iVOD / 162342

Field Value
IVOD_ID 162342
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/162342
日期 2025-06-09
會議資料.會議代碼 委員會-11-3-26-16
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第16次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 16
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第16次全體委員會議
影片種類 Clip
開始時間 2025-06-09T12:34:18+08:00
結束時間 2025-06-09T12:53:18+08:00
影片長度 00:19:00
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/4d6a092c3b844592c3b71b26bd3fccabba6a1b99ce3116a0c927efe44bf8825af2ef179986d190cb5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 劉建國
委員發言時間 12:34:18 - 12:53:18
會議時間 2025-06-09T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第16次全體委員會議(事由:審查 一、行政院函請審議「全民健康保險資料管理條例草案」案。 二、委員林月琴等21人擬具「全民健康保險資料管理條例草案」案。 【詢答及審查】 【第二案,如未經各黨團簽署不復議同意書,則不予審查】 【6月9日及11日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 4.55346875
transcript.pyannote[0].end 5.48159375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 5.58284375
transcript.pyannote[1].end 6.39284375
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 6.59534375
transcript.pyannote[2].end 7.96221875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 7.13534375
transcript.pyannote[3].end 9.37971875
transcript.pyannote[4].speaker SPEAKER_03
transcript.pyannote[4].start 9.16034375
transcript.pyannote[4].end 9.70034375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 9.90284375
transcript.pyannote[5].end 10.22346875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 12.60284375
transcript.pyannote[6].end 13.22721875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 13.56471875
transcript.pyannote[7].end 14.08784375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 14.57721875
transcript.pyannote[8].end 14.88096875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 15.75846875
transcript.pyannote[9].end 16.16346875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 17.10846875
transcript.pyannote[10].end 22.12034375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 22.74471875
transcript.pyannote[11].end 26.60909375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 28.24596875
transcript.pyannote[12].end 39.46784375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 40.42971875
transcript.pyannote[13].end 41.10471875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 41.42534375
transcript.pyannote[14].end 45.84659375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 46.40346875
transcript.pyannote[15].end 47.51721875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 48.96846875
transcript.pyannote[16].end 50.16659375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 49.39034375
transcript.pyannote[17].end 57.03471875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 51.55034375
transcript.pyannote[18].end 52.05659375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 52.83284375
transcript.pyannote[19].end 52.93409375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 57.03471875
transcript.pyannote[20].end 57.59159375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 57.16971875
transcript.pyannote[21].end 57.40596875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 57.59159375
transcript.pyannote[22].end 57.96284375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 57.96284375
transcript.pyannote[23].end 62.89034375
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 62.89034375
transcript.pyannote[24].end 63.46409375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 63.86909375
transcript.pyannote[25].end 64.07159375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 65.06721875
transcript.pyannote[26].end 65.75909375
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 65.91096875
transcript.pyannote[27].end 66.24846875
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 66.68721875
transcript.pyannote[28].end 66.94034375
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 67.53096875
transcript.pyannote[29].end 68.45909375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 69.20159375
transcript.pyannote[30].end 69.75846875
transcript.pyannote[31].speaker SPEAKER_03
transcript.pyannote[31].start 70.12971875
transcript.pyannote[31].end 70.33221875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 70.92284375
transcript.pyannote[32].end 72.40784375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 72.91409375
transcript.pyannote[33].end 74.04471875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 74.39909375
transcript.pyannote[34].end 87.42659375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 87.96659375
transcript.pyannote[35].end 89.14784375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 89.60346875
transcript.pyannote[36].end 90.59909375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 90.97034375
transcript.pyannote[37].end 91.42596875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 91.57784375
transcript.pyannote[38].end 92.08409375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 92.45534375
transcript.pyannote[39].end 93.29909375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 93.82221875
transcript.pyannote[40].end 94.71659375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 95.25659375
transcript.pyannote[41].end 96.06659375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 96.58971875
transcript.pyannote[42].end 97.11284375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 98.36159375
transcript.pyannote[43].end 98.73284375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 99.39096875
transcript.pyannote[44].end 100.03221875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 100.03221875
transcript.pyannote[45].end 100.20096875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 101.77034375
transcript.pyannote[46].end 101.78721875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 101.78721875
transcript.pyannote[47].end 102.17534375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 103.28909375
transcript.pyannote[48].end 113.97096875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 113.97096875
transcript.pyannote[49].end 114.03846875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 114.03846875
transcript.pyannote[50].end 114.96659375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 114.96659375
transcript.pyannote[51].end 115.03409375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 115.03409375
transcript.pyannote[52].end 115.96221875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 115.96221875
transcript.pyannote[53].end 116.02971875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 116.02971875
transcript.pyannote[54].end 116.97471875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 116.97471875
transcript.pyannote[55].end 117.02534375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 117.02534375
transcript.pyannote[56].end 117.09284375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 117.09284375
transcript.pyannote[57].end 117.21096875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 117.21096875
transcript.pyannote[58].end 119.84346875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 117.59909375
transcript.pyannote[59].end 118.35846875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 118.83096875
transcript.pyannote[60].end 119.38784375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 120.21471875
transcript.pyannote[61].end 122.79659375
transcript.pyannote[62].speaker SPEAKER_03
transcript.pyannote[62].start 122.34096875
transcript.pyannote[62].end 122.71221875
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 122.79659375
transcript.pyannote[63].end 124.73721875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 123.26909375
transcript.pyannote[64].end 129.68159375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 129.68159375
transcript.pyannote[65].end 136.06034375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 136.06034375
transcript.pyannote[66].end 136.29659375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 136.29659375
transcript.pyannote[67].end 144.02534375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 144.37971875
transcript.pyannote[68].end 145.32471875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 145.56096875
transcript.pyannote[69].end 160.14096875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 158.72346875
transcript.pyannote[70].end 159.85409375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 160.36034375
transcript.pyannote[71].end 198.26159375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 175.66596875
transcript.pyannote[72].end 175.86846875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 192.91221875
transcript.pyannote[73].end 193.38471875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 193.75596875
transcript.pyannote[74].end 193.77284375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 198.39659375
transcript.pyannote[75].end 231.18471875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 230.81346875
transcript.pyannote[76].end 231.75846875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 231.70784375
transcript.pyannote[77].end 236.23034375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 236.61846875
transcript.pyannote[78].end 239.67284375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 240.09471875
transcript.pyannote[79].end 246.11909375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 246.37221875
transcript.pyannote[80].end 252.61596875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 253.20659375
transcript.pyannote[81].end 254.16846875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 254.55659375
transcript.pyannote[82].end 255.50159375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 255.97409375
transcript.pyannote[83].end 265.69409375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 265.79534375
transcript.pyannote[84].end 268.47846875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 269.86221875
transcript.pyannote[85].end 274.23284375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 277.28721875
transcript.pyannote[86].end 286.39971875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 287.37846875
transcript.pyannote[87].end 299.03909375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 293.99346875
transcript.pyannote[88].end 294.48284375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 299.03909375
transcript.pyannote[89].end 299.93346875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 299.93346875
transcript.pyannote[90].end 299.96721875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 299.96721875
transcript.pyannote[91].end 300.81096875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 301.13159375
transcript.pyannote[92].end 301.19909375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 301.19909375
transcript.pyannote[93].end 301.21596875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 301.21596875
transcript.pyannote[94].end 301.80659375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 301.80659375
transcript.pyannote[95].end 301.84034375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 301.84034375
transcript.pyannote[96].end 302.14409375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 302.14409375
transcript.pyannote[97].end 302.16096875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 302.16096875
transcript.pyannote[98].end 302.21159375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 302.41409375
transcript.pyannote[99].end 307.03784375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 302.66721875
transcript.pyannote[100].end 303.05534375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 307.03784375
transcript.pyannote[101].end 307.35846875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 308.18534375
transcript.pyannote[102].end 314.91846875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 310.90221875
transcript.pyannote[103].end 314.53034375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 314.91846875
transcript.pyannote[104].end 327.76034375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 314.93534375
transcript.pyannote[105].end 315.50909375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 328.03034375
transcript.pyannote[106].end 329.32971875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 329.32971875
transcript.pyannote[107].end 329.36346875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 330.08909375
transcript.pyannote[108].end 330.71346875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 331.23659375
transcript.pyannote[109].end 344.28096875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 339.30284375
transcript.pyannote[110].end 341.49659375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 344.24721875
transcript.pyannote[111].end 360.12659375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 349.93409375
transcript.pyannote[112].end 352.06034375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 360.12659375
transcript.pyannote[113].end 363.95721875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 360.64971875
transcript.pyannote[114].end 363.88971875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 364.15971875
transcript.pyannote[115].end 364.44659375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 364.71659375
transcript.pyannote[116].end 375.60096875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 376.02284375
transcript.pyannote[117].end 376.34346875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 376.69784375
transcript.pyannote[118].end 379.12784375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 379.12784375
transcript.pyannote[119].end 379.14471875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 379.14471875
transcript.pyannote[120].end 406.41471875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 406.06034375
transcript.pyannote[121].end 413.06346875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 410.78534375
transcript.pyannote[122].end 411.15659375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 413.06346875
transcript.pyannote[123].end 413.09721875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 413.16471875
transcript.pyannote[124].end 413.33346875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 413.33346875
transcript.pyannote[125].end 414.02534375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 414.02534375
transcript.pyannote[126].end 414.09284375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 414.09284375
transcript.pyannote[127].end 414.34596875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 414.34596875
transcript.pyannote[128].end 436.18221875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 436.18221875
transcript.pyannote[129].end 442.51034375
transcript.pyannote[130].speaker SPEAKER_03
transcript.pyannote[130].start 442.51034375
transcript.pyannote[130].end 442.88159375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 442.74659375
transcript.pyannote[131].end 444.67034375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 444.82221875
transcript.pyannote[132].end 449.02409375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 449.05784375
transcript.pyannote[133].end 453.56346875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 454.20471875
transcript.pyannote[134].end 455.03159375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 455.38596875
transcript.pyannote[135].end 456.02721875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 456.02721875
transcript.pyannote[136].end 456.48284375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 457.19159375
transcript.pyannote[137].end 457.52909375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 458.10284375
transcript.pyannote[138].end 477.13784375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 477.57659375
transcript.pyannote[139].end 490.19909375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 490.19909375
transcript.pyannote[140].end 550.96596875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 511.42784375
transcript.pyannote[141].end 511.91721875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 514.60034375
transcript.pyannote[142].end 515.00534375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 551.59034375
transcript.pyannote[143].end 552.94034375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 553.36221875
transcript.pyannote[144].end 554.12159375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 555.97784375
transcript.pyannote[145].end 556.82159375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 556.82159375
transcript.pyannote[146].end 558.39096875
transcript.pyannote[147].speaker SPEAKER_03
transcript.pyannote[147].start 558.00284375
transcript.pyannote[147].end 568.46534375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 559.21784375
transcript.pyannote[148].end 559.28534375
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 559.28534375
transcript.pyannote[149].end 559.35284375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 559.35284375
transcript.pyannote[150].end 559.47096875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 568.51596875
transcript.pyannote[151].end 569.62971875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 570.06846875
transcript.pyannote[152].end 574.82721875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 575.33346875
transcript.pyannote[153].end 577.30784375
transcript.pyannote[154].speaker SPEAKER_03
transcript.pyannote[154].start 576.26159375
transcript.pyannote[154].end 579.43409375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 577.61159375
transcript.pyannote[155].end 577.96596875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 579.40034375
transcript.pyannote[156].end 581.02034375
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 581.56034375
transcript.pyannote[157].end 584.61471875
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 585.40784375
transcript.pyannote[158].end 586.63971875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 587.58471875
transcript.pyannote[159].end 587.92221875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 588.68159375
transcript.pyannote[160].end 601.38846875
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 592.61346875
transcript.pyannote[161].end 597.23721875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 597.23721875
transcript.pyannote[162].end 597.27096875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 602.14784375
transcript.pyannote[163].end 607.73346875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 608.49284375
transcript.pyannote[164].end 624.79409375
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 624.99659375
transcript.pyannote[165].end 629.35034375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 628.91159375
transcript.pyannote[166].end 630.37971875
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 630.37971875
transcript.pyannote[167].end 638.95221875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 631.03784375
transcript.pyannote[168].end 631.79721875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 632.62409375
transcript.pyannote[169].end 634.24409375
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 639.47534375
transcript.pyannote[170].end 641.82096875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 642.58034375
transcript.pyannote[171].end 646.71471875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 647.11971875
transcript.pyannote[172].end 647.54159375
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 647.76096875
transcript.pyannote[173].end 692.80034375
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 693.22221875
transcript.pyannote[174].end 697.84596875
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 697.91346875
transcript.pyannote[175].end 700.76534375
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 701.23784375
transcript.pyannote[176].end 707.26221875
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 707.66721875
transcript.pyannote[177].end 721.82534375
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 722.80409375
transcript.pyannote[178].end 723.10784375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 723.76596875
transcript.pyannote[179].end 724.06971875
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 724.22159375
transcript.pyannote[180].end 736.77659375
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 737.40096875
transcript.pyannote[181].end 737.41784375
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 737.41784375
transcript.pyannote[182].end 737.56971875
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 737.56971875
transcript.pyannote[183].end 738.17721875
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 738.10971875
transcript.pyannote[184].end 738.97034375
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 738.97034375
transcript.pyannote[185].end 739.02096875
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 739.39221875
transcript.pyannote[186].end 740.03346875
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 740.03346875
transcript.pyannote[187].end 741.99096875
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 742.17659375
transcript.pyannote[188].end 752.97659375
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 742.49721875
transcript.pyannote[189].end 742.68284375
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 749.56784375
transcript.pyannote[190].end 749.87159375
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 752.97659375
transcript.pyannote[191].end 756.72284375
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 758.14034375
transcript.pyannote[192].end 762.76409375
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 762.66284375
transcript.pyannote[193].end 763.05096875
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 762.96659375
transcript.pyannote[194].end 766.57784375
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 766.93221875
transcript.pyannote[195].end 767.18534375
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 767.18534375
transcript.pyannote[196].end 786.08534375
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 784.60034375
transcript.pyannote[197].end 790.69221875
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 787.55346875
transcript.pyannote[198].end 788.78534375
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 789.71346875
transcript.pyannote[199].end 799.29846875
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 795.72096875
transcript.pyannote[200].end 795.77159375
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 795.77159375
transcript.pyannote[201].end 796.71659375
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 799.82159375
transcript.pyannote[202].end 800.69909375
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 801.49221875
transcript.pyannote[203].end 802.04909375
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 802.38659375
transcript.pyannote[204].end 805.87971875
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 806.68971875
transcript.pyannote[205].end 808.25909375
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 808.63034375
transcript.pyannote[206].end 810.68909375
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 811.65096875
transcript.pyannote[207].end 812.64659375
transcript.pyannote[208].speaker SPEAKER_02
transcript.pyannote[208].start 812.81534375
transcript.pyannote[208].end 813.20346875
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 813.86159375
transcript.pyannote[209].end 814.55346875
transcript.pyannote[210].speaker SPEAKER_02
transcript.pyannote[210].start 815.12721875
transcript.pyannote[210].end 815.39721875
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 815.68409375
transcript.pyannote[211].end 817.00034375
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 817.62471875
transcript.pyannote[212].end 819.98721875
transcript.pyannote[213].speaker SPEAKER_02
transcript.pyannote[213].start 820.51034375
transcript.pyannote[213].end 821.25284375
transcript.pyannote[214].speaker SPEAKER_02
transcript.pyannote[214].start 821.70846875
transcript.pyannote[214].end 824.44221875
transcript.pyannote[215].speaker SPEAKER_02
transcript.pyannote[215].start 825.20159375
transcript.pyannote[215].end 825.70784375
transcript.pyannote[216].speaker SPEAKER_02
transcript.pyannote[216].start 826.12971875
transcript.pyannote[216].end 827.51346875
transcript.pyannote[217].speaker SPEAKER_02
transcript.pyannote[217].start 828.03659375
transcript.pyannote[217].end 829.03221875
transcript.pyannote[218].speaker SPEAKER_02
transcript.pyannote[218].start 829.63971875
transcript.pyannote[218].end 830.66909375
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 831.10784375
transcript.pyannote[219].end 835.88346875
transcript.pyannote[220].speaker SPEAKER_02
transcript.pyannote[220].start 836.25471875
transcript.pyannote[220].end 843.44346875
transcript.pyannote[221].speaker SPEAKER_02
transcript.pyannote[221].start 844.21971875
transcript.pyannote[221].end 856.16721875
transcript.pyannote[222].speaker SPEAKER_02
transcript.pyannote[222].start 856.47096875
transcript.pyannote[222].end 859.82909375
transcript.pyannote[223].speaker SPEAKER_02
transcript.pyannote[223].start 859.89659375
transcript.pyannote[223].end 865.19534375
transcript.pyannote[224].speaker SPEAKER_02
transcript.pyannote[224].start 865.68471875
transcript.pyannote[224].end 868.38471875
transcript.pyannote[225].speaker SPEAKER_02
transcript.pyannote[225].start 868.80659375
transcript.pyannote[225].end 869.43096875
transcript.pyannote[226].speaker SPEAKER_02
transcript.pyannote[226].start 869.95409375
transcript.pyannote[226].end 870.79784375
transcript.pyannote[227].speaker SPEAKER_02
transcript.pyannote[227].start 871.15221875
transcript.pyannote[227].end 872.48534375
transcript.pyannote[228].speaker SPEAKER_02
transcript.pyannote[228].start 874.39221875
transcript.pyannote[228].end 875.21909375
transcript.pyannote[229].speaker SPEAKER_02
transcript.pyannote[229].start 875.82659375
transcript.pyannote[229].end 876.26534375
transcript.pyannote[230].speaker SPEAKER_02
transcript.pyannote[230].start 878.08784375
transcript.pyannote[230].end 879.47159375
transcript.pyannote[231].speaker SPEAKER_02
transcript.pyannote[231].start 879.58971875
transcript.pyannote[231].end 881.04096875
transcript.pyannote[232].speaker SPEAKER_02
transcript.pyannote[232].start 881.46284375
transcript.pyannote[232].end 882.37409375
transcript.pyannote[233].speaker SPEAKER_02
transcript.pyannote[233].start 882.74534375
transcript.pyannote[233].end 883.87596875
transcript.pyannote[234].speaker SPEAKER_02
transcript.pyannote[234].start 883.99409375
transcript.pyannote[234].end 887.31846875
transcript.pyannote[235].speaker SPEAKER_02
transcript.pyannote[235].start 888.19596875
transcript.pyannote[235].end 891.65534375
transcript.pyannote[236].speaker SPEAKER_02
transcript.pyannote[236].start 892.71846875
transcript.pyannote[236].end 911.92221875
transcript.pyannote[237].speaker SPEAKER_01
transcript.pyannote[237].start 911.92221875
transcript.pyannote[237].end 911.93909375
transcript.pyannote[238].speaker SPEAKER_01
transcript.pyannote[238].start 912.34409375
transcript.pyannote[238].end 912.56346875
transcript.pyannote[239].speaker SPEAKER_01
transcript.pyannote[239].start 913.37346875
transcript.pyannote[239].end 960.97784375
transcript.pyannote[240].speaker SPEAKER_02
transcript.pyannote[240].start 918.92534375
transcript.pyannote[240].end 918.95909375
transcript.pyannote[241].speaker SPEAKER_02
transcript.pyannote[241].start 918.99284375
transcript.pyannote[241].end 919.00971875
transcript.pyannote[242].speaker SPEAKER_02
transcript.pyannote[242].start 919.02659375
transcript.pyannote[242].end 920.96721875
transcript.pyannote[243].speaker SPEAKER_02
transcript.pyannote[243].start 921.35534375
transcript.pyannote[243].end 921.50721875
transcript.pyannote[244].speaker SPEAKER_00
transcript.pyannote[244].start 940.84596875
transcript.pyannote[244].end 940.86284375
transcript.pyannote[245].speaker SPEAKER_02
transcript.pyannote[245].start 940.86284375
transcript.pyannote[245].end 941.74034375
transcript.pyannote[246].speaker SPEAKER_02
transcript.pyannote[246].start 941.87534375
transcript.pyannote[246].end 943.37721875
transcript.pyannote[247].speaker SPEAKER_02
transcript.pyannote[247].start 943.91721875
transcript.pyannote[247].end 945.43596875
transcript.pyannote[248].speaker SPEAKER_00
transcript.pyannote[248].start 945.43596875
transcript.pyannote[248].end 945.46971875
transcript.pyannote[249].speaker SPEAKER_02
transcript.pyannote[249].start 960.97784375
transcript.pyannote[249].end 1002.00096875
transcript.pyannote[250].speaker SPEAKER_01
transcript.pyannote[250].start 968.92596875
transcript.pyannote[250].end 969.83721875
transcript.pyannote[251].speaker SPEAKER_02
transcript.pyannote[251].start 1003.06409375
transcript.pyannote[251].end 1003.43534375
transcript.pyannote[252].speaker SPEAKER_02
transcript.pyannote[252].start 1003.85721875
transcript.pyannote[252].end 1009.52721875
transcript.pyannote[253].speaker SPEAKER_02
transcript.pyannote[253].start 1010.48909375
transcript.pyannote[253].end 1013.29034375
transcript.pyannote[254].speaker SPEAKER_02
transcript.pyannote[254].start 1013.91471875
transcript.pyannote[254].end 1014.21846875
transcript.pyannote[255].speaker SPEAKER_02
transcript.pyannote[255].start 1014.35346875
transcript.pyannote[255].end 1017.84659375
transcript.pyannote[256].speaker SPEAKER_02
transcript.pyannote[256].start 1018.20096875
transcript.pyannote[256].end 1020.59721875
transcript.pyannote[257].speaker SPEAKER_01
transcript.pyannote[257].start 1019.63534375
transcript.pyannote[257].end 1033.18596875
transcript.pyannote[258].speaker SPEAKER_02
transcript.pyannote[258].start 1021.87971875
transcript.pyannote[258].end 1022.13284375
transcript.pyannote[259].speaker SPEAKER_01
transcript.pyannote[259].start 1033.60784375
transcript.pyannote[259].end 1049.97659375
transcript.pyannote[260].speaker SPEAKER_02
transcript.pyannote[260].start 1037.97846875
transcript.pyannote[260].end 1039.96971875
transcript.pyannote[261].speaker SPEAKER_02
transcript.pyannote[261].start 1049.97659375
transcript.pyannote[261].end 1074.14159375
transcript.pyannote[262].speaker SPEAKER_02
transcript.pyannote[262].start 1074.34409375
transcript.pyannote[262].end 1077.17909375
transcript.pyannote[263].speaker SPEAKER_02
transcript.pyannote[263].start 1078.00596875
transcript.pyannote[263].end 1080.19971875
transcript.pyannote[264].speaker SPEAKER_01
transcript.pyannote[264].start 1080.68909375
transcript.pyannote[264].end 1080.95909375
transcript.pyannote[265].speaker SPEAKER_01
transcript.pyannote[265].start 1081.58346875
transcript.pyannote[265].end 1087.47284375
transcript.pyannote[266].speaker SPEAKER_02
transcript.pyannote[266].start 1086.62909375
transcript.pyannote[266].end 1093.17659375
transcript.pyannote[267].speaker SPEAKER_01
transcript.pyannote[267].start 1088.53596875
transcript.pyannote[267].end 1093.26096875
transcript.pyannote[268].speaker SPEAKER_02
transcript.pyannote[268].start 1093.26096875
transcript.pyannote[268].end 1093.29471875
transcript.pyannote[269].speaker SPEAKER_01
transcript.pyannote[269].start 1093.29471875
transcript.pyannote[269].end 1093.36221875
transcript.pyannote[270].speaker SPEAKER_02
transcript.pyannote[270].start 1093.36221875
transcript.pyannote[270].end 1093.95284375
transcript.pyannote[271].speaker SPEAKER_01
transcript.pyannote[271].start 1093.95284375
transcript.pyannote[271].end 1104.98909375
transcript.pyannote[272].speaker SPEAKER_02
transcript.pyannote[272].start 1103.13284375
transcript.pyannote[272].end 1103.25096875
transcript.pyannote[273].speaker SPEAKER_02
transcript.pyannote[273].start 1104.98909375
transcript.pyannote[273].end 1109.42721875
transcript.pyannote[274].speaker SPEAKER_01
transcript.pyannote[274].start 1105.00596875
transcript.pyannote[274].end 1105.30971875
transcript.pyannote[275].speaker SPEAKER_01
transcript.pyannote[275].start 1109.42721875
transcript.pyannote[275].end 1123.73721875
transcript.pyannote[276].speaker SPEAKER_02
transcript.pyannote[276].start 1109.44409375
transcript.pyannote[276].end 1111.89096875
transcript.pyannote[277].speaker SPEAKER_02
transcript.pyannote[277].start 1121.00346875
transcript.pyannote[277].end 1123.83846875
transcript.pyannote[278].speaker SPEAKER_01
transcript.pyannote[278].start 1123.83846875
transcript.pyannote[278].end 1123.97346875
transcript.pyannote[279].speaker SPEAKER_02
transcript.pyannote[279].start 1123.97346875
transcript.pyannote[279].end 1124.02409375
transcript.pyannote[280].speaker SPEAKER_01
transcript.pyannote[280].start 1124.02409375
transcript.pyannote[280].end 1124.32784375
transcript.pyannote[281].speaker SPEAKER_02
transcript.pyannote[281].start 1124.32784375
transcript.pyannote[281].end 1124.42909375
transcript.pyannote[282].speaker SPEAKER_01
transcript.pyannote[282].start 1124.42909375
transcript.pyannote[282].end 1124.71596875
transcript.pyannote[283].speaker SPEAKER_02
transcript.pyannote[283].start 1124.71596875
transcript.pyannote[283].end 1126.36971875
transcript.pyannote[284].speaker SPEAKER_01
transcript.pyannote[284].start 1124.90159375
transcript.pyannote[284].end 1135.46534375
transcript.pyannote[285].speaker SPEAKER_02
transcript.pyannote[285].start 1130.30159375
transcript.pyannote[285].end 1131.78659375
transcript.pyannote[286].speaker SPEAKER_00
transcript.pyannote[286].start 1134.85784375
transcript.pyannote[286].end 1136.79846875
transcript.whisperx[0].start 4.871
transcript.whisperx[0].end 26.477
transcript.whisperx[0].text 好 謝謝主席 請部長好 有請邱部長那署長也併上來吧來 署長劉昭偉好部長好剛剛主席有聽到一些部長還有署長的回應有點替你感到擔心幾件事情 第一件事情 急診的事情
transcript.whisperx[1].start 28.651
transcript.whisperx[1].end 47.362
transcript.whisperx[1].text 應該部長還在當委員的時候就那個時候當下部長應該還有一個記憶嘛齁就是林口長庚醫院曾經爆發出急診醫師的離職草逃離草那個時候好像是部長剛當委員的前段那個階段嘛對不對應該是頭一年部長記得是什麼時候吧
transcript.whisperx[2].start 49.845
transcript.whisperx[2].end 56.569
transcript.whisperx[2].text 確定的年份我不確定,因為那個時候林署長跟葉的確是有相當的人事問題署長好像當時是市長,市長你記得什麼時候嗎?105年105嗎?2016,178
transcript.whisperx[3].start 71.831
transcript.whisperx[3].end 100.013
transcript.whisperx[3].text 2016 部長就...部長有沒有當委員2017 當2016啦2016 好 那就當了嘛那所以應該你們對這事情的掌握應該非常清楚嘛但是當時林口長跟急診醫師的狀況跟現在的狀況你們有沒有比對過 雷同 不雷同一樣 不一樣差異在什麼地方人數的多寡 差很多比例 增加的N倍
transcript.whisperx[4].start 101.823
transcript.whisperx[4].end 127.146
transcript.whisperx[4].text 有嗎當時林口長庚醫院的話會比較屬於個別醫院的問題那現在急診的問題會比較屬於全國性的問題好 但是今天發出來的聲音也是來自長庚系統的急診醫師嘛對不對沒有錯嗎不只嘛不是不是 嘉義長庚是那個神經內科神經內科那個如果是急診的話是由急診醫學會的一個同仁
transcript.whisperx[5].start 129.388
transcript.whisperx[5].end 142.923
transcript.whisperx[5].text 是我只是希望提醒部長跟署長不要再有2017年那個狀況再發生了而且如果現在再發生之前已經特別提到過現在community又再起來然後醫療緊繃這種狀況那我真的怕
transcript.whisperx[6].start 145.997
transcript.whisperx[6].end 174.587
transcript.whisperx[6].text 會不會有所謂的急診的醫療的崩壞的情況發生甚至有達到那種裡面一花不可收拾的這樣的一個相關因應的地步這部分可能你們要特別去小心一定要小心一定要小心真的不要在部長任內跟署長任內去發生這種事情所以我再度提出不要有急診醫師的這個集體的暴走暴走潮還是我們一花不可收拾的這樣的一個局面
transcript.whisperx[7].start 175.107
transcript.whisperx[7].end 191.847
transcript.whisperx[7].text 的情況發生我們會努力改善好 謝謝那不敢看嘛台灣這個健保這個開辦已經從1995年到現在這個是獨步世界先進的政策同時在健保的制度下民眾的就診資料庫也是全球難得的這個醫療保庫嘛沒有錯
transcript.whisperx[8].start 193.869
transcript.whisperx[8].end 213.262
transcript.whisperx[8].text 但現在醫學要進步就必須要有龐大的醫療資料庫當作依據醫學的技術才能持續的不斷的去演進然後在2022年這個憲法的法庭憲判制第13號的判決命令健保資料被用於原本目的以外的用途我剛剛有宣讀一次的不應內容違憲
transcript.whisperx[9].start 214.443
transcript.whisperx[9].end 227.662
transcript.whisperx[9].text 所以不需要在判決宣告上面沒有完成修法或訂定專法來確保民眾個人資料受到保護個人資料受到保護也因此才有今天本席排審的這個全民健康保險資料管理條例的這個草案
transcript.whisperx[10].start 230.225
transcript.whisperx[10].end 252.087
transcript.whisperx[10].text 沒有錯嘛,對不對?個人資料受到保障,個人資料受到保障,個人資料受到保障,這個很重要,所以我特別再練了三次。但今天這個法例如果可以順利的完成,去維繪,那就代表它真正的叫做個人資料,健保的個人資料可以受到完整的保護嗎?
transcript.whisperx[11].start 253.248
transcript.whisperx[11].end 268.144
transcript.whisperx[11].text 部長可以答覆我嗎 簡單的一句話就好一定要 這是基本要做的啊 一定要做到但是過去 剛剛很多委員垂詢嘛對不對過去發生什麼事情我就不再贅述嘛那甚至於 甚至於現在很多機關都被滲透這個滲透裡面有在你的這個草案裡面做相關的防治嗎
transcript.whisperx[12].start 277.698
transcript.whisperx[12].end 300.509
transcript.whisperx[12].text 這滲透應該是另外我們有資訊的一個保護這個也做得很周全那這一個部分你確定很周全?部長你確定可以很周全?我們已經找到全世界最厲害的我們的處長理事長處長在做全國防範處長確定是全世界最厲害的嗎?
transcript.whisperx[13].start 301.409
transcript.whisperx[13].end 328.897
transcript.whisperx[13].text 在醫療部的部長對他這個做篩驗保證他是全世界最厲害的我相信是應該是他不一定要到全世界最厲害不過他可以做到相關預防的這些讓資料外露然後資料流失資料被吸資料被吸出的情況之下甚至也可以做到預防相關滲透的情況我就覺得他就是一個很厲害的人他不一定全世界最厲害部長可以這麼跟我保證嗎
transcript.whisperx[14].start 331.311
transcript.whisperx[14].end 359.305
transcript.whisperx[14].text 我相信他是非常厲害的人而且到他的經驗也到WHA我們這五月的時候到達他的厲害我無意挑戰啦他的厲害我也可以敬佩也展現給全世界的很多國家來看啦但是剛剛我擔心的事情部長能答覆我嗎就我們這個處長都可以一念而解都可以相當的預防都會到位包含未修這個未訂這個法之前跟訂這個法之後我擔心的事情都不會發生能不能簡單跟我說明一下
transcript.whisperx[15].start 360.945
transcript.whisperx[15].end 377.532
transcript.whisperx[15].text 那這樣我才能夠認證他確定是非常厲害在資訊安全這個部分齁是整體性尤其是醫院的這個醫療系統的一個保護齁這個部分你處長這邊一直在進行是會跟委員報告一下好 處長簡單就好好不好
transcript.whisperx[16].start 378.172
transcript.whisperx[16].end 406.738
transcript.whisperx[16].text 那我知道你的厲害這個不敢就是說我們這個資訊都一直在學習第一個就是說跟委員講的就是說第一個有關於擔心這個下載大量個資被吸出的部分我們現在都有全面的施行所謂的USB還有硬碟下載的管控所以只要他在不當的時間不當的地點跟下載不當的一個資料的時候每個月都會去把這個東西排出來給各位這個所謂的主管去自打每個月都會排出來
transcript.whisperx[17].start 407.818
transcript.whisperx[17].end 434.657
transcript.whisperx[17].text 我們沒有時間預防的相關機制存在要等到盤出來的時候我們才會發覺到是問題所在這個是指我們指公務內的人他有權限使用的人那至於第二個就是說這個資料我們事實上是在內網裡那他必須在這個所謂的規定的中心才能去做相關的工作然後他是屬於A級的機構所以這些相關的資防範我們都是定期的有去做相關的一個處理
transcript.whisperx[18].start 436.419
transcript.whisperx[18].end 456.398
transcript.whisperx[18].text 這個出場之前有打呼過我啦就A級的防範嘛對不對那A級的防範防範嘛可以達到預防的效果嘛就是這個事件可能要發生了我們不會等到發生之後經過每個月盤整的時候才發覺到我們是在被吸出嘛會不會有這種情況發生你保證一下嘛你跟我講一下程序吧
transcript.whisperx[19].start 458.337
transcript.whisperx[19].end 476.816
transcript.whisperx[19].text 這個就是要分兩個部分來講一個就是如果說是有對外聯的資料的時候現在都有一種叫做主動防禦的軟體主動防禦就是它偵測到這些不正常的行為的時候這個就是所謂委員講的防範那它就會主動的去試鏡然後去做隔離
transcript.whisperx[20].start 477.977
transcript.whisperx[20].end 499.295
transcript.whisperx[20].text 那健保只要更安全他在這個內網裡面沒有對外去連的所以別人是沒有辦法任意的進來的所以在這一塊部分的話他比現在這種主動防範還要更安全因為我只有問這個時間就已經快差不多了其實坦白講我剛剛提出的問題我也希望部長跟處長再思考一下可能我的擔心應該是對的
transcript.whisperx[21].start 501.517
transcript.whisperx[21].end 524.817
transcript.whisperx[21].text 也希望說你們在整個因應相關的其實作為除了定這個法律之外還有更積極的更有效的預防我擔心會發生的事情這樣人民百姓才會信任嘛對不對也才會相信衛福部要展現出來的相關的一些政策的推行因為我為什麼要講這個啦你看啦我們是要跟實驗室來跑8月12日就完成三讀
transcript.whisperx[22].start 525.718
transcript.whisperx[22].end 552.693
transcript.whisperx[22].text 那不願意這個自己的健保資料被作為研究用途的民眾他可以有法規的依循申請出這個退出權嘛對不對但是呢但是部長你看一下這個報導這個聯絡報報導我們這個社保社代師長講說初步書採書面讓民眾申請退出未來會考量這個變名作業會研究提供上網申請這個未來是指什麼時候22世紀
transcript.whisperx[23].start 555.987
transcript.whisperx[23].end 584.333
transcript.whisperx[23].text 民國兩百年市長當然第一階段我們還是比較謹慎啦剛開始做的時候謹慎然後再逐步再用到其他更方便的方式啦不是啦 署長這講這個用笑嘛你只要講一個未來 你的未來什麼時候嘛未來是十年後一年後我們就再檢討一年後你就講一年內嘛你講一年後也怪怪一年後也算二十二世紀啊
transcript.whisperx[24].start 585.458
transcript.whisperx[24].end 607.535
transcript.whisperx[24].text 一年後也是十年後啊我們也是電腦王國咧然後AI的世代了好 我們是 劍保主動還有劍保快易通的APP了啊怎麼這個書面改為線上的需要在未來你未來不一定就成為部長了啊是不是要等到你當部長的時候才處理我不是在虧你啦
transcript.whisperx[25].start 609.167
transcript.whisperx[25].end 629.342
transcript.whisperx[25].text 因為你講這個未來我就覺得讓我有一點擔心說連這個書面改為線上的申請都會有個未來而且不曉得未來什麼時候那你如果去保障民眾的這些大量的這些健保相關的一些資料我會擔心嘛我本來要先提出來嘛所以我希望這個可能要講清楚啦我們盡快一年內可以吧
transcript.whisperx[26].start 632.764
transcript.whisperx[26].end 633.725
transcript.whisperx[26].text 八月十二 八月十二後
transcript.whisperx[27].start 642.711
transcript.whisperx[27].end 670.591
transcript.whisperx[27].text 會有大量民眾要來提出這個退出嗎?也不一定嘛對不對然後反而社會一部應該是告訴民眾自己的健保資料作為研究的用途是有什麼樣的貢獻有什麼樣的這個益處嘛例如像以前COVID-19的時候疫情的防患、疫苗、健保資料也絕對提供非常重要的數據支持嘛所以不會太多人去提出行情嘛但是我們記得說未來未來才能提出最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最最
transcript.whisperx[28].start 671.551
transcript.whisperx[28].end 697.403
transcript.whisperx[28].text 而且我們利用這個健保資料數據台灣在國際期間已經發表了9000多筆的論文對台灣的醫學領域的發展是絕對有關鍵性的影響所以衛福部應該把這些資訊告訴民眾讓民眾知道自己資料除了在健保庫很安全而且還可以作為疾病的預防治療做出貢獻我想民眾還是會相信衛福部所以今天部長講說我們聘了一個世界最厲害的資訊專家
transcript.whisperx[29].start 700.006
transcript.whisperx[29].end 719.29
transcript.whisperx[29].text 這個當然有強化這個民眾對衛部的信任嘛對不對但是如果說一個線上的申請你需要你講的沒有一個缺缺時間那民眾就會覺得怪怪的嘛那另外一個我到現在也沒有看到你們有什麼積極作為114年度的沒宣會用我們一倍360%應該剩下1000多嘛1700左右嘛 對吧
transcript.whisperx[30].start 724.323
transcript.whisperx[30].end 736.613
transcript.whisperx[30].text 所以你們的媒體義務辦理應該是非常吃力嘛部長署長可能要展智慧吧因為這個健保資料庫對疾病的預防還有治療是至關重要嘛
transcript.whisperx[31].start 738.179
transcript.whisperx[31].end 754.21
transcript.whisperx[31].text 所以你先要告訴我有多少齋讓全民知道我想我們現在不只包括健保是包括整個所有的衛生防疫各方面的資訊都需要好 請署長回去來 請署長回去部長最後一個問題謝謝主席的體諒
transcript.whisperx[32].start 758.188
transcript.whisperx[32].end 783.039
transcript.whisperx[32].text 周四有安排一個議程就是要到北市聯醫 考察這個病人自處施行的狀況以及這個近期傳染病疫情的防治作為這一次的疫情好像有點死灰復燃因為那天CDC的書長在這邊打呼FDA的書長在這邊打呼相關的數據六月底七月初一個禮拜就將近有全台二十萬人確診六月初到七月底應該是一七一如果到八月初可能一百八十萬我講這個數據應該
transcript.whisperx[33].start 784.659
transcript.whisperx[33].end 810.335
transcript.whisperx[33].text 應該目前為止都是這個樣子對不對 這個預估沒有落差現在看起來沒有比這個高啦好 相關的這個預防的這個疫情的整備都已經到位了嘛都已經到位嘛 這上上禮拜裡面都有講過但是很奇怪勒 我覺得奇怪這個到目前為止立法院就講我們立法院 已經喔要延會到7月31號我們看到已經很多的助理都確診了
transcript.whisperx[34].start 811.704
transcript.whisperx[34].end 827.017
transcript.whisperx[34].text 而且交叉感染,有掌握嗎?因為像綠碗業這種上千流動的場域,我有沒有看到你們提高任何防疫的積極作為?沒有啊,以前都還會噴一噴啊,都會噴一噴啊。
transcript.whisperx[35].start 829.839
transcript.whisperx[35].end 843.235
transcript.whisperx[35].text 現在通通沒有所以你跟全國的百姓講說令月底七月初令月初到七月底台灣的疫情會一直上來喔我們相關事情都準備好了喔但是相關的預防的積極作為通通沒有
transcript.whisperx[36].start 844.304
transcript.whisperx[36].end 872.142
transcript.whisperx[36].text 所以那一天在上個禮拜我才會跟部長面前跟CDC的署長要求說你如何降低確診的人數一個星期內提供給委員會來做相關的一些參考但是這個一個禮拜已經過了也沒有看到這其一嘛那其二就以本院本院來講也沒有看到有相關的機制要如何降低COVID-19確診的這樣的一個作為沒看到這邊都沒有了你全國怎麼做
transcript.whisperx[37].start 874.437
transcript.whisperx[37].end 890.903
transcript.whisperx[37].text 全國怎麼做也沒有所以你們把相關的防疫的物資準備好了疫苗準備好了口罩準備好了消毒水準備好了這個事情就到此結束了這樣就可以降低原有你們預估的確診人數是這樣嗎
transcript.whisperx[38].start 892.842
transcript.whisperx[38].end 901.312
transcript.whisperx[38].text 如果是這樣我會有意見但是部長你就要公開答覆說那這樣就有搞了所以我們也不用煩惱醫療崩壞我們也不用怕急診室的醫師又有離職潮我們也不用怕這個神經相關科技的這些醫師他們有接受到什麼樣的這樣的一個狀況都不用擔心是這樣嗎
transcript.whisperx[39].start 913.424
transcript.whisperx[39].end 932.329
transcript.whisperx[39].text 包委員我們CDC一直在注意國內外疫情的監測跟分析它有注意我們有伙覺啦WHO現在還是把它定於常規監測的一個層次那我們當然尤其在端午節之前包括行政院長也都希望大家能夠我們有先導能夠
transcript.whisperx[40].start 934.33
transcript.whisperx[40].end 956.423
transcript.whisperx[40].text 那個落實個人的衛生自主戴口罩那當然還很重要要盡量你有確定在宣導或想透過什麼方式宣導我們有做圖卡而且每一次在我們的譬如說羅一金副組長在接受訪問的時候每一次一定或開記者會的時候一定有先一定有宣導大家能夠在人口用
transcript.whisperx[41].start 957.083
transcript.whisperx[41].end 973.768
transcript.whisperx[41].text 密集的地方能夠戴口罩有比較自主性那等一下就請部長要求幕僚把相關的宣導都積極做在這一星期就好了提供給委員會做參考嘛好的沒問題我提醒部長一下啦應該是沒有啦然後我也請部長看一則新聞2020年台灣成為亞洲首個通過公衛法的國家2021年開始招考第一屆公衛師迄今已經五屆了但是通過的這些考試的公衛師
transcript.whisperx[42].start 986.272
transcript.whisperx[42].end 1009.358
transcript.whisperx[42].text 至今沒有人進入到公務體系這個是相關的一些報導給部長做參考這種情況還是令人回憶所思國家通過了公衛司法在疫情期間我們確認到公衛司的重要性但是到目前沒有任何公衛司在公務體系裡面協助疫情的管控我們對在美國政府當時公部門引進的公務人才光是領導起的就要求到五千人
transcript.whisperx[43].start 1010.643
transcript.whisperx[43].end 1032.572
transcript.whisperx[43].text 預算至少變了快20億美金但是我們這個法通過6年了到現在是這種成果是不曉得有沒有什麼樣的一個思考公共衛生人才是非常重要的啦我們會那個未來會盡量來考慮把他們的專能讓這些有專長的人來發揮那其實我們在衛福部的體系裡面
transcript.whisperx[44].start 1033.712
transcript.whisperx[44].end 1056.618
transcript.whisperx[44].text 背景是公共衛生的可以說是非常的多是沒有錯我當然知道很多那未來是不是有執照的我們應該給他更多的機會來發揮所長我想這個是未來應該要做的方向部長一樣還是回答我未來那未來是22世紀還是部長變院長了所以我覺得有時候有些事情我們還是講一個時間點會比較正確好不好
transcript.whisperx[45].start 1059.699
transcript.whisperx[45].end 1075.844
transcript.whisperx[45].text 如果覺得這個方向是正確的讓公衛師可以進到公務體系裡面來協助降低相關的這種流行性的這些狀況扮演著非常重要的角色我也請講美國的狀況來給部長做參考我們是不是有這個機會嘛有沒有這個機會因為這個法已經通過六年了
transcript.whisperx[46].start 1081.681
transcript.whisperx[46].end 1094.151
transcript.whisperx[46].text 所以我的意思就是增加這方面的現在是這樣子因為如果說不是我的意思啦就是你覺得拼國企來因為公衛師可以進到公衛體系來做相關的因為這些疫情的防治因為公衛師
transcript.whisperx[47].start 1096.813
transcript.whisperx[47].end 1117.05
transcript.whisperx[47].text 現在通過的是比較屬於專業的啦不是公務員嘛如果是公務員的那當然就是我沒有說他一定變成公務員我是說公務衛師進到公務體系來協助相關的疫情的防範那沒問題我們當然是盡量的只要有機會我們會盡量聘請有公衛背景的尤其是特別有這樣的一個專業執照的
transcript.whisperx[48].start 1118.351
transcript.whisperx[48].end 1131.701
transcript.whisperx[48].text 好 謝謝啦 就請部長儘快啦是不是可以有一些相關的一些規劃 研理跟部門盡量關注這些國家的人才好 謝謝 一個月可以吧可以可以 把那個規劃跟委員報告好 謝謝好 謝謝劉建國委員發言