pyannote[113].end |
568.38096875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
562.84596875 |
transcript.pyannote[114].end |
563.87534375 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
568.49909375 |
transcript.pyannote[115].end |
570.40596875 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
570.97971875 |
transcript.pyannote[116].end |
571.60409375 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
571.60409375 |
transcript.pyannote[117].end |
571.62096875 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
572.34659375 |
transcript.pyannote[118].end |
572.85284375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
572.85284375 |
transcript.pyannote[119].end |
572.86971875 |
transcript.pyannote[120].speaker |
SPEAKER_01 |
transcript.pyannote[120].start |
572.86971875 |
transcript.pyannote[120].end |
572.88659375 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
573.12284375 |
transcript.pyannote[121].end |
573.13971875 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
573.13971875 |
transcript.pyannote[122].end |
573.15659375 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
573.15659375 |
transcript.pyannote[123].end |
573.47721875 |
transcript.pyannote[124].speaker |
SPEAKER_01 |
transcript.pyannote[124].start |
574.01721875 |
transcript.pyannote[124].end |
574.03409375 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
574.03409375 |
transcript.pyannote[125].end |
576.64971875 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
577.27409375 |
transcript.pyannote[126].end |
583.16346875 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
583.41659375 |
transcript.pyannote[127].end |
585.72846875 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
586.01534375 |
transcript.pyannote[128].end |
589.03596875 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
589.17096875 |
transcript.pyannote[129].end |
600.15659375 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
600.46034375 |
transcript.pyannote[130].end |
602.87346875 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
603.27846875 |
transcript.pyannote[131].end |
612.64409375 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
612.72846875 |
transcript.pyannote[132].end |
618.95534375 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
619.46159375 |
transcript.pyannote[133].end |
625.48596875 |
transcript.pyannote[134].speaker |
SPEAKER_01 |
transcript.pyannote[134].start |
626.04284375 |
transcript.pyannote[134].end |
632.32034375 |
transcript.pyannote[135].speaker |
SPEAKER_01 |
transcript.pyannote[135].start |
632.45534375 |
transcript.pyannote[135].end |
648.72284375 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
635.66159375 |
transcript.pyannote[136].end |
636.75846875 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
641.61846875 |
transcript.pyannote[137].end |
641.95596875 |
transcript.pyannote[138].speaker |
SPEAKER_01 |
transcript.pyannote[138].start |
649.48221875 |
transcript.pyannote[138].end |
652.26659375 |
transcript.pyannote[139].speaker |
SPEAKER_01 |
transcript.pyannote[139].start |
652.41846875 |
transcript.pyannote[139].end |
659.03346875 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
659.03346875 |
transcript.pyannote[140].end |
684.00846875 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
660.56909375 |
transcript.pyannote[141].end |
660.94034375 |
transcript.pyannote[142].speaker |
SPEAKER_01 |
transcript.pyannote[142].start |
674.01846875 |
transcript.pyannote[142].end |
674.42346875 |
transcript.pyannote[143].speaker |
SPEAKER_01 |
transcript.pyannote[143].start |
679.68846875 |
transcript.pyannote[143].end |
680.11034375 |
transcript.pyannote[144].speaker |
SPEAKER_01 |
transcript.pyannote[144].start |
681.54471875 |
transcript.pyannote[144].end |
681.88221875 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
682.52346875 |
transcript.pyannote[145].end |
688.93596875 |
transcript.pyannote[146].speaker |
SPEAKER_01 |
transcript.pyannote[146].start |
689.29034375 |
transcript.pyannote[146].end |
691.75409375 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
690.52221875 |
transcript.pyannote[147].end |
703.17846875 |
transcript.pyannote[148].speaker |
SPEAKER_01 |
transcript.pyannote[148].start |
692.93534375 |
transcript.pyannote[148].end |
694.38659375 |
transcript.pyannote[149].speaker |
SPEAKER_01 |
transcript.pyannote[149].start |
703.17846875 |
transcript.pyannote[149].end |
703.46534375 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
703.46534375 |
transcript.pyannote[150].end |
721.94346875 |
transcript.pyannote[151].speaker |
SPEAKER_01 |
transcript.pyannote[151].start |
704.32596875 |
transcript.pyannote[151].end |
704.81534375 |
transcript.pyannote[152].speaker |
SPEAKER_01 |
transcript.pyannote[152].start |
709.79346875 |
transcript.pyannote[152].end |
710.62034375 |
transcript.pyannote[153].speaker |
SPEAKER_01 |
transcript.pyannote[153].start |
711.21096875 |
transcript.pyannote[153].end |
712.62846875 |
transcript.pyannote[154].speaker |
SPEAKER_01 |
transcript.pyannote[154].start |
712.64534375 |
transcript.pyannote[154].end |
712.66221875 |
transcript.pyannote[155].speaker |
SPEAKER_01 |
transcript.pyannote[155].start |
712.86471875 |
transcript.pyannote[155].end |
713.18534375 |
transcript.pyannote[156].speaker |
SPEAKER_01 |
transcript.pyannote[156].start |
718.12971875 |
transcript.pyannote[156].end |
718.43346875 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
720.20534375 |
transcript.pyannote[157].end |
721.40346875 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
722.44971875 |
transcript.pyannote[158].end |
722.78721875 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
722.95596875 |
transcript.pyannote[159].end |
723.64784375 |
transcript.whisperx[0].start |
1.69 |
transcript.whisperx[0].end |
13.746 |
transcript.whisperx[0].text |
做以上宣告我們中午不休息延長開會時間好謝謝趙偉那我們是不是有請我們部長陳部長 |
transcript.whisperx[1].start |
27.834 |
transcript.whisperx[1].end |
47.11 |
transcript.whisperx[1].text |
喂吼 部長 現在一起的稻作那現在差不多等於收割啦 對那大概這個禮拜應該都陸續在收那當然現在當然農民比較擔心的是接下來這個蝴蝶颱風這隻蝴蝶會在後面背來背去我們這邊這大家也很高興因為風太大就趁熱 那個季節就會受到影響 |
transcript.whisperx[2].start |
52.734 |
transcript.whisperx[2].end |
71.321 |
transcript.whisperx[2].text |
現在的價格不錯,現在我們推動的量是產業升級方案現在的產地量價百台幣都是一千一百多我現在是要跟你說一百,現在的價格是真的不錯現在的價格大概一百一百五十一百五十,三下過去當然也有九百也有八百,那些都是做肉的 |
transcript.whisperx[3].start |
78.664 |
transcript.whisperx[3].end |
87.129 |
transcript.whisperx[3].text |
去年齁 去年是不錯喔 去年差不多一千二百元 但是去年勒 去年比較高 不然去年沒中 去年稍微缺一點所以今年是很好喔 今年我這樣聽起來 農民有收十八塊 也有十九塊 甚至用料比較好的有拚到二十塊喔 |
transcript.whisperx[4].start |
98.396 |
transcript.whisperx[4].end |
117.515 |
transcript.whisperx[4].text |
他拚到二十塊就有差不多一千一百五十塊的一個收入的話今年對於稻農來說他們是豐收的一年所以我想部長這應該也清楚你去年你要推動的整個糧食政策我覺得這個大方向有朝著你們農業部的一個期待喔我跟委員報告齁 |
transcript.whisperx[5].start |
119.457 |
transcript.whisperx[5].end |
132.215 |
transcript.whisperx[5].text |
去年的平均價在這段時間平均價大概是980左右980、990左右比方去年去年去年一起做今年大概是1100左右啦所以你看嘛我們 |
transcript.whisperx[6].start |
133.88 |
transcript.whisperx[6].end |
144.647 |
transcript.whisperx[6].text |
雖然說沒有像委員要求到公糧到五塊錢我們是希望說糧沒有 民糧能夠拉高對於整個產業都有幫助嗎那的確我們如果民糧拉高的話就對農民來說他會不要繳公糧對啊我賣給民糧我反而還更好啊所以這個才是一個健康的一個糧食的一個方向所以我覺得這個農業的這個價格的 |
transcript.whisperx[7].start |
158.176 |
transcript.whisperx[7].end |
164.959 |
transcript.whisperx[7].text |
就是說糧食價格這件事對農民來說它是最直接有感的所以你們要怎麼樣再繼續去推動讓我們不要說今年好而已以後這種就是要保持著這樣的一個力道我覺得這件事就很重要 |
transcript.whisperx[8].start |
174.642 |
transcript.whisperx[8].end |
195.956 |
transcript.whisperx[8].text |
那當然啦齁,農作就是這樣啦齁,因為我記得我上個月齁,我們在這邊的時候,那我有聽到包括戴華委員,包括廷飛委員,事實上他們在講的,是說他們那裡有遇到災害,他們的稻穀有遇到災害,啊我們嘉義當然沒有,我們現在收起來看起來是齁,整個是一個順利的方向,所以就是說, |
transcript.whisperx[9].start |
196.716 |
transcript.whisperx[9].end |
222.427 |
transcript.whisperx[9].text |
事實上整個農業受到天然災害的影響啊每個地方會有每個地方的一些差異性就比方啦 就比方我最近我去沙町這樣走沙町的農民也是有很大的一個落差喔今年的果農吃壞 保證你也知道所以說像水養的啦 淋浴的都沒收成 水養 奶雞 淋浴 |
transcript.whisperx[10].start |
224.148 |
transcript.whisperx[10].end |
239.803 |
transcript.whisperx[10].text |
所有都不繳 都沒有繳費啦所以就是沒有收金 所以那裡就沒有啊沒有費就漂亮啦有費啦 有費沒錢啦 沒錢啦所以就看起來說果農的部分今年是收成是不好的 |
transcript.whisperx[11].start |
241.024 |
transcript.whisperx[11].end |
266.249 |
transcript.whisperx[11].text |
大概他們說是因為氣候因素天氣比較冷所以雖然開花可是後來沒有結果所以沒有收成但是氣候冷的對山頂像大米的大農他們今年大豐收對大農賺得很好他們賺今年的茶茶農都收很多所以整個氣候的因素對於農業來說它就是一個 |
transcript.whisperx[12].start |
268.184 |
transcript.whisperx[12].end |
277.111 |
transcript.whisperx[12].text |
第一不穩定第二每一個氣候的一個干擾的一個影響如果不是說一次做大水這種的純粹是氣溫的影響每個作物不一樣他們所需要他們認為適當的那個農作物要成長的溫度不一樣所以這個都會牽扯到的說我們今天在討論農業保險這塊的時候那他的標準怎麼定以及說他們一旦 |
transcript.whisperx[13].start |
296.466 |
transcript.whisperx[13].end |
301.349 |
transcript.whisperx[13].text |
遇到減產的時候要怎麼把這個氣溫的因素討論好我覺得這件事情農業部應該就是要再跟每一個產業別然後應該去討論說現主席這個農業保險他的認定標準是不是有符合這個農產品的品項我想保留這個也很重要吧 |
transcript.whisperx[14].start |
318.321 |
transcript.whisperx[14].end |
339.455 |
transcript.whisperx[14].text |
我就說我們現在會重新檢討每一個保單裡面的天氣山數到底它的數據到底是不是正確性是不是必須再做確認因為一些什麼樣的溫度會什麼樣的影響這可能都需要靠我們的專家去確認我們會重新來檢討那必須調整的我們會立即來調整 |
transcript.whisperx[15].start |
341.318 |
transcript.whisperx[15].end |
362.113 |
transcript.whisperx[15].text |
所以這個很重要啦第二個就是說剛剛很多委員都有講到事實上老農津貼的這個牌幅的這個條款因為14年沒有調整嘛這14年來事實上你看物價的波動消費者物價指數是成長了16%如果你以土地的一個價值的漲幅來講漲了65% |
transcript.whisperx[16].start |
364.375 |
transcript.whisperx[16].end |
375.079 |
transcript.whisperx[16].text |
所以事實上我也有提案我在上一個會期就提案這個會期我依然是把我上個會期的提案我仍然要求說這個排付條款應該要調整那排付條款要調整咧兩個層面的問題第一類就是說這個土地 |
transcript.whisperx[17].start |
380.421 |
transcript.whisperx[17].end |
407.389 |
transcript.whisperx[17].text |
這個土地就是農民耶他持有土地可是這個土地不應該會造成說我最後我失去我去領這個老農津貼那或者是我的收入是多少我感覺說我們在訂這個排富條款事實上對農民來說是一種剝削而且事實上柏中你可以再認真想喔你也想說有很多農民他可能因為排富的因素有可能他們住在這裏住 |
transcript.whisperx[18].start |
409.83 |
transcript.whisperx[18].end |
436.027 |
transcript.whisperx[18].text |
橋櫃標準他都賣掉或者他要過戶給他的子女他要過戶給子女但是這都會造成家庭的一些狀況啊所以我是覺得這種相對對農民是不公平的所以我們如果站在照顧老農的立場上我真的覺得這個排戶條款應該要檢討甚至我們可以說是不是可以讓這個排日條款就進入就讓他落日了部長 |
transcript.whisperx[19].start |
436.747 |
transcript.whisperx[19].end |
448.415 |
transcript.whisperx[19].text |
我非常認同委員所提的委員一直常常關心這些老農津貼的排富的部分因為像委員講的如果因為排富設定的不好 |
transcript.whisperx[20].start |
449.264 |
transcript.whisperx[20].end |
466.34 |
transcript.whisperx[20].text |
被逼著要賣房子造成後面的分家有沒有會造成更大的困擾所以我們也針對剛才您所提的土地的公告限值過去這麼多年來漲幅了百分之六十幾那這個部分我們有重新去試算包括你的所得包括你的財產的所財產的總額 |
transcript.whisperx[21].start |
469.282 |
transcript.whisperx[21].end |
484.622 |
transcript.whisperx[21].text |
還有一個你如果自住房的這些可以扣抵的我們都有適度的做調整根據相關的一個公式那我們希望說這樣透過這樣的一個比較制度化的公式那後續我們就可以每隔四年就可以滾動同步來檢討 |
transcript.whisperx[22].start |
485.763 |
transcript.whisperx[22].end |
509.828 |
transcript.whisperx[22].text |
而不是純粹只是調整那個CPI而已還可以排富可以同步的去做一個處理那這個部分我想我們預計在下個會期我們在這個會期就會送到行政院去經過審議然後下個會期會進到立法院來做處理好 我想部長事實上我們對於農業的照顧對於農民的照顧是最基礎的一塊 |
transcript.whisperx[23].start |
510.788 |
transcript.whisperx[23].end |
535.268 |
transcript.whisperx[23].text |
所以雖然說大家都說老農今天造成政府幾十億的預算的支出但是這都是必要支出啊因為這樣的農業人口我們要希望他可以留在農村這個對農村才是實質的有幫助所以這點我覺得保證我們真的要檢討好一個比較好的方式讓這一些老農他們活得有尊嚴事實上你說每個月才領個8100塊也不是很多啦那說實在的不是這麼多啦 |
transcript.whisperx[24].start |
538.911 |
transcript.whisperx[24].end |
545.377 |
transcript.whisperx[24].text |
事實上這個錢只是說 因為他就是有務農 他過去的務農那我們希望他繼續留在農村 縱使老農沒做啊他沒實際下去做啊 實際上老農是都拚到七六八六到八十幾要做的啦但是就算他沒做啊 他帶他的經驗穿修給他學一年這也是很好的 農村就是需要這些人留在農村啊 好不好 |
transcript.whisperx[25].start |
562.853 |
transcript.whisperx[25].end |
590.98 |
transcript.whisperx[25].text |
我想我一定會朝這個方向來努力我也相信我們的版本應該會讓委員滿意啦好最後我再問一下就是說最近開始有人在說雞蛋的產能過剩因為我們知道說目前我們的雞蛋它的日產量是12萬8千箱事實上已經超過國人的需求 |
transcript.whisperx[26].start |
592.68 |
transcript.whisperx[26].end |
596.922 |
transcript.whisperx[26].text |
所以有一點產能過剩事實上這就開始反而產能過剩就會有後續的狀況的演變尤其現在也要放暑假 暑假後一些像營養午餐都沒有再供應這會造成雞蛋的需求可能會相對減少所以這件事是補充 我覺得要注意一下 |
transcript.whisperx[27].start |
612.788 |
transcript.whisperx[27].end |
634.877 |
transcript.whisperx[27].text |
我想謝謝委員的提醒我對雞蛋的議題一直非常關心特別是除了雞蛋的日產能以外我覺得一個非常重要的是雞蛋的庫存也要同步考慮因為庫存有時候他們在做市場機制調節的時候可能庫存壓力更大的時候它就會降價它不見得直接反映到每一天的蛋產能 |
transcript.whisperx[28].start |
636.097 |
transcript.whisperx[28].end |
647.55 |
transcript.whisperx[28].text |
所以這個部分我們已經用一個比較有科學依據的這些調查系統去收集這個資料然後我們也針對彈廠的升級我們也在處理所以我們希望說這個彈能夠 |
transcript.whisperx[29].start |
649.737 |
transcript.whisperx[29].end |
669.425 |
transcript.whisperx[29].text |
維持在市場機制之下但是也不會過於太低或太高太低就影響農民的權益這個我想我們會來努力部長事實上大家最近看到像日本他們發生了米的價格飆漲然後他們的米的需求看起來供給不夠需求 |
transcript.whisperx[30].start |
671.306 |
transcript.whisperx[30].end |
688.515 |
transcript.whisperx[30].text |
事實上大家都在檢討啦所以每一個國家遇到這樣的狀況但是如果有一些狀況我們看到那些徵兆提早來佈局就可以防止類似這樣的狀況的發生這個非常重要就是說我們在徵兆一開始的時候就要進場去處理啦不然等事情 |
transcript.whisperx[31].start |
689.495 |
transcript.whisperx[31].end |
697.42 |
transcript.whisperx[31].text |
變得很嚴重的時候 那有時候很多事情後面的處理都很難做很難處理 因為到後面的時候 講最白的啦每一次的這種需求問題都是問題都是出在恐慌啦 民眾的恐慌心態這個恐慌心態一旦嚇起來政府這個手怎麼出力 也不夠白色 大家緊張所以我們要事先的佈局把它準備好 就可以防止一些可能的狀況發生 |
transcript.whisperx[32].start |
718.772 |
transcript.whisperx[32].end |
720.74 |
transcript.whisperx[32].text |
好不好好謝謝委員提醒好謝謝部長好謝謝好謝謝 |