IVOD_ID |
162246 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/162246 |
日期 |
2025-06-04 |
會議資料.會議代碼 |
委員會-11-3-20-15 |
會議資料.會議代碼:str |
第11屆第3會期財政委員會第15次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
15 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
20 |
會議資料.委員會代碼:str[0] |
財政委員會 |
會議資料.標題 |
第11屆第3會期財政委員會第15次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-06-04T14:04:10+08:00 |
結束時間 |
2025-06-04T14:12:35+08:00 |
影片長度 |
00:08:25 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/dfdeed74d30b98280adbcd5f863b73bf5e54a9d8358219465c023702ac6ce1c06b39a8e8f8d8ca115ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
葉元之 |
委員發言時間 |
14:04:10 - 14:12:35 |
會議時間 |
2025-06-04T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期財政委員會第15次全體委員會議(事由:一、本院台灣民眾黨黨團,有鑑於行政院主計總處行文各縣市政府,將中央編列給地方政府的一般性補助款自114年度5至12月份分配及撥付數全數改為未分配數,已嚴重違反立法院通案刪減、促進政府資源有效配置之決議精神。中央政府預算編列浮濫,原編列三兆一千億元,立法院通案刪減後仍有二兆九千億餘元之數,為中華民國史上最高之中央政府總預算,本院本於職責審議預算,以督促中央政府增進財務效能、減少不當經濟支出甚至浪費之目的,中央政府不思檢討如何有效節用分配資源,卻意圖慷地方政府之慨,緊縮一般性補助款補助事項,將直轄市、準用直轄市規定之縣及縣(市)基本財政收支差短與定額設算之教育、社會福利及基本設施等改為未分配數,此舉不僅違反原預算刪減提案之意旨,更將嚴重影響地方財政及運作,對地方長期建設造成劇烈衝擊。爰建請院會作成決議:「行政院主計總處應依立法院審議中華民國114年度中央政府總預算案通案刪減之決議意旨,由中央各機關及所屬編列之預算刪減調整,並立即將一般性補助款足額撥付予地方政府。」請公決案。【本案如經院會復議,則不予審查】
二、邀請行政院主計總處陳主計長淑姿、財政部莊部長翠雲、內政部劉部長世芳及法務部就「近十年中央政府依財政收支劃分法、地方制度法等地方政府之補助情形及對均衡地方經濟發展之成效」進行專題報告,並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
0.03096875 |
transcript.pyannote[0].end |
2.96721875 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
13.61534375 |
transcript.pyannote[1].end |
18.07034375 |
transcript.pyannote[2].speaker |
SPEAKER_03 |
transcript.pyannote[2].start |
18.07034375 |
transcript.pyannote[2].end |
19.70721875 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
18.93096875 |
transcript.pyannote[3].end |
19.09971875 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
20.01096875 |
transcript.pyannote[4].end |
20.50034375 |
transcript.pyannote[5].speaker |
SPEAKER_03 |
transcript.pyannote[5].start |
20.73659375 |
transcript.pyannote[5].end |
21.42846875 |
transcript.pyannote[6].speaker |
SPEAKER_03 |
transcript.pyannote[6].start |
22.37346875 |
transcript.pyannote[6].end |
22.67721875 |
transcript.pyannote[7].speaker |
SPEAKER_03 |
transcript.pyannote[7].start |
23.03159375 |
transcript.pyannote[7].end |
23.18346875 |
transcript.pyannote[8].speaker |
SPEAKER_03 |
transcript.pyannote[8].start |
23.52096875 |
transcript.pyannote[8].end |
24.44909375 |
transcript.pyannote[9].speaker |
SPEAKER_03 |
transcript.pyannote[9].start |
24.75284375 |
transcript.pyannote[9].end |
25.41096875 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
26.65971875 |
transcript.pyannote[10].end |
27.03096875 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
27.77346875 |
transcript.pyannote[11].end |
28.53284375 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
29.30909375 |
transcript.pyannote[12].end |
30.43971875 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
31.73909375 |
transcript.pyannote[13].end |
34.05096875 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
33.02159375 |
transcript.pyannote[14].end |
33.03846875 |
transcript.pyannote[15].speaker |
SPEAKER_03 |
transcript.pyannote[15].start |
33.03846875 |
transcript.pyannote[15].end |
33.73034375 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
34.10159375 |
transcript.pyannote[16].end |
40.98659375 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
38.65784375 |
transcript.pyannote[17].end |
38.80971875 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
41.64471875 |
transcript.pyannote[18].end |
54.03096875 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
43.72034375 |
transcript.pyannote[19].end |
44.04096875 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
46.48784375 |
transcript.pyannote[20].end |
47.85471875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
49.33971875 |
transcript.pyannote[21].end |
50.16659375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
51.93846875 |
transcript.pyannote[22].end |
52.20846875 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
54.03096875 |
transcript.pyannote[23].end |
54.67221875 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
54.67221875 |
transcript.pyannote[24].end |
59.80221875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
54.73971875 |
transcript.pyannote[25].end |
55.85346875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
56.69721875 |
transcript.pyannote[26].end |
57.70971875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
58.01346875 |
transcript.pyannote[27].end |
58.31721875 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
59.80221875 |
transcript.pyannote[28].end |
59.85284375 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
59.85284375 |
transcript.pyannote[29].end |
60.03846875 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
60.22409375 |
transcript.pyannote[30].end |
61.99596875 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
60.27471875 |
transcript.pyannote[31].end |
65.72534375 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
66.18096875 |
transcript.pyannote[32].end |
66.19784375 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
66.19784375 |
transcript.pyannote[33].end |
70.85534375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
71.24346875 |
transcript.pyannote[34].end |
71.88471875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
72.13784375 |
transcript.pyannote[35].end |
77.23409375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
77.72346875 |
transcript.pyannote[36].end |
81.80721875 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
82.54971875 |
transcript.pyannote[37].end |
84.50721875 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
84.92909375 |
transcript.pyannote[38].end |
99.08721875 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
99.47534375 |
transcript.pyannote[39].end |
103.49159375 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
103.77846875 |
transcript.pyannote[40].end |
107.47409375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
107.96346875 |
transcript.pyannote[41].end |
113.31284375 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
113.75159375 |
transcript.pyannote[42].end |
116.48534375 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
116.68784375 |
transcript.pyannote[43].end |
117.58221875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
117.76784375 |
transcript.pyannote[44].end |
119.52284375 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
119.79284375 |
transcript.pyannote[45].end |
122.35784375 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
123.01596875 |
transcript.pyannote[46].end |
133.86659375 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
126.37409375 |
transcript.pyannote[47].end |
129.12471875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
130.03596875 |
transcript.pyannote[48].end |
130.20471875 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
133.19159375 |
transcript.pyannote[49].end |
140.32971875 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
133.91721875 |
transcript.pyannote[50].end |
134.87909375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
141.02159375 |
transcript.pyannote[51].end |
141.64596875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
141.84846875 |
transcript.pyannote[52].end |
146.72534375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
146.91096875 |
transcript.pyannote[53].end |
147.58596875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
148.00784375 |
transcript.pyannote[54].end |
149.13846875 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
149.49284375 |
transcript.pyannote[55].end |
150.03284375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
150.42096875 |
transcript.pyannote[56].end |
151.36596875 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
151.97346875 |
transcript.pyannote[57].end |
162.65534375 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
162.87471875 |
transcript.pyannote[58].end |
166.62096875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
167.32971875 |
transcript.pyannote[59].end |
169.33784375 |
transcript.pyannote[60].speaker |
SPEAKER_02 |
transcript.pyannote[60].start |
170.94096875 |
transcript.pyannote[60].end |
175.85159375 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
173.50596875 |
transcript.pyannote[61].end |
178.73721875 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
178.92284375 |
transcript.pyannote[62].end |
178.99034375 |
transcript.pyannote[63].speaker |
SPEAKER_02 |
transcript.pyannote[63].start |
178.99034375 |
transcript.pyannote[63].end |
179.02409375 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
179.02409375 |
transcript.pyannote[64].end |
179.98596875 |
transcript.pyannote[65].speaker |
SPEAKER_02 |
transcript.pyannote[65].start |
179.15909375 |
transcript.pyannote[65].end |
179.17596875 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
179.17596875 |
transcript.pyannote[66].end |
179.19284375 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
180.54284375 |
transcript.pyannote[67].end |
212.55471875 |
transcript.pyannote[68].speaker |
SPEAKER_02 |
transcript.pyannote[68].start |
212.26784375 |
transcript.pyannote[68].end |
214.12409375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
214.15784375 |
transcript.pyannote[69].end |
217.14471875 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
217.85346875 |
transcript.pyannote[70].end |
221.02596875 |
transcript.pyannote[71].speaker |
SPEAKER_02 |
transcript.pyannote[71].start |
223.00034375 |
transcript.pyannote[71].end |
226.99971875 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
225.59909375 |
transcript.pyannote[72].end |
229.24409375 |
transcript.pyannote[73].speaker |
SPEAKER_02 |
transcript.pyannote[73].start |
229.17659375 |
transcript.pyannote[73].end |
231.25221875 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
230.10471875 |
transcript.pyannote[74].end |
234.61034375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
235.47096875 |
transcript.pyannote[75].end |
236.04471875 |
transcript.pyannote[76].speaker |
SPEAKER_02 |
transcript.pyannote[76].start |
235.58909375 |
transcript.pyannote[76].end |
237.47909375 |
transcript.pyannote[77].speaker |
SPEAKER_02 |
transcript.pyannote[77].start |
237.68159375 |
transcript.pyannote[77].end |
237.71534375 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
237.71534375 |
transcript.pyannote[78].end |
245.34284375 |
transcript.pyannote[79].speaker |
SPEAKER_02 |
transcript.pyannote[79].start |
237.74909375 |
transcript.pyannote[79].end |
237.90096875 |
transcript.pyannote[80].speaker |
SPEAKER_02 |
transcript.pyannote[80].start |
238.17096875 |
transcript.pyannote[80].end |
238.77846875 |
transcript.pyannote[81].speaker |
SPEAKER_02 |
transcript.pyannote[81].start |
245.29221875 |
transcript.pyannote[81].end |
246.38909375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
245.66346875 |
transcript.pyannote[82].end |
246.16971875 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
246.28784375 |
transcript.pyannote[83].end |
247.80659375 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
248.32971875 |
transcript.pyannote[84].end |
249.73034375 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
249.93284375 |
transcript.pyannote[85].end |
251.01284375 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
251.14784375 |
transcript.pyannote[86].end |
252.31221875 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
252.85221875 |
transcript.pyannote[87].end |
282.26534375 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
282.78846875 |
transcript.pyannote[88].end |
288.84659375 |
transcript.pyannote[89].speaker |
SPEAKER_02 |
transcript.pyannote[89].start |
289.43721875 |
transcript.pyannote[89].end |
293.47034375 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
291.04034375 |
transcript.pyannote[90].end |
326.07284375 |
transcript.pyannote[91].speaker |
SPEAKER_02 |
transcript.pyannote[91].start |
317.87159375 |
transcript.pyannote[91].end |
319.98096875 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
319.98096875 |
transcript.pyannote[92].end |
319.99784375 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
326.57909375 |
transcript.pyannote[93].end |
334.94909375 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
336.02909375 |
transcript.pyannote[94].end |
338.27346875 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
338.72909375 |
transcript.pyannote[95].end |
348.24659375 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
348.55034375 |
transcript.pyannote[96].end |
352.07721875 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
352.48221875 |
transcript.pyannote[97].end |
355.16534375 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
357.52784375 |
transcript.pyannote[98].end |
359.46846875 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
360.24471875 |
transcript.pyannote[99].end |
371.68596875 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
372.14159375 |
transcript.pyannote[100].end |
372.95159375 |
transcript.pyannote[101].speaker |
SPEAKER_02 |
transcript.pyannote[101].start |
373.82909375 |
transcript.pyannote[101].end |
375.95534375 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
375.43221875 |
transcript.pyannote[102].end |
387.98721875 |
transcript.pyannote[103].speaker |
SPEAKER_02 |
transcript.pyannote[103].start |
388.54409375 |
transcript.pyannote[103].end |
394.56846875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
394.88909375 |
transcript.pyannote[104].end |
397.45409375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
397.85909375 |
transcript.pyannote[105].end |
400.66034375 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
401.01471875 |
transcript.pyannote[106].end |
402.61784375 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
404.27159375 |
transcript.pyannote[107].end |
407.66346875 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
408.15284375 |
transcript.pyannote[108].end |
426.63096875 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
427.18784375 |
transcript.pyannote[109].end |
445.10909375 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
445.83471875 |
transcript.pyannote[110].end |
448.01159375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
448.66971875 |
transcript.pyannote[111].end |
459.26721875 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
460.21221875 |
transcript.pyannote[112].end |
469.57784375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
470.62409375 |
transcript.pyannote[113].end |
474.84284375 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
475.21409375 |
transcript.pyannote[114].end |
477.07034375 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
477.55971875 |
transcript.pyannote[115].end |
478.87596875 |
transcript.pyannote[116].speaker |
SPEAKER_02 |
transcript.pyannote[116].start |
479.82096875 |
transcript.pyannote[116].end |
484.05659375 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
484.05659375 |
transcript.pyannote[117].end |
499.39596875 |
transcript.pyannote[118].speaker |
SPEAKER_02 |
transcript.pyannote[118].start |
484.07346875 |
transcript.pyannote[118].end |
484.32659375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
500.15534375 |
transcript.pyannote[119].end |
502.46721875 |
transcript.pyannote[120].speaker |
SPEAKER_03 |
transcript.pyannote[120].start |
503.34471875 |
transcript.pyannote[120].end |
505.20096875 |
transcript.pyannote[121].speaker |
SPEAKER_03 |
transcript.pyannote[121].start |
505.70721875 |
transcript.pyannote[121].end |
506.51721875 |
transcript.whisperx[0].start |
14.541 |
transcript.whisperx[0].end |
20.206 |
transcript.whisperx[0].text |
我先來問一下那個新北市政府 先了解一下地方狀況好 請問新北市秘書長秘書長現在換人換誰主計處長吳建國換主計處長 |
transcript.whisperx[1].start |
29.346 |
transcript.whisperx[1].end |
40.771 |
transcript.whisperx[1].text |
董事長請問一下現在新北市被砍30.4新北市被中央砍了30.4億的一般性補助款這對新北市影響大不大 應該很大吧 |
transcript.whisperx[2].start |
41.67 |
transcript.whisperx[2].end |
61.581 |
transcript.whisperx[2].text |
我們現在目前估算的一般性補助款現在被刪減了30.4億元包括我們的什麼會影響到哪一些包括社會福利還有我們一些低收的比如營養午餐老人津貼包括身心障礙的高低收入戶還有一些弱勢兒童因為中央不給這個減少了30.4億這些都拿不到對不對 |
transcript.whisperx[3].start |
66.63 |
transcript.whisperx[3].end |
81.632 |
transcript.whisperx[3].text |
會有影響會有影響喔那主席想問一個問題喔因為中央那個新北市主席你可以上來喔等一下要問因為那個中央我先問那個新北市中央現在是這樣子喔他想做的他就補助嘛他不想做就砍你嘛 |
transcript.whisperx[4].start |
82.608 |
transcript.whisperx[4].end |
105.624 |
transcript.whisperx[4].text |
譬如說他希望中正路改名所以他就要補助新北市的中正路改名這個錢他就有了但是要補助你們因為一般性補助款是中央指定補助項目透過新北市然後去協助這些中低收入或教育社福或警察廳社這些他覺得這個錢可以砍但中正路改名一定要做我請教一下新北市政府的態度 |
transcript.whisperx[5].start |
106.144 |
transcript.whisperx[5].end |
122.103 |
transcript.whisperx[5].text |
就新北市政府而言大張旗鼓地去改中正路、介受路不管是改路名也好或改這些機關名稱對新北市來說比較重要你們會放在優先順序會放在前面還是你覺得社福教育跟警察聽社你會放在前面是哪一個 |
transcript.whisperx[6].start |
123.255 |
transcript.whisperx[6].end |
140.096 |
transcript.whisperx[6].text |
我想這個改名這部分不是我這邊的業務啦因為你現在是新北市政府代表嘛對 但是就一些弱勢族群的一些經費的部分的話如果是你們來講的話 如果中央給你一筆錢你會把它給教育社福優先 還是你會拿去改名 |
transcript.whisperx[7].start |
142.796 |
transcript.whisperx[7].end |
169.188 |
transcript.whisperx[7].text |
弱勢族群是很重要的好 謝謝新北市政府我請教一下主席長主席長現在行政院一直推給說地方一般性補助款被砍是因為藍白山預算你們都是這樣講我請教一下你們當初總預算編了2501億一般性補助款這一檔有三億毛錢嗎 有沒有 |
transcript.whisperx[8].start |
171.25 |
transcript.whisperx[8].end |
198.627 |
transcript.whisperx[8].text |
這個部分是在審查的時候是沒有但是沒有好謝謝等一下通山我等一下跟你討論我只是問有沒有刪這個項目沒有沒有嘛沒有刪這個項目所以在野黨沒有要求刪這個項目我覺得這件事情大家先講清楚啦第二至於說為什麼行政院現在要去砍一般性補助款這六百多億你也講很多次了啦你的理由是說因為你們被要求在九個項目裡面要通山到九百多億嘛 |
transcript.whisperx[9].start |
199.488 |
transcript.whisperx[9].end |
220.88 |
transcript.whisperx[9].text |
然後這11個項目但是裡面有指定的有300多億剩下有600多億你實在是找不到地方刪了所以你才去刪這一般性補助款嘛你的理由是這樣嘛對不對因為我們是刪減有困難好 刪減有困難嘛我想請教一下當初立法院通刪這11個項目裡面有沒有一般性補助款有沒有 |
transcript.whisperx[10].start |
223.052 |
transcript.whisperx[10].end |
251.744 |
transcript.whisperx[10].text |
不是 它是刪項目然後它說它是說在這11個項目裡面通刪嘛可是那11個項目裡面有辦法刪嗎那11個項目裡面有沒有一般性補助款有沒有嘛它是說不夠要另外補足所以那11個項目裡面你一毛都刪不掉然後你另外從那11個項目裡面外面去找一個一般性補助款它說不夠要補助那我請教一下剛剛地方政府也表達啦你們現在中央其實很多錢 |
transcript.whisperx[11].start |
253.624 |
transcript.whisperx[11].end |
281.718 |
transcript.whisperx[11].text |
優先順序你們可以做調整嘛譬如說這600多億你可以去找輕重緩急去找啊有一些去年度執行率沒有那麼好的啊有一些沒有很急著做的啊有一些是可能刪掉對人民影響不大的你先去刪啊結果你不是你去刪了一個地方非常重要的項目社福教育所以在中央的角度裡面社福教育還不如中正路改名重要啊我覺得真的很離譜耶對你們而言搞意識形態 |
transcript.whisperx[12].start |
282.879 |
transcript.whisperx[12].end |
288.543 |
transcript.whisperx[12].text |
比地方的社福教育、警察、消防、聽社還要重要耶 |
transcript.whisperx[13].start |
289.708 |
transcript.whisperx[13].end |
317.004 |
transcript.whisperx[13].text |
績字也可以調整啦所以我覺得這個就是這樣政治就是做資源分配啦行政院你要刪六百多億你可以從全國這麼多的事務裡面去刪其他的中正入改名你覺得一定要做意識形態你覺得一定要搞還有什麼特別費什麼的出國旅費那些你都動不了但是地方的教育社福砍了沒關係這就是你民進黨政府現在施政底下的優先順序 |
transcript.whisperx[14].start |
317.944 |
transcript.whisperx[14].end |
334.541 |
transcript.whisperx[14].text |
我覺得基層的民眾 我覺得基層的民眾看到這樣子會覺得很寒心然後再來啊 卓恩泰院長講說欸沒關係啊 反正地方政府也可以把稅計剩餘拿出來編來做這個事啊你知道以新北市來講 他去年稅計剩餘多少你知道嗎 |
transcript.whisperx[15].start |
336.055 |
transcript.whisperx[15].end |
354.771 |
transcript.whisperx[15].text |
不知道 二十一億 我直接告訴你那 稅金剩餘是去年吧 對吧通常如果去年有稅金剩餘 但是之前有累虧的話是不是也要把這個稅金剩餘拿去還債 是不是那你知不知道新北市政府從蘇貞昌當縣長以來舉債到現在累虧是多少 你知道嗎 |
transcript.whisperx[16].start |
357.56 |
transcript.whisperx[16].end |
372.591 |
transcript.whisperx[16].text |
累虧887億所以他在有累虧887億的情況之下去年有剩餘你叫人家把剩餘拿出來補你亂砍的一般性補助款這樣合理嗎主計長在你們的會計做法可以這樣做嗎可以這樣做嗎 |
transcript.whisperx[17].start |
373.905 |
transcript.whisperx[17].end |
402.166 |
transcript.whisperx[17].text |
原則上是盡量盡量沒有盡量這種東西我問你可不可以這樣做啦人家有累虧800多億然後去年稅率剩餘21億可不可以直接拿來不還債直接拿來花可不可以原則上是我們是希望說能夠盡量來調整那如果不行我們行政院會來協助所以你們卓榮泰就亂講嘛因為去年有稅率剩餘所以就那他都沒有他都不知道人家有累虧喔 |
transcript.whisperx[18].start |
404.315 |
transcript.whisperx[18].end |
426.362 |
transcript.whisperx[18].text |
所以整個政府都是在劃數全部都在劃數我希望我們政府正在本於人民的需求在施政好不好你去看一下各地方政府有沒有很需要這筆一般性補助款嘛如果有需要就要補助給人家嘛中央裡面優先順序嘛像中正路改名像這種每一個都在罵的你去做民意調查啦你去問中正路的上面的居民啦有沒有人想要改啦 |
transcript.whisperx[19].start |
427.262 |
transcript.whisperx[19].end |
444.41 |
transcript.whisperx[19].text |
一去改中正路身份證要換戶籍藤本要換地籍藤本要換然後所有在外面登的所有機構地址全部都要換你去問一下台灣人民有多少人想要改中正路然後這筆錢你硬要留著然後有些很需要的比如說基層的社福教育這些砍了沒關係 |
transcript.whisperx[20].start |
445.925 |
transcript.whisperx[20].end |
469.263 |
transcript.whisperx[20].text |
所以政府怎麼會這樣施政啊政府是做資源分配把錢用在最需要的上面你們砍了最需要的錢結果把那些大家覺得不需要錢硬要保留著只要滿足政府的意識形態可以這樣子喔然後行政院長一跳出來在那邊胡說八道說什麼剩餘的就可以拿來那之前的那個累虧咧不用管喔 |
transcript.whisperx[21].start |
470.663 |
transcript.whisperx[21].end |
478.351 |
transcript.whisperx[21].text |
所以今天這個案子啦我希望可以懸崖勒馬啦趕快該給人家的一般性補助款確定就趕快補啦 |
transcript.whisperx[22].start |
479.878 |
transcript.whisperx[22].end |
502.04 |
transcript.whisperx[22].text |
所以我們也希望說提出解決的辦法將來立法院能夠提出來但是你一碼歸一碼嘛人家地方錢你要先給人家然後你如果中央你覺得我真的好想改中正路好想改喔那缺多少你提那個追加預算來嘛但是你該給人家錢要先還嘛好不好我覺得要先順序要先定好啦謝謝 |