iVOD / 162433

Field Value
IVOD_ID 162433
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/162433
日期 2025-06-11
會議資料.會議代碼 聯席會議-11-3-19,20-3
會議資料.會議代碼:str 第11屆第3會期經濟、財政兩委員會第3次聯席會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 3
會議資料.種類 聯席會議
會議資料.委員會代碼[0] 19
會議資料.委員會代碼[1] 20
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.委員會代碼:str[1] 財政委員會
會議資料.標題 第11屆第3會期經濟、財政兩委員會第3次聯席會議
影片種類 Clip
開始時間 2025-06-11T10:45:57+08:00
結束時間 2025-06-11T10:55:39+08:00
影片長度 00:09:42
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5b5dae1827dbf6c9379c255ec2bdd071b4fab53e924c0ec17ecf2f83f27aab3b462de921938ebd285ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 郭國文
委員發言時間 10:45:57 - 10:55:39
會議時間 2025-06-11T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟、財政兩委員會第3次聯席會議(事由:審查: 一、本院委員謝衣鳯等16人擬具「農業保險法第十條條文修正草案」案。 二、本院委員邱若華等21人擬具「農業保險法第二條及第十條條文修正草案」案。 三、本院台灣民眾黨黨團擬具「農業保險法第二條及第十條條文修正草案」案。(詢答))
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 6.79784375
transcript.pyannote[0].end 8.95784375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 9.19409375
transcript.pyannote[1].end 9.64971875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 9.81846875
transcript.pyannote[2].end 10.40909375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 15.96096875
transcript.pyannote[3].end 16.41659375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 16.97346875
transcript.pyannote[4].end 26.40659375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 26.84534375
transcript.pyannote[5].end 29.57909375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 29.62971875
transcript.pyannote[6].end 88.92846875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 82.36409375
transcript.pyannote[7].end 82.83659375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 83.98409375
transcript.pyannote[8].end 84.49034375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 88.96221875
transcript.pyannote[9].end 90.48096875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 90.97034375
transcript.pyannote[10].end 99.44159375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 99.84659375
transcript.pyannote[11].end 112.08096875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 112.33409375
transcript.pyannote[12].end 136.66784375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 136.87034375
transcript.pyannote[13].end 137.44409375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 138.10221875
transcript.pyannote[14].end 140.38034375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 140.83596875
transcript.pyannote[15].end 143.95784375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 144.21096875
transcript.pyannote[16].end 146.45534375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 146.70846875
transcript.pyannote[17].end 149.62784375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 149.99909375
transcript.pyannote[18].end 153.69471875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 154.03221875
transcript.pyannote[19].end 154.74096875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 155.28096875
transcript.pyannote[20].end 157.05284375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 157.28909375
transcript.pyannote[21].end 157.77846875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 157.94721875
transcript.pyannote[22].end 158.25096875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 158.65596875
transcript.pyannote[23].end 161.03534375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 161.27159375
transcript.pyannote[24].end 162.23346875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 162.57096875
transcript.pyannote[25].end 173.74221875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 173.87721875
transcript.pyannote[26].end 174.55221875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 175.44659375
transcript.pyannote[27].end 182.44971875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 182.80409375
transcript.pyannote[28].end 196.10159375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 193.46909375
transcript.pyannote[29].end 193.50284375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 196.62471875
transcript.pyannote[30].end 197.83971875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 198.31221875
transcript.pyannote[31].end 200.84346875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 201.26534375
transcript.pyannote[32].end 202.42971875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 202.76721875
transcript.pyannote[33].end 203.49284375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 204.40409375
transcript.pyannote[34].end 204.58971875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 204.58971875
transcript.pyannote[35].end 205.39971875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 204.64034375
transcript.pyannote[36].end 205.19721875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 205.53471875
transcript.pyannote[37].end 205.78784375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 205.92284375
transcript.pyannote[38].end 206.27721875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 206.66534375
transcript.pyannote[39].end 208.01534375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 208.23471875
transcript.pyannote[40].end 211.35659375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 211.59284375
transcript.pyannote[41].end 215.45721875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 215.71034375
transcript.pyannote[42].end 220.11471875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 220.33409375
transcript.pyannote[43].end 222.22409375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 222.76409375
transcript.pyannote[44].end 224.67096875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 226.00409375
transcript.pyannote[45].end 228.87284375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 229.31159375
transcript.pyannote[46].end 232.61909375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 233.02409375
transcript.pyannote[47].end 234.99846875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 235.40346875
transcript.pyannote[48].end 236.61846875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 236.83784375
transcript.pyannote[49].end 237.12471875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 237.58034375
transcript.pyannote[50].end 238.57596875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 238.99784375
transcript.pyannote[51].end 239.40284375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 240.22971875
transcript.pyannote[52].end 240.55034375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 240.98909375
transcript.pyannote[53].end 242.62596875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 243.01409375
transcript.pyannote[54].end 243.43596875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 244.31346875
transcript.pyannote[55].end 244.33034375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 244.33034375
transcript.pyannote[56].end 244.38096875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 244.38096875
transcript.pyannote[57].end 244.87034375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 245.59596875
transcript.pyannote[58].end 245.73096875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 245.73096875
transcript.pyannote[59].end 246.22034375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 246.77721875
transcript.pyannote[60].end 247.14846875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 247.43534375
transcript.pyannote[61].end 247.75596875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 247.97534375
transcript.pyannote[62].end 248.48159375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 248.68409375
transcript.pyannote[63].end 250.27034375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 250.62471875
transcript.pyannote[64].end 252.32909375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 252.78471875
transcript.pyannote[65].end 262.23471875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 262.70721875
transcript.pyannote[66].end 267.17909375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 267.73596875
transcript.pyannote[67].end 269.98034375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 270.46971875
transcript.pyannote[68].end 274.08096875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 274.99221875
transcript.pyannote[69].end 283.27784375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 283.73346875
transcript.pyannote[70].end 284.44221875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 284.81346875
transcript.pyannote[71].end 285.84284375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 286.46721875
transcript.pyannote[72].end 287.51346875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 288.03659375
transcript.pyannote[73].end 292.62659375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 293.06534375
transcript.pyannote[74].end 298.24596875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 298.51596875
transcript.pyannote[75].end 300.97971875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 301.36784375
transcript.pyannote[76].end 305.08034375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 305.21534375
transcript.pyannote[77].end 306.78471875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 306.90284375
transcript.pyannote[78].end 307.86471875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 308.37096875
transcript.pyannote[79].end 309.33284375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 309.82221875
transcript.pyannote[80].end 310.91909375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 312.67409375
transcript.pyannote[81].end 312.97784375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 312.97784375
transcript.pyannote[82].end 313.02846875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 313.02846875
transcript.pyannote[83].end 313.36596875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 313.36596875
transcript.pyannote[84].end 313.51784375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 313.51784375
transcript.pyannote[85].end 313.97346875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 313.97346875
transcript.pyannote[86].end 314.12534375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 314.31096875
transcript.pyannote[87].end 336.50159375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 336.65346875
transcript.pyannote[88].end 359.02971875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 336.72096875
transcript.pyannote[89].end 337.46346875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 359.02971875
transcript.pyannote[90].end 372.76596875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 363.28221875
transcript.pyannote[91].end 364.26096875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 367.63596875
transcript.pyannote[92].end 367.93971875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 372.85034375
transcript.pyannote[93].end 375.93846875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 376.39409375
transcript.pyannote[94].end 379.58346875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 379.65096875
transcript.pyannote[95].end 392.89784375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 393.33659375
transcript.pyannote[96].end 399.36096875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 400.05284375
transcript.pyannote[97].end 406.49909375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 406.81971875
transcript.pyannote[98].end 408.82784375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 409.30034375
transcript.pyannote[99].end 409.68846875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 410.31284375
transcript.pyannote[100].end 410.95409375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 411.00471875
transcript.pyannote[101].end 411.05534375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 411.07221875
transcript.pyannote[102].end 412.32096875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 412.65846875
transcript.pyannote[103].end 413.67096875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 413.90721875
transcript.pyannote[104].end 415.81409375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 416.47221875
transcript.pyannote[105].end 417.07971875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 417.72096875
transcript.pyannote[106].end 418.59846875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 418.80096875
transcript.pyannote[107].end 419.66159375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 420.18471875
transcript.pyannote[108].end 420.47159375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 421.23096875
transcript.pyannote[109].end 421.99034375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 422.31096875
transcript.pyannote[110].end 423.66096875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 423.66096875
transcript.pyannote[111].end 424.06596875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 424.06596875
transcript.pyannote[112].end 424.97721875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 424.97721875
transcript.pyannote[113].end 425.26409375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 425.85471875
transcript.pyannote[114].end 425.87159375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 425.87159375
transcript.pyannote[115].end 427.57596875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 427.76159375
transcript.pyannote[116].end 433.07721875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 433.54971875
transcript.pyannote[117].end 444.14721875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 444.21471875
transcript.pyannote[118].end 445.24409375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 444.46784375
transcript.pyannote[119].end 444.53534375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 445.59846875
transcript.pyannote[120].end 448.80471875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 448.87221875
transcript.pyannote[121].end 450.93096875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 450.94784375
transcript.pyannote[122].end 450.96471875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 451.18409375
transcript.pyannote[123].end 468.10971875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 451.85909375
transcript.pyannote[124].end 454.55909375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 468.27846875
transcript.pyannote[125].end 469.89846875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 470.28659375
transcript.pyannote[126].end 472.96971875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 473.69534375
transcript.pyannote[127].end 475.07909375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 475.33221875
transcript.pyannote[128].end 486.30096875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 485.00159375
transcript.pyannote[129].end 485.44034375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 486.04784375
transcript.pyannote[130].end 486.18284375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 486.30096875
transcript.pyannote[131].end 489.27096875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 489.30471875
transcript.pyannote[132].end 493.52346875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 492.03846875
transcript.pyannote[133].end 494.83971875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 494.01284375
transcript.pyannote[134].end 509.74034375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 510.36471875
transcript.pyannote[135].end 515.47784375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 515.56221875
transcript.pyannote[136].end 520.81034375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 521.38409375
transcript.pyannote[137].end 522.32909375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 522.64971875
transcript.pyannote[138].end 523.03784375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 523.32471875
transcript.pyannote[139].end 523.81409375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 523.81409375
transcript.pyannote[140].end 523.83096875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 524.37096875
transcript.pyannote[141].end 524.97846875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 524.97846875
transcript.pyannote[142].end 525.72096875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 525.83909375
transcript.pyannote[143].end 528.53909375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 528.72471875
transcript.pyannote[144].end 529.23096875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 529.68659375
transcript.pyannote[145].end 542.03909375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 533.88846875
transcript.pyannote[146].end 534.10784375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 542.03909375
transcript.pyannote[147].end 551.70846875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 548.08034375
transcript.pyannote[148].end 548.56971875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 549.29534375
transcript.pyannote[149].end 551.64096875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 551.96159375
transcript.pyannote[150].end 563.36909375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 560.90534375
transcript.pyannote[151].end 565.46159375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 564.63471875
transcript.pyannote[152].end 566.42346875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 566.42346875
transcript.pyannote[153].end 574.89471875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 566.45721875
transcript.pyannote[154].end 570.33846875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 573.32534375
transcript.pyannote[155].end 573.46034375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 575.26596875
transcript.pyannote[156].end 579.02909375
transcript.whisperx[0].start 7.733
transcript.whisperx[0].end 9.26
transcript.whisperx[0].text 謝謝主席有請陳部長陳部長
transcript.whisperx[1].start 17.007
transcript.whisperx[1].end 43.1
transcript.whisperx[1].text 部長好我想經濟委員會召委很用心排這個題目我認為非常好確實是要去思考現在農業保險這幾年上路之後的一個檢討的問題可是在這裡同時其實相關的一個法案的修改最近都紛紛出爐包括我之前提的農民退休金促進條例第七條的修正案還有包括農民保險的這個排付條款的部分請部長這邊跟行政院溝通的部分能夠加速進行這是第一點提醒
transcript.whisperx[2].start 43.82
transcript.whisperx[2].end 72.95
transcript.whisperx[2].text 那第二個的部分呢今天在野黨所提的這個拉掉中央補助的上限的部分齁我覺得第一個有可能會排擠到剛剛我所提的那兩項的一個福利預算的問題啦因為預算是都綁在一起的這是第一個啦齁那第二個的部分呢補助的部分剛剛你也說明很清楚可能到75%如果到75%的情況底下依照目前的覆蓋率喔個人的算起來看起來農業保險覆蓋率大概53.72但是實質上你如果扣除掉強制納保的豬隻啊水稻等等啦齁
transcript.whisperx[3].start 73.73
transcript.whisperx[3].end 79.937
transcript.whisperx[3].text 覆蓋率其實不過是20%20.7對才20%而已啊所以這個你已經補助到75%還20%也就是補助不是關鍵嘛是在保單的設計才是問題嘛那保單的設計的問題這就是我們今天要好好來探討的問題啦那保單的設計第一個我看到那個整個結果齁
transcript.whisperx[4].start 93.272
transcript.whisperx[4].end 111.311
transcript.whisperx[4].text 農運領不到啦產險公司賺飽飽第二個是多項農產品其實是被遺漏的沒有納召一個農業保障的範圍第三個現有保單又難以滿足產需的一個需求如果就這樣子來我們區分的話以目前的政策型的保險或商業型的保險來看的話
transcript.whisperx[5].start 112.512
transcript.whisperx[5].end 136.311
transcript.whisperx[5].text 我看起來政策型的保險之所以能夠處理一來是分為收入型一來分為死亡型不論是收入型的這一個部分這理賠的部分的參數能夠容易量化另外死亡型的部分還有包括這個豬隻跟乳牛的部分基本上也是容易量化這個基本上是比較OK的目前這個還OK可是呢我必須提醒部長部長
transcript.whisperx[6].start 138.232
transcript.whisperx[6].end 160.182
transcript.whisperx[6].text 主要是出現在商業型的保險這36種當中是非強制的保險真正需要檢討是這個部分覆蓋力過低的元兇也是在這邊那主要的在哪裡一來理賠的門檻不太一次一來過高二來理賠的金額過低我看一下部長部長數字看一下
transcript.whisperx[7].start 162.643
transcript.whisperx[7].end 174.211
transcript.whisperx[7].text 除了聽幕僚講一下 看一下我powerpoint整理出來的數字你看喔 理賠率這三年當中以2021、22、23 理賠率不過是1.94%、6%你總totally的這個保險基金從第一年的267億到第三年的300多億來看
transcript.whisperx[8].start 182.896
transcript.whisperx[8].end 202.961
transcript.whisperx[8].text 理賠率都沒有超過這個10%那以國泰這個產險的這個巴勒的保險來看的話設定的最大的陣風要十幾以上要連續五天那以照目前我算一算以照這個條件來看造成全國現有的巴勒的投保率不到1%
transcript.whisperx[9].start 206.736
transcript.whisperx[9].end 221.129
transcript.whisperx[9].text 我查到一百多元就農民反應過起來是這樣子這是第一個啦你要繳的一兩萬的這個保費來說然後等到那個大颱風大豪雨的時候那時期就大概是中台啦大家就認為不划算還有一個我選區裡頭的大內的部分
transcript.whisperx[10].start 226.052
transcript.whisperx[10].end 243.257
transcript.whisperx[10].text 你搭建一個往事的部分 起碼要花兩百萬即便你有補助 夯不啷噹你至少要出個一百你一分地 賠起來不到一千元賠起來不到一千元 你知道部長 木瓜的投保件數有幾件嗎 你知道嗎
transcript.whisperx[11].start 244.538
transcript.whisperx[11].end 266.454
transcript.whisperx[11].text 六件所以說 你看 八六不到一趴 那木瓜才六件這就是 你已經弄了四年多了喔 原因在哪裡第一個就是好與成為常態 理賠的門檻過高第二個就是理賠的金額太少 保險報酬率太低
transcript.whisperx[12].start 267.813
transcript.whisperx[12].end 292.363
transcript.whisperx[12].text 那我這樣再算一算部長這個保單的真正需要設計的問題是在這邊過往我們只要去我們去要求拜託看起來好像拜託公股的一些慘險公司或私人的慘險公司何嘗你們來拜託人他們都配合政策那你怎麼不要求他來兌換這個社會責任呢你去看喔300多億當中喔
transcript.whisperx[13].start 293.163
transcript.whisperx[13].end 310.357
transcript.whisperx[13].text 五十幾%的覆蓋率 超過三成以上是那個政策型的保險有其他的部分是屬於給私人的保險他們不單是三百多億當中呢一年當中就有超過一百億當中丟入這個產險公司裡頭而非農業系統這種情況底下 你賠率這麼低
transcript.whisperx[14].start 312.731
transcript.whisperx[14].end 335.601
transcript.whisperx[14].text 不然是他們暴利啊我先跟他們報一下您這邊的算法可能有一點出入第一個就是說我們的理賠率應該是保費的收入當分母而不是保險的金額當分母是保費的收入當分母除以分子是理賠金額那大概多少那樣子我們算出來商業型的保險本身在113年它的理賠率是47
transcript.whisperx[15].start 337.021
transcript.whisperx[15].end 362.55
transcript.whisperx[15].text 那如果47啊那一個合理的理賠率應該是在70到80因為他有成本嘛所以他還是偏低沒錯所以我們有現在有在設計就是說當他前一年度的理賠率比較低的時候我們就會降低保費來做處理因應啊大概是這樣子的方式如果是這樣子的話那為什麼那個投保的那個件數會那麼低呢
transcript.whisperx[16].start 363.31
transcript.whisperx[16].end 373.696
transcript.whisperx[16].text 沒有 如果沒有那麼離譜的話你把你相關的理賠率啦 回後給本席一份我覺得重點的部分是要告知那個部長這個保單的設計是關鍵啦不是在保費的補貼
transcript.whisperx[17].start 378.459
transcript.whisperx[17].end 399.151
transcript.whisperx[17].text 不是關鍵啊所以那個整個保單的設計的部分的這個商業型的保險是目前外界最詬病的地方除了農產品之外部長我趁這個機會再提醒你一下就是說呢漁產的部分的保單的這個投保起伏也是過大
transcript.whisperx[18].start 400.131
transcript.whisperx[18].end 419.409
transcript.whisperx[18].text 譬如講這個以私募以來說他之前如果理賠有出現的話 有理賠的話那下一年度的投保率就會增加可是呢 你像牡蠣啦 文革啦像我的選區當中七股這邊都有基本上到目前為止也都還不行
transcript.whisperx[19].start 421.257
transcript.whisperx[19].end 450.029
transcript.whisperx[19].text 還沒有納入捏還在等待保單捏我要跟市長報告您講得非常重要就是保單的內容跟它的品質才是重點對啊然後像牡蠣來講因為它本身這幾年來它發生天然災害的風險變高了以後它的保費設計就是說我可以開辦這個保單但是它那個保費會高得離譜因為它的資料的計算的時間點很短過去我們並沒有這個資料
transcript.whisperx[20].start 451.289
transcript.whisperx[20].end 472.681
transcript.whisperx[20].text 那這幾年的比較長的時間平均值還可以做平均值但之前我們並沒有一些比較明確的數據所以換句話說在現有的數據裡面他去算那個風險的時候他的風險非常高所以他的保費變成非常高那漁民一定沒辦法接受的所以我們我們現在就是說看看有沒有有沒有辦法設計出一些
transcript.whisperx[21].start 473.735
transcript.whisperx[21].end 486.42
transcript.whisperx[21].text 比較改良式的一些一些保單的內容包括就是說你在特定的情況之下去做處理那如果說超過一定的風險的時候政府的吸收會高一點
transcript.whisperx[22].start 489.461
transcript.whisperx[22].end 509.753
transcript.whisperx[22].text 我們以後不能補那些也很奇怪你回去最快也要一顆這個我們一直在檢討另外還有包括那個柚子的部分我再直接講重點好了那個你柚子的部分一般傳統人壽的保單如果項目越多保費會越低可是面積越大保費會越高以照目前為止他的計算的方式要立即落狗
transcript.whisperx[23].start 510.433
transcript.whisperx[23].end 524.781
transcript.whisperx[23].text 但是颱風來所造成的這些東西延遲性的一個損傷大概都沒有納入啦那現階段的類似這種東西你只適用一個粒子如果延遲性損傷沒有保障的話那就是困難啦對啊 但是我給你們報告齁
transcript.whisperx[24].start 526.002
transcript.whisperx[24].end 543.964
transcript.whisperx[24].text 我一直希望說第一個就是如果同一個農民他每年都有投保的時候我希望他保費能夠下降就是有折扣這樣能夠鼓勵第二個就是你投保的面積越大應該你的保費應該也要有折扣這樣的話才會有誘因部長時間到我也不要耽誤後面會員的時間
transcript.whisperx[25].start 545.626
transcript.whisperx[25].end 574.339
transcript.whisperx[25].text 只是要求一件事情四年多了啦 該檢討的啦我特別要求是商業型的這個部分啦或者是你政策型的要多一些品項也OK啦做一個整體的檢討麻煩你一個月的時候給本席一份好 可以對啊 你要如果改進現在這種既有的方式剛才本席所提出的這些問題去年一整年我們就在檢討每一張對 但我要求你啊所以你既然有檢討那你一個月拿出來應該是沒有什麼問題啊我們會提供 好一個月內喔 你把所有資料給我好 謝謝
transcript.whisperx[26].start 575.28
transcript.whisperx[26].end 577.25
transcript.whisperx[26].text 好 謝謝現在請陳廷飛委員做詢答