IVOD_ID |
162423 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/162423 |
日期 |
2025-06-11 |
會議資料.會議代碼 |
聯席會議-11-3-19,20-3 |
會議資料.會議代碼:str |
第11屆第3會期經濟、財政兩委員會第3次聯席會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
3 |
會議資料.種類 |
聯席會議 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼[1] |
20 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.委員會代碼:str[1] |
財政委員會 |
會議資料.標題 |
第11屆第3會期經濟、財政兩委員會第3次聯席會議 |
影片種類 |
Clip |
開始時間 |
2025-06-11T10:19:57+08:00 |
結束時間 |
2025-06-11T10:28:39+08:00 |
影片長度 |
00:08:42 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5b5dae1827dbf6c90e50f3879ce25351b4fab53e924c0ec17ecf2f83f27aab3b458456231790284f5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
賴瑞隆 |
委員發言時間 |
10:19:57 - 10:28:39 |
會議時間 |
2025-06-11T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期經濟、財政兩委員會第3次聯席會議(事由:審查:
一、本院委員謝衣鳯等16人擬具「農業保險法第十條條文修正草案」案。
二、本院委員邱若華等21人擬具「農業保險法第二條及第十條條文修正草案」案。
三、本院台灣民眾黨黨團擬具「農業保險法第二條及第十條條文修正草案」案。(詢答)) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
4.08096875 |
transcript.pyannote[0].end |
5.63346875 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
6.15659375 |
transcript.pyannote[1].end |
6.69659375 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
11.43846875 |
transcript.pyannote[2].end |
33.15659375 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
33.57846875 |
transcript.pyannote[3].end |
38.74221875 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
39.36659375 |
transcript.pyannote[4].end |
43.99034375 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
42.58971875 |
transcript.pyannote[5].end |
44.04096875 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
44.04096875 |
transcript.pyannote[6].end |
44.91846875 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
44.12534375 |
transcript.pyannote[7].end |
44.24346875 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
45.44159375 |
transcript.pyannote[8].end |
46.85909375 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
47.44971875 |
transcript.pyannote[9].end |
50.41971875 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
50.72346875 |
transcript.pyannote[10].end |
56.98409375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
56.30909375 |
transcript.pyannote[11].end |
57.82784375 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
57.82784375 |
transcript.pyannote[12].end |
60.32534375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
60.62909375 |
transcript.pyannote[13].end |
64.00409375 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
62.89034375 |
transcript.pyannote[14].end |
64.67909375 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
64.71284375 |
transcript.pyannote[15].end |
66.18096875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
67.00784375 |
transcript.pyannote[16].end |
68.93159375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
68.96534375 |
transcript.pyannote[17].end |
68.98221875 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
68.99909375 |
transcript.pyannote[18].end |
73.60596875 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
70.53471875 |
transcript.pyannote[19].end |
73.16721875 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
73.60596875 |
transcript.pyannote[20].end |
94.63221875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
85.01346875 |
transcript.pyannote[21].end |
85.23284375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
91.64534375 |
transcript.pyannote[22].end |
91.86471875 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
94.58159375 |
transcript.pyannote[23].end |
94.98659375 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
94.98659375 |
transcript.pyannote[24].end |
96.55596875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
96.52221875 |
transcript.pyannote[25].end |
96.53909375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
96.55596875 |
transcript.pyannote[26].end |
97.97346875 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
96.77534375 |
transcript.pyannote[27].end |
97.23096875 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
97.66971875 |
transcript.pyannote[28].end |
102.09096875 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
102.10784375 |
transcript.pyannote[29].end |
117.10971875 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
110.83221875 |
transcript.pyannote[30].end |
111.25409375 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
117.22784375 |
transcript.pyannote[31].end |
124.45034375 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
124.19721875 |
transcript.pyannote[32].end |
129.61409375 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
129.96846875 |
transcript.pyannote[33].end |
131.43659375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
131.43659375 |
transcript.pyannote[34].end |
158.97659375 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
143.21534375 |
transcript.pyannote[35].end |
143.29971875 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
158.97659375 |
transcript.pyannote[36].end |
168.51096875 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
160.19159375 |
transcript.pyannote[37].end |
163.31346875 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
164.95034375 |
transcript.pyannote[38].end |
165.37221875 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
166.63784375 |
transcript.pyannote[39].end |
167.17784375 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
167.39721875 |
transcript.pyannote[40].end |
167.70096875 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
168.62909375 |
transcript.pyannote[41].end |
202.83471875 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
202.96971875 |
transcript.pyannote[42].end |
209.43284375 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
209.97284375 |
transcript.pyannote[43].end |
222.78096875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
223.10159375 |
transcript.pyannote[44].end |
238.42409375 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
236.34846875 |
transcript.pyannote[45].end |
238.37346875 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
238.42409375 |
transcript.pyannote[46].end |
238.49159375 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
238.49159375 |
transcript.pyannote[47].end |
238.55909375 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
238.55909375 |
transcript.pyannote[48].end |
238.94721875 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
238.94721875 |
transcript.pyannote[49].end |
247.73909375 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
238.99784375 |
transcript.pyannote[50].end |
239.74034375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
248.00909375 |
transcript.pyannote[51].end |
250.06784375 |
transcript.pyannote[52].speaker |
SPEAKER_01 |
transcript.pyannote[52].start |
250.06784375 |
transcript.pyannote[52].end |
250.21971875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
250.21971875 |
transcript.pyannote[53].end |
250.35471875 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
250.35471875 |
transcript.pyannote[54].end |
250.72596875 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
250.72596875 |
transcript.pyannote[55].end |
250.75971875 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
250.75971875 |
transcript.pyannote[56].end |
307.03784375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
261.62721875 |
transcript.pyannote[57].end |
261.69471875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
307.03784375 |
transcript.pyannote[58].end |
307.62846875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
309.31596875 |
transcript.pyannote[59].end |
318.22596875 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
318.56346875 |
transcript.pyannote[60].end |
319.69409375 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
320.18346875 |
transcript.pyannote[61].end |
327.08534375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
327.79409375 |
transcript.pyannote[62].end |
330.20721875 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
330.61221875 |
transcript.pyannote[63].end |
335.38784375 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
335.86034375 |
transcript.pyannote[64].end |
338.39159375 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
338.66159375 |
transcript.pyannote[65].end |
342.79596875 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
343.67346875 |
transcript.pyannote[66].end |
344.38221875 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
344.82096875 |
transcript.pyannote[67].end |
347.75721875 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
348.12846875 |
transcript.pyannote[68].end |
349.83284375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
350.22096875 |
transcript.pyannote[69].end |
351.48659375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
351.89159375 |
transcript.pyannote[70].end |
351.90846875 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
351.90846875 |
transcript.pyannote[71].end |
377.71034375 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
370.50471875 |
transcript.pyannote[72].end |
370.74096875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
376.15784375 |
transcript.pyannote[73].end |
378.46971875 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
378.01409375 |
transcript.pyannote[74].end |
408.20346875 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
378.62159375 |
transcript.pyannote[75].end |
378.67221875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
379.17846875 |
transcript.pyannote[76].end |
379.46534375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
386.16471875 |
transcript.pyannote[77].end |
386.55284375 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
409.13159375 |
transcript.pyannote[78].end |
409.14846875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
409.14846875 |
transcript.pyannote[79].end |
410.29596875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
411.10596875 |
transcript.pyannote[80].end |
415.88159375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
416.11784375 |
transcript.pyannote[81].end |
424.55534375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
424.63971875 |
transcript.pyannote[82].end |
426.93471875 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
427.33971875 |
transcript.pyannote[83].end |
428.90909375 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
429.29721875 |
transcript.pyannote[84].end |
429.61784375 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
429.92159375 |
transcript.pyannote[85].end |
431.20409375 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
431.79471875 |
transcript.pyannote[86].end |
433.63409375 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
433.78596875 |
transcript.pyannote[87].end |
453.93471875 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
437.02596875 |
transcript.pyannote[88].end |
437.38034375 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
439.32096875 |
transcript.pyannote[89].end |
441.73409375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
454.18784375 |
transcript.pyannote[90].end |
463.19909375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
459.25034375 |
transcript.pyannote[91].end |
461.08971875 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
463.19909375 |
transcript.pyannote[92].end |
463.53659375 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
463.53659375 |
transcript.pyannote[93].end |
465.66284375 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
466.20284375 |
transcript.pyannote[94].end |
467.06346875 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
467.02971875 |
transcript.pyannote[95].end |
468.27846875 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
467.24909375 |
transcript.pyannote[96].end |
475.39971875 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
471.24846875 |
transcript.pyannote[97].end |
471.60284375 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
475.39971875 |
transcript.pyannote[98].end |
476.39534375 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
475.41659375 |
transcript.pyannote[99].end |
475.73721875 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
476.51346875 |
transcript.pyannote[100].end |
486.97596875 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
485.92971875 |
transcript.pyannote[101].end |
486.04784375 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
486.40221875 |
transcript.pyannote[102].end |
486.62159375 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
486.97596875 |
transcript.pyannote[103].end |
521.18159375 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
495.51471875 |
transcript.pyannote[104].end |
495.53159375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
498.90659375 |
transcript.pyannote[105].end |
500.98221875 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
504.52596875 |
transcript.pyannote[106].end |
504.93096875 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
509.21721875 |
transcript.pyannote[107].end |
509.40284375 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
513.23346875 |
transcript.pyannote[108].end |
513.35159375 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
516.96284375 |
transcript.pyannote[109].end |
518.73471875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
520.64159375 |
transcript.pyannote[110].end |
520.97909375 |
transcript.whisperx[0].start |
4.372 |
transcript.whisperx[0].end |
5.418 |
transcript.whisperx[0].text |
謝主席請陳部長陳部長 |
transcript.whisperx[1].start |
11.582 |
transcript.whisperx[1].end |
37.855 |
transcript.whisperx[1].text |
陳部長先請教一下先恭喜其實亞洲成為了這個口蹄翼跟非洲豬瘟跟傳統豬瘟的非裔國亞洲的唯一的一個非裔國這個非常的重要那這個未來台灣應該持續的會把我們的好的豬肉銷往世界各國吧才有更好的一些收益吧會的我想第一個部分就是我們成為三大豬瘟非裔國的 |
transcript.whisperx[2].start |
39.451 |
transcript.whisperx[2].end |
65.781 |
transcript.whisperx[2].text |
我們另一塊階段我們會持續的守成啦這個很重要這當然很重要一定要守成然後這個機會我們是很少因為群角都兩個唯一的一個我們針對幾個目標市場國因為以前傳統豬瘟存在不容易外銷現在都可以去做會鎖定哪幾個目標市場國我想幾個主要的日本早期的日本是一個我們豬肉外銷日本還有其他的嗎那還有本身 |
transcript.whisperx[3].start |
67.262 |
transcript.whisperx[3].end |
94.396 |
transcript.whisperx[3].text |
東南亞的地區新加坡新加坡菲律賓的部分都有菲律賓都會去打進這些市場我們希望把台灣豬肉的品牌往上提升就像很多世界國家比如說很多人講到西班牙的伊比利豬肉想到很多的時候我們就會講到那我們希望台灣的豬肉品牌也能夠持續在國際上讓這個豬肉持續在國際上是台灣的豬肉是被認為是國際上品質非常好的一個豬肉我們認為這個也是提升台灣整體的一個形象 |
transcript.whisperx[4].start |
95.276 |
transcript.whisperx[4].end |
116.195 |
transcript.whisperx[4].text |
部長會朝這個方向嗎?會,我們會朝這個方向所以這幾個國家都要來推動嘛對不對?對,我想菲律賓現在已經同意我們可以輸出了嘛菲律賓同意了?菲律賓同意了,新加坡也同意了那現在就是日本,我們會開始其中跟他做一個談判日本還在談判當中?對 |
transcript.whisperx[5].start |
117.316 |
transcript.whisperx[5].end |
144.865 |
transcript.whisperx[5].text |
那預定什麼時候會這個我想我們會努力因為我們現在日本也設了農業組嘛我們希望說用更積極的態度去溝通那麼預定說將來在外銷的那個量部分達到一個什麼樣的目標明年有沒有設定一個目標的量我們現在正在跟業者討論因為現在目前銷日本的他有不同的類別生鮮的以外還有一些加工的加工的部分他們現在銷的還不錯啦他現在通路已經建立了 |
transcript.whisperx[6].start |
145.425 |
transcript.whisperx[6].end |
174.264 |
transcript.whisperx[6].text |
好像跟日本的西武鐵道公司整建立了那以後生鮮如果談得上的話就可以搭接在現在的通路往前走那這個部分我想我們會繼續努力好再抓一下一個可能預估目標的量好不好對我們會來跟越野談完以後我們當然希望提升台灣豬肉的品質也讓這個豬肉有更好的一些收益是好那另外回到今天的這個我看了一下整個這個報告裡面其實 |
transcript.whisperx[7].start |
175.525 |
transcript.whisperx[7].end |
202.163 |
transcript.whisperx[7].text |
到現在為止從這個實施了四年我們這個法實施了四年多來那如果要照現在委員們的修法的話把這個第六年起的60%的上限文字拿掉的話那等同未來幾乎是形同五年內是75%那第六年之後有些可能就完全是沒有上限的規定了那我看來農業部覺得這個是有不確定性嗎 有所擔憂嗎 |
transcript.whisperx[8].start |
203.044 |
transcript.whisperx[8].end |
218.656 |
transcript.whisperx[8].text |
是 我想第六年以後拿掉因為它是一個上限拿掉的話可以是0也可以是100那個不確定性就非常高那當初訂這個法的時候是希望一開始的時候能夠給政府單位補助的一個 |
transcript.whisperx[9].start |
219.557 |
transcript.whisperx[9].end |
234.303 |
transcript.whisperx[9].text |
指導就是前面5年比較辛苦大家不認知農民比較不認識這個保險所以補助比例最高是75然後慢慢的推廣的時候農民知道這樣的保險的重要性那補助的比例可以下降到6%當初的立法 |
transcript.whisperx[10].start |
236.523 |
transcript.whisperx[10].end |
264.252 |
transcript.whisperx[10].text |
75、60這樣慢慢的來不要依靠政府的補助來然後以現在來講我們大概是二分之一然後地方政府有時候會多也會補30%或40%但是它不會影響這個上限所以現在最高的大概是給50補助50以實際狀況上是如此啦那反倒是如果把這個東西拿掉之後反倒是像部長講的是0到100多反而產生一些不明確性所以我覺得這個可能 |
transcript.whisperx[11].start |
264.972 |
transcript.whisperx[11].end |
293.01 |
transcript.whisperx[11].text |
在整個到時候可能我們再討論到時候再做討論那另外我也想請教其實農業的損失像現在年均大概121億其實農業保險是真的有必要性那但是在推動上面的時候現在現金的救助大概是佔25%大概75%等於是農民自己要自行來負擔這樣的損失所以我們當然也希望未來更多的農業保險的推動的時候能夠讓 |
transcript.whisperx[12].start |
294.091 |
transcript.whisperx[12].end |
306.66 |
transcript.whisperx[12].text |
更多農民參與進來的時候能夠讓這樣的一個這個農民的遭受這些風險能夠降低啦不要承受那麼大的一個風險那但是好像成效上不是那麼好部長怎麼來看怎麼來推動 |
transcript.whisperx[13].start |
309.904 |
transcript.whisperx[13].end |
326.24 |
transcript.whisperx[13].text |
我想第一個部分就是整個天然災害本身我們是希望就是以補助它的成本的20%為上限但是現在因為天然災害的頻度越來越高以去年來講我們整個的天然災害救助金花了84億 |
transcript.whisperx[14].start |
327.862 |
transcript.whisperx[14].end |
342.582 |
transcript.whisperx[14].text |
是蠻高的啦所以怎麼樣讓我們的農業保險能夠去補足天然災害的不足那這個部分我覺得才是要去思考的重點所以後續我們會去看哪一些天然災害風險比較高的 |
transcript.whisperx[15].start |
343.715 |
transcript.whisperx[15].end |
368.849 |
transcript.whisperx[15].text |
的品項那天然災害本身絕對有限那這個時候的農業保險就要加強力道去做這個方面的處理我希望部長針對每一個的在深入去那個之後然後跟農民去做溝通啦因為農民大家感受到政府的補助進來讓我做這個保險之後我能夠達到效益的時候他當然才比較有意願嘛如果說效益上不大那當然大家就會想要 |
transcript.whisperx[16].start |
369.689 |
transcript.whisperx[16].end |
396.551 |
transcript.whisperx[16].text |
賭賭看嘛賭過了就不賠嘛但是賭不過的話那就慘了但是一定要把那個每一個狀況給分析出來這樣才有辦法讓那個然後政府的補助到多少能達到那個效益那這樣子才有辦法達到讓更多的農民加入這個保險的部分好不好請部長再更細緻的去把它給抓出來這樣才能夠達到比較小好那再要請教一下其實如果我們把強制型的扣掉的話其實 |
transcript.whisperx[17].start |
397.432 |
transcript.whisperx[17].end |
402.795 |
transcript.whisperx[17].text |
整個保險率其實是偏低的20.7如果把強制的話20.7這其實是在推進了4年還20.7這樣成效部長應該不滿意吧我覺得還好 |
transcript.whisperx[18].start |
411.335 |
transcript.whisperx[18].end |
431.785 |
transcript.whisperx[18].text |
還好啦 但是20.7的一個平均裡面 我覺得水產特別低 水產才2.7而已那水產也會把一些的平均值拉下來那我一直強調就是說 我希望我們的保單的品質要提升讓更多人來投保 那個保單才有它的風險分擔的價值 |
transcript.whisperx[19].start |
433.846 |
transcript.whisperx[19].end |
460.561 |
transcript.whisperx[19].text |
部長也點出來其實20我覺得還有成長的空間那水的水產品更低啦更需要努力2點多而已的話那這個呢你看我們來看一下水產品這個啦其實從106年的20件到107年的19件降到了去年只有剩6件這個整個持續在降啦那幾乎推行的幾乎反倒是降了所以我當然知道現在原來補助是三分之一現在有可能會補到二分之一我們現在補到二分之一有送10件進來了嗎 |
transcript.whisperx[20].start |
464.304 |
transcript.whisperx[20].end |
482.236 |
transcript.whisperx[20].text |
應該10件都會給予支持吧應該會吧10件支持至少比去年的6件就增加了我還是希望部長針對這些水產品的部分再去加強我們先來努力啦因為我覺得它一定是某個環節我們的保端的設計是讓漁民無感的 |
transcript.whisperx[21].start |
484.057 |
transcript.whisperx[21].end |
499.354 |
transcript.whisperx[21].text |
所以這個部分我想我們會努力來這個保險一定是這樣啦你政府有給我補貼了補到了三分之一甚至補到二分之一我還是只有這些建設要來限燃他沒有感覺他還是要去讀讀看所以表示說在政策上應該還可以再更怎麼樣去針對這個問題現在看來是 |
transcript.whisperx[22].start |
502.397 |
transcript.whisperx[22].end |
517.51 |
transcript.whisperx[22].text |
石斑、鰻魚跟蛙魚嘛那我覺得應該還可以再找到更有效的方法去讓更多農民加入只有更多的農民加入保險才能夠比較確保他們整體的收益啦那特別現在的青農越來越多的時候也許可以努力看看去溝通好不好請部長再加強力道啦好謝謝 |