iVOD / 162216

Field Value
IVOD_ID 162216
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/162216
日期 2025-06-04
會議資料.會議代碼 委員會-11-3-20-15
會議資料.會議代碼:str 第11屆第3會期財政委員會第15次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 15
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第15次全體委員會議
影片種類 Clip
開始時間 2025-06-04T11:20:02+08:00
結束時間 2025-06-04T11:30:46+08:00
影片長度 00:10:44
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/dfdeed74d30b9828621f43aa59702ce35e54a9d835821946ec695a437ff13aed3678eecdf53964765ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鍾佳濱
委員發言時間 11:20:02 - 11:30:46
會議時間 2025-06-04T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第15次全體委員會議(事由:一、本院台灣民眾黨黨團,有鑑於行政院主計總處行文各縣市政府,將中央編列給地方政府的一般性補助款自114年度5至12月份分配及撥付數全數改為未分配數,已嚴重違反立法院通案刪減、促進政府資源有效配置之決議精神。中央政府預算編列浮濫,原編列三兆一千億元,立法院通案刪減後仍有二兆九千億餘元之數,為中華民國史上最高之中央政府總預算,本院本於職責審議預算,以督促中央政府增進財務效能、減少不當經濟支出甚至浪費之目的,中央政府不思檢討如何有效節用分配資源,卻意圖慷地方政府之慨,緊縮一般性補助款補助事項,將直轄市、準用直轄市規定之縣及縣(市)基本財政收支差短與定額設算之教育、社會福利及基本設施等改為未分配數,此舉不僅違反原預算刪減提案之意旨,更將嚴重影響地方財政及運作,對地方長期建設造成劇烈衝擊。爰建請院會作成決議:「行政院主計總處應依立法院審議中華民國114年度中央政府總預算案通案刪減之決議意旨,由中央各機關及所屬編列之預算刪減調整,並立即將一般性補助款足額撥付予地方政府。」請公決案。【本案如經院會復議,則不予審查】 二、邀請行政院主計總處陳主計長淑姿、財政部莊部長翠雲、內政部劉部長世芳及法務部就「近十年中央政府依財政收支劃分法、地方制度法等地方政府之補助情形及對均衡地方經濟發展之成效」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 9.10971875
transcript.pyannote[0].end 13.81784375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 14.27346875
transcript.pyannote[1].end 19.50471875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 17.66534375
transcript.pyannote[2].end 18.77909375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 19.96034375
transcript.pyannote[3].end 20.44971875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 31.30034375
transcript.pyannote[4].end 31.89096875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 31.97534375
transcript.pyannote[5].end 34.37159375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 34.92846875
transcript.pyannote[6].end 35.40096875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 36.05909375
transcript.pyannote[7].end 39.67034375
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 39.94034375
transcript.pyannote[8].end 41.23971875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 41.34096875
transcript.pyannote[9].end 42.91034375
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 43.29846875
transcript.pyannote[10].end 43.85534375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 43.85534375
transcript.pyannote[11].end 44.86784375
transcript.pyannote[12].speaker SPEAKER_03
transcript.pyannote[12].start 43.87221875
transcript.pyannote[12].end 44.14221875
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 45.15471875
transcript.pyannote[13].end 45.44159375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 45.44159375
transcript.pyannote[14].end 46.97721875
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 45.45846875
transcript.pyannote[15].end 45.47534375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 47.23034375
transcript.pyannote[16].end 48.17534375
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 48.25971875
transcript.pyannote[17].end 48.63096875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 48.68159375
transcript.pyannote[18].end 49.37346875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 50.30159375
transcript.pyannote[19].end 50.84159375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 51.26346875
transcript.pyannote[20].end 52.86659375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 53.44034375
transcript.pyannote[21].end 55.21221875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 55.70159375
transcript.pyannote[22].end 56.34284375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 56.86596875
transcript.pyannote[23].end 58.16534375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 59.80221875
transcript.pyannote[24].end 61.01721875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 61.15221875
transcript.pyannote[25].end 63.05909375
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 63.97034375
transcript.pyannote[26].end 64.45971875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 64.30784375
transcript.pyannote[27].end 65.92784375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 66.94034375
transcript.pyannote[28].end 67.98659375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 68.34096875
transcript.pyannote[29].end 68.76284375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 69.18471875
transcript.pyannote[30].end 71.39534375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 71.78346875
transcript.pyannote[31].end 72.57659375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 72.79596875
transcript.pyannote[32].end 75.02346875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 75.36096875
transcript.pyannote[33].end 76.00221875
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 76.81221875
transcript.pyannote[34].end 78.63471875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 78.82034375
transcript.pyannote[35].end 79.39409375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 79.69784375
transcript.pyannote[36].end 81.18284375
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 81.35159375
transcript.pyannote[37].end 81.68909375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 81.94221875
transcript.pyannote[38].end 88.32096875
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 89.31659375
transcript.pyannote[39].end 93.40034375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 92.43846875
transcript.pyannote[40].end 93.43409375
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 94.04159375
transcript.pyannote[41].end 97.16346875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 96.35346875
transcript.pyannote[42].end 98.42909375
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 99.13784375
transcript.pyannote[43].end 100.06596875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 101.11221875
transcript.pyannote[44].end 103.44096875
transcript.pyannote[45].speaker SPEAKER_03
transcript.pyannote[45].start 103.03596875
transcript.pyannote[45].end 103.33971875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 104.13284375
transcript.pyannote[46].end 104.84159375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 105.48284375
transcript.pyannote[47].end 107.28846875
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 107.03534375
transcript.pyannote[48].end 107.62596875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 108.16596875
transcript.pyannote[49].end 109.70159375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 109.85346875
transcript.pyannote[50].end 114.57846875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 114.96659375
transcript.pyannote[51].end 116.82284375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 117.19409375
transcript.pyannote[52].end 120.58596875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 120.85596875
transcript.pyannote[53].end 122.69534375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 123.06659375
transcript.pyannote[54].end 126.10409375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 126.35721875
transcript.pyannote[55].end 130.47471875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 130.60971875
transcript.pyannote[56].end 132.26346875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 132.68534375
transcript.pyannote[57].end 134.13659375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 134.20409375
transcript.pyannote[58].end 136.00971875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 136.19534375
transcript.pyannote[59].end 137.79846875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 138.35534375
transcript.pyannote[60].end 139.21596875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 140.12721875
transcript.pyannote[61].end 144.80159375
transcript.pyannote[62].speaker SPEAKER_03
transcript.pyannote[62].start 144.80159375
transcript.pyannote[62].end 146.97846875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 146.74221875
transcript.pyannote[63].end 148.14284375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 148.59846875
transcript.pyannote[64].end 149.67846875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 149.81346875
transcript.pyannote[65].end 151.14659375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 152.29409375
transcript.pyannote[66].end 152.81721875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 152.96909375
transcript.pyannote[67].end 153.59346875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 154.36971875
transcript.pyannote[68].end 155.29784375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 155.48346875
transcript.pyannote[69].end 156.51284375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 156.78284375
transcript.pyannote[70].end 157.28909375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 158.11596875
transcript.pyannote[71].end 158.67284375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 158.97659375
transcript.pyannote[72].end 160.29284375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 160.59659375
transcript.pyannote[73].end 161.01846875
transcript.pyannote[74].speaker SPEAKER_03
transcript.pyannote[74].start 161.33909375
transcript.pyannote[74].end 161.45721875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 161.57534375
transcript.pyannote[75].end 162.40221875
transcript.pyannote[76].speaker SPEAKER_03
transcript.pyannote[76].start 162.99284375
transcript.pyannote[76].end 165.47346875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 163.97159375
transcript.pyannote[77].end 166.46909375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 167.11034375
transcript.pyannote[78].end 167.44784375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 167.86971875
transcript.pyannote[79].end 168.30846875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 168.78096875
transcript.pyannote[80].end 169.86096875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 171.83534375
transcript.pyannote[81].end 172.59471875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 173.11784375
transcript.pyannote[82].end 175.05846875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 175.69971875
transcript.pyannote[83].end 176.67846875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 177.01596875
transcript.pyannote[84].end 177.43784375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 178.07909375
transcript.pyannote[85].end 180.69471875
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 181.40346875
transcript.pyannote[86].end 182.88846875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 183.29346875
transcript.pyannote[87].end 186.61784375
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 184.42409375
transcript.pyannote[88].end 186.06096875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 186.92159375
transcript.pyannote[89].end 188.59221875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 189.89159375
transcript.pyannote[90].end 190.48221875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 190.88721875
transcript.pyannote[91].end 192.03471875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 192.10221875
transcript.pyannote[92].end 199.39221875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 199.59471875
transcript.pyannote[93].end 202.04159375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 202.71659375
transcript.pyannote[94].end 203.56034375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 203.77971875
transcript.pyannote[95].end 205.77096875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 206.31096875
transcript.pyannote[96].end 209.63534375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 209.92221875
transcript.pyannote[97].end 212.26784375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 212.84159375
transcript.pyannote[98].end 215.28846875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 215.55846875
transcript.pyannote[99].end 217.02659375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 217.22909375
transcript.pyannote[100].end 217.61721875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 217.88721875
transcript.pyannote[101].end 218.71409375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 219.35534375
transcript.pyannote[102].end 221.07659375
transcript.pyannote[103].speaker SPEAKER_03
transcript.pyannote[103].start 221.97096875
transcript.pyannote[103].end 225.75096875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 224.78909375
transcript.pyannote[104].end 225.83534375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 226.27409375
transcript.pyannote[105].end 228.83909375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 229.14284375
transcript.pyannote[106].end 229.91909375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 230.22284375
transcript.pyannote[107].end 230.93159375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 231.04971875
transcript.pyannote[108].end 233.19284375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 234.00284375
transcript.pyannote[109].end 234.28971875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 234.50909375
transcript.pyannote[110].end 236.90534375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 237.22596875
transcript.pyannote[111].end 238.13721875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 238.39034375
transcript.pyannote[112].end 241.15784375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 241.59659375
transcript.pyannote[113].end 244.51596875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 244.71846875
transcript.pyannote[114].end 249.17346875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 249.27471875
transcript.pyannote[115].end 252.36284375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 252.61596875
transcript.pyannote[116].end 254.65784375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 254.97846875
transcript.pyannote[117].end 256.15971875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 256.44659375
transcript.pyannote[118].end 258.35346875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 258.69096875
transcript.pyannote[119].end 261.54284375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 262.45409375
transcript.pyannote[120].end 266.08221875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 263.19659375
transcript.pyannote[121].end 263.93909375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 264.93471875
transcript.pyannote[122].end 271.31346875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 271.80284375
transcript.pyannote[123].end 272.37659375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 272.79846875
transcript.pyannote[124].end 276.34221875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 274.99221875
transcript.pyannote[125].end 277.16909375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 277.87784375
transcript.pyannote[126].end 278.73846875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 279.51471875
transcript.pyannote[127].end 281.37096875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 281.70846875
transcript.pyannote[128].end 287.02409375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 287.20971875
transcript.pyannote[129].end 289.96034375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 290.23034375
transcript.pyannote[130].end 292.77846875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 292.93034375
transcript.pyannote[131].end 296.62596875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 295.59659375
transcript.pyannote[132].end 296.01846875
transcript.pyannote[133].speaker SPEAKER_04
transcript.pyannote[133].start 296.71034375
transcript.pyannote[133].end 297.92534375
transcript.pyannote[134].speaker SPEAKER_04
transcript.pyannote[134].start 297.97596875
transcript.pyannote[134].end 298.02659375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 298.76909375
transcript.pyannote[135].end 299.32596875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 299.64659375
transcript.pyannote[136].end 305.72159375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 302.76846875
transcript.pyannote[137].end 306.02534375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 306.17721875
transcript.pyannote[138].end 306.43034375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 306.43034375
transcript.pyannote[139].end 311.02034375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 311.45909375
transcript.pyannote[140].end 313.06221875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 313.38284375
transcript.pyannote[141].end 315.76221875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 316.11659375
transcript.pyannote[142].end 316.89284375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 317.82096875
transcript.pyannote[143].end 319.25534375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 319.64346875
transcript.pyannote[144].end 320.08221875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 320.23409375
transcript.pyannote[145].end 321.36471875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 321.56721875
transcript.pyannote[146].end 323.11971875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 323.45721875
transcript.pyannote[147].end 324.08159375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 324.14909375
transcript.pyannote[148].end 325.46534375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 326.07284375
transcript.pyannote[149].end 326.76471875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 326.88284375
transcript.pyannote[150].end 331.05096875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 331.21971875
transcript.pyannote[151].end 333.02534375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 333.49784375
transcript.pyannote[152].end 336.82221875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 337.19346875
transcript.pyannote[153].end 340.56846875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 341.02409375
transcript.pyannote[154].end 344.95596875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 346.06971875
transcript.pyannote[155].end 347.21721875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 347.87534375
transcript.pyannote[156].end 349.32659375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 349.74846875
transcript.pyannote[157].end 352.48221875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 352.78596875
transcript.pyannote[158].end 355.14846875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 355.33409375
transcript.pyannote[159].end 366.01596875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 359.75534375
transcript.pyannote[160].end 360.51471875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 361.42596875
transcript.pyannote[161].end 362.16846875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 362.40471875
transcript.pyannote[162].end 364.44659375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 366.04971875
transcript.pyannote[163].end 368.63159375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 369.01971875
transcript.pyannote[164].end 371.71971875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 372.09096875
transcript.pyannote[165].end 374.87534375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 372.61409375
transcript.pyannote[166].end 373.25534375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 373.98096875
transcript.pyannote[167].end 379.02659375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 379.02659375
transcript.pyannote[168].end 379.24596875
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 379.24596875
transcript.pyannote[169].end 380.86596875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 379.27971875
transcript.pyannote[170].end 379.73534375
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 380.84909375
transcript.pyannote[171].end 381.82784375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 381.87846875
transcript.pyannote[172].end 382.87409375
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 383.09346875
transcript.pyannote[173].end 384.56159375
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 383.75159375
transcript.pyannote[174].end 384.67971875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 384.96659375
transcript.pyannote[175].end 390.18096875
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 390.75471875
transcript.pyannote[176].end 392.77971875
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 392.88096875
transcript.pyannote[177].end 395.39534375
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 395.83409375
transcript.pyannote[178].end 397.01534375
transcript.pyannote[179].speaker SPEAKER_04
transcript.pyannote[179].start 398.50034375
transcript.pyannote[179].end 399.31034375
transcript.pyannote[180].speaker SPEAKER_04
transcript.pyannote[180].start 399.32721875
transcript.pyannote[180].end 399.36096875
transcript.pyannote[181].speaker SPEAKER_04
transcript.pyannote[181].start 399.51284375
transcript.pyannote[181].end 410.81909375
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 410.81909375
transcript.pyannote[182].end 416.91096875
transcript.pyannote[183].speaker SPEAKER_04
transcript.pyannote[183].start 412.15221875
transcript.pyannote[183].end 414.53159375
transcript.pyannote[184].speaker SPEAKER_04
transcript.pyannote[184].start 416.15159375
transcript.pyannote[184].end 418.86846875
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 417.73784375
transcript.pyannote[185].end 419.00346875
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 419.10471875
transcript.pyannote[186].end 420.69096875
transcript.pyannote[187].speaker SPEAKER_04
transcript.pyannote[187].start 419.15534375
transcript.pyannote[187].end 420.47159375
transcript.pyannote[188].speaker SPEAKER_04
transcript.pyannote[188].start 420.69096875
transcript.pyannote[188].end 426.96846875
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 422.09159375
transcript.pyannote[189].end 424.03221875
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 426.96846875
transcript.pyannote[190].end 431.25471875
transcript.pyannote[191].speaker SPEAKER_04
transcript.pyannote[191].start 427.35659375
transcript.pyannote[191].end 427.60971875
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 431.60909375
transcript.pyannote[192].end 433.00971875
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 433.60034375
transcript.pyannote[193].end 436.63784375
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 437.14409375
transcript.pyannote[194].end 439.25346875
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 439.43909375
transcript.pyannote[195].end 440.95784375
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 441.16034375
transcript.pyannote[196].end 441.98721875
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 442.44284375
transcript.pyannote[197].end 443.62409375
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 444.88971875
transcript.pyannote[198].end 452.02784375
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 452.02784375
transcript.pyannote[199].end 452.48346875
transcript.pyannote[200].speaker SPEAKER_02
transcript.pyannote[200].start 452.48346875
transcript.pyannote[200].end 452.53409375
transcript.pyannote[201].speaker SPEAKER_02
transcript.pyannote[201].start 452.78721875
transcript.pyannote[201].end 452.88846875
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 452.88846875
transcript.pyannote[202].end 454.99784375
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 455.26784375
transcript.pyannote[203].end 456.36471875
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 457.22534375
transcript.pyannote[204].end 462.60846875
transcript.pyannote[205].speaker SPEAKER_00
transcript.pyannote[205].start 462.64221875
transcript.pyannote[205].end 464.97096875
transcript.pyannote[206].speaker SPEAKER_00
transcript.pyannote[206].start 465.61221875
transcript.pyannote[206].end 467.18159375
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 467.41784375
transcript.pyannote[207].end 470.35409375
transcript.pyannote[208].speaker SPEAKER_00
transcript.pyannote[208].start 470.86034375
transcript.pyannote[208].end 472.05846875
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 472.91909375
transcript.pyannote[209].end 475.09596875
transcript.pyannote[210].speaker SPEAKER_04
transcript.pyannote[210].start 475.09596875
transcript.pyannote[210].end 475.11284375
transcript.pyannote[211].speaker SPEAKER_04
transcript.pyannote[211].start 475.77096875
transcript.pyannote[211].end 475.88909375
transcript.pyannote[212].speaker SPEAKER_00
transcript.pyannote[212].start 475.87221875
transcript.pyannote[212].end 477.93096875
transcript.pyannote[213].speaker SPEAKER_04
transcript.pyannote[213].start 477.93096875
transcript.pyannote[213].end 478.57221875
transcript.pyannote[214].speaker SPEAKER_02
transcript.pyannote[214].start 478.57221875
transcript.pyannote[214].end 478.62284375
transcript.pyannote[215].speaker SPEAKER_00
transcript.pyannote[215].start 479.21346875
transcript.pyannote[215].end 483.71909375
transcript.pyannote[216].speaker SPEAKER_02
transcript.pyannote[216].start 483.46596875
transcript.pyannote[216].end 483.68534375
transcript.pyannote[217].speaker SPEAKER_02
transcript.pyannote[217].start 483.71909375
transcript.pyannote[217].end 483.82034375
transcript.pyannote[218].speaker SPEAKER_02
transcript.pyannote[218].start 484.25909375
transcript.pyannote[218].end 490.75596875
transcript.pyannote[219].speaker SPEAKER_00
transcript.pyannote[219].start 490.92471875
transcript.pyannote[219].end 492.46034375
transcript.pyannote[220].speaker SPEAKER_02
transcript.pyannote[220].start 492.03846875
transcript.pyannote[220].end 494.04659375
transcript.pyannote[221].speaker SPEAKER_00
transcript.pyannote[221].start 493.52346875
transcript.pyannote[221].end 497.86034375
transcript.pyannote[222].speaker SPEAKER_02
transcript.pyannote[222].start 497.97846875
transcript.pyannote[222].end 502.39971875
transcript.pyannote[223].speaker SPEAKER_00
transcript.pyannote[223].start 499.27784375
transcript.pyannote[223].end 501.99471875
transcript.pyannote[224].speaker SPEAKER_00
transcript.pyannote[224].start 502.38284375
transcript.pyannote[224].end 502.87221875
transcript.pyannote[225].speaker SPEAKER_02
transcript.pyannote[225].start 502.43346875
transcript.pyannote[225].end 502.45034375
transcript.pyannote[226].speaker SPEAKER_00
transcript.pyannote[226].start 504.08721875
transcript.pyannote[226].end 505.21784375
transcript.pyannote[227].speaker SPEAKER_00
transcript.pyannote[227].start 505.58909375
transcript.pyannote[227].end 508.01909375
transcript.pyannote[228].speaker SPEAKER_02
transcript.pyannote[228].start 508.22159375
transcript.pyannote[228].end 508.62659375
transcript.pyannote[229].speaker SPEAKER_00
transcript.pyannote[229].start 508.37346875
transcript.pyannote[229].end 510.19596875
transcript.pyannote[230].speaker SPEAKER_02
transcript.pyannote[230].start 510.22971875
transcript.pyannote[230].end 517.78971875
transcript.pyannote[231].speaker SPEAKER_00
transcript.pyannote[231].start 512.67659375
transcript.pyannote[231].end 513.75659375
transcript.pyannote[232].speaker SPEAKER_00
transcript.pyannote[232].start 515.46096875
transcript.pyannote[232].end 518.59971875
transcript.pyannote[233].speaker SPEAKER_00
transcript.pyannote[233].start 519.29159375
transcript.pyannote[233].end 521.01284375
transcript.pyannote[234].speaker SPEAKER_00
transcript.pyannote[234].start 521.90721875
transcript.pyannote[234].end 522.80159375
transcript.pyannote[235].speaker SPEAKER_00
transcript.pyannote[235].start 523.45971875
transcript.pyannote[235].end 525.70409375
transcript.pyannote[236].speaker SPEAKER_00
transcript.pyannote[236].start 525.95721875
transcript.pyannote[236].end 526.49721875
transcript.pyannote[237].speaker SPEAKER_00
transcript.pyannote[237].start 527.10471875
transcript.pyannote[237].end 528.10034375
transcript.pyannote[238].speaker SPEAKER_02
transcript.pyannote[238].start 528.31971875
transcript.pyannote[238].end 528.64034375
transcript.pyannote[239].speaker SPEAKER_00
transcript.pyannote[239].start 528.87659375
transcript.pyannote[239].end 531.32346875
transcript.pyannote[240].speaker SPEAKER_02
transcript.pyannote[240].start 531.64409375
transcript.pyannote[240].end 541.19534375
transcript.pyannote[241].speaker SPEAKER_00
transcript.pyannote[241].start 540.11534375
transcript.pyannote[241].end 541.56659375
transcript.pyannote[242].speaker SPEAKER_02
transcript.pyannote[242].start 541.54971875
transcript.pyannote[242].end 542.96721875
transcript.pyannote[243].speaker SPEAKER_00
transcript.pyannote[243].start 542.54534375
transcript.pyannote[243].end 544.28346875
transcript.pyannote[244].speaker SPEAKER_02
transcript.pyannote[244].start 544.28346875
transcript.pyannote[244].end 552.85596875
transcript.pyannote[245].speaker SPEAKER_00
transcript.pyannote[245].start 547.00034375
transcript.pyannote[245].end 549.21096875
transcript.pyannote[246].speaker SPEAKER_00
transcript.pyannote[246].start 550.71284375
transcript.pyannote[246].end 560.04471875
transcript.pyannote[247].speaker SPEAKER_02
transcript.pyannote[247].start 554.34096875
transcript.pyannote[247].end 556.55159375
transcript.pyannote[248].speaker SPEAKER_02
transcript.pyannote[248].start 558.07034375
transcript.pyannote[248].end 558.39096875
transcript.pyannote[249].speaker SPEAKER_01
transcript.pyannote[249].start 558.39096875
transcript.pyannote[249].end 558.77909375
transcript.pyannote[250].speaker SPEAKER_02
transcript.pyannote[250].start 558.77909375
transcript.pyannote[250].end 558.99846875
transcript.pyannote[251].speaker SPEAKER_01
transcript.pyannote[251].start 558.99846875
transcript.pyannote[251].end 559.57221875
transcript.pyannote[252].speaker SPEAKER_02
transcript.pyannote[252].start 559.57221875
transcript.pyannote[252].end 564.22971875
transcript.pyannote[253].speaker SPEAKER_00
transcript.pyannote[253].start 562.60971875
transcript.pyannote[253].end 563.06534375
transcript.pyannote[254].speaker SPEAKER_00
transcript.pyannote[254].start 563.87534375
transcript.pyannote[254].end 565.69784375
transcript.pyannote[255].speaker SPEAKER_02
transcript.pyannote[255].start 565.84971875
transcript.pyannote[255].end 566.18721875
transcript.pyannote[256].speaker SPEAKER_00
transcript.pyannote[256].start 566.27159375
transcript.pyannote[256].end 568.63409375
transcript.pyannote[257].speaker SPEAKER_00
transcript.pyannote[257].start 568.81971875
transcript.pyannote[257].end 570.00096875
transcript.pyannote[258].speaker SPEAKER_00
transcript.pyannote[258].start 570.72659375
transcript.pyannote[258].end 572.21159375
transcript.pyannote[259].speaker SPEAKER_00
transcript.pyannote[259].start 572.76846875
transcript.pyannote[259].end 574.38846875
transcript.pyannote[260].speaker SPEAKER_00
transcript.pyannote[260].start 574.64159375
transcript.pyannote[260].end 577.42596875
transcript.pyannote[261].speaker SPEAKER_00
transcript.pyannote[261].start 578.48909375
transcript.pyannote[261].end 579.78846875
transcript.pyannote[262].speaker SPEAKER_00
transcript.pyannote[262].start 580.36221875
transcript.pyannote[262].end 582.37034375
transcript.pyannote[263].speaker SPEAKER_00
transcript.pyannote[263].start 582.84284375
transcript.pyannote[263].end 583.50096875
transcript.pyannote[264].speaker SPEAKER_02
transcript.pyannote[264].start 583.85534375
transcript.pyannote[264].end 598.43534375
transcript.pyannote[265].speaker SPEAKER_00
transcript.pyannote[265].start 598.67159375
transcript.pyannote[265].end 600.03846875
transcript.pyannote[266].speaker SPEAKER_00
transcript.pyannote[266].start 600.59534375
transcript.pyannote[266].end 604.07159375
transcript.pyannote[267].speaker SPEAKER_00
transcript.pyannote[267].start 604.83096875
transcript.pyannote[267].end 605.30346875
transcript.pyannote[268].speaker SPEAKER_02
transcript.pyannote[268].start 605.32034375
transcript.pyannote[268].end 605.35409375
transcript.pyannote[269].speaker SPEAKER_02
transcript.pyannote[269].start 605.37096875
transcript.pyannote[269].end 607.21034375
transcript.pyannote[270].speaker SPEAKER_00
transcript.pyannote[270].start 606.80534375
transcript.pyannote[270].end 607.24409375
transcript.pyannote[271].speaker SPEAKER_00
transcript.pyannote[271].start 607.66596875
transcript.pyannote[271].end 613.03221875
transcript.pyannote[272].speaker SPEAKER_00
transcript.pyannote[272].start 613.55534375
transcript.pyannote[272].end 614.87159375
transcript.pyannote[273].speaker SPEAKER_02
transcript.pyannote[273].start 615.15846875
transcript.pyannote[273].end 622.21221875
transcript.pyannote[274].speaker SPEAKER_00
transcript.pyannote[274].start 615.83346875
transcript.pyannote[274].end 617.06534375
transcript.pyannote[275].speaker SPEAKER_00
transcript.pyannote[275].start 619.17471875
transcript.pyannote[275].end 619.74846875
transcript.pyannote[276].speaker SPEAKER_00
transcript.pyannote[276].start 621.08159375
transcript.pyannote[276].end 630.73409375
transcript.pyannote[277].speaker SPEAKER_00
transcript.pyannote[277].start 631.10534375
transcript.pyannote[277].end 638.02409375
transcript.pyannote[278].speaker SPEAKER_02
transcript.pyannote[278].start 637.80471875
transcript.pyannote[278].end 641.23034375
transcript.pyannote[279].speaker SPEAKER_00
transcript.pyannote[279].start 639.44159375
transcript.pyannote[279].end 644.67284375
transcript.pyannote[280].speaker SPEAKER_02
transcript.pyannote[280].start 642.85034375
transcript.pyannote[280].end 643.13721875
transcript.whisperx[0].start 9.144
transcript.whisperx[0].end 19.161
transcript.whisperx[0].text 好 主席 在場的委員先進列席的政務機關事長 官員 會長 工作夥伴 媒體 記者 女士先生有請行政院主計總署陳主計長 財政部莊部長和負責署的宋署長宋署長
transcript.whisperx[1].start 31.365
transcript.whisperx[1].end 57.959
transcript.whisperx[1].text 委員好主計長好 部長好 署長好來 先請教主計長是主計長去年 省今年 今年的中央政府總預算被刪了多少錢兩千零七十六億兩千零七十六億 是你刪的嗎不是是立法院刪的嗎是是立法院刪的 你有沒有刪中央政府總預算沒有沒有 好今天我的體重是七十三公斤那今天如果有人要求我減重十公斤那你覺得我怎麼減最快
transcript.whisperx[2].start 59.893
transcript.whisperx[2].end 88.021
transcript.whisperx[2].text 我的頭剛好10公斤頭剁掉就減了10公斤可以這樣嗎應該不會嘛你會從哪裡減脂肪多的地方減嘛對不對好假如我73公斤要我減10公斤那請問一下目前地方政府的財政有沒有餘裕目前情況都已經好轉好轉了我看到的說有剩餘那是這幾個地方政府剩餘都一樣多嗎還是有的剩的多有的剩的少還是有的甚至還不夠
transcript.whisperx[3].start 89.643
transcript.whisperx[3].end 103.385
transcript.whisperx[3].text 一般是直轄市是剩比較多直轄市剩的多因為它本身分配的一個統籌分配稅也比較多那屏東縣呢 屏東縣剩很多嗎屏東縣沒有屏東縣沒有剩很多啦 剩的還不夠啦
transcript.whisperx[4].start 104.195
transcript.whisperx[4].end 120.445
transcript.whisperx[4].text 所以今天如果說來我們看一下今天三減預算的提案是台灣民眾黨黨團中國國民黨黨團他的提案文寫得很清楚三減總數如果未達939億7500萬利於補足叫行政院自己調整
transcript.whisperx[5].start 120.945
transcript.whisperx[5].end 133.908
transcript.whisperx[5].text 因為我叫你減10公斤3公斤從屁股的肥肉減其他7公斤你自己看著辦那你是不是要從你會剁頭剁腳剁手嗎不會嘛你會從脂肪剁肉減嘛那地方政府也有剩餘但是我今天要問的是說這636億你們同樣的都減25%這對於
transcript.whisperx[6].start 140.374
transcript.whisperx[6].end 164.885
transcript.whisperx[6].text 財政 地方財政剩餘比較少的 甚至不足的 不公平你覺得有沒有這樣的感覺是 這個我們會檢討很好 那我們要看那現在呢 剛剛有人在一直問 下一頁今天什麼時候 藍白統三了 今年1月21嘛 是不是然後呢 行政院有沒有覺得不可行 有沒有 有有沒有提出呼籲有 我們熱愛自愛難行3月12提出呼籲嘛
transcript.whisperx[7].start 167.13
transcript.whisperx[7].end 188.445
transcript.whisperx[7].text 好 那麼 副議有沒有通過沒有通過副議沒有通過那剛剛有人一直在提到地方財政收支劃分法你知道現在新版的財劃法什麼時候公告通過的嗎3月263月26中午公布實施嘛3月21嘛是不是在副議遭否決之後
transcript.whisperx[8].start 190.003
transcript.whisperx[8].end 218.552
transcript.whisperx[8].text 所以這些情況裁判法在我們中央政府的預算要求你們自行調整636億之後才通過的裁判法並沒有適用今年度的中央政府總預算 是不是這樣好 那解放民進黨在5月26號提出申請釋憲然後呢 院長在5月26號提出說或許可以追加預算那麼憲法法庭也受理了這個釋憲案如果行政院沒有提追加預算或立法院多數黨團不願意提通過追加預算
transcript.whisperx[9].start 219.392
transcript.whisperx[9].end 233.001
transcript.whisperx[9].text 那你覺得視線是不是有一個機會是,我們也是希望能夠經過視線來做一個修正所以我要簡單講,就幾分鐘而已啦這個就是,如果說藍白的國會多數不願意來提最佳預算
transcript.whisperx[10].start 234.582
transcript.whisperx[10].end 261.074
transcript.whisperx[10].text 不願意來接受提最佳預算我要強調一次喔 憲法規定啊立法院是不能為增加支出制決議的立法院不能提出要行政院提最佳預算但是如果最佳預算行政院沒有提我們就看事件了嘛 對不對好 往下看來 我問了一個問題 來謝謝陳主席長 我們現在問部長部長 我就要關心重大的事情啊美國的繡改新制偉大美利法案 他說什麼從美國匯款到境外的資金要匯款稅 有沒有聽過
transcript.whisperx[11].start 263.924
transcript.whisperx[11].end 278.236
transcript.whisperx[11].text 最近有注意到這個問題但是這個法案目前沒有說明非美國公民或他美國人在美的合法投資後的資金會出會不會被剋有沒有這個部分我覺得詳細的細節還是要有在觀察但是要注意往下看現在台積電
transcript.whisperx[12].start 279.574
transcript.whisperx[12].end 295.652
transcript.whisperx[12].text 台積電是在台灣上市的公司國際資金來這邊買他的股票他把資金當中1650億他去美國投資設了美國廠美國廠賣了晶片在美國市場賣了晶片賺了錢現在他的這個錢資本利得到匯回台灣來按照這樣的美利偉大的法案會不會被扣5%的匯款稅
transcript.whisperx[13].start 298.815
transcript.whisperx[13].end 305.419
transcript.whisperx[13].text 有沒有可能這個部分我還是跟委員報告要看他們這個稅的詳細內容來講現在還有個899更可怕他說什麼他說這個當中還有報復性的稅要報復誰報復這些這些這些好對象是什麼各國的政府央行對不對外匯存底美元官方機構主權基金還有銀行授權業
transcript.whisperx[14].start 326.124
transcript.whisperx[14].end 344.799
transcript.whisperx[14].text 他怎麼說 課稅的範圍 外資在美國的營業利得他的鼓勵或公司在的債息 會出的都含含在內還有稅率會達到20% 從5%開始他這邊提到一個對美國實施不公平租稅的歧視性外國什麼是歧視性外國 他說全球企業最低稅負 好往下看
transcript.whisperx[15].start 346.104
transcript.whisperx[15].end 364.57
transcript.whisperx[15].text 目前台灣有考慮基本稅額的條例的第八條有沒有考慮我們的實施全球企業最低稅負這個部分當然在我們裡面有一個提案我們會已經送行進院一旦台灣做了這個事情台灣是不是就是實施這個八九九當中歧視性的國家
transcript.whisperx[16].start 372.413
transcript.whisperx[16].end 395.098
transcript.whisperx[16].text 沒有,應該也沒有,對是不是?如果我們實施了,就是他的嘛他說的歧視性外國嘛,899嘛,沒有宋組長為什麼不是?往上跳並沒有,對再往上跳,有沒有?還沒有如果他說對美國實施不公平的租稅的實境外國包括什麼?實施全球企業最低稅務,就寫在這裡啊台灣一旦實施了全球最低稅務制就是美國嚴重的歧視性外國,就要用899啊宋組長,你怎麼說?
transcript.whisperx[17].start 398.61
transcript.whisperx[17].end 417.115
transcript.whisperx[17].text 報告委員,在他899裡面所稱的歧視性的待遇,所謂的DST我們叫社會服務稅,另外一個叫全球最低稅負制,並不是全部的全球最低稅負制所以說還要看觀察他的基本的內容,但是有可能會被美國視為是歧視性的外國你希望他不要?
transcript.whisperx[18].start 419.255
transcript.whisperx[18].end 440.321
transcript.whisperx[18].text 但是你不知道他會不會據我們了解基本上是問美國的一些專家你問過川普我再來聽你的建議啦好來我們看一下如果按照這個莊部長如果中央銀行把我們的外匯存底在美國去持有美債還有我們授權公司到美國的投資收益根據899他要把這個錢匯回來台灣會不會遇到899的問題
transcript.whisperx[19].start 444.938
transcript.whisperx[19].end 471.9
transcript.whisperx[19].text 我覺得這個部分還是要看最後他的界定如何以及我們實際的資金的一個情形好 你說他要看 我再往上跳真的 還要再往上好 來 再看一次899說什麼課稅對象 外國政府 包括央行官方機構 包括主權基金日本農林中央金庫退休基金 包括什麼瑞典 挪威退休基金 勞退基金金融單位 銀行 保險公司公司企業 台積電寫得清清楚楚啊
transcript.whisperx[20].start 472.95
transcript.whisperx[20].end 496.043
transcript.whisperx[20].text 到底有沒有細節怎麼樣我們很擔心啊部長你了解我們的擔心嗎台灣有沒有實施他所認定的全國最低全球企業最低稅務資也不知道台灣現在目前來說適用的我們在實施的AMT還沒有到GMT的那個階段你認為還沒到GMT我們事實上還沒有到那個階段你可以跟我們全國現在關心這個課題的企業說明一下我們還沒有
transcript.whisperx[21].start 498.024
transcript.whisperx[21].end 526.3
transcript.whisperx[21].text 我們再逐步的再來看全球實施的一個情形台灣現在是多少 12到15嘛如果到達15了就是了嘛對不對15的還是AMT的這個部分未來的GMT我們會看其他國家實施的情形來推動剛剛有講到主權基金嘛最近我們政府有一個政策要再推動要再構思
transcript.whisperx[22].start 527.15
transcript.whisperx[22].end 530.738
transcript.whisperx[22].text 主權基金嘛 是主權基金在不在899的含色範圍內
transcript.whisperx[23].start 531.67
transcript.whisperx[23].end 556.685
transcript.whisperx[23].text 第一個主權基金目前政策的方向是這樣但詳細的一個規劃目前來說還有國發會在邀請相關的部會在討論當中妳是不是相關部會之一財政部是妳是不是管稅務的主管機關財政部目前來說先就主權基金設立的話妳是管稅務的主管機關嗎她的裁員我們先討論裁員我不是說妳裁員我說妳是中華民國政府負責主管財稅的機關那當然稅務的負責你當然了解美國政府的財稅機關的思考
transcript.whisperx[24].start 558.346
transcript.whisperx[24].end 576.843
transcript.whisperx[24].text 所以財政部的意見非常重要如果說我們國家建立主權基金根據這個899我們的主權基金的操作不是說一定要到美國不可啦但是主權基金如果是在投資的對象在美國
transcript.whisperx[25].start 578.51
transcript.whisperx[25].end 597.348
transcript.whisperx[25].text 那麼899條款我們主權基金在美國投資賺了錢怎麼拿回來對 也就是說未來主權基金的操作我們當然要去觀察899條款的一個適用的情形那要去評估在那裡做這樣的主權基金的投資以及它的一個財務的操作適不適當以及在賦稅上的負擔
transcript.whisperx[26].start 598.749
transcript.whisperx[26].end 612.556
transcript.whisperx[26].text 所以你要告訴軍管會我們的受險業大部分的部位在海外很多都買美債是不是是有買美債的是有對 買美國公司債萬一這些受險的海外部位受到八九九影響
transcript.whisperx[27].start 613.761
transcript.whisperx[27].end 630.543
transcript.whisperx[27].text 財政部要不要提早預警當然我們要去了解899實質的一個內容以及影響在哪個方向所以我剛剛開玩笑我說宋署長我說你是沒有跟川普通過電話如果你跟他通過電話你今天也不在這裡財政部長請評估美國稅改新案
transcript.whisperx[28].start 631.324
transcript.whisperx[28].end 640.088
transcript.whisperx[28].text 偉大美麗法案對我國的影響、幅度以及嚴厲降低衝擊的方案一個月來本委員會提出一個書面報告,可以嗎?好,我們盡快先提供好,謝謝謝謝部長、謝謝署長、謝謝主席
gazette.lineno 340
gazette.blocks[0][0] 鍾委員佳濱:(11時20分)主席、在場的委員先進、列席的政府機關首長官員、會場工作夥伴、媒體記者女士先生,有請行政院主計總處陳主計長、財政部莊部長及賦稅署宋署長。
gazette.blocks[1][0] 主席(賴委員士葆):主計長、莊部長、宋署長。
gazette.blocks[2][0] 陳主計長淑姿:委員好。
gazette.blocks[3][0] 莊部長翠雲:委員好。
gazette.blocks[4][0] 鍾委員佳濱:主計長好、部長好、署長好。先請教主計長,主計長,今年的中央政府總預算被刪了多少錢?
gazette.blocks[5][0] 陳主計長淑姿:2,076億。
gazette.blocks[6][0] 鍾委員佳濱:2,076億是你刪的嗎?
gazette.blocks[7][0] 陳主計長淑姿:不是。
gazette.blocks[8][0] 鍾委員佳濱:是立法院刪的嗎?
gazette.blocks[9][0] 陳主計長淑姿:是。
gazette.blocks[10][0] 鍾委員佳濱:是立法院刪的,你有沒有刪中央政府總預算?
gazette.blocks[11][0] 陳主計長淑姿:沒有。
gazette.blocks[12][0] 鍾委員佳濱:好,今天我的體重是73公斤,今天如果有人要求我減重10公斤,你覺得我怎麼減最快?我的頭剛好10公斤,頭剁掉就減了10公斤,可以這樣嗎?
gazette.blocks[13][0] 陳主計長淑姿:不行。
gazette.blocks[14][0] 鍾委員佳濱:應該不會嘛!你會從哪裡減?從脂肪多的地方減嘛!對不對?好,假如我73公斤要我減10公斤,請問一下,目前地方政府的財政有沒有餘裕?
gazette.blocks[15][0] 陳主計長淑姿:目前情況都已經好轉。
gazette.blocks[16][0] 鍾委員佳濱:好轉了,我看到的說有賸餘。
gazette.blocks[17][0] 陳主計長淑姿:是。
gazette.blocks[18][0] 鍾委員佳濱:那是這幾個地方政府賸餘都一樣多嗎?還是有的賸的多,有的賸的少,還是有的甚至還不夠?
gazette.blocks[19][0] 陳主計長淑姿:一般是直轄市賸比較多。
gazette.blocks[20][0] 鍾委員佳濱:直轄市賸的多?
gazette.blocks[21][0] 陳主計長淑姿:因為它本身分配的統籌分配稅也比較多。
gazette.blocks[22][0] 鍾委員佳濱:那屏東縣呢?屏東縣有賸很多嗎?
gazette.blocks[23][0] 陳主計長淑姿:屏東縣沒有。
gazette.blocks[24][0] 鍾委員佳濱:屏東縣沒有賸很多啦!甚至還不夠啦!所以今天刪減預算的提案是台灣民眾黨黨團、中國國民黨黨團,它的提案文寫得很清楚,刪減總數如果未達939億7,500萬,另予補足,叫行政院自己調整,例如我叫你減10公斤,3公斤從屁股的肥肉減,其他7公斤你自己看著辦,那你是不是要從……你會剁頭、剁腳、剁手嗎?不會嘛!
gazette.blocks[25][0] 陳主計長淑姿:不會。
gazette.blocks[26][0] 鍾委員佳濱:你會從脂肪多的地方減嘛!那地方政府也有賸餘,但是我今天要問的是這636億你們同樣的都減25%,這對於地方財政賸餘比較少的、甚至不足的不公平,你覺得有沒有這樣的感覺?
gazette.blocks[27][0] 陳主計長淑姿:是,這個我們會檢討,因為……
gazette.blocks[28][0] 鍾委員佳濱:很好,那我們往下看,剛剛有人一直問,今天什麼時候藍、白統刪的?今年1月21日嘛!是不是?然後行政院有沒有覺得不可行,有沒有?
gazette.blocks[29][0] 陳主計長淑姿:有。
gazette.blocks[30][0] 鍾委員佳濱:有沒有提出覆議?
gazette.blocks[31][0] 陳主計長淑姿:有,我們認為窒礙難行。
gazette.blocks[32][0] 鍾委員佳濱:3月12日提出覆議嘛!好,那麼覆議有沒有通過?
gazette.blocks[33][0] 陳主計長淑姿:沒有通過。
gazette.blocks[34][0] 鍾委員佳濱:覆議沒有通過,那剛剛有人一直提到地方財政收支劃分法,你知道現在新版的財劃法什麼時候公告通過的嗎?
gazette.blocks[35][0] 陳主計長淑姿:3月26日。
gazette.blocks[36][0] 鍾委員佳濱:3月26日總統公布實施嘛!
gazette.blocks[37][0] 陳主計長淑姿:3月21日。
gazette.blocks[38][0] 鍾委員佳濱:3月21日嘛!是不是在覆議遭否決之後?所以這些情況,財劃法在中央政府的預算被刪了,要求你們自行調整636億之後才通過的財劃法並沒有適用今年度的中央政府總預算,是不是這樣?
gazette.blocks[39][0] 陳主計長淑姿:是。
gazette.blocks[40][0] 鍾委員佳濱:那解方,民進黨在5月15日提出申請釋憲,然後院長在5月26日提出或許可以追加預算,那麼憲法法庭也受理了這個釋憲案,如果行政院沒有提追加預算,或立法院多數黨團不願意通過追加預算,那你覺得釋憲是不是有一個機會?
gazette.blocks[41][0] 陳主計長淑姿:是,我們也是希望能夠經過釋憲來做修正。
gazette.blocks[42][0] 鍾委員佳濱:很好。所以我簡單講,就幾分鐘而已,如果說藍白的國會多數不願意接受提追加預算,我要強調一次,憲法規定立法院是不能為增加支出之決議的,立法院不能提出要行政院提追加預算,但是如果追加預算行政院沒有提,我們就看釋憲了嘛!對不對?我要問另外一個部分,謝謝陳主計長,我們現在問部長。
gazette.blocks[42][1] 部長,我們來關心重大的事情,美國的稅改新制「偉大美麗法案」說什麼?從美國匯款到境外的資金要匯款稅,有沒有聽過?有沒有注意?
gazette.blocks[43][0] 莊部長翠雲:有,這個部分最近有注意到這個議題。
gazette.blocks[44][0] 鍾委員佳濱:有注意到,但是這個法案目前沒有說明非美國公民或美國人在美的合法投資後資金匯出會不會被課,有沒有?
gazette.blocks[45][0] 莊部長翠雲:這個部分我覺得詳細的細節還是要具體的內容。
gazette.blocks[46][0] 鍾委員佳濱:還要有待觀察,但是要注意。往下看,現在台積電是在臺灣上市的公司,國際資金來這邊買它的股票,它把資金當中1,650億拿去美國投資設了美國廠,美國廠在美國的市場賣了晶片賺了錢,現在它的這個錢、資本利得要匯回臺灣來,按照這樣的美麗偉大法案會不會被課5%匯款稅?有沒有可能?
gazette.blocks[47][0] 莊部長翠雲:這個部分我還是跟委員報告,要看他們稅的詳細內容來談。
gazette.blocks[48][0] 鍾委員佳濱:對,但很有可能就是這樣。現在還有個第899條款更可怕,它說什麼?它說這當中還有報復性的稅收,報復誰?報復這些、這些、這些,對象是什麼?各國的政府(央行)、外匯存底(美元)、官方機構(主權基金),還有銀行、壽險業,它怎麼說?課稅的範圍是外資在美國的營業利得、股利或公司債債息匯出的都涵蓋在內,還有稅率從5%開始,會達到20%,它也提到對美國實施不公平租稅的歧視性外國,什麼是歧視性外國?它說全球企業最低稅負的國家。目前臺灣所得基本稅額條例第八條有沒有考慮實施全球企業最低稅負制?有沒有?
gazette.blocks[49][0] 莊部長翠雲:這個部分當然在我們裡面有一個提案,我們已經送行政院……
gazette.blocks[50][0] 鍾委員佳濱:從12%?
gazette.blocks[51][0] 莊部長翠雲:對,12%調整到……
gazette.blocks[52][0] 鍾委員佳濱:一旦臺灣做了這件事情……
gazette.blocks[53][0] 莊部長翠雲:15%,也就是跨國企業的部分。
gazette.blocks[54][0] 鍾委員佳濱:好,一旦做了這個事情,臺灣是不是就是實施第899條款當中歧視性的國家?
gazette.blocks[55][0] 莊部長翠雲:沒有,應該也沒有。
gazette.blocks[56][0] 鍾委員佳濱:是不是?
gazette.blocks[57][0] 莊部長翠雲:不是。
gazette.blocks[58][0] 鍾委員佳濱:如果我們實施了就是它說的歧視性外國嘛!第899條款嘛?
gazette.blocks[59][0] 宋署長秀玲:不是。
gazette.blocks[60][0] 鍾委員佳濱:宋署長,為什麼不是?
gazette.blocks[61][0] 莊部長翠雲:並沒有。
gazette.blocks[62][0] 鍾委員佳濱:有沒有?
gazette.blocks[63][0] 莊部長翠雲:沒有。
gazette.blocks[64][0] 鍾委員佳濱:如果它說對美國實施不公平租稅的歧視性外國,包括什麼?實施全球企業最低稅負……就寫在這裡啊!臺灣一旦實施全球最低稅負制,就是美國眼中的歧視性外國,就要用第899條款啊!宋署長,你怎麼說?
gazette.blocks[65][0] 宋署長秀玲:報告委員,在第899條款裡面所稱的歧視性待遇所謂包含DSG,我們叫數位服務稅,另外一個叫全球最低稅負制,並不是全部的全球最低稅負制。
gazette.blocks[66][0] 鍾委員佳濱:所以說還要再觀察它的具體內容。
gazette.blocks[67][0] 宋署長秀玲:對,還要看它適用哪一種。
gazette.blocks[68][0] 鍾委員佳濱:但是有可能會被美國視為是歧視性的外國。
gazette.blocks[69][0] 宋署長秀玲:但是它基本上對我們……
gazette.blocks[70][0] 鍾委員佳濱:你希望它不要,但是你不知道它會不會。
gazette.blocks[71][0] 宋署長秀玲:據我們了解,基本上……
gazette.blocks[72][0] 鍾委員佳濱:你跟誰了解?你有打去問川普嗎?
gazette.blocks[73][0] 宋署長秀玲:是問美國的一些專家,他說……
gazette.blocks[74][0] 鍾委員佳濱:如果你問過川普,我再來聽你的建議啦!
gazette.blocks[75][0] 宋署長秀玲:好。
gazette.blocks[76][0] 鍾委員佳濱:如果按照這個,莊部長,如果中央銀行把我們的外匯存底在美國持有美債,還有我們壽險公司到美國的投資收益,根據第899條款,它要把這個錢匯回來臺灣會不會遇到第899條款的問題?
gazette.blocks[77][0] 莊部長翠雲:我覺得這個部分還是要看最後它的界定如何,以及我們實際的資金情形。
gazette.blocks[78][0] 鍾委員佳濱:好,你說還要看,再看一次第899條款說什麼?課稅對象,外國政府包括央行、官方機構包括主權基金、日本農林中央金庫、退休基金包括瑞典、挪威退休基金、勞退基金、金融單位、銀行、保險公司、公司企業(如台積電)等寫得清清楚楚啊!到底有沒有?細節怎麼樣?我們很擔心啊!部長,你了解我們的擔心嗎?臺灣有沒有實施它所認定的全球企業最低稅負制也不知道。
gazette.blocks[79][0] 莊部長翠雲:臺灣目前來說適用的,我們實施的AMT還沒有到GMT的階段。
gazette.blocks[80][0] 鍾委員佳濱:你認為還沒到GMT?
gazette.blocks[81][0] 莊部長翠雲:我們事實上還沒有到那個階段。
gazette.blocks[82][0] 鍾委員佳濱:你可以跟全國現在關心這個課題的企業說明一下我們還沒有。
gazette.blocks[83][0] 莊部長翠雲:我們再逐步的來……
gazette.blocks[84][0] 鍾委員佳濱:逐步的要達到了?
gazette.blocks[85][0] 莊部長翠雲:看全球實施的情形。
gazette.blocks[86][0] 鍾委員佳濱:臺灣現在是多少?12%到15%嘛!
gazette.blocks[87][0] 莊部長翠雲:對。
gazette.blocks[88][0] 鍾委員佳濱:如果到達15%就是了嘛!對不對?
gazette.blocks[89][0] 莊部長翠雲:15%還是只有AMT的部分,未來的GMT我們會看其他國家實施的情形來推動。
gazette.blocks[90][0] 鍾委員佳濱:好,現在這幾個題目要再請教一下,剛剛有講到主權基金嘛!最近我們政府有一個政策要推動、要構思,主權基金嘛!
gazette.blocks[91][0] 莊部長翠雲:是。
gazette.blocks[92][0] 鍾委員佳濱:主權基金在不在第899條款的涵攝範圍內?
gazette.blocks[93][0] 莊部長翠雲:第一個,主權基金目前的政策方向是這樣,但詳細的規劃目前來說還由國發會在邀集相關的部會討論當中。
gazette.blocks[94][0] 鍾委員佳濱:你是不是相關部會之一?
gazette.blocks[95][0] 莊部長翠雲:財政部是。
gazette.blocks[96][0] 鍾委員佳濱:你是不是管稅賦的主管機關?
gazette.blocks[97][0] 莊部長翠雲:財政部目前來說,先就主權基金設立的話……
gazette.blocks[98][0] 鍾委員佳濱:你是管稅賦的主管機關嘛!
gazette.blocks[99][0] 莊部長翠雲:它的財源,我們先討論財源籌措……
gazette.blocks[100][0] 鍾委員佳濱:我不是問你財源,我說你是中華民國政府負責主管財稅的機關嘛!
gazette.blocks[101][0] 莊部長翠雲:當然稅務的部分是我們。
gazette.blocks[102][0] 鍾委員佳濱:你當然了解美國政府財稅機關的思考嘛!
gazette.blocks[103][0] 莊部長翠雲:是,我們要去了解這個部分。
gazette.blocks[104][0] 鍾委員佳濱:你們署長說他跟川普通過電話嘛?
gazette.blocks[105][0] 莊部長翠雲:以及稅賦在未來在主權基金操作上會有什麼樣的影響。
gazette.blocks[106][0] 鍾委員佳濱:是的,所以財政部的意見非常重要,如果說未來我們國家建立主權基金,根據第899條款,我們主權基金的操作不是說一定要到美國不可啦!但是主權基金如果投資的對象在美國,那麼第899條款,我們主權基金在美國投資賺的錢怎麼拿回來?
gazette.blocks[107][0] 莊部長翠雲:也就是說未來主權基金的操作,我們當然要去觀察第899條款的適用情形,要去評估在那裡做這樣的主權基金投資及財務操作適不適當,以及在賦稅上的負擔。
gazette.blocks[108][0] 鍾委員佳濱:所以你要告訴金管會,我們的壽險業大部分的部位在海外,很多都買美債,是不是?
gazette.blocks[109][0] 莊部長翠雲:是有買美債的。
gazette.blocks[110][0] 鍾委員佳濱:對,買公司債,萬一這些壽險的海外部位受到899條款影響,財政部要不要提早預警?要不要跟金管會講?
gazette.blocks[111][0] 莊部長翠雲:當然,我們要去了解899條款實質的內容以及影響在哪個方向。
gazette.blocks[112][0] 鍾委員佳濱:很好。所以我剛剛開玩笑,我說:宋署長,你是沒有跟川普通過電話,如果你跟他通過電話,你今天也不會在這裡。財政部長請評估美國稅改新案「偉大美麗法案」對我國的影響幅度以及研議降低衝擊的方案,一個月內給本委員會提出一個書面報告,可以嗎?
gazette.blocks[113][0] 莊部長翠雲:好,我們儘快提供。
gazette.blocks[114][0] 鍾委員佳濱:好,謝謝部長,謝謝署長,謝謝主席。
gazette.blocks[115][0] 莊部長翠雲:謝謝。
gazette.blocks[116][0] 主席:謝謝鍾委員的質詢。
gazette.blocks[116][1] 下一位請賴惠員召委質詢。
gazette.agenda.page_end 376
gazette.agenda.meet_id 委員會-11-3-20-15
gazette.agenda.speakers[0] 賴士葆
gazette.agenda.speakers[1] 吳秉叡
gazette.agenda.speakers[2] 鍾佳濱
gazette.agenda.speakers[3] 李坤城
gazette.agenda.speakers[4] 林德福
gazette.agenda.speakers[5] 陳玉珍
gazette.agenda.speakers[6] 黃珊珊
gazette.agenda.speakers[7] 王鴻薇
gazette.agenda.speakers[8] 賴惠員
gazette.agenda.speakers[9] 郭國文
gazette.agenda.speakers[10] 李彥秀
gazette.agenda.speakers[11] 顏寬恒
gazette.agenda.speakers[12] 王世堅
gazette.agenda.speakers[13] 黃國昌
gazette.agenda.speakers[14] 羅明才
gazette.agenda.speakers[15] 鄭天財Sra Kacaw
gazette.agenda.speakers[16] 許宇甄
gazette.agenda.speakers[17] 張啓楷
gazette.agenda.speakers[18] 葉元之
gazette.agenda.speakers[19] 徐欣瑩
gazette.agenda.speakers[20] 邱鎮軍
gazette.agenda.speakers[21] 林思銘
gazette.agenda.speakers[22] 蘇清泉
gazette.agenda.speakers[23] 王美惠
gazette.agenda.speakers[24] 陳冠廷
gazette.agenda.page_start 299
gazette.agenda.meetingDate[0] 2025-06-04
gazette.agenda.gazette_id 1145601
gazette.agenda.agenda_lcidc_ids[0] 1145601_00007
gazette.agenda.meet_name 立法院第11屆第3會期財政委員會第15次全體委員會議紀錄
gazette.agenda.content 一、本院台灣民眾黨黨團,有鑑於行政院主計總處行文各縣市政府,將中央編列給地方政府的一 般性補助款自114年度5至12月份分配及撥付數全數改為未分配數,已嚴重違反立法院通案刪減、 促進政府資源有效配置之決議精神。中央政府預算編列浮濫,原編列三兆一千億元,立法院通案 刪減後仍有二兆九千億餘元之數,為中華民國史上最高之中央政府總預算,本院本於職責審議預 算,以督促中央政府增進財務效能、減少不當經濟支出甚至浪費之目的,中央政府不思檢討如何 有效節用分配資源,卻意圖慷地方政府之慨,緊縮一般性補助款補助事項,將直轄市、準用直轄 市規定之縣及縣(市)基本財政收支差短與定額設算之教育、社會福利及基本設施等改為未分配 數,此舉不僅違反原預算刪減提案之意旨,更將嚴重影響地方財政及運作,對地方長期建設造成 劇烈衝擊。爰建請院會作成決議:「行政院主計總處應依立法院審議中華民國114年度中央政府 總預算案通案刪減之決議意旨,由中央各機關及所屬編列之預算刪減調整,並立即將一般性補助 款足額撥付予地方政府。」請公決案;二、邀請行政院主計總處陳主計長淑姿、財政部莊部長翠 雲、內政部劉部長世芳及法務部就「近十年中央政府依財政收支劃分法、地方制度法等地方政府 之補助情形及對均衡地方經濟發展之成效」進行專題報告,並備質詢
gazette.agenda.agenda_id 1145601_00006