iVOD / 162231

Field Value
IVOD_ID 162231
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/162231
日期 2025-06-04
會議資料.會議代碼 委員會-11-3-26-15
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第15次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 15
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第15次全體委員會議
影片種類 Clip
開始時間 2025-06-04T11:53:07+08:00
結束時間 2025-06-04T12:13:02+08:00
影片長度 00:19:55
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/dfdeed74d30b98286ee55292c7545cdf69516374867620cee4d45e0249ca5227e3a4a211d9ab1f3d5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 林淑芬
委員發言時間 11:53:07 - 12:13:02
會議時間 2025-06-04T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第15次全體委員會議(事由:邀請勞動部部長就「勞工退休金制度改革,含勞保、勞退執行現況」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 0.04784375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 1.17846875
transcript.pyannote[1].end 3.03471875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 7.32096875
transcript.pyannote[2].end 10.71284375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 15.75846875
transcript.pyannote[3].end 16.34909375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 16.56846875
transcript.pyannote[4].end 21.36096875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 21.56346875
transcript.pyannote[5].end 26.27159375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 26.87909375
transcript.pyannote[6].end 55.24596875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 55.83659375
transcript.pyannote[7].end 56.30909375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 57.59159375
transcript.pyannote[8].end 58.43534375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 58.72221875
transcript.pyannote[9].end 59.36346875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 59.59971875
transcript.pyannote[10].end 59.80221875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 59.80221875
transcript.pyannote[11].end 60.61221875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 59.93721875
transcript.pyannote[12].end 61.21971875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 61.79346875
transcript.pyannote[13].end 63.22784375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 63.48096875
transcript.pyannote[14].end 68.30721875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 71.63159375
transcript.pyannote[15].end 75.69846875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 76.40721875
transcript.pyannote[16].end 79.17471875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 79.63034375
transcript.pyannote[17].end 81.26721875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 82.95471875
transcript.pyannote[18].end 94.68284375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 88.79346875
transcript.pyannote[19].end 89.58659375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 95.25659375
transcript.pyannote[20].end 95.59409375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 96.99471875
transcript.pyannote[21].end 101.12909375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 101.46659375
transcript.pyannote[22].end 107.72721875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 108.48659375
transcript.pyannote[23].end 114.40971875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 114.83159375
transcript.pyannote[24].end 158.60534375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 159.95534375
transcript.pyannote[25].end 160.66409375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 160.91721875
transcript.pyannote[26].end 166.03034375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 166.87409375
transcript.pyannote[27].end 167.92034375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 169.10159375
transcript.pyannote[28].end 170.72159375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 171.95346875
transcript.pyannote[29].end 173.06721875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 173.62409375
transcript.pyannote[30].end 176.79659375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 178.31534375
transcript.pyannote[31].end 179.07471875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 180.17159375
transcript.pyannote[32].end 180.62721875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 182.36534375
transcript.pyannote[33].end 187.41096875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 187.52909375
transcript.pyannote[34].end 189.70596875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 190.51596875
transcript.pyannote[35].end 190.90409375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 191.08971875
transcript.pyannote[36].end 199.91534375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 200.52284375
transcript.pyannote[37].end 203.15534375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 203.93159375
transcript.pyannote[38].end 205.29846875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 205.63596875
transcript.pyannote[39].end 207.52596875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 208.03221875
transcript.pyannote[40].end 214.00596875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 214.20846875
transcript.pyannote[41].end 223.82721875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 224.09721875
transcript.pyannote[42].end 228.31596875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 229.05846875
transcript.pyannote[43].end 230.39159375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 230.86409375
transcript.pyannote[44].end 232.77096875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 233.42909375
transcript.pyannote[45].end 235.20096875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 236.14596875
transcript.pyannote[46].end 237.36096875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 238.08659375
transcript.pyannote[47].end 238.76159375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 238.12034375
transcript.pyannote[48].end 238.77846875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 239.16659375
transcript.pyannote[49].end 239.79096875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 240.11159375
transcript.pyannote[50].end 241.34346875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 241.02284375
transcript.pyannote[51].end 241.66409375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 241.91721875
transcript.pyannote[52].end 243.87471875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 243.87471875
transcript.pyannote[53].end 243.97596875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 243.97596875
transcript.pyannote[54].end 244.12784375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 244.97159375
transcript.pyannote[55].end 246.00096875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 246.57471875
transcript.pyannote[56].end 250.06784375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 250.27034375
transcript.pyannote[57].end 259.26471875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 259.46721875
transcript.pyannote[58].end 262.70721875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 264.05721875
transcript.pyannote[59].end 270.99284375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 271.48221875
transcript.pyannote[60].end 274.48596875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 275.36346875
transcript.pyannote[61].end 277.55721875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 278.06346875
transcript.pyannote[62].end 278.95784375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 279.98721875
transcript.pyannote[63].end 291.93471875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 292.74471875
transcript.pyannote[64].end 300.62534375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 301.95846875
transcript.pyannote[65].end 303.07221875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 303.27471875
transcript.pyannote[66].end 311.30721875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 311.34096875
transcript.pyannote[67].end 313.26471875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 313.68659375
transcript.pyannote[68].end 318.12471875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 319.12034375
transcript.pyannote[69].end 322.27596875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 322.57971875
transcript.pyannote[70].end 325.54971875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 325.98846875
transcript.pyannote[71].end 336.87284375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 337.24409375
transcript.pyannote[72].end 355.16534375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 356.46471875
transcript.pyannote[73].end 357.15659375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 357.44346875
transcript.pyannote[74].end 359.72159375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 360.05909375
transcript.pyannote[75].end 363.80534375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 364.48034375
transcript.pyannote[76].end 366.74159375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 368.69909375
transcript.pyannote[77].end 382.18221875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 382.90784375
transcript.pyannote[78].end 386.40096875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 386.68784375
transcript.pyannote[79].end 387.91971875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 388.57784375
transcript.pyannote[80].end 389.15159375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 390.36659375
transcript.pyannote[81].end 400.66034375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 401.95971875
transcript.pyannote[82].end 412.47284375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 413.29971875
transcript.pyannote[83].end 429.53346875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 429.85409375
transcript.pyannote[84].end 438.93284375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 439.43909375
transcript.pyannote[85].end 441.63284375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 442.51034375
transcript.pyannote[86].end 444.36659375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 445.26096875
transcript.pyannote[87].end 448.93971875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 449.29409375
transcript.pyannote[88].end 452.83784375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 453.19221875
transcript.pyannote[89].end 463.21596875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 463.50284375
transcript.pyannote[90].end 465.25784375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 465.79784375
transcript.pyannote[91].end 470.25284375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 471.68721875
transcript.pyannote[92].end 481.13721875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 481.69409375
transcript.pyannote[93].end 488.03909375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 488.76471875
transcript.pyannote[94].end 500.81346875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 501.06659375
transcript.pyannote[95].end 512.23784375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 513.33471875
transcript.pyannote[96].end 516.22034375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 516.96284375
transcript.pyannote[97].end 522.14346875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 522.63284375
transcript.pyannote[98].end 523.39221875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 523.76346875
transcript.pyannote[99].end 527.29034375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 527.35784375
transcript.pyannote[100].end 542.69721875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 547.40534375
transcript.pyannote[101].end 547.45596875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 547.45596875
transcript.pyannote[102].end 547.48971875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 547.48971875
transcript.pyannote[103].end 548.16471875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 548.78909375
transcript.pyannote[104].end 556.97346875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 555.30284375
transcript.pyannote[105].end 574.59096875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 563.16659375
transcript.pyannote[106].end 563.33534375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 575.11409375
transcript.pyannote[107].end 578.06721875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 578.35409375
transcript.pyannote[108].end 583.82159375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 584.39534375
transcript.pyannote[109].end 587.65221875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 584.44596875
transcript.pyannote[110].end 585.54284375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 588.44534375
transcript.pyannote[111].end 589.49159375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 592.24221875
transcript.pyannote[112].end 594.45284375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 594.45284375
transcript.pyannote[113].end 601.03409375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 601.23659375
transcript.pyannote[114].end 601.74284375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 602.43471875
transcript.pyannote[115].end 605.72534375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 606.48471875
transcript.pyannote[116].end 608.23971875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 609.38721875
transcript.pyannote[117].end 618.24659375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 618.78659375
transcript.pyannote[118].end 621.65534375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 622.00971875
transcript.pyannote[119].end 625.30034375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 625.90784375
transcript.pyannote[120].end 635.91471875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 637.41659375
transcript.pyannote[121].end 639.44159375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 639.76221875
transcript.pyannote[122].end 652.08096875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 653.41409375
transcript.pyannote[123].end 655.72596875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 656.21534375
transcript.pyannote[124].end 666.18846875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 666.40784375
transcript.pyannote[125].end 667.11659375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 668.21346875
transcript.pyannote[126].end 669.90096875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 672.65159375
transcript.pyannote[127].end 681.94971875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 682.33784375
transcript.pyannote[128].end 689.10471875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 689.25659375
transcript.pyannote[129].end 698.11596875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 698.89221875
transcript.pyannote[130].end 704.57909375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 705.72659375
transcript.pyannote[131].end 709.08471875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 709.64159375
transcript.pyannote[132].end 712.00409375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 712.66221875
transcript.pyannote[133].end 714.19784375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 715.02471875
transcript.pyannote[134].end 720.72846875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 721.36971875
transcript.pyannote[135].end 727.37721875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 728.10284375
transcript.pyannote[136].end 734.58284375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 735.03846875
transcript.pyannote[137].end 735.76409375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 736.47284375
transcript.pyannote[138].end 740.99534375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 741.43409375
transcript.pyannote[139].end 743.74596875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 743.84721875
transcript.pyannote[140].end 746.74971875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 747.18846875
transcript.pyannote[141].end 756.73971875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 757.12784375
transcript.pyannote[142].end 763.27034375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 764.41784375
transcript.pyannote[143].end 774.81284375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 775.11659375
transcript.pyannote[144].end 778.03596875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 778.37346875
transcript.pyannote[145].end 781.15784375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 782.00159375
transcript.pyannote[146].end 796.39596875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 797.35784375
transcript.pyannote[147].end 798.16784375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 798.89346875
transcript.pyannote[148].end 800.27721875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 800.68221875
transcript.pyannote[149].end 808.63034375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 810.46971875
transcript.pyannote[150].end 812.56221875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 813.08534375
transcript.pyannote[151].end 825.94409375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 825.62346875
transcript.pyannote[152].end 829.18409375
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 829.65659375
transcript.pyannote[153].end 832.76159375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 833.31846875
transcript.pyannote[154].end 835.79909375
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 837.28409375
transcript.pyannote[155].end 838.83659375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 838.39784375
transcript.pyannote[156].end 839.52846875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 839.22471875
transcript.pyannote[157].end 840.59159375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 840.84471875
transcript.pyannote[158].end 842.32971875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 843.17346875
transcript.pyannote[159].end 847.49346875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 843.22409375
transcript.pyannote[160].end 843.39284375
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 848.23596875
transcript.pyannote[161].end 851.18909375
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 853.01159375
transcript.pyannote[162].end 853.82159375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 854.88471875
transcript.pyannote[163].end 859.52534375
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 860.60534375
transcript.pyannote[164].end 867.27096875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 867.52409375
transcript.pyannote[165].end 871.37159375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 871.84409375
transcript.pyannote[166].end 874.27409375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 874.71284375
transcript.pyannote[167].end 877.05846875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 877.39596875
transcript.pyannote[168].end 879.96096875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 881.17596875
transcript.pyannote[169].end 881.85096875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 882.44159375
transcript.pyannote[170].end 885.85034375
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 886.44096875
transcript.pyannote[171].end 889.47846875
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 889.49534375
transcript.pyannote[172].end 892.80284375
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 893.00534375
transcript.pyannote[173].end 899.65409375
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 900.10971875
transcript.pyannote[174].end 901.47659375
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 902.06721875
transcript.pyannote[175].end 903.68721875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 904.00784375
transcript.pyannote[176].end 906.37034375
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 907.73721875
transcript.pyannote[177].end 909.00284375
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 909.84659375
transcript.pyannote[178].end 911.38221875
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 911.75346875
transcript.pyannote[179].end 913.15409375
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 913.86284375
transcript.pyannote[180].end 915.46596875
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 916.19159375
transcript.pyannote[181].end 917.06909375
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 918.45284375
transcript.pyannote[182].end 919.07721875
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 919.76909375
transcript.pyannote[183].end 954.34596875
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 954.98721875
transcript.pyannote[184].end 966.54659375
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 966.90096875
transcript.pyannote[185].end 970.05659375
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 970.52909375
transcript.pyannote[186].end 976.87409375
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 978.84846875
transcript.pyannote[187].end 979.55721875
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 980.21534375
transcript.pyannote[188].end 981.14346875
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 981.97034375
transcript.pyannote[189].end 982.15596875
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 983.06721875
transcript.pyannote[190].end 983.79284375
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 984.21471875
transcript.pyannote[191].end 986.81346875
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 986.86409375
transcript.pyannote[192].end 986.93159375
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 987.60659375
transcript.pyannote[193].end 992.80409375
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 989.36159375
transcript.pyannote[194].end 989.73284375
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 993.27659375
transcript.pyannote[195].end 994.81221875
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 995.28471875
transcript.pyannote[196].end 1001.03909375
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 1001.46096875
transcript.pyannote[197].end 1004.59971875
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 1005.03846875
transcript.pyannote[198].end 1008.37971875
transcript.pyannote[199].speaker SPEAKER_01
transcript.pyannote[199].start 1010.45534375
transcript.pyannote[199].end 1013.81346875
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 1014.03284375
transcript.pyannote[200].end 1015.45034375
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 1016.04096875
transcript.pyannote[201].end 1027.56659375
transcript.pyannote[202].speaker SPEAKER_01
transcript.pyannote[202].start 1028.42721875
transcript.pyannote[202].end 1030.68846875
transcript.pyannote[203].speaker SPEAKER_01
transcript.pyannote[203].start 1031.53221875
transcript.pyannote[203].end 1032.98346875
transcript.pyannote[204].speaker SPEAKER_01
transcript.pyannote[204].start 1033.52346875
transcript.pyannote[204].end 1034.82284375
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 1035.48096875
transcript.pyannote[205].end 1038.33284375
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 1039.27784375
transcript.pyannote[206].end 1039.88534375
transcript.pyannote[207].speaker SPEAKER_01
transcript.pyannote[207].start 1040.59409375
transcript.pyannote[207].end 1041.55596875
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 1042.72034375
transcript.pyannote[208].end 1058.90346875
transcript.pyannote[209].speaker SPEAKER_01
transcript.pyannote[209].start 1059.30846875
transcript.pyannote[209].end 1063.08846875
transcript.pyannote[210].speaker SPEAKER_01
transcript.pyannote[210].start 1063.45971875
transcript.pyannote[210].end 1066.68284375
transcript.pyannote[211].speaker SPEAKER_01
transcript.pyannote[211].start 1067.56034375
transcript.pyannote[211].end 1080.19971875
transcript.pyannote[212].speaker SPEAKER_01
transcript.pyannote[212].start 1080.68909375
transcript.pyannote[212].end 1097.59784375
transcript.pyannote[213].speaker SPEAKER_01
transcript.pyannote[213].start 1098.15471875
transcript.pyannote[213].end 1120.19346875
transcript.pyannote[214].speaker SPEAKER_01
transcript.pyannote[214].start 1122.06659375
transcript.pyannote[214].end 1125.67784375
transcript.pyannote[215].speaker SPEAKER_01
transcript.pyannote[215].start 1125.99846875
transcript.pyannote[215].end 1126.08284375
transcript.pyannote[216].speaker SPEAKER_01
transcript.pyannote[216].start 1126.33596875
transcript.pyannote[216].end 1127.93909375
transcript.pyannote[217].speaker SPEAKER_01
transcript.pyannote[217].start 1128.73221875
transcript.pyannote[217].end 1136.37659375
transcript.pyannote[218].speaker SPEAKER_01
transcript.pyannote[218].start 1136.74784375
transcript.pyannote[218].end 1141.05096875
transcript.pyannote[219].speaker SPEAKER_01
transcript.pyannote[219].start 1141.96221875
transcript.pyannote[219].end 1143.68346875
transcript.pyannote[220].speaker SPEAKER_01
transcript.pyannote[220].start 1144.20659375
transcript.pyannote[220].end 1147.29471875
transcript.pyannote[221].speaker SPEAKER_01
transcript.pyannote[221].start 1148.22284375
transcript.pyannote[221].end 1150.11284375
transcript.pyannote[222].speaker SPEAKER_01
transcript.pyannote[222].start 1150.53471875
transcript.pyannote[222].end 1153.03221875
transcript.pyannote[223].speaker SPEAKER_02
transcript.pyannote[223].start 1154.60159375
transcript.pyannote[223].end 1156.76159375
transcript.pyannote[224].speaker SPEAKER_02
transcript.pyannote[224].start 1158.01034375
transcript.pyannote[224].end 1158.43221875
transcript.pyannote[225].speaker SPEAKER_02
transcript.pyannote[225].start 1159.76534375
transcript.pyannote[225].end 1160.25471875
transcript.pyannote[226].speaker SPEAKER_00
transcript.pyannote[226].start 1160.25471875
transcript.pyannote[226].end 1160.32221875
transcript.pyannote[227].speaker SPEAKER_01
transcript.pyannote[227].start 1161.31784375
transcript.pyannote[227].end 1190.59596875
transcript.pyannote[228].speaker SPEAKER_02
transcript.pyannote[228].start 1193.07659375
transcript.pyannote[228].end 1193.54909375
transcript.pyannote[229].speaker SPEAKER_02
transcript.pyannote[229].start 1193.97096875
transcript.pyannote[229].end 1194.96659375
transcript.whisperx[0].start 7.346
transcript.whisperx[0].end 10.254
transcript.whisperx[0].text 好 謝謝主席 是不是還是請我們洪部長
transcript.whisperx[1].start 16.605
transcript.whisperx[1].end 37.092
transcript.whisperx[1].text 部長大家都很關心這個勞保的這個基金的問題喔至少我個人也很擔心但我想到說大家覺得說領的越來越多繳費的越來越少可是那我就認真的看了一下新一個世代投入職場
transcript.whisperx[2].start 38.112
transcript.whisperx[2].end 54.524
transcript.whisperx[2].text 然後現在有在繳保費的我都很好奇那一年他的出生的人口是多少那我就假設是25歲好了因為大學畢業嘛22歲23歲那今年2025年我就看了一下2020年你知道那一年出生的小孩出生的小孩有幾個嗎大概
transcript.whisperx[3].start 57.907
transcript.whisperx[3].end 68.192
transcript.whisperx[3].text 十幾萬我告訴你你會嚇一跳我看了也嚇一跳2020年出生的小孩有30萬5千3百12個你知道去年剩下13萬4千8百56個我這個是統計這絕對不是後面寫的人口統計
transcript.whisperx[4].start 83.117
transcript.whisperx[4].end 88.839
transcript.whisperx[4].text 2000年是三十萬五千三百一十二個那個時候就在講說人口少子化危機2000年大家講說現在這繳的少三十萬人還叫繳的少嗎
transcript.whisperx[5].start 108.507
transcript.whisperx[5].end 128.328
transcript.whisperx[5].text 但如果再找一個數字相較於1982年那一年出生的小孩有40萬個我就找40萬的40萬掉到30萬 2000年其實在2000年已經就掉到30萬了2000年是因為農年再加上2000年
transcript.whisperx[6].start 129.349
transcript.whisperx[6].end 158.129
transcript.whisperx[6].text 那為什麼講這個是從40萬人掉到30萬人花了18年的時間少掉了25%四分之一的人口數那個時候我們就說這個勞保的財務危機了勞保的財務危機可是你知道從2000年然後掉到再少四分之一就財務危機少三分之一是幾年多快的速度嗎
transcript.whisperx[7].start 160.174
transcript.whisperx[7].end 164.215
transcript.whisperx[7].text 5年2005年出生數剩下20萬5854人2005年短短5年的時間又減10萬他不是10萬是3分之1再來對 跟 跟花多少的時間對30萬變成要變15萬這樣 兇兇落來
transcript.whisperx[8].start 191.659
transcript.whisperx[8].end 207.16
transcript.whisperx[8].text 這個速度也是非常的快如果不要講一個特殊的年是2010年的話其實就是2021年20年他從30萬掉到剩15萬二分之一所以2000年為界
transcript.whisperx[9].start 208.061
transcript.whisperx[9].end 235.16
transcript.whisperx[9].text 他到2020年掉了二分之一如果少了四分之一就是財務危機那那麼快的速度下墜到三分之一就少了三分之一然後再更快的速度二十年時間少了二分之一那我現在講這個勞保的財務危機大家都知道開源節流 開源怎麼開源啊費率 法定費率工具用完了 剩下幾%現在費率多少%
transcript.whisperx[10].start 238.16
transcript.whisperx[10].end 243.543
transcript.whisperx[10].text 法定費率最高到多少法定費率沒有修法的話 緊繃啊天花板到了 沒有開圓的工具了那我們再打開投保薪資的天花板投保薪資天花板是要開到多高啊
transcript.whisperx[11].start 264.09
transcript.whisperx[11].end 273.944
transcript.whisperx[11].text 你少掉了二分之一的人耶如果再跟四十萬的人口來講那個不是二分之一四十萬變成十五萬耶這裡打多開也開不了
transcript.whisperx[12].start 280.031
transcript.whisperx[12].end 290.883
transcript.whisperx[12].text 大家都知道 這個不是結構不結構 入不敷出 已經沒有任何的手段可以再繼續開源了好 去年2024年 這個政府撥補1300億 投資收益的創新高1595億的投資收益
transcript.whisperx[13].start 302.111
transcript.whisperx[13].end 307.053
transcript.whisperx[13].text 也是一樣入不敷出前年2023年政府撥補550億投資收益1100億那是死好呢那是死壞 你投資收益很壞的要安住
transcript.whisperx[14].start 319.201
transcript.whisperx[14].end 336.449
transcript.whisperx[14].text 所以在這種狀況裡面 我們看你們的精算報告這次的精算報告也出來了去年的勞保收支還短差665億這個已經是連續8年這個逆差 大家都知道我剛才剩下人口數給你聽 你會怕死啊
transcript.whisperx[15].start 337.669
transcript.whisperx[15].end 351.957
transcript.whisperx[15].text 潛藏的負債不要講啊 這個從變成14兆就不要講收不抵資也不用再講了 惡化也不用再講政府如何加大力道 我想喔啊 一樣啦 已經撥不到1300億啦 你是要怎麼加大力道啦還可以多大啦然後 這個到底是怎麼 怎麼辦喔你把年紀想起來 頭皮會發麻捏頭皮真的會發麻欸
transcript.whisperx[16].start 369.015
transcript.whisperx[16].end 381.89
transcript.whisperx[16].text 這個人口就是牽動這個退休這個勞保基金最重要的變數這個人口結構這麼大的變化大家都知道人口危機是國安危機可是就是在這裡那勞保的普通事故啊因濟保費在這個
transcript.whisperx[17].start 390.407
transcript.whisperx[17].end 395.91
transcript.whisperx[17].text 投保人數就是現在還是40萬的人在繳費的現在繳費的應該都是一年生40萬的人在繳費的吧今年是40萬人那個世代的人在繳費的啦今年是30萬跟20萬的還沒到職場啦
transcript.whisperx[18].start 413.325
transcript.whisperx[18].end 420.129
transcript.whisperx[18].text 那是更恐怖的啦一年才有40萬的離開的人現在在投保可是光是這樣子2021年投保人數從1074萬到去年已經下降到1048萬少了26萬了那勞保普通事故因紀的保險費是4881億但實際保險的給付已經高達5546.3億元
transcript.whisperx[19].start 442.563
transcript.whisperx[19].end 469.966
transcript.whisperx[19].text 所以這樣的撥補是撥補我們是很輕盈的但是就不是辦法那這種這麼大的人口結構的問題之下這個我的助理叫我跟你們大家講雖然我也不曉得我認不認同但他們都選擇不婚不生快樂一生但是這樣下去他們覺得不婚不生的人也要貧窮一生了啊
transcript.whisperx[20].start 471.721
transcript.whisperx[20].end 474.164
transcript.whisperx[20].text 然後呢 我要再問你一個很嚴肅的課題喔勞保分得這麼大 勞保可以賺嗎你說政府付不付 最終責任沒有重要啊全部所有的人口的一半 一千萬全部都是在這個社會保險裡面
transcript.whisperx[21].start 488.797
transcript.whisperx[21].end 510.933
transcript.whisperx[21].text 都不會負你的責任,政府不會負你的責任,你能夠一個盡權,所有人都不會負你的責任所以這不是重點,要不要負最終責任,現在是政府要怎麼負最終責任啊再來另外一個問題是,你知道有多少的受僱者或是多少的人,他的老年經濟的安全,老年經濟安全
transcript.whisperx[22].start 513.393
transcript.whisperx[22].end 542.495
transcript.whisperx[22].text 真的都沒搞 吃得老的時候都仰賴勞保的月退再充當他的這個勉強度餘生的棺材本啦我說這個很務實的 又很現實的喔不要說勞退喔 勞退沒多少錢啦都仰賴勞保主要的經濟 老年經濟來源仰賴勞保的比例有多高 你告訴我
transcript.whisperx[23].start 549.292
transcript.whisperx[23].end 561.902
transcript.whisperx[23].text 各位報告喔 我們對勞工的老年經濟保障還是希望他們跟世界...不要講你的希望 我現在要問你現實面 真正的現實面台灣有多少人 他退休之後所有的收入所有經濟的來源 他生活都靠而已去報這個月退多少人 你跟我說啦
transcript.whisperx[24].start 575.168
transcript.whisperx[24].end 589.296
transcript.whisperx[24].text 不過勞保目前的家保人口是一千多萬嘛那但是在勞退那邊也有七百多萬啦所以是 我在問什麼 你在回答什麼我問東你答西 王店員你不知道喔
transcript.whisperx[25].start 592.433
transcript.whisperx[25].end 618.039
transcript.whisperx[25].text 數字上面我可能可以我們要再去確認我告訴你大概全台灣沒有人可以講得出一個數字因為沒有人敢面對沒有人敢調查也大家都烏著眼睛都不要去想不要去想但是我跟你說喔就如我剛才一開始就講的現在的年輕人不要問我們上一代的現在要捏錢的啦多少人仰賴這個勞保月退再當生活費的啦
transcript.whisperx[26].start 618.817
transcript.whisperx[26].end 619.918
transcript.whisperx[26].text 因為他沒有能力去為自己的老年經濟做準備養小孩繳房貸他在養上一代
transcript.whisperx[27].start 637.675
transcript.whisperx[27].end 651.922
transcript.whisperx[27].text 別說他問我們自己啦大家各位在座的各位有幾個人你繳了房貸養了小孩然後給父母生活背後你還有能力為你自己的老年經濟安全有餘裕做準備的這個小孩我說很輕鬆的喔
transcript.whisperx[28].start 656.294
transcript.whisperx[28].end 667.052
transcript.whisperx[28].text 我坐著一眼望去 多少人都仰賴勞保的月退當生活開支的唯一財源這個問題很嚴重
transcript.whisperx[29].start 672.714
transcript.whisperx[29].end 697.746
transcript.whisperx[29].text 我也不知道要怎麼問 所以不能破產的但是我現在要跟你講 你是政府 你再怎麼逃 再怎麼躲 躲不了撥補是好事 但撥補也解決不了漲保費 漲保費也沒辦法 手段工具都用清了沒有可以再上漲的空間了
transcript.whisperx[30].start 698.956
transcript.whisperx[30].end 708.827
transcript.whisperx[30].text 打開天花板,天花板進去繳,收入也有限現在未來是怎樣?我再說一個問題,你不要去思考過不?不對,AI的時代來了AI的時代來了
transcript.whisperx[31].start 715.129
transcript.whisperx[31].end 734.522
transcript.whisperx[31].text 三年五年整個社會整個世界都就長得不一樣AI的速度之快啊讓這個社會可能三年就多一輪啊多一輪啊所以那個對勞動市場最大的衝擊是什麼大家都覺得失業啊被替代啊然後來了
transcript.whisperx[32].start 736.519
transcript.whisperx[32].end 762.362
transcript.whisperx[32].text 你就要勞保基金的改革 說那我們不能開源 我們節流叫啊 大家啊 你要比較少的就已經很少了 要給他少 要不然就看我而已全世界都在把退休的年齡往後延可是我想AI時代來這是一個很殘忍 很殘酷的打擊來了因為可能會很多人力被替代掉而會有大量的過剩的勞動力
transcript.whisperx[33].start 764.491
transcript.whisperx[33].end 780.766
transcript.whisperx[33].text 所以如果大家全世界來講說要領年金的年齡往後延那並不是基於並不是基於勞動力需求而已並不是基於勞動力需求的短缺恐怕真正的殘酷是基於
transcript.whisperx[34].start 782.422
transcript.whisperx[34].end 792.089
transcript.whisperx[34].text 老年幾戶的這個基金不夠所以這叫大家都不能退休不能退休問題是沒頭腦啊AI時代來了勞動力大量的勞動力過剩人力被取代這樣要怎麼做你們有沒有想過AI時代對整個就業市場勞動力市場的衝擊除了失業以外還會有什麼影響保證你們有想過嗎
transcript.whisperx[35].start 810.892
transcript.whisperx[35].end 835.318
transcript.whisperx[35].text 確實這個AI技術的滲透率越來越高其實現在其實在很多面向看起來都會對於整體的勞動環境會造成影響像是我想維恩其實也一直很關注這個問題不是啦我在講跟我們這個勞保基金有關的啦對於整個勞動力市場就業人口除了失業還有可能會產生什麼影響
transcript.whisperx[36].start 837.375
transcript.whisperx[36].end 847.243
transcript.whisperx[36].text 失業保費繳的人就少了然後人類可能會更長壽更長壽以後活得越久領得越多活得越久領的人越多這個是這個社會保險會瓦解不是會瓦解是將近崩潰
transcript.whisperx[37].start 860.629
transcript.whisperx[37].end 876.443
transcript.whisperx[37].text 不只是勞保還有健保 所幸喔 勞保不是唯一的那我再 不要忘了 我們現在移工我們的移工 我們現在83萬的移工都在繳保費 但是第14年以後不准他們領退休欸
transcript.whisperx[38].start 881.223
transcript.whisperx[38].end 888.948
transcript.whisperx[38].text 嘿 所以我們的政策都卡在第14年欸我們是用這種殘忍的手段欸可是這種手段會不會有一天在國際勞工的組織裡面這種公約裡面要求台灣不能再這樣子下去或是人家提告到國際法庭去提告覺得我們這種管制手段都叫人搬移
transcript.whisperx[39].start 907.773
transcript.whisperx[39].end 911.98
transcript.whisperx[39].text 這樣而已要安坐你做政府的有太重嗎這問題很嚴重的所以在這種狀況裡面
transcript.whisperx[40].start 920.117
transcript.whisperx[40].end 943.871
transcript.whisperx[40].text 這個我如果沒有必要又沒有感覺你如果必要我們在講這個社會保險這個問題你知道2023年OECD和G20的國家年金統計調查了42個國家除了冰島墨西哥美國和G20的印尼四國以外這個四國不要談了其餘各國和我國的勞保性質相近的就是確定給複製的
transcript.whisperx[41].start 946.312
transcript.whisperx[41].end 966.184
transcript.whisperx[41].text 這些國家的提存基金的比例都是100%以上印尼沒有啦 印尼是97%啦各國當中最低的是冰島 雖然也曾經破產過但他們年金制度的提存基金比例也有28啦但是不要講這個冰島 這比較特殊 這個
transcript.whisperx[42].start 970.586
transcript.whisperx[42].end 978.898
transcript.whisperx[42].text 但是在我國2021年的精算報告勞保的已提存的基金比例是幾%我國的6.19%人家都100%
transcript.whisperx[43].start 987.657
transcript.whisperx[43].end 1008.178
transcript.whisperx[43].text 好沒關係因為可能制度上有一點差異不一樣但是但是這個這個也是我們可以走的方向可是就人口結構惡化成這個樣子連確定確定幾副字能不能夠適應在未來的改革能不能這樣子都還是一個問號啊
transcript.whisperx[44].start 1010.652
transcript.whisperx[44].end 1019.159
transcript.whisperx[44].text 確定第一波是已經負債這麼多了確定幾副你們有沒有評估過從13萬40萬變成30萬就已經這麼大的財務危機啊30萬變成13萬確定確定幾副字真的也提得出來嗎可以100%嗎你們有評估過嗎這是現在當然現在是這是制度上面的設計
transcript.whisperx[45].start 1039.315
transcript.whisperx[45].end 1056.99
transcript.whisperx[45].text 不是啦政府的功能和角色就國安的危機當然就是未雨綢繆要先試算20年後的危機那我們才能知道怎麼因應而現在我告訴你不管開源或節流所有的手段工具都用竊了沒了沒了然後我就想政府你要想大家都覺得在這裡修法要修什麼啊
transcript.whisperx[46].start 1067.611
transcript.whisperx[46].end 1096.43
transcript.whisperx[46].text 再降低給付再延長這個退休這一些都不是工具了我們過去想像的工具都已經不是工具了更何況AI時代來了所以部長這個是很嚴肅的而且是我相信對勞動部而言你們真的還必須要重新嚴肅的去思考的事過去以後我們確定提撥制變成確定給付制就好了
transcript.whisperx[47].start 1098.231
transcript.whisperx[47].end 1108.817
transcript.whisperx[47].text 我們確定給父子的愛 歡樂人口突然間 人的越來越多五十萬的世代人要再活一年四十萬人的那個世代人要再活一年四十萬人的那個世代人要再活 要再生人的越久 活的越多現在叫的是一年四十三萬的時侯 要安寧
transcript.whisperx[48].start 1122.25
transcript.whisperx[48].end 1140.807
transcript.whisperx[48].text 人家去叫你 我就確定幾副 付得出來嗎所以這個知識體大啦 我只能在這裡與眾欣賞的在跟大家講一個最殘酷現實 我今天要講一個重點不管開源或節流 所有的工具都用完了
transcript.whisperx[49].start 1142.251
transcript.whisperx[49].end 1152.22
transcript.whisperx[49].text 幾乎都沒辦法我們可以想像的勞保的改革手段的工具沒了這是很嚴重的事情好 謝謝
transcript.whisperx[50].start 1161.565
transcript.whisperx[50].end 1165.947
transcript.whisperx[50].text 因為你們不知道說多少勞工仰賴勞保的老年給付剛好你們自己有一個勞工生活及就業狀況調查113年度調查勞工退休後的生活費的來源目前沒有規劃的人28%有規劃的72%但有規劃的裡面仰賴勞保老年給付和勞工退休金的高達四成四所以44加28等於72%都算了
transcript.whisperx[51].start 1193.08
transcript.whisperx[51].end 1194.923
transcript.whisperx[51].text 謝謝!謝謝!