IVOD_ID |
162221 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/162221 |
日期 |
2025-06-04 |
會議資料.會議代碼 |
委員會-11-3-20-15 |
會議資料.會議代碼:str |
第11屆第3會期財政委員會第15次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
15 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
20 |
會議資料.委員會代碼:str[0] |
財政委員會 |
會議資料.標題 |
第11屆第3會期財政委員會第15次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-06-04T11:41:30+08:00 |
結束時間 |
2025-06-04T11:51:51+08:00 |
影片長度 |
00:10:21 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/dfdeed74d30b9828bb9967dddac810615e54a9d835821946ec695a437ff13aed2d6ae07beb6466455ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
李坤城 |
委員發言時間 |
11:41:30 - 11:51:51 |
會議時間 |
2025-06-04T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期財政委員會第15次全體委員會議(事由:一、本院台灣民眾黨黨團,有鑑於行政院主計總處行文各縣市政府,將中央編列給地方政府的一般性補助款自114年度5至12月份分配及撥付數全數改為未分配數,已嚴重違反立法院通案刪減、促進政府資源有效配置之決議精神。中央政府預算編列浮濫,原編列三兆一千億元,立法院通案刪減後仍有二兆九千億餘元之數,為中華民國史上最高之中央政府總預算,本院本於職責審議預算,以督促中央政府增進財務效能、減少不當經濟支出甚至浪費之目的,中央政府不思檢討如何有效節用分配資源,卻意圖慷地方政府之慨,緊縮一般性補助款補助事項,將直轄市、準用直轄市規定之縣及縣(市)基本財政收支差短與定額設算之教育、社會福利及基本設施等改為未分配數,此舉不僅違反原預算刪減提案之意旨,更將嚴重影響地方財政及運作,對地方長期建設造成劇烈衝擊。爰建請院會作成決議:「行政院主計總處應依立法院審議中華民國114年度中央政府總預算案通案刪減之決議意旨,由中央各機關及所屬編列之預算刪減調整,並立即將一般性補助款足額撥付予地方政府。」請公決案。【本案如經院會復議,則不予審查】
二、邀請行政院主計總處陳主計長淑姿、財政部莊部長翠雲、內政部劉部長世芳及法務部就「近十年中央政府依財政收支劃分法、地方制度法等地方政府之補助情形及對均衡地方經濟發展之成效」進行專題報告,並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
1.97159375 |
transcript.pyannote[0].end |
4.53659375 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
5.36346875 |
transcript.pyannote[1].end |
6.03846875 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
11.52284375 |
transcript.pyannote[2].end |
12.78846875 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
13.15971875 |
transcript.pyannote[3].end |
13.17659375 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
14.03721875 |
transcript.pyannote[4].end |
14.08784375 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
14.08784375 |
transcript.pyannote[5].end |
15.43784375 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
15.92721875 |
transcript.pyannote[6].end |
18.00284375 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
18.84659375 |
transcript.pyannote[7].end |
22.45784375 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
23.06534375 |
transcript.pyannote[8].end |
23.67284375 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
24.63471875 |
transcript.pyannote[9].end |
26.99721875 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
28.02659375 |
transcript.pyannote[10].end |
28.49909375 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
28.54971875 |
transcript.pyannote[11].end |
28.56659375 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
28.56659375 |
transcript.pyannote[12].end |
56.83221875 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
35.06346875 |
transcript.pyannote[13].end |
35.46846875 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
40.12596875 |
transcript.pyannote[14].end |
40.37909375 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
43.66971875 |
transcript.pyannote[15].end |
43.82159375 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
43.83846875 |
transcript.pyannote[16].end |
43.87221875 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
55.53284375 |
transcript.pyannote[17].end |
62.48534375 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
62.56971875 |
transcript.pyannote[18].end |
75.27659375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
65.48909375 |
transcript.pyannote[19].end |
65.92784375 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
70.65284375 |
transcript.pyannote[20].end |
71.00721875 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
75.83346875 |
transcript.pyannote[21].end |
93.80534375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
87.46034375 |
transcript.pyannote[22].end |
87.52784375 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
94.07534375 |
transcript.pyannote[23].end |
111.55784375 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
113.43096875 |
transcript.pyannote[24].end |
115.16909375 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
115.64159375 |
transcript.pyannote[25].end |
115.79346875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
115.79346875 |
transcript.pyannote[26].end |
117.51471875 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
115.81034375 |
transcript.pyannote[27].end |
116.62034375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
120.50159375 |
transcript.pyannote[28].end |
120.78846875 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
121.14284375 |
transcript.pyannote[29].end |
123.84284375 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
124.02846875 |
transcript.pyannote[30].end |
124.66971875 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
124.66971875 |
transcript.pyannote[31].end |
125.53034375 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
125.53034375 |
transcript.pyannote[32].end |
131.06534375 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
131.80784375 |
transcript.pyannote[33].end |
134.35596875 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
135.38534375 |
transcript.pyannote[34].end |
136.22909375 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
137.39346875 |
transcript.pyannote[35].end |
138.82784375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
139.50284375 |
transcript.pyannote[36].end |
144.81846875 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
145.32471875 |
transcript.pyannote[37].end |
148.10909375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
148.54784375 |
transcript.pyannote[38].end |
160.68096875 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
160.78221875 |
transcript.pyannote[39].end |
162.19971875 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
162.35159375 |
transcript.pyannote[40].end |
177.21846875 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
177.21846875 |
transcript.pyannote[41].end |
184.55909375 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
184.60971875 |
transcript.pyannote[42].end |
191.42721875 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
191.62971875 |
transcript.pyannote[43].end |
191.93346875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
192.60846875 |
transcript.pyannote[44].end |
195.84846875 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
196.65846875 |
transcript.pyannote[45].end |
198.80159375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
199.27409375 |
transcript.pyannote[46].end |
208.90971875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
209.33159375 |
transcript.pyannote[47].end |
215.37284375 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
216.90846875 |
transcript.pyannote[48].end |
217.88721875 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
218.37659375 |
transcript.pyannote[49].end |
218.95034375 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
219.50721875 |
transcript.pyannote[50].end |
219.97971875 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
220.40159375 |
transcript.pyannote[51].end |
221.04284375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
221.32971875 |
transcript.pyannote[52].end |
222.42659375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
222.64596875 |
transcript.pyannote[53].end |
225.29534375 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
225.80159375 |
transcript.pyannote[54].end |
228.24846875 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
228.77159375 |
transcript.pyannote[55].end |
230.44221875 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
231.11721875 |
transcript.pyannote[56].end |
234.01971875 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
234.07034375 |
transcript.pyannote[57].end |
235.18409375 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
235.97721875 |
transcript.pyannote[58].end |
236.09534375 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
236.77034375 |
transcript.pyannote[59].end |
238.15409375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
238.47471875 |
transcript.pyannote[60].end |
240.88784375 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
240.97221875 |
transcript.pyannote[61].end |
241.02284375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
241.22534375 |
transcript.pyannote[62].end |
244.56659375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
244.93784375 |
transcript.pyannote[63].end |
255.97409375 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
256.61534375 |
transcript.pyannote[64].end |
281.53971875 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
265.44096875 |
transcript.pyannote[65].end |
265.84596875 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
279.02534375 |
transcript.pyannote[66].end |
279.78471875 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
279.90284375 |
transcript.pyannote[67].end |
280.22346875 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
281.05034375 |
transcript.pyannote[68].end |
286.43346875 |
transcript.pyannote[69].speaker |
SPEAKER_01 |
transcript.pyannote[69].start |
286.72034375 |
transcript.pyannote[69].end |
287.02409375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
287.49659375 |
transcript.pyannote[70].end |
287.73284375 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
288.22221875 |
transcript.pyannote[71].end |
292.57596875 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
293.04846875 |
transcript.pyannote[72].end |
303.03846875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
298.22909375 |
transcript.pyannote[73].end |
300.99659375 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
302.85284375 |
transcript.pyannote[74].end |
303.22409375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
303.54471875 |
transcript.pyannote[75].end |
308.92784375 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
304.55721875 |
transcript.pyannote[76].end |
304.69221875 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
309.18096875 |
transcript.pyannote[77].end |
311.20596875 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
311.94846875 |
transcript.pyannote[78].end |
319.03596875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
319.39034375 |
transcript.pyannote[79].end |
321.66846875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
321.73596875 |
transcript.pyannote[80].end |
322.93409375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
323.49096875 |
transcript.pyannote[81].end |
324.65534375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
324.72284375 |
transcript.pyannote[82].end |
325.87034375 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
326.02221875 |
transcript.pyannote[83].end |
331.23659375 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
331.89471875 |
transcript.pyannote[84].end |
348.07784375 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
336.09659375 |
transcript.pyannote[85].end |
337.00784375 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
346.84596875 |
transcript.pyannote[86].end |
351.67221875 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
352.04346875 |
transcript.pyannote[87].end |
353.37659375 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
353.56221875 |
transcript.pyannote[88].end |
355.82346875 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
355.82346875 |
transcript.pyannote[89].end |
356.88659375 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
356.56596875 |
transcript.pyannote[90].end |
361.67909375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
361.78034375 |
transcript.pyannote[91].end |
361.98284375 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
362.23596875 |
transcript.pyannote[92].end |
364.26096875 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
364.86846875 |
transcript.pyannote[93].end |
366.99471875 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
367.56846875 |
transcript.pyannote[94].end |
369.59346875 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
370.31909375 |
transcript.pyannote[95].end |
371.85471875 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
372.14159375 |
transcript.pyannote[96].end |
374.03159375 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
374.06534375 |
transcript.pyannote[97].end |
374.97659375 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
375.16221875 |
transcript.pyannote[98].end |
376.49534375 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
376.81596875 |
transcript.pyannote[99].end |
380.64659375 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
381.05159375 |
transcript.pyannote[100].end |
381.97971875 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
382.08096875 |
transcript.pyannote[101].end |
382.11471875 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
382.45221875 |
transcript.pyannote[102].end |
383.02596875 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
382.50284375 |
transcript.pyannote[103].end |
382.62096875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
383.16096875 |
transcript.pyannote[104].end |
387.53159375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
387.90284375 |
transcript.pyannote[105].end |
410.34659375 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
410.85284375 |
transcript.pyannote[106].end |
413.63721875 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
413.94096875 |
transcript.pyannote[107].end |
417.87284375 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
418.07534375 |
transcript.pyannote[108].end |
419.66159375 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
419.79659375 |
transcript.pyannote[109].end |
422.47971875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
422.68221875 |
transcript.pyannote[110].end |
429.09471875 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
429.48284375 |
transcript.pyannote[111].end |
446.02034375 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
446.71221875 |
transcript.pyannote[112].end |
457.64721875 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
455.31846875 |
transcript.pyannote[113].end |
455.65596875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
457.39409375 |
transcript.pyannote[114].end |
461.42721875 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
461.42721875 |
transcript.pyannote[115].end |
461.89971875 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
461.95034375 |
transcript.pyannote[116].end |
462.79409375 |
transcript.pyannote[117].speaker |
SPEAKER_01 |
transcript.pyannote[117].start |
462.55784375 |
transcript.pyannote[117].end |
464.24534375 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
464.24534375 |
transcript.pyannote[118].end |
465.32534375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
465.88221875 |
transcript.pyannote[119].end |
469.88159375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
470.18534375 |
transcript.pyannote[120].end |
473.71221875 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
474.03284375 |
transcript.pyannote[121].end |
474.65721875 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
474.96096875 |
transcript.pyannote[122].end |
476.04096875 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
474.97784375 |
transcript.pyannote[123].end |
476.93534375 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
476.91846875 |
transcript.pyannote[124].end |
485.20409375 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
485.22096875 |
transcript.pyannote[125].end |
485.23784375 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
485.23784375 |
transcript.pyannote[126].end |
491.66721875 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
485.92971875 |
transcript.pyannote[127].end |
486.18284375 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
491.81909375 |
transcript.pyannote[128].end |
494.33346875 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
494.58659375 |
transcript.pyannote[129].end |
500.98221875 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
501.26909375 |
transcript.pyannote[130].end |
505.85909375 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
506.07846875 |
transcript.pyannote[131].end |
515.15721875 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
515.91659375 |
transcript.pyannote[132].end |
516.18659375 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
516.42284375 |
transcript.pyannote[133].end |
532.75784375 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
528.94409375 |
transcript.pyannote[134].end |
529.06221875 |
transcript.pyannote[135].speaker |
SPEAKER_01 |
transcript.pyannote[135].start |
533.24721875 |
transcript.pyannote[135].end |
535.25534375 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
533.56784375 |
transcript.pyannote[136].end |
536.33534375 |
transcript.pyannote[137].speaker |
SPEAKER_01 |
transcript.pyannote[137].start |
536.50409375 |
transcript.pyannote[137].end |
536.85846875 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
536.70659375 |
transcript.pyannote[138].end |
542.24159375 |
transcript.pyannote[139].speaker |
SPEAKER_01 |
transcript.pyannote[139].start |
538.07346875 |
transcript.pyannote[139].end |
538.59659375 |
transcript.pyannote[140].speaker |
SPEAKER_01 |
transcript.pyannote[140].start |
541.48221875 |
transcript.pyannote[140].end |
542.56221875 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
542.74784375 |
transcript.pyannote[141].end |
543.57471875 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
543.89534375 |
transcript.pyannote[142].end |
548.35034375 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
548.73846875 |
transcript.pyannote[143].end |
550.72971875 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
551.18534375 |
transcript.pyannote[144].end |
558.84659375 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
559.20096875 |
transcript.pyannote[145].end |
561.93471875 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
562.30596875 |
transcript.pyannote[146].end |
563.90909375 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
564.16221875 |
transcript.pyannote[147].end |
566.81159375 |
transcript.pyannote[148].speaker |
SPEAKER_01 |
transcript.pyannote[148].start |
567.08159375 |
transcript.pyannote[148].end |
580.51409375 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
574.94534375 |
transcript.pyannote[149].end |
575.45159375 |
transcript.pyannote[150].speaker |
SPEAKER_01 |
transcript.pyannote[150].start |
580.64909375 |
transcript.pyannote[150].end |
583.12971875 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
583.33221875 |
transcript.pyannote[151].end |
586.40346875 |
transcript.pyannote[152].speaker |
SPEAKER_01 |
transcript.pyannote[152].start |
586.40346875 |
transcript.pyannote[152].end |
587.77034375 |
transcript.pyannote[153].speaker |
SPEAKER_01 |
transcript.pyannote[153].start |
588.04034375 |
transcript.pyannote[153].end |
588.22596875 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
588.27659375 |
transcript.pyannote[154].end |
588.56346875 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
588.85034375 |
transcript.pyannote[155].end |
593.86221875 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
593.99721875 |
transcript.pyannote[156].end |
594.03096875 |
transcript.pyannote[157].speaker |
SPEAKER_00 |
transcript.pyannote[157].start |
594.06471875 |
transcript.pyannote[157].end |
595.06034375 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
595.17846875 |
transcript.pyannote[158].end |
596.62971875 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
597.00096875 |
transcript.pyannote[159].end |
597.54096875 |
transcript.pyannote[160].speaker |
SPEAKER_00 |
transcript.pyannote[160].start |
597.99659375 |
transcript.pyannote[160].end |
599.73471875 |
transcript.pyannote[161].speaker |
SPEAKER_01 |
transcript.pyannote[161].start |
599.86971875 |
transcript.pyannote[161].end |
613.50471875 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
609.03284375 |
transcript.pyannote[162].end |
609.37034375 |
transcript.pyannote[163].speaker |
SPEAKER_00 |
transcript.pyannote[163].start |
614.01096875 |
transcript.pyannote[163].end |
616.60971875 |
transcript.pyannote[164].speaker |
SPEAKER_01 |
transcript.pyannote[164].start |
616.60971875 |
transcript.pyannote[164].end |
616.99784375 |
transcript.pyannote[165].speaker |
SPEAKER_00 |
transcript.pyannote[165].start |
617.36909375 |
transcript.pyannote[165].end |
619.56284375 |
transcript.pyannote[166].speaker |
SPEAKER_00 |
transcript.pyannote[166].start |
620.30534375 |
transcript.pyannote[166].end |
621.14909375 |
transcript.whisperx[0].start |
2.054 |
transcript.whisperx[0].end |
5.795 |
transcript.whisperx[0].text |
請問一下這個在野黨有議員說這個三種預算呢是砍一些吃吃喝喝的錢請問一下這砍預算是砍掉吃吃喝喝的錢嗎 |
transcript.whisperx[1].start |
28.069 |
transcript.whisperx[1].end |
56.824 |
transcript.whisperx[1].text |
主席長是 它主要是砍的部分因為它是1439億那裡面有1000億就是台電然後其他的項目就是大陸地區的一個旅會砍了80%國外旅費和出國教育訓練砍了60%還有媒體和政策業務宣導會砍60%還有一個特別會刪減60%那部分機關它有的是全部刪除像行政院像法務部它特別會全部刪除那所以 |
transcript.whisperx[2].start |
57.344 |
transcript.whisperx[2].end |
74.795 |
transcript.whisperx[2].text |
政業黨的立委有講說這次砍掉總預算是砍掉吃吃喝的錢這公平嗎不是這是都是一般行政作業的一個費用那砍除以後他對於一個行政事務的一個推動是有他的一個困難在那有一些現在連電費都付不出來所以他現在都是用舉 |
transcript.whisperx[3].start |
75.916 |
transcript.whisperx[3].end |
93.513 |
transcript.whisperx[3].text |
借的或者欠債的一個方式來執行那台東甚至於他那個執行長還拿他自己的房子去租借去借錢然後來做執行的一個費用所以這個部分我們還是希望能夠透過最佳的一個方式來把它一個彌平好 |
transcript.whisperx[4].start |
94.674 |
transcript.whisperx[4].end |
111.702 |
transcript.whisperx[4].text |
那因為這次這個在野黨砍了預算那其中有636億這個是屬於說要我們行政機關自己去刪減的部分那有台北市長講完他就講了啊他說要溯源然後連本帶利討回來我聽不懂這什麼意思我也不清楚什麼叫做連本帶利討回來他可能說慈研要加濟利息啦 |
transcript.whisperx[5].start |
124.076 |
transcript.whisperx[5].end |
133.802 |
transcript.whisperx[5].text |
什麼?食鹽撥款要加機利息我看了一下你們所提供的資料這包含我自己新北市在內的這個 |
transcript.whisperx[6].start |
137.438 |
transcript.whisperx[6].end |
159.844 |
transcript.whisperx[6].text |
今年度中央政府對於新北市的統籌分配款跟一般性的補助款今年度是983億然後去年度113年度是914億換言之我們今年對於新北市的補助比去年多了69億這個數字有沒有錯是 是正確的 |
transcript.whisperx[7].start |
162.825 |
transcript.whisperx[7].end |
191.696 |
transcript.whisperx[7].text |
就是說我們中央政府對於新北市的補助含統籌分配款、一般性補助款加起來比去年多了69億成長7.5%這有沒有問題對 這是三減後的仍然要增加68.5億約百分之七點多就是說有刪掉了大概30億左右但是中央政府對於新北市的補助人比去年還多是 |
transcript.whisperx[8].start |
192.639 |
transcript.whisperx[8].end |
217.474 |
transcript.whisperx[8].text |
那我看了一下你們所提供的資料就六都來講新北成長7.5%台北成長8.9%桃園8.2%台中5.8%台南3.8%高雄14.1%對於六都的補助都比去年還要多那這是在扣掉這個一般性的補助款之後這個數字有錯嗎沒有錯 |
transcript.whisperx[9].start |
219.557 |
transcript.whisperx[9].end |
235.911 |
transcript.whisperx[9].text |
所以換言之就算是有按照立法院在野黨的決議扣掉了這個一般性的補助館之後我們中央政府對於至少直轄市我新北市的補助都比去年都還要多是 |
transcript.whisperx[10].start |
237.026 |
transcript.whisperx[10].end |
255.391 |
transcript.whisperx[10].text |
都比去年都還要多那現在有地方政府還在講啊就是說如果你扣掉他們的一般性補助款他們可能有一些基本的教育啦社會福利啦這些政策這些設施都沒辦法做那請問一下會有這些影響嗎 |
transcript.whisperx[11].start |
256.687 |
transcript.whisperx[11].end |
286.213 |
transcript.whisperx[11].text |
事實上我們要刪減之前我們都會盤算各縣市政府他大概他的一個稅計剩餘或者是說他舉債的一個空間那事實上我們刪減會影響的是稅入啦所以稅入的部分呢你如果說可以遵檢一些相關的一個支出然後到年底的時候也可以由自己的累積剩餘來去做填補或者是說由舉債來做舉債那換言之我再問一下主席長就是說我們刪減部分是屬於他對他們的稅入的部分 |
transcript.whisperx[12].start |
286.773 |
transcript.whisperx[12].end |
311.333 |
transcript.whisperx[12].text |
是那他們如果講那些不管是教育啦社福啦這些支出是屬於稅數的部分對 照案執行的部分他如果是照案執行會有一些調度上的一個問題那所以他們也可以不要去刪這一些項目嗎是 沒有刪 稅數沒有刪啦對啊 那所以今天如果按照他們的邏輯是他們要去刪那些項目時不是我們叫他們去刪那些項目的啊是 |
transcript.whisperx[13].start |
312.008 |
transcript.whisperx[13].end |
331.045 |
transcript.whisperx[13].text |
所以我聽到很多的直轄市或是縣市的代表有上來講他說要一般性補助款刪掉之後那他們一些社福教育啊都會受到影響那不是中央政府叫他們去刪的是他們這些科目裡面他們要去做調整他們去刪了這些科目是不是 |
transcript.whisperx[14].start |
332.026 |
transcript.whisperx[14].end |
351.264 |
transcript.whisperx[14].text |
所以這個部分 稅出的部分我們是沒有動 它影響的是稅入那稅出的部分呢就是可能他可能要用以前年度的稅基剩餘來做一個調整或者是說他要刪減一些他不必要的支出來做調整 是這樣就是說他們稅出有很多的項目 他們也可以去 |
transcript.whisperx[15].start |
352.545 |
transcript.whisperx[15].end |
369.353 |
transcript.whisperx[15].text |
刪除一些我們認為是非必要性的支出就不用去動到比如說他們講的教育啊社會福利的支出嘛對不對所以如果他們今天這樣子做的話那我覺得這些地方政府對不起這些縣市民啊 |
transcript.whisperx[16].start |
370.493 |
transcript.whisperx[16].end |
390.034 |
transcript.whisperx[16].text |
為什麼要去刪掉這些教育、社會的支出?更何況中央對於地方的補助,我剛才講了,至少就我新北市來講是增加的這沒有問題吧?那我也看到有一份公文,這其實我自己去年也收到類似的公文就是說我們有爭取一些地方性的補助 |
transcript.whisperx[17].start |
391.836 |
transcript.whisperx[17].end |
409.493 |
transcript.whisperx[17].text |
但是呢我都看到那個公文公文它上面有寫說上開的補助呢如今立法院審議結果有所刪減的時候將一起審議結果配合調整那這個是除了是我們自己所爭取的這些地方性的預算之外你們在去年的8月30號 |
transcript.whisperx[18].start |
410.914 |
transcript.whisperx[18].end |
428.433 |
transcript.whisperx[18].text |
也發了一個文應該是給全國的縣市政府就是說一般性的補助款呢這個編列還有執行的應注意事項也特別的提到就是說如果立法院審議結果有所刪減按照其審議結果配合調整嘛這是去年8月30號就給地方政府的文對不對 |
transcript.whisperx[19].start |
429.614 |
transcript.whisperx[19].end |
445.786 |
transcript.whisperx[19].text |
所以理論上他們都知道有可能因為中央政府總預算受到影響的時候比如說今年中央政府總預算被砍了2076億所以我們對於地方的這個一般性的補助款就會有影響是不是 |
transcript.whisperx[20].start |
446.787 |
transcript.whisperx[20].end |
464.924 |
transcript.whisperx[20].text |
因為如果說是可能有影響或者是說某部分的縣市他執行有困難那這個部分我們都會全力來一個協助他把他這個困難來解決是這樣那所以你有先提醒這個縣市政府是有可能8月30都有提醒的對因為我們 |
transcript.whisperx[21].start |
466.205 |
transcript.whisperx[21].end |
491.3 |
transcript.whisperx[21].text |
預算今年的預算是1月21通過的所以你們在去年8月底那這個是例行性的發文還是說特別去年有發這個文例行性都有發文那就表示說這個因為一般性的補助款有可能因為總預算的結果會受到調整就對了是因為中央政府必須要橫走自己的財力去做卓與補助而不是全部要補助是這樣 |
transcript.whisperx[22].start |
491.84 |
transcript.whisperx[22].end |
514.922 |
transcript.whisperx[22].text |
好 那請教一下 那所以今天在野黨的這個決議 它說我們違法 請問一下有違法嗎是 依照規定我們這個部分調解沒有違反相關的一個法令他們說要按照新的財化法 新的財化法已經通過啦對於這個一般性的補助款啊 這個不能這個低 去年的這個補助啊 |
transcript.whisperx[23].start |
516.491 |
transcript.whisperx[23].end |
530.488 |
transcript.whisperx[23].text |
對所以因為我們是114年度的時候他已經公布了3月21然後後來新財化法有通過新財化法通過的部分他是上年度所以我們是以115年度籌編的來算他的上年度是114年度的一個那個 |
transcript.whisperx[24].start |
533.652 |
transcript.whisperx[24].end |
547.27 |
transcript.whisperx[24].text |
所以說這個財化法通過在後總預算通過在前那如果說要適用的話也是明年115年度的事情那所以現在這一個一般性的補助款3減了636億是合於法律規定就對了 |
transcript.whisperx[25].start |
551.215 |
transcript.whisperx[25].end |
566.425 |
transcript.whisperx[25].text |
好 那請問一下那當然啦 大家還是不希望說預算有刪掉這麼多我們也不希望說中央政府總預算被刪掉這麼多那有任何的補救方法嗎我聽這個院長還有事講說可以利用追加預算的方式來做處理 |
transcript.whisperx[26].start |
567.185 |
transcript.whisperx[26].end |
582.424 |
transcript.whisperx[26].text |
是 如果要最佳第一個必須符合最佳的一個相關的法令的規定第二個也必須要立法院這邊能夠支持所以我們也懇請立法院能夠支持那我們就可以把這個部分來做一個調整 |
transcript.whisperx[27].start |
583.405 |
transcript.whisperx[27].end |
599.255 |
transcript.whisperx[27].text |
那可是就時間上來講現在已經是六月份了我們會盡量來趕如果說因為這個主動權是在行政院也不是在立法院那如果因為這樣子的話那會在這個會期提出來嗎 |
transcript.whisperx[28].start |
599.895 |
transcript.whisperx[28].end |
618.838 |
transcript.whisperx[28].text |
我們這個如果說各單位各縣市的建議那我們會把它拿回去然後跟院長來一個做一個討論然後也跟院長來做建議希望要這樣做調整然後讓各縣市都能夠得到一個反檢那所以這個會期有機會提出來就對了我們盡力盡力齁好謝謝主席長謝謝主席 |