IVOD_ID |
162433 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/162433 |
日期 |
2025-06-11 |
會議資料.會議代碼 |
聯席會議-11-3-19,20-3 |
會議資料.會議代碼:str |
第11屆第3會期經濟、財政兩委員會第3次聯席會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
3 |
會議資料.種類 |
聯席會議 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼[1] |
20 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.委員會代碼:str[1] |
財政委員會 |
會議資料.標題 |
第11屆第3會期經濟、財政兩委員會第3次聯席會議 |
影片種類 |
Clip |
開始時間 |
2025-06-11T10:45:57+08:00 |
結束時間 |
2025-06-11T10:55:39+08:00 |
影片長度 |
00:09:42 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5b5dae1827dbf6c9379c255ec2bdd071b4fab53e924c0ec17ecf2f83f27aab3b462de921938ebd285ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
郭國文 |
委員發言時間 |
10:45:57 - 10:55:39 |
會議時間 |
2025-06-11T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期經濟、財政兩委員會第3次聯席會議(事由:審查:
一、本院委員謝衣鳯等16人擬具「農業保險法第十條條文修正草案」案。
二、本院委員邱若華等21人擬具「農業保險法第二條及第十條條文修正草案」案。
三、本院台灣民眾黨黨團擬具「農業保險法第二條及第十條條文修正草案」案。(詢答)) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
6.79784375 |
transcript.pyannote[0].end |
8.95784375 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
9.19409375 |
transcript.pyannote[1].end |
9.64971875 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
9.81846875 |
transcript.pyannote[2].end |
10.40909375 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
15.96096875 |
transcript.pyannote[3].end |
16.41659375 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
16.97346875 |
transcript.pyannote[4].end |
26.40659375 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
26.84534375 |
transcript.pyannote[5].end |
29.57909375 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
29.62971875 |
transcript.pyannote[6].end |
88.92846875 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
82.36409375 |
transcript.pyannote[7].end |
82.83659375 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
83.98409375 |
transcript.pyannote[8].end |
84.49034375 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
88.96221875 |
transcript.pyannote[9].end |
90.48096875 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
90.97034375 |
transcript.pyannote[10].end |
99.44159375 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
99.84659375 |
transcript.pyannote[11].end |
112.08096875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
112.33409375 |
transcript.pyannote[12].end |
136.66784375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
136.87034375 |
transcript.pyannote[13].end |
137.44409375 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
138.10221875 |
transcript.pyannote[14].end |
140.38034375 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
140.83596875 |
transcript.pyannote[15].end |
143.95784375 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
144.21096875 |
transcript.pyannote[16].end |
146.45534375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
146.70846875 |
transcript.pyannote[17].end |
149.62784375 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
149.99909375 |
transcript.pyannote[18].end |
153.69471875 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
154.03221875 |
transcript.pyannote[19].end |
154.74096875 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
155.28096875 |
transcript.pyannote[20].end |
157.05284375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
157.28909375 |
transcript.pyannote[21].end |
157.77846875 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
157.94721875 |
transcript.pyannote[22].end |
158.25096875 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
158.65596875 |
transcript.pyannote[23].end |
161.03534375 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
161.27159375 |
transcript.pyannote[24].end |
162.23346875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
162.57096875 |
transcript.pyannote[25].end |
173.74221875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
173.87721875 |
transcript.pyannote[26].end |
174.55221875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
175.44659375 |
transcript.pyannote[27].end |
182.44971875 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
182.80409375 |
transcript.pyannote[28].end |
196.10159375 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
193.46909375 |
transcript.pyannote[29].end |
193.50284375 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
196.62471875 |
transcript.pyannote[30].end |
197.83971875 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
198.31221875 |
transcript.pyannote[31].end |
200.84346875 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
201.26534375 |
transcript.pyannote[32].end |
202.42971875 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
202.76721875 |
transcript.pyannote[33].end |
203.49284375 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
204.40409375 |
transcript.pyannote[34].end |
204.58971875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
204.58971875 |
transcript.pyannote[35].end |
205.39971875 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
204.64034375 |
transcript.pyannote[36].end |
205.19721875 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
205.53471875 |
transcript.pyannote[37].end |
205.78784375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
205.92284375 |
transcript.pyannote[38].end |
206.27721875 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
206.66534375 |
transcript.pyannote[39].end |
208.01534375 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
208.23471875 |
transcript.pyannote[40].end |
211.35659375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
211.59284375 |
transcript.pyannote[41].end |
215.45721875 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
215.71034375 |
transcript.pyannote[42].end |
220.11471875 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
220.33409375 |
transcript.pyannote[43].end |
222.22409375 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
222.76409375 |
transcript.pyannote[44].end |
224.67096875 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
226.00409375 |
transcript.pyannote[45].end |
228.87284375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
229.31159375 |
transcript.pyannote[46].end |
232.61909375 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
233.02409375 |
transcript.pyannote[47].end |
234.99846875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
235.40346875 |
transcript.pyannote[48].end |
236.61846875 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
236.83784375 |
transcript.pyannote[49].end |
237.12471875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
237.58034375 |
transcript.pyannote[50].end |
238.57596875 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
238.99784375 |
transcript.pyannote[51].end |
239.40284375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
240.22971875 |
transcript.pyannote[52].end |
240.55034375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
240.98909375 |
transcript.pyannote[53].end |
242.62596875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
243.01409375 |
transcript.pyannote[54].end |
243.43596875 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
244.31346875 |
transcript.pyannote[55].end |
244.33034375 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
244.33034375 |
transcript.pyannote[56].end |
244.38096875 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
244.38096875 |
transcript.pyannote[57].end |
244.87034375 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
245.59596875 |
transcript.pyannote[58].end |
245.73096875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
245.73096875 |
transcript.pyannote[59].end |
246.22034375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
246.77721875 |
transcript.pyannote[60].end |
247.14846875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
247.43534375 |
transcript.pyannote[61].end |
247.75596875 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
247.97534375 |
transcript.pyannote[62].end |
248.48159375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
248.68409375 |
transcript.pyannote[63].end |
250.27034375 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
250.62471875 |
transcript.pyannote[64].end |
252.32909375 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
252.78471875 |
transcript.pyannote[65].end |
262.23471875 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
262.70721875 |
transcript.pyannote[66].end |
267.17909375 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
267.73596875 |
transcript.pyannote[67].end |
269.98034375 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
270.46971875 |
transcript.pyannote[68].end |
274.08096875 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
274.99221875 |
transcript.pyannote[69].end |
283.27784375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
283.73346875 |
transcript.pyannote[70].end |
284.44221875 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
284.81346875 |
transcript.pyannote[71].end |
285.84284375 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
286.46721875 |
transcript.pyannote[72].end |
287.51346875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
288.03659375 |
transcript.pyannote[73].end |
292.62659375 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
293.06534375 |
transcript.pyannote[74].end |
298.24596875 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
298.51596875 |
transcript.pyannote[75].end |
300.97971875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
301.36784375 |
transcript.pyannote[76].end |
305.08034375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
305.21534375 |
transcript.pyannote[77].end |
306.78471875 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
306.90284375 |
transcript.pyannote[78].end |
307.86471875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
308.37096875 |
transcript.pyannote[79].end |
309.33284375 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
309.82221875 |
transcript.pyannote[80].end |
310.91909375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
312.67409375 |
transcript.pyannote[81].end |
312.97784375 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
312.97784375 |
transcript.pyannote[82].end |
313.02846875 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
313.02846875 |
transcript.pyannote[83].end |
313.36596875 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
313.36596875 |
transcript.pyannote[84].end |
313.51784375 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
313.51784375 |
transcript.pyannote[85].end |
313.97346875 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
313.97346875 |
transcript.pyannote[86].end |
314.12534375 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
314.31096875 |
transcript.pyannote[87].end |
336.50159375 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
336.65346875 |
transcript.pyannote[88].end |
359.02971875 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
336.72096875 |
transcript.pyannote[89].end |
337.46346875 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
359.02971875 |
transcript.pyannote[90].end |
372.76596875 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
363.28221875 |
transcript.pyannote[91].end |
364.26096875 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
367.63596875 |
transcript.pyannote[92].end |
367.93971875 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
372.85034375 |
transcript.pyannote[93].end |
375.93846875 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
376.39409375 |
transcript.pyannote[94].end |
379.58346875 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
379.65096875 |
transcript.pyannote[95].end |
392.89784375 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
393.33659375 |
transcript.pyannote[96].end |
399.36096875 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
400.05284375 |
transcript.pyannote[97].end |
406.49909375 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
406.81971875 |
transcript.pyannote[98].end |
408.82784375 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
409.30034375 |
transcript.pyannote[99].end |
409.68846875 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
410.31284375 |
transcript.pyannote[100].end |
410.95409375 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
411.00471875 |
transcript.pyannote[101].end |
411.05534375 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
411.07221875 |
transcript.pyannote[102].end |
412.32096875 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
412.65846875 |
transcript.pyannote[103].end |
413.67096875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
413.90721875 |
transcript.pyannote[104].end |
415.81409375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
416.47221875 |
transcript.pyannote[105].end |
417.07971875 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
417.72096875 |
transcript.pyannote[106].end |
418.59846875 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
418.80096875 |
transcript.pyannote[107].end |
419.66159375 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
420.18471875 |
transcript.pyannote[108].end |
420.47159375 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
421.23096875 |
transcript.pyannote[109].end |
421.99034375 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
422.31096875 |
transcript.pyannote[110].end |
423.66096875 |
transcript.pyannote[111].speaker |
SPEAKER_01 |
transcript.pyannote[111].start |
423.66096875 |
transcript.pyannote[111].end |
424.06596875 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
424.06596875 |
transcript.pyannote[112].end |
424.97721875 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
424.97721875 |
transcript.pyannote[113].end |
425.26409375 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
425.85471875 |
transcript.pyannote[114].end |
425.87159375 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
425.87159375 |
transcript.pyannote[115].end |
427.57596875 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
427.76159375 |
transcript.pyannote[116].end |
433.07721875 |
transcript.pyannote[117].speaker |
SPEAKER_01 |
transcript.pyannote[117].start |
433.54971875 |
transcript.pyannote[117].end |
444.14721875 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
444.21471875 |
transcript.pyannote[118].end |
445.24409375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
444.46784375 |
transcript.pyannote[119].end |
444.53534375 |
transcript.pyannote[120].speaker |
SPEAKER_01 |
transcript.pyannote[120].start |
445.59846875 |
transcript.pyannote[120].end |
448.80471875 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
448.87221875 |
transcript.pyannote[121].end |
450.93096875 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
450.94784375 |
transcript.pyannote[122].end |
450.96471875 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
451.18409375 |
transcript.pyannote[123].end |
468.10971875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
451.85909375 |
transcript.pyannote[124].end |
454.55909375 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
468.27846875 |
transcript.pyannote[125].end |
469.89846875 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
470.28659375 |
transcript.pyannote[126].end |
472.96971875 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
473.69534375 |
transcript.pyannote[127].end |
475.07909375 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
475.33221875 |
transcript.pyannote[128].end |
486.30096875 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
485.00159375 |
transcript.pyannote[129].end |
485.44034375 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
486.04784375 |
transcript.pyannote[130].end |
486.18284375 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
486.30096875 |
transcript.pyannote[131].end |
489.27096875 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
489.30471875 |
transcript.pyannote[132].end |
493.52346875 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
492.03846875 |
transcript.pyannote[133].end |
494.83971875 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
494.01284375 |
transcript.pyannote[134].end |
509.74034375 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
510.36471875 |
transcript.pyannote[135].end |
515.47784375 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
515.56221875 |
transcript.pyannote[136].end |
520.81034375 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
521.38409375 |
transcript.pyannote[137].end |
522.32909375 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
522.64971875 |
transcript.pyannote[138].end |
523.03784375 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
523.32471875 |
transcript.pyannote[139].end |
523.81409375 |
transcript.pyannote[140].speaker |
SPEAKER_01 |
transcript.pyannote[140].start |
523.81409375 |
transcript.pyannote[140].end |
523.83096875 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
524.37096875 |
transcript.pyannote[141].end |
524.97846875 |
transcript.pyannote[142].speaker |
SPEAKER_01 |
transcript.pyannote[142].start |
524.97846875 |
transcript.pyannote[142].end |
525.72096875 |
transcript.pyannote[143].speaker |
SPEAKER_01 |
transcript.pyannote[143].start |
525.83909375 |
transcript.pyannote[143].end |
528.53909375 |
transcript.pyannote[144].speaker |
SPEAKER_01 |
transcript.pyannote[144].start |
528.72471875 |
transcript.pyannote[144].end |
529.23096875 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
529.68659375 |
transcript.pyannote[145].end |
542.03909375 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
533.88846875 |
transcript.pyannote[146].end |
534.10784375 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
542.03909375 |
transcript.pyannote[147].end |
551.70846875 |
transcript.pyannote[148].speaker |
SPEAKER_01 |
transcript.pyannote[148].start |
548.08034375 |
transcript.pyannote[148].end |
548.56971875 |
transcript.pyannote[149].speaker |
SPEAKER_01 |
transcript.pyannote[149].start |
549.29534375 |
transcript.pyannote[149].end |
551.64096875 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
551.96159375 |
transcript.pyannote[150].end |
563.36909375 |
transcript.pyannote[151].speaker |
SPEAKER_01 |
transcript.pyannote[151].start |
560.90534375 |
transcript.pyannote[151].end |
565.46159375 |
transcript.pyannote[152].speaker |
SPEAKER_00 |
transcript.pyannote[152].start |
564.63471875 |
transcript.pyannote[152].end |
566.42346875 |
transcript.pyannote[153].speaker |
SPEAKER_01 |
transcript.pyannote[153].start |
566.42346875 |
transcript.pyannote[153].end |
574.89471875 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
566.45721875 |
transcript.pyannote[154].end |
570.33846875 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
573.32534375 |
transcript.pyannote[155].end |
573.46034375 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
575.26596875 |
transcript.pyannote[156].end |
579.02909375 |
transcript.whisperx[0].start |
7.733 |
transcript.whisperx[0].end |
9.26 |
transcript.whisperx[0].text |
謝謝主席有請陳部長陳部長 |
transcript.whisperx[1].start |
17.007 |
transcript.whisperx[1].end |
43.1 |
transcript.whisperx[1].text |
部長好我想經濟委員會召委很用心排這個題目我認為非常好確實是要去思考現在農業保險這幾年上路之後的一個檢討的問題可是在這裡同時其實相關的一個法案的修改最近都紛紛出爐包括我之前提的農民退休金促進條例第七條的修正案還有包括農民保險的這個排付條款的部分請部長這邊跟行政院溝通的部分能夠加速進行這是第一點提醒 |
transcript.whisperx[2].start |
43.82 |
transcript.whisperx[2].end |
72.95 |
transcript.whisperx[2].text |
那第二個的部分呢今天在野黨所提的這個拉掉中央補助的上限的部分齁我覺得第一個有可能會排擠到剛剛我所提的那兩項的一個福利預算的問題啦因為預算是都綁在一起的這是第一個啦齁那第二個的部分呢補助的部分剛剛你也說明很清楚可能到75%如果到75%的情況底下依照目前的覆蓋率喔個人的算起來看起來農業保險覆蓋率大概53.72但是實質上你如果扣除掉強制納保的豬隻啊水稻等等啦齁 |
transcript.whisperx[3].start |
73.73 |
transcript.whisperx[3].end |
79.937 |
transcript.whisperx[3].text |
覆蓋率其實不過是20%20.7對才20%而已啊所以這個你已經補助到75%還20%也就是補助不是關鍵嘛是在保單的設計才是問題嘛那保單的設計的問題這就是我們今天要好好來探討的問題啦那保單的設計第一個我看到那個整個結果齁 |
transcript.whisperx[4].start |
93.272 |
transcript.whisperx[4].end |
111.311 |
transcript.whisperx[4].text |
農運領不到啦產險公司賺飽飽第二個是多項農產品其實是被遺漏的沒有納召一個農業保障的範圍第三個現有保單又難以滿足產需的一個需求如果就這樣子來我們區分的話以目前的政策型的保險或商業型的保險來看的話 |
transcript.whisperx[5].start |
112.512 |
transcript.whisperx[5].end |
136.311 |
transcript.whisperx[5].text |
我看起來政策型的保險之所以能夠處理一來是分為收入型一來分為死亡型不論是收入型的這一個部分這理賠的部分的參數能夠容易量化另外死亡型的部分還有包括這個豬隻跟乳牛的部分基本上也是容易量化這個基本上是比較OK的目前這個還OK可是呢我必須提醒部長部長 |
transcript.whisperx[6].start |
138.232 |
transcript.whisperx[6].end |
160.182 |
transcript.whisperx[6].text |
主要是出現在商業型的保險這36種當中是非強制的保險真正需要檢討是這個部分覆蓋力過低的元兇也是在這邊那主要的在哪裡一來理賠的門檻不太一次一來過高二來理賠的金額過低我看一下部長部長數字看一下 |
transcript.whisperx[7].start |
162.643 |
transcript.whisperx[7].end |
174.211 |
transcript.whisperx[7].text |
除了聽幕僚講一下 看一下我powerpoint整理出來的數字你看喔 理賠率這三年當中以2021、22、23 理賠率不過是1.94%、6%你總totally的這個保險基金從第一年的267億到第三年的300多億來看 |
transcript.whisperx[8].start |
182.896 |
transcript.whisperx[8].end |
202.961 |
transcript.whisperx[8].text |
理賠率都沒有超過這個10%那以國泰這個產險的這個巴勒的保險來看的話設定的最大的陣風要十幾以上要連續五天那以照目前我算一算以照這個條件來看造成全國現有的巴勒的投保率不到1% |
transcript.whisperx[9].start |
206.736 |
transcript.whisperx[9].end |
221.129 |
transcript.whisperx[9].text |
我查到一百多元就農民反應過起來是這樣子這是第一個啦你要繳的一兩萬的這個保費來說然後等到那個大颱風大豪雨的時候那時期就大概是中台啦大家就認為不划算還有一個我選區裡頭的大內的部分 |
transcript.whisperx[10].start |
226.052 |
transcript.whisperx[10].end |
243.257 |
transcript.whisperx[10].text |
你搭建一個往事的部分 起碼要花兩百萬即便你有補助 夯不啷噹你至少要出個一百你一分地 賠起來不到一千元賠起來不到一千元 你知道部長 木瓜的投保件數有幾件嗎 你知道嗎 |
transcript.whisperx[11].start |
244.538 |
transcript.whisperx[11].end |
266.454 |
transcript.whisperx[11].text |
六件所以說 你看 八六不到一趴 那木瓜才六件這就是 你已經弄了四年多了喔 原因在哪裡第一個就是好與成為常態 理賠的門檻過高第二個就是理賠的金額太少 保險報酬率太低 |
transcript.whisperx[12].start |
267.813 |
transcript.whisperx[12].end |
292.363 |
transcript.whisperx[12].text |
那我這樣再算一算部長這個保單的真正需要設計的問題是在這邊過往我們只要去我們去要求拜託看起來好像拜託公股的一些慘險公司或私人的慘險公司何嘗你們來拜託人他們都配合政策那你怎麼不要求他來兌換這個社會責任呢你去看喔300多億當中喔 |
transcript.whisperx[13].start |
293.163 |
transcript.whisperx[13].end |
310.357 |
transcript.whisperx[13].text |
五十幾%的覆蓋率 超過三成以上是那個政策型的保險有其他的部分是屬於給私人的保險他們不單是三百多億當中呢一年當中就有超過一百億當中丟入這個產險公司裡頭而非農業系統這種情況底下 你賠率這麼低 |
transcript.whisperx[14].start |
312.731 |
transcript.whisperx[14].end |
335.601 |
transcript.whisperx[14].text |
不然是他們暴利啊我先跟他們報一下您這邊的算法可能有一點出入第一個就是說我們的理賠率應該是保費的收入當分母而不是保險的金額當分母是保費的收入當分母除以分子是理賠金額那大概多少那樣子我們算出來商業型的保險本身在113年它的理賠率是47 |
transcript.whisperx[15].start |
337.021 |
transcript.whisperx[15].end |
362.55 |
transcript.whisperx[15].text |
那如果47啊那一個合理的理賠率應該是在70到80因為他有成本嘛所以他還是偏低沒錯所以我們有現在有在設計就是說當他前一年度的理賠率比較低的時候我們就會降低保費來做處理因應啊大概是這樣子的方式如果是這樣子的話那為什麼那個投保的那個件數會那麼低呢 |
transcript.whisperx[16].start |
363.31 |
transcript.whisperx[16].end |
373.696 |
transcript.whisperx[16].text |
沒有 如果沒有那麼離譜的話你把你相關的理賠率啦 回後給本席一份我覺得重點的部分是要告知那個部長這個保單的設計是關鍵啦不是在保費的補貼 |
transcript.whisperx[17].start |
378.459 |
transcript.whisperx[17].end |
399.151 |
transcript.whisperx[17].text |
不是關鍵啊所以那個整個保單的設計的部分的這個商業型的保險是目前外界最詬病的地方除了農產品之外部長我趁這個機會再提醒你一下就是說呢漁產的部分的保單的這個投保起伏也是過大 |
transcript.whisperx[18].start |
400.131 |
transcript.whisperx[18].end |
419.409 |
transcript.whisperx[18].text |
譬如講這個以私募以來說他之前如果理賠有出現的話 有理賠的話那下一年度的投保率就會增加可是呢 你像牡蠣啦 文革啦像我的選區當中七股這邊都有基本上到目前為止也都還不行 |
transcript.whisperx[19].start |
421.257 |
transcript.whisperx[19].end |
450.029 |
transcript.whisperx[19].text |
還沒有納入捏還在等待保單捏我要跟市長報告您講得非常重要就是保單的內容跟它的品質才是重點對啊然後像牡蠣來講因為它本身這幾年來它發生天然災害的風險變高了以後它的保費設計就是說我可以開辦這個保單但是它那個保費會高得離譜因為它的資料的計算的時間點很短過去我們並沒有這個資料 |
transcript.whisperx[20].start |
451.289 |
transcript.whisperx[20].end |
472.681 |
transcript.whisperx[20].text |
那這幾年的比較長的時間平均值還可以做平均值但之前我們並沒有一些比較明確的數據所以換句話說在現有的數據裡面他去算那個風險的時候他的風險非常高所以他的保費變成非常高那漁民一定沒辦法接受的所以我們我們現在就是說看看有沒有有沒有辦法設計出一些 |
transcript.whisperx[21].start |
473.735 |
transcript.whisperx[21].end |
486.42 |
transcript.whisperx[21].text |
比較改良式的一些一些保單的內容包括就是說你在特定的情況之下去做處理那如果說超過一定的風險的時候政府的吸收會高一點 |
transcript.whisperx[22].start |
489.461 |
transcript.whisperx[22].end |
509.753 |
transcript.whisperx[22].text |
我們以後不能補那些也很奇怪你回去最快也要一顆這個我們一直在檢討另外還有包括那個柚子的部分我再直接講重點好了那個你柚子的部分一般傳統人壽的保單如果項目越多保費會越低可是面積越大保費會越高以照目前為止他的計算的方式要立即落狗 |
transcript.whisperx[23].start |
510.433 |
transcript.whisperx[23].end |
524.781 |
transcript.whisperx[23].text |
但是颱風來所造成的這些東西延遲性的一個損傷大概都沒有納入啦那現階段的類似這種東西你只適用一個粒子如果延遲性損傷沒有保障的話那就是困難啦對啊 但是我給你們報告齁 |
transcript.whisperx[24].start |
526.002 |
transcript.whisperx[24].end |
543.964 |
transcript.whisperx[24].text |
我一直希望說第一個就是如果同一個農民他每年都有投保的時候我希望他保費能夠下降就是有折扣這樣能夠鼓勵第二個就是你投保的面積越大應該你的保費應該也要有折扣這樣的話才會有誘因部長時間到我也不要耽誤後面會員的時間 |
transcript.whisperx[25].start |
545.626 |
transcript.whisperx[25].end |
574.339 |
transcript.whisperx[25].text |
只是要求一件事情四年多了啦 該檢討的啦我特別要求是商業型的這個部分啦或者是你政策型的要多一些品項也OK啦做一個整體的檢討麻煩你一個月的時候給本席一份好 可以對啊 你要如果改進現在這種既有的方式剛才本席所提出的這些問題去年一整年我們就在檢討每一張對 但我要求你啊所以你既然有檢討那你一個月拿出來應該是沒有什麼問題啊我們會提供 好一個月內喔 你把所有資料給我好 謝謝 |
transcript.whisperx[26].start |
575.28 |
transcript.whisperx[26].end |
577.25 |
transcript.whisperx[26].text |
好 謝謝現在請陳廷飛委員做詢答 |