iVOD / 162221

Field Value
IVOD_ID 162221
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/162221
日期 2025-06-04
會議資料.會議代碼 委員會-11-3-20-15
會議資料.會議代碼:str 第11屆第3會期財政委員會第15次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 15
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第15次全體委員會議
影片種類 Clip
開始時間 2025-06-04T11:41:30+08:00
結束時間 2025-06-04T11:51:51+08:00
影片長度 00:10:21
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/dfdeed74d30b9828bb9967dddac810615e54a9d835821946ec695a437ff13aed2d6ae07beb6466455ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 李坤城
委員發言時間 11:41:30 - 11:51:51
會議時間 2025-06-04T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第15次全體委員會議(事由:一、本院台灣民眾黨黨團,有鑑於行政院主計總處行文各縣市政府,將中央編列給地方政府的一般性補助款自114年度5至12月份分配及撥付數全數改為未分配數,已嚴重違反立法院通案刪減、促進政府資源有效配置之決議精神。中央政府預算編列浮濫,原編列三兆一千億元,立法院通案刪減後仍有二兆九千億餘元之數,為中華民國史上最高之中央政府總預算,本院本於職責審議預算,以督促中央政府增進財務效能、減少不當經濟支出甚至浪費之目的,中央政府不思檢討如何有效節用分配資源,卻意圖慷地方政府之慨,緊縮一般性補助款補助事項,將直轄市、準用直轄市規定之縣及縣(市)基本財政收支差短與定額設算之教育、社會福利及基本設施等改為未分配數,此舉不僅違反原預算刪減提案之意旨,更將嚴重影響地方財政及運作,對地方長期建設造成劇烈衝擊。爰建請院會作成決議:「行政院主計總處應依立法院審議中華民國114年度中央政府總預算案通案刪減之決議意旨,由中央各機關及所屬編列之預算刪減調整,並立即將一般性補助款足額撥付予地方政府。」請公決案。【本案如經院會復議,則不予審查】 二、邀請行政院主計總處陳主計長淑姿、財政部莊部長翠雲、內政部劉部長世芳及法務部就「近十年中央政府依財政收支劃分法、地方制度法等地方政府之補助情形及對均衡地方經濟發展之成效」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 1.97159375
transcript.pyannote[0].end 4.53659375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 5.36346875
transcript.pyannote[1].end 6.03846875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 11.52284375
transcript.pyannote[2].end 12.78846875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 13.15971875
transcript.pyannote[3].end 13.17659375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 14.03721875
transcript.pyannote[4].end 14.08784375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 14.08784375
transcript.pyannote[5].end 15.43784375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 15.92721875
transcript.pyannote[6].end 18.00284375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 18.84659375
transcript.pyannote[7].end 22.45784375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 23.06534375
transcript.pyannote[8].end 23.67284375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 24.63471875
transcript.pyannote[9].end 26.99721875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 28.02659375
transcript.pyannote[10].end 28.49909375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 28.54971875
transcript.pyannote[11].end 28.56659375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 28.56659375
transcript.pyannote[12].end 56.83221875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 35.06346875
transcript.pyannote[13].end 35.46846875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 40.12596875
transcript.pyannote[14].end 40.37909375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 43.66971875
transcript.pyannote[15].end 43.82159375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 43.83846875
transcript.pyannote[16].end 43.87221875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 55.53284375
transcript.pyannote[17].end 62.48534375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 62.56971875
transcript.pyannote[18].end 75.27659375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 65.48909375
transcript.pyannote[19].end 65.92784375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 70.65284375
transcript.pyannote[20].end 71.00721875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 75.83346875
transcript.pyannote[21].end 93.80534375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 87.46034375
transcript.pyannote[22].end 87.52784375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 94.07534375
transcript.pyannote[23].end 111.55784375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 113.43096875
transcript.pyannote[24].end 115.16909375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 115.64159375
transcript.pyannote[25].end 115.79346875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 115.79346875
transcript.pyannote[26].end 117.51471875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 115.81034375
transcript.pyannote[27].end 116.62034375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 120.50159375
transcript.pyannote[28].end 120.78846875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 121.14284375
transcript.pyannote[29].end 123.84284375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 124.02846875
transcript.pyannote[30].end 124.66971875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 124.66971875
transcript.pyannote[31].end 125.53034375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 125.53034375
transcript.pyannote[32].end 131.06534375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 131.80784375
transcript.pyannote[33].end 134.35596875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 135.38534375
transcript.pyannote[34].end 136.22909375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 137.39346875
transcript.pyannote[35].end 138.82784375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 139.50284375
transcript.pyannote[36].end 144.81846875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 145.32471875
transcript.pyannote[37].end 148.10909375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 148.54784375
transcript.pyannote[38].end 160.68096875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 160.78221875
transcript.pyannote[39].end 162.19971875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 162.35159375
transcript.pyannote[40].end 177.21846875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 177.21846875
transcript.pyannote[41].end 184.55909375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 184.60971875
transcript.pyannote[42].end 191.42721875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 191.62971875
transcript.pyannote[43].end 191.93346875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 192.60846875
transcript.pyannote[44].end 195.84846875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 196.65846875
transcript.pyannote[45].end 198.80159375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 199.27409375
transcript.pyannote[46].end 208.90971875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 209.33159375
transcript.pyannote[47].end 215.37284375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 216.90846875
transcript.pyannote[48].end 217.88721875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 218.37659375
transcript.pyannote[49].end 218.95034375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 219.50721875
transcript.pyannote[50].end 219.97971875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 220.40159375
transcript.pyannote[51].end 221.04284375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 221.32971875
transcript.pyannote[52].end 222.42659375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 222.64596875
transcript.pyannote[53].end 225.29534375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 225.80159375
transcript.pyannote[54].end 228.24846875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 228.77159375
transcript.pyannote[55].end 230.44221875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 231.11721875
transcript.pyannote[56].end 234.01971875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 234.07034375
transcript.pyannote[57].end 235.18409375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 235.97721875
transcript.pyannote[58].end 236.09534375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 236.77034375
transcript.pyannote[59].end 238.15409375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 238.47471875
transcript.pyannote[60].end 240.88784375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 240.97221875
transcript.pyannote[61].end 241.02284375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 241.22534375
transcript.pyannote[62].end 244.56659375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 244.93784375
transcript.pyannote[63].end 255.97409375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 256.61534375
transcript.pyannote[64].end 281.53971875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 265.44096875
transcript.pyannote[65].end 265.84596875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 279.02534375
transcript.pyannote[66].end 279.78471875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 279.90284375
transcript.pyannote[67].end 280.22346875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 281.05034375
transcript.pyannote[68].end 286.43346875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 286.72034375
transcript.pyannote[69].end 287.02409375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 287.49659375
transcript.pyannote[70].end 287.73284375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 288.22221875
transcript.pyannote[71].end 292.57596875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 293.04846875
transcript.pyannote[72].end 303.03846875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 298.22909375
transcript.pyannote[73].end 300.99659375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 302.85284375
transcript.pyannote[74].end 303.22409375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 303.54471875
transcript.pyannote[75].end 308.92784375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 304.55721875
transcript.pyannote[76].end 304.69221875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 309.18096875
transcript.pyannote[77].end 311.20596875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 311.94846875
transcript.pyannote[78].end 319.03596875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 319.39034375
transcript.pyannote[79].end 321.66846875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 321.73596875
transcript.pyannote[80].end 322.93409375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 323.49096875
transcript.pyannote[81].end 324.65534375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 324.72284375
transcript.pyannote[82].end 325.87034375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 326.02221875
transcript.pyannote[83].end 331.23659375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 331.89471875
transcript.pyannote[84].end 348.07784375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 336.09659375
transcript.pyannote[85].end 337.00784375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 346.84596875
transcript.pyannote[86].end 351.67221875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 352.04346875
transcript.pyannote[87].end 353.37659375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 353.56221875
transcript.pyannote[88].end 355.82346875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 355.82346875
transcript.pyannote[89].end 356.88659375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 356.56596875
transcript.pyannote[90].end 361.67909375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 361.78034375
transcript.pyannote[91].end 361.98284375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 362.23596875
transcript.pyannote[92].end 364.26096875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 364.86846875
transcript.pyannote[93].end 366.99471875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 367.56846875
transcript.pyannote[94].end 369.59346875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 370.31909375
transcript.pyannote[95].end 371.85471875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 372.14159375
transcript.pyannote[96].end 374.03159375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 374.06534375
transcript.pyannote[97].end 374.97659375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 375.16221875
transcript.pyannote[98].end 376.49534375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 376.81596875
transcript.pyannote[99].end 380.64659375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 381.05159375
transcript.pyannote[100].end 381.97971875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 382.08096875
transcript.pyannote[101].end 382.11471875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 382.45221875
transcript.pyannote[102].end 383.02596875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 382.50284375
transcript.pyannote[103].end 382.62096875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 383.16096875
transcript.pyannote[104].end 387.53159375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 387.90284375
transcript.pyannote[105].end 410.34659375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 410.85284375
transcript.pyannote[106].end 413.63721875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 413.94096875
transcript.pyannote[107].end 417.87284375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 418.07534375
transcript.pyannote[108].end 419.66159375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 419.79659375
transcript.pyannote[109].end 422.47971875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 422.68221875
transcript.pyannote[110].end 429.09471875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 429.48284375
transcript.pyannote[111].end 446.02034375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 446.71221875
transcript.pyannote[112].end 457.64721875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 455.31846875
transcript.pyannote[113].end 455.65596875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 457.39409375
transcript.pyannote[114].end 461.42721875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 461.42721875
transcript.pyannote[115].end 461.89971875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 461.95034375
transcript.pyannote[116].end 462.79409375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 462.55784375
transcript.pyannote[117].end 464.24534375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 464.24534375
transcript.pyannote[118].end 465.32534375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 465.88221875
transcript.pyannote[119].end 469.88159375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 470.18534375
transcript.pyannote[120].end 473.71221875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 474.03284375
transcript.pyannote[121].end 474.65721875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 474.96096875
transcript.pyannote[122].end 476.04096875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 474.97784375
transcript.pyannote[123].end 476.93534375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 476.91846875
transcript.pyannote[124].end 485.20409375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 485.22096875
transcript.pyannote[125].end 485.23784375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 485.23784375
transcript.pyannote[126].end 491.66721875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 485.92971875
transcript.pyannote[127].end 486.18284375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 491.81909375
transcript.pyannote[128].end 494.33346875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 494.58659375
transcript.pyannote[129].end 500.98221875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 501.26909375
transcript.pyannote[130].end 505.85909375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 506.07846875
transcript.pyannote[131].end 515.15721875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 515.91659375
transcript.pyannote[132].end 516.18659375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 516.42284375
transcript.pyannote[133].end 532.75784375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 528.94409375
transcript.pyannote[134].end 529.06221875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 533.24721875
transcript.pyannote[135].end 535.25534375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 533.56784375
transcript.pyannote[136].end 536.33534375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 536.50409375
transcript.pyannote[137].end 536.85846875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 536.70659375
transcript.pyannote[138].end 542.24159375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 538.07346875
transcript.pyannote[139].end 538.59659375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 541.48221875
transcript.pyannote[140].end 542.56221875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 542.74784375
transcript.pyannote[141].end 543.57471875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 543.89534375
transcript.pyannote[142].end 548.35034375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 548.73846875
transcript.pyannote[143].end 550.72971875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 551.18534375
transcript.pyannote[144].end 558.84659375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 559.20096875
transcript.pyannote[145].end 561.93471875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 562.30596875
transcript.pyannote[146].end 563.90909375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 564.16221875
transcript.pyannote[147].end 566.81159375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 567.08159375
transcript.pyannote[148].end 580.51409375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 574.94534375
transcript.pyannote[149].end 575.45159375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 580.64909375
transcript.pyannote[150].end 583.12971875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 583.33221875
transcript.pyannote[151].end 586.40346875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 586.40346875
transcript.pyannote[152].end 587.77034375
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 588.04034375
transcript.pyannote[153].end 588.22596875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 588.27659375
transcript.pyannote[154].end 588.56346875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 588.85034375
transcript.pyannote[155].end 593.86221875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 593.99721875
transcript.pyannote[156].end 594.03096875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 594.06471875
transcript.pyannote[157].end 595.06034375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 595.17846875
transcript.pyannote[158].end 596.62971875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 597.00096875
transcript.pyannote[159].end 597.54096875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 597.99659375
transcript.pyannote[160].end 599.73471875
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 599.86971875
transcript.pyannote[161].end 613.50471875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 609.03284375
transcript.pyannote[162].end 609.37034375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 614.01096875
transcript.pyannote[163].end 616.60971875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 616.60971875
transcript.pyannote[164].end 616.99784375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 617.36909375
transcript.pyannote[165].end 619.56284375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 620.30534375
transcript.pyannote[166].end 621.14909375
transcript.whisperx[0].start 2.054
transcript.whisperx[0].end 5.795
transcript.whisperx[0].text 請問一下這個在野黨有議員說這個三種預算呢是砍一些吃吃喝喝的錢請問一下這砍預算是砍掉吃吃喝喝的錢嗎
transcript.whisperx[1].start 28.069
transcript.whisperx[1].end 56.824
transcript.whisperx[1].text 主席長是 它主要是砍的部分因為它是1439億那裡面有1000億就是台電然後其他的項目就是大陸地區的一個旅會砍了80%國外旅費和出國教育訓練砍了60%還有媒體和政策業務宣導會砍60%還有一個特別會刪減60%那部分機關它有的是全部刪除像行政院像法務部它特別會全部刪除那所以
transcript.whisperx[2].start 57.344
transcript.whisperx[2].end 74.795
transcript.whisperx[2].text 政業黨的立委有講說這次砍掉總預算是砍掉吃吃喝的錢這公平嗎不是這是都是一般行政作業的一個費用那砍除以後他對於一個行政事務的一個推動是有他的一個困難在那有一些現在連電費都付不出來所以他現在都是用舉
transcript.whisperx[3].start 75.916
transcript.whisperx[3].end 93.513
transcript.whisperx[3].text 借的或者欠債的一個方式來執行那台東甚至於他那個執行長還拿他自己的房子去租借去借錢然後來做執行的一個費用所以這個部分我們還是希望能夠透過最佳的一個方式來把它一個彌平好
transcript.whisperx[4].start 94.674
transcript.whisperx[4].end 111.702
transcript.whisperx[4].text 那因為這次這個在野黨砍了預算那其中有636億這個是屬於說要我們行政機關自己去刪減的部分那有台北市長講完他就講了啊他說要溯源然後連本帶利討回來我聽不懂這什麼意思我也不清楚什麼叫做連本帶利討回來他可能說慈研要加濟利息啦
transcript.whisperx[5].start 124.076
transcript.whisperx[5].end 133.802
transcript.whisperx[5].text 什麼?食鹽撥款要加機利息我看了一下你們所提供的資料這包含我自己新北市在內的這個
transcript.whisperx[6].start 137.438
transcript.whisperx[6].end 159.844
transcript.whisperx[6].text 今年度中央政府對於新北市的統籌分配款跟一般性的補助款今年度是983億然後去年度113年度是914億換言之我們今年對於新北市的補助比去年多了69億這個數字有沒有錯是 是正確的
transcript.whisperx[7].start 162.825
transcript.whisperx[7].end 191.696
transcript.whisperx[7].text 就是說我們中央政府對於新北市的補助含統籌分配款、一般性補助款加起來比去年多了69億成長7.5%這有沒有問題對 這是三減後的仍然要增加68.5億約百分之七點多就是說有刪掉了大概30億左右但是中央政府對於新北市的補助人比去年還多是
transcript.whisperx[8].start 192.639
transcript.whisperx[8].end 217.474
transcript.whisperx[8].text 那我看了一下你們所提供的資料就六都來講新北成長7.5%台北成長8.9%桃園8.2%台中5.8%台南3.8%高雄14.1%對於六都的補助都比去年還要多那這是在扣掉這個一般性的補助款之後這個數字有錯嗎沒有錯
transcript.whisperx[9].start 219.557
transcript.whisperx[9].end 235.911
transcript.whisperx[9].text 所以換言之就算是有按照立法院在野黨的決議扣掉了這個一般性的補助館之後我們中央政府對於至少直轄市我新北市的補助都比去年都還要多是
transcript.whisperx[10].start 237.026
transcript.whisperx[10].end 255.391
transcript.whisperx[10].text 都比去年都還要多那現在有地方政府還在講啊就是說如果你扣掉他們的一般性補助款他們可能有一些基本的教育啦社會福利啦這些政策這些設施都沒辦法做那請問一下會有這些影響嗎
transcript.whisperx[11].start 256.687
transcript.whisperx[11].end 286.213
transcript.whisperx[11].text 事實上我們要刪減之前我們都會盤算各縣市政府他大概他的一個稅計剩餘或者是說他舉債的一個空間那事實上我們刪減會影響的是稅入啦所以稅入的部分呢你如果說可以遵檢一些相關的一個支出然後到年底的時候也可以由自己的累積剩餘來去做填補或者是說由舉債來做舉債那換言之我再問一下主席長就是說我們刪減部分是屬於他對他們的稅入的部分
transcript.whisperx[12].start 286.773
transcript.whisperx[12].end 311.333
transcript.whisperx[12].text 是那他們如果講那些不管是教育啦社福啦這些支出是屬於稅數的部分對 照案執行的部分他如果是照案執行會有一些調度上的一個問題那所以他們也可以不要去刪這一些項目嗎是 沒有刪 稅數沒有刪啦對啊 那所以今天如果按照他們的邏輯是他們要去刪那些項目時不是我們叫他們去刪那些項目的啊是
transcript.whisperx[13].start 312.008
transcript.whisperx[13].end 331.045
transcript.whisperx[13].text 所以我聽到很多的直轄市或是縣市的代表有上來講他說要一般性補助款刪掉之後那他們一些社福教育啊都會受到影響那不是中央政府叫他們去刪的是他們這些科目裡面他們要去做調整他們去刪了這些科目是不是
transcript.whisperx[14].start 332.026
transcript.whisperx[14].end 351.264
transcript.whisperx[14].text 所以這個部分 稅出的部分我們是沒有動 它影響的是稅入那稅出的部分呢就是可能他可能要用以前年度的稅基剩餘來做一個調整或者是說他要刪減一些他不必要的支出來做調整 是這樣就是說他們稅出有很多的項目 他們也可以去
transcript.whisperx[15].start 352.545
transcript.whisperx[15].end 369.353
transcript.whisperx[15].text 刪除一些我們認為是非必要性的支出就不用去動到比如說他們講的教育啊社會福利的支出嘛對不對所以如果他們今天這樣子做的話那我覺得這些地方政府對不起這些縣市民啊
transcript.whisperx[16].start 370.493
transcript.whisperx[16].end 390.034
transcript.whisperx[16].text 為什麼要去刪掉這些教育、社會的支出?更何況中央對於地方的補助,我剛才講了,至少就我新北市來講是增加的這沒有問題吧?那我也看到有一份公文,這其實我自己去年也收到類似的公文就是說我們有爭取一些地方性的補助
transcript.whisperx[17].start 391.836
transcript.whisperx[17].end 409.493
transcript.whisperx[17].text 但是呢我都看到那個公文公文它上面有寫說上開的補助呢如今立法院審議結果有所刪減的時候將一起審議結果配合調整那這個是除了是我們自己所爭取的這些地方性的預算之外你們在去年的8月30號
transcript.whisperx[18].start 410.914
transcript.whisperx[18].end 428.433
transcript.whisperx[18].text 也發了一個文應該是給全國的縣市政府就是說一般性的補助款呢這個編列還有執行的應注意事項也特別的提到就是說如果立法院審議結果有所刪減按照其審議結果配合調整嘛這是去年8月30號就給地方政府的文對不對
transcript.whisperx[19].start 429.614
transcript.whisperx[19].end 445.786
transcript.whisperx[19].text 所以理論上他們都知道有可能因為中央政府總預算受到影響的時候比如說今年中央政府總預算被砍了2076億所以我們對於地方的這個一般性的補助款就會有影響是不是
transcript.whisperx[20].start 446.787
transcript.whisperx[20].end 464.924
transcript.whisperx[20].text 因為如果說是可能有影響或者是說某部分的縣市他執行有困難那這個部分我們都會全力來一個協助他把他這個困難來解決是這樣那所以你有先提醒這個縣市政府是有可能8月30都有提醒的對因為我們
transcript.whisperx[21].start 466.205
transcript.whisperx[21].end 491.3
transcript.whisperx[21].text 預算今年的預算是1月21通過的所以你們在去年8月底那這個是例行性的發文還是說特別去年有發這個文例行性都有發文那就表示說這個因為一般性的補助款有可能因為總預算的結果會受到調整就對了是因為中央政府必須要橫走自己的財力去做卓與補助而不是全部要補助是這樣
transcript.whisperx[22].start 491.84
transcript.whisperx[22].end 514.922
transcript.whisperx[22].text 好 那請教一下 那所以今天在野黨的這個決議 它說我們違法 請問一下有違法嗎是 依照規定我們這個部分調解沒有違反相關的一個法令他們說要按照新的財化法 新的財化法已經通過啦對於這個一般性的補助款啊 這個不能這個低 去年的這個補助啊
transcript.whisperx[23].start 516.491
transcript.whisperx[23].end 530.488
transcript.whisperx[23].text 對所以因為我們是114年度的時候他已經公布了3月21然後後來新財化法有通過新財化法通過的部分他是上年度所以我們是以115年度籌編的來算他的上年度是114年度的一個那個
transcript.whisperx[24].start 533.652
transcript.whisperx[24].end 547.27
transcript.whisperx[24].text 所以說這個財化法通過在後總預算通過在前那如果說要適用的話也是明年115年度的事情那所以現在這一個一般性的補助款3減了636億是合於法律規定就對了
transcript.whisperx[25].start 551.215
transcript.whisperx[25].end 566.425
transcript.whisperx[25].text 好 那請問一下那當然啦 大家還是不希望說預算有刪掉這麼多我們也不希望說中央政府總預算被刪掉這麼多那有任何的補救方法嗎我聽這個院長還有事講說可以利用追加預算的方式來做處理
transcript.whisperx[26].start 567.185
transcript.whisperx[26].end 582.424
transcript.whisperx[26].text 是 如果要最佳第一個必須符合最佳的一個相關的法令的規定第二個也必須要立法院這邊能夠支持所以我們也懇請立法院能夠支持那我們就可以把這個部分來做一個調整
transcript.whisperx[27].start 583.405
transcript.whisperx[27].end 599.255
transcript.whisperx[27].text 那可是就時間上來講現在已經是六月份了我們會盡量來趕如果說因為這個主動權是在行政院也不是在立法院那如果因為這樣子的話那會在這個會期提出來嗎
transcript.whisperx[28].start 599.895
transcript.whisperx[28].end 618.838
transcript.whisperx[28].text 我們這個如果說各單位各縣市的建議那我們會把它拿回去然後跟院長來一個做一個討論然後也跟院長來做建議希望要這樣做調整然後讓各縣市都能夠得到一個反檢那所以這個會期有機會提出來就對了我們盡力盡力齁好謝謝主席長謝謝主席