iVOD / 162215

Field Value
IVOD_ID 162215
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/162215
日期 2025-06-04
會議資料.會議代碼 委員會-11-3-20-15
會議資料.會議代碼:str 第11屆第3會期財政委員會第15次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 15
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第15次全體委員會議
影片種類 Clip
開始時間 2025-06-04T11:09:12+08:00
結束時間 2025-06-04T11:19:51+08:00
影片長度 00:10:39
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/dfdeed74d30b9828169dd78f803a24025e54a9d835821946ec695a437ff13aedb6269e3722f5e7cf5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 賴士葆
委員發言時間 11:09:12 - 11:19:51
會議時間 2025-06-04T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第15次全體委員會議(事由:一、本院台灣民眾黨黨團,有鑑於行政院主計總處行文各縣市政府,將中央編列給地方政府的一般性補助款自114年度5至12月份分配及撥付數全數改為未分配數,已嚴重違反立法院通案刪減、促進政府資源有效配置之決議精神。中央政府預算編列浮濫,原編列三兆一千億元,立法院通案刪減後仍有二兆九千億餘元之數,為中華民國史上最高之中央政府總預算,本院本於職責審議預算,以督促中央政府增進財務效能、減少不當經濟支出甚至浪費之目的,中央政府不思檢討如何有效節用分配資源,卻意圖慷地方政府之慨,緊縮一般性補助款補助事項,將直轄市、準用直轄市規定之縣及縣(市)基本財政收支差短與定額設算之教育、社會福利及基本設施等改為未分配數,此舉不僅違反原預算刪減提案之意旨,更將嚴重影響地方財政及運作,對地方長期建設造成劇烈衝擊。爰建請院會作成決議:「行政院主計總處應依立法院審議中華民國114年度中央政府總預算案通案刪減之決議意旨,由中央各機關及所屬編列之預算刪減調整,並立即將一般性補助款足額撥付予地方政府。」請公決案。【本案如經院會復議,則不予審查】 二、邀請行政院主計總處陳主計長淑姿、財政部莊部長翠雲、內政部劉部長世芳及法務部就「近十年中央政府依財政收支劃分法、地方制度法等地方政府之補助情形及對均衡地方經濟發展之成效」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 2.22471875
transcript.pyannote[0].end 3.38909375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 3.94596875
transcript.pyannote[1].end 6.02159375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 6.61221875
transcript.pyannote[2].end 7.89471875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 8.92409375
transcript.pyannote[3].end 8.94096875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 8.94096875
transcript.pyannote[4].end 9.63284375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 9.76784375
transcript.pyannote[5].end 11.11784375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 11.32034375
transcript.pyannote[6].end 11.57346875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 12.53534375
transcript.pyannote[7].end 13.64909375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 14.25659375
transcript.pyannote[8].end 15.48846875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 16.66971875
transcript.pyannote[9].end 16.99034375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 19.84221875
transcript.pyannote[10].end 21.86721875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 22.13721875
transcript.pyannote[11].end 22.84596875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 23.13284375
transcript.pyannote[12].end 24.76971875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 25.56284375
transcript.pyannote[13].end 26.72721875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 26.94659375
transcript.pyannote[14].end 27.63846875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 28.00971875
transcript.pyannote[15].end 29.42721875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 29.81534375
transcript.pyannote[16].end 30.40596875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 30.76034375
transcript.pyannote[17].end 275.44784375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 110.35971875
transcript.pyannote[18].end 112.30034375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 113.54909375
transcript.pyannote[19].end 114.20721875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 195.49409375
transcript.pyannote[20].end 196.27034375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 197.19846875
transcript.pyannote[21].end 198.54846875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 199.47659375
transcript.pyannote[22].end 200.32034375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 201.24846875
transcript.pyannote[23].end 202.24409375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 209.92221875
transcript.pyannote[24].end 210.29346875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 217.65096875
transcript.pyannote[25].end 219.94596875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 276.03846875
transcript.pyannote[26].end 276.96659375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 276.96659375
transcript.pyannote[27].end 283.02471875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 283.02471875
transcript.pyannote[28].end 295.14096875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 286.88909375
transcript.pyannote[29].end 291.37784375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 293.45346875
transcript.pyannote[30].end 295.25909375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 296.60909375
transcript.pyannote[31].end 296.62596875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 296.62596875
transcript.pyannote[32].end 297.89159375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 297.89159375
transcript.pyannote[33].end 297.92534375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 298.31346875
transcript.pyannote[34].end 299.03909375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 299.35971875
transcript.pyannote[35].end 301.31721875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 301.67159375
transcript.pyannote[36].end 309.02909375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 309.88971875
transcript.pyannote[37].end 310.42971875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 311.39159375
transcript.pyannote[38].end 313.38284375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 313.85534375
transcript.pyannote[39].end 315.12096875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 315.88034375
transcript.pyannote[40].end 316.77471875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 317.46659375
transcript.pyannote[41].end 319.03596875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 319.81221875
transcript.pyannote[42].end 320.18346875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 320.63909375
transcript.pyannote[43].end 321.87096875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 322.84971875
transcript.pyannote[44].end 326.81534375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 327.77721875
transcript.pyannote[45].end 330.73034375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 331.32096875
transcript.pyannote[46].end 332.65409375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 333.14346875
transcript.pyannote[47].end 333.49784375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 334.17284375
transcript.pyannote[48].end 338.61096875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 339.11721875
transcript.pyannote[49].end 340.16346875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 340.38284375
transcript.pyannote[50].end 342.35721875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 343.04909375
transcript.pyannote[51].end 344.92221875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 345.54659375
transcript.pyannote[52].end 346.76159375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 347.74034375
transcript.pyannote[53].end 352.76909375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 353.39346875
transcript.pyannote[54].end 354.06846875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 354.84471875
transcript.pyannote[55].end 355.57034375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 356.09346875
transcript.pyannote[56].end 358.21971875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 358.57409375
transcript.pyannote[57].end 360.78471875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 361.37534375
transcript.pyannote[58].end 362.35409375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 362.97846875
transcript.pyannote[59].end 363.87284375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 364.29471875
transcript.pyannote[60].end 365.39159375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 365.94846875
transcript.pyannote[61].end 368.96909375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 369.07034375
transcript.pyannote[62].end 370.50471875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 371.36534375
transcript.pyannote[63].end 373.03596875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 373.35659375
transcript.pyannote[64].end 375.02721875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 375.76971875
transcript.pyannote[65].end 376.25909375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 376.81596875
transcript.pyannote[66].end 377.35596875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 378.13221875
transcript.pyannote[67].end 378.90846875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 379.24596875
transcript.pyannote[68].end 380.32596875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 380.96721875
transcript.pyannote[69].end 382.11471875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 382.43534375
transcript.pyannote[70].end 383.70096875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 384.42659375
transcript.pyannote[71].end 385.50659375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 385.74284375
transcript.pyannote[72].end 390.01221875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 390.23159375
transcript.pyannote[73].end 395.05784375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 395.73284375
transcript.pyannote[74].end 398.56784375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 398.83784375
transcript.pyannote[75].end 407.32596875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 407.61284375
transcript.pyannote[76].end 411.17346875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 411.52784375
transcript.pyannote[77].end 415.17284375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 416.25284375
transcript.pyannote[78].end 418.80096875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 419.22284375
transcript.pyannote[79].end 420.23534375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 420.23534375
transcript.pyannote[80].end 420.25221875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 420.77534375
transcript.pyannote[81].end 448.70346875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 432.26721875
transcript.pyannote[82].end 433.34721875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 434.59596875
transcript.pyannote[83].end 435.87846875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 442.62846875
transcript.pyannote[84].end 443.13471875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 444.53534375
transcript.pyannote[85].end 446.83034375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 447.04971875
transcript.pyannote[86].end 448.77096875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 449.31096875
transcript.pyannote[87].end 449.36159375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 449.36159375
transcript.pyannote[88].end 450.96471875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 449.37846875
transcript.pyannote[89].end 452.19659375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 451.79159375
transcript.pyannote[90].end 452.16284375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 452.19659375
transcript.pyannote[91].end 452.23034375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 452.23034375
transcript.pyannote[92].end 452.38221875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 452.38221875
transcript.pyannote[93].end 452.46659375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 452.46659375
transcript.pyannote[94].end 453.56346875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 452.70284375
transcript.pyannote[95].end 453.05721875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 453.41159375
transcript.pyannote[96].end 458.13659375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 456.43221875
transcript.pyannote[97].end 487.81971875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 485.69346875
transcript.pyannote[98].end 489.59159375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 488.52846875
transcript.pyannote[99].end 488.89971875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 490.60409375
transcript.pyannote[100].end 498.70409375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 499.00784375
transcript.pyannote[101].end 502.82159375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 503.59784375
transcript.pyannote[102].end 503.61471875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 503.61471875
transcript.pyannote[103].end 503.64846875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 503.64846875
transcript.pyannote[104].end 503.96909375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 503.96909375
transcript.pyannote[105].end 504.03659375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 504.03659375
transcript.pyannote[106].end 504.23909375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 504.23909375
transcript.pyannote[107].end 504.28971875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 504.44159375
transcript.pyannote[108].end 506.61846875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 507.22596875
transcript.pyannote[109].end 509.50409375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 510.34784375
transcript.pyannote[110].end 514.31346875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 514.61721875
transcript.pyannote[111].end 516.33846875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 516.52409375
transcript.pyannote[112].end 517.36784375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 517.41846875
transcript.pyannote[113].end 519.07221875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 519.56159375
transcript.pyannote[114].end 521.43471875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 522.04221875
transcript.pyannote[115].end 525.56909375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 526.54784375
transcript.pyannote[116].end 528.11721875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 528.75846875
transcript.pyannote[117].end 529.73721875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 530.39534375
transcript.pyannote[118].end 532.33596875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 532.40346875
transcript.pyannote[119].end 536.48721875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 536.84159375
transcript.pyannote[120].end 538.63034375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 537.04409375
transcript.pyannote[121].end 540.01409375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 540.53721875
transcript.pyannote[122].end 543.16971875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 540.57096875
transcript.pyannote[123].end 540.95909375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 543.40596875
transcript.pyannote[124].end 543.47346875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 543.47346875
transcript.pyannote[125].end 543.49034375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 543.49034375
transcript.pyannote[126].end 544.46909375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 543.50721875
transcript.pyannote[127].end 547.52346875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 544.51971875
transcript.pyannote[128].end 544.67159375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 547.52346875
transcript.pyannote[129].end 560.65221875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 556.70346875
transcript.pyannote[130].end 557.39534375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 560.29784375
transcript.pyannote[131].end 560.56784375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 560.65221875
transcript.pyannote[132].end 560.66909375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 560.66909375
transcript.pyannote[133].end 560.70284375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 560.70284375
transcript.pyannote[134].end 563.16659375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 563.16659375
transcript.pyannote[135].end 563.20034375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 563.47034375
transcript.pyannote[136].end 563.77409375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 563.77409375
transcript.pyannote[137].end 563.79096875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 563.79096875
transcript.pyannote[138].end 563.80784375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 564.07784375
transcript.pyannote[139].end 566.37284375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 566.42346875
transcript.pyannote[140].end 566.57534375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 566.45721875
transcript.pyannote[141].end 566.89596875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 567.63846875
transcript.pyannote[142].end 569.89971875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 570.13596875
transcript.pyannote[143].end 572.02596875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 572.43096875
transcript.pyannote[144].end 572.83596875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 573.93284375
transcript.pyannote[145].end 575.11409375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 576.10971875
transcript.pyannote[146].end 576.93659375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 577.81409375
transcript.pyannote[147].end 579.63659375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 580.22721875
transcript.pyannote[148].end 582.03284375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 582.18471875
transcript.pyannote[149].end 582.82596875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 583.09596875
transcript.pyannote[150].end 587.11221875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 587.60159375
transcript.pyannote[151].end 590.03159375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 590.70659375
transcript.pyannote[152].end 593.54159375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 594.46971875
transcript.pyannote[153].end 595.33034375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 596.83221875
transcript.pyannote[154].end 597.37221875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 597.91221875
transcript.pyannote[155].end 599.29596875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 599.46471875
transcript.pyannote[156].end 601.18596875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 600.08909375
transcript.pyannote[157].end 601.08471875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 601.18596875
transcript.pyannote[158].end 601.20284375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 601.48971875
transcript.pyannote[159].end 602.70471875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 602.04659375
transcript.pyannote[160].end 602.46846875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 602.92409375
transcript.pyannote[161].end 605.43846875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 605.03346875
transcript.pyannote[162].end 605.25284375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 605.53971875
transcript.pyannote[163].end 613.11659375
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 606.02909375
transcript.pyannote[164].end 607.86846875
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 610.93971875
transcript.pyannote[165].end 615.86721875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 614.46659375
transcript.pyannote[166].end 619.12409375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 616.60971875
transcript.pyannote[167].end 616.87971875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 618.21284375
transcript.pyannote[168].end 619.86659375
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 620.50784375
transcript.pyannote[169].end 622.26284375
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 622.66784375
transcript.pyannote[170].end 624.38909375
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 624.82784375
transcript.pyannote[171].end 627.13971875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 627.37596875
transcript.pyannote[172].end 628.18596875
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 628.40534375
transcript.pyannote[173].end 628.72596875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 629.06346875
transcript.pyannote[174].end 629.67096875
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 630.29534375
transcript.pyannote[175].end 631.89846875
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 632.30346875
transcript.pyannote[176].end 632.96159375
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 633.24846875
transcript.pyannote[177].end 633.78846875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 634.27784375
transcript.pyannote[178].end 634.68284375
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 634.85159375
transcript.pyannote[179].end 636.15096875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 638.61471875
transcript.pyannote[180].end 638.86784375
transcript.whisperx[0].start 2.767
transcript.whisperx[0].end 12.831
transcript.whisperx[0].text 謝謝主席有請台北市的林立華副市長以及我們的主計長台北市林副市長還有我們的主計長首先請教副市長現在砍了地方的補助款到底砍掉哪些東西
transcript.whisperx[1].start 30.814
transcript.whisperx[1].end 33.795
transcript.whisperx[1].text 好 要非常感謝昭偉這有機會讓我們能夠來到財政委員會來表達我們這次行政院突然刪減地方政府一般性補助款對我們的衝擊以及要表達反對之意在這邊要先報告一下我們所影響的部分
transcript.whisperx[2].start 48.3
transcript.whisperx[2].end 57.683
transcript.whisperx[2].text 這個是我有做一個表格這有關於我們所有被刪減部分社會福利支出被刪掉27.6%教育被刪掉38.9%基本設施被刪掉27.4%還有補助地方政府統籌運用財源刪掉59.5%那裡面社福大概是大家最關注的就我們都知道這裡面都是跟兒少跟老人跟弱勢
transcript.whisperx[3].start 77.53
transcript.whisperx[3].end 105.537
transcript.whisperx[3].text 相關的很多或是婦女相關的預算所以像大家看到的這個由地方政府配置優先辦理項目第一個其他兒少婦女老人及身障福利支出就跟委員報告像包括說我們的老人的收容安置長照的服務還有像我們社會局委託民間單位辦理老人服務的相關方案
transcript.whisperx[4].start 106.377
transcript.whisperx[4].end 112.099
transcript.whisperx[4].text 像說老人日照啦 老人的服務中心 以及呢還有我們老人健保的自負額的補助以及重陽記老金 還有我們像鼓勵大家生育的
transcript.whisperx[5].start 124.622
transcript.whisperx[5].end 141.878
transcript.whisperx[5].text 孕婦的好運to you乘車的補助那另外呢還有包括五歲以下兒童育兒津貼兒童托育補助等等還有像包括委託收容及維基家庭兒童的托育補助等等那另外呢
transcript.whisperx[6].start 142.538
transcript.whisperx[6].end 171.03
transcript.whisperx[6].text 還有就是有關於也要跟五人報告還有我們有些是屬於硬體的設施那這個硬體的設施事實上都是有關於我們的像包括兒少婦幼受抱者的收容安置長者的關懷據點日照中心等等那這就在我們其他社會局主管支出的部分也一樣都會受到相關的衝擊那另外要跟五人報告就是說
transcript.whisperx[7].start 171.65
transcript.whisperx[7].end 197.963
transcript.whisperx[7].text 在基本設施的部分大家都知道台北市這幾年致力於這也是中央要求就是要洗刷人行地域這樣的一個不好的一個名譽所以我們也花了大量的錢希望能夠做人行道的改善工程道路改善跟維護工程那在這次裡面的基本設施也看到了受到相關的衝擊你這裡提到有一個北市科
transcript.whisperx[8].start 199.544
transcript.whisperx[8].end 218.423
transcript.whisperx[8].text 所以會影響到北市科像北市科的部分 舉例來說我們現在大家知道我們目前大家知道像NVIDIA它可能都會進到北市科來 黃雲勳的部分所以我們相關的一些交通用地這些都是在我們這次基本設施內
transcript.whisperx[9].start 220.945
transcript.whisperx[9].end 242.861
transcript.whisperx[9].text 因為現在大家也很在擔憂未來會不會有內湖科學園區一樣的問題就是交通上的一個影響所以像這些都是我們現在在這次有關一般補助款裡面納入的一個內容但是另外我也想要跟委員報告一下因為我們大家覺得在地方上很不解的是說像這我手上的是
transcript.whisperx[10].start 243.981
transcript.whisperx[10].end 259.905
transcript.whisperx[10].text 我看到是總統令在今年的3月21號公布中華民國114年度中央政府總預算裡面我們看到第26款直轄市及縣市政府第一項直轄市及縣市一般性補助款2501億元照列
transcript.whisperx[11].start 263.906
transcript.whisperx[11].end 281.184
transcript.whisperx[11].text 也就是呢 今天從地方政府上看起來就是立法院是分文未刪啊 完全照列所以我們當然覺得說請問你那個 這一底的 我們的一般補助款在台北市議會通過沒有
transcript.whisperx[12].start 282.105
transcript.whisperx[12].end 294.151
transcript.whisperx[12].text 通過了一毛錢沒有刪去年8月31號沒有 是我們事是不是一毛錢沒有刪當然一毛都沒刪而且我們現在都已經拒以執行中好 來來來 請就署記者
transcript.whisperx[13].start 298.411
transcript.whisperx[13].end 320.959
transcript.whisperx[13].text 其實主席長你是好人啦不過好人有時候不一定做了對的事像你這個事到底雙重違法第一個我們經過立法院通過的預算它就是法律叫措施性法律然後你說你還釋憲
transcript.whisperx[14].start 322.898
transcript.whisperx[14].end 341.98
transcript.whisperx[14].text 那你請什麼用呢 如果你說實現了 所以我就不理他那這樣子你這個請的不能用 你現在請的在用嗎你請的在用 第一個你這個全數通過 而且地方議會每一個議會也都通過了你到底的是侵犯了立法權
transcript.whisperx[15].start 343.103
transcript.whisperx[15].end 369.928
transcript.whisperx[15].text 我們通過了,這是我們的職權我們通過了預算一般補助款一毛錢都沒有刪結果你大大一括要刪636億第二個,財務法30條第三項也是講到了不能比去年少你也是這樣刪所以到底的你是筷子手你違兩個法一個就是我們立法院通過的措施性法律一個就是財務法
transcript.whisperx[16].start 371.528
transcript.whisperx[16].end 393.962
transcript.whisperx[16].text 主席長你要不要解釋一下你這邊來我要講一下喔這個剛才副市長講的你刪了哪些他講的長照所以我們看到這個過去的謠言都說我們刪長照對不起我們問了衛福部的市長一毛錢都沒刪結果他們沒有刪你刪了
transcript.whisperx[17].start 395.783
transcript.whisperx[17].end 420.072
transcript.whisperx[17].text 你刪了 我也沒有刪了 是你刪地方的長照所以你刪了是什麼 老的 小的 身障的 社會福利還有交通設施 無障礙的設施 比如說啟明學校 啟中學校這些都是非常弱勢的 你專門殺弱勢的難怪啊 主席長 你有內法的 你要不要解釋一下
transcript.whisperx[18].start 421.099
transcript.whisperx[18].end 447.951
transcript.whisperx[18].text 報告委員我們這個3的部分就是說雖然你這個一般性補助你沒有寫說要3但是你有在那個3減的裡面要我們自行3減636我通過了嗎對通過要3減636要我們自行3減636但是636我們3減的部分我們是表示是有困難因為我們前面已經3減了你不要混淆大家了我們原來就有統3
transcript.whisperx[19].start 449.512
transcript.whisperx[19].end 473.945
transcript.whisperx[19].text 我們就刪了300多億但是有一個636是沒有指定刪減的但是基本上就是原來統算的那幾項沒有那幾項中央的單位那幾項縱使再刪我們是沒辦法承受業務根本沒辦法進行所以這個部分再刪的部分只能刪到國防外交和教育那這三項我們都不能刪所以只能不得不要刪減一般性補助我們都鼓勵你了
transcript.whisperx[20].start 475.806
transcript.whisperx[20].end 502.526
transcript.whisperx[20].text 而且台北市我再跟您報告台北市它經過刪減以後它還比去年增加82億所以台北市本身的財源就是非常的好護士長講一下說你刪的比以前多護士長講一下是跟我們報告事實上大家都這麼認為但事實上以今年來講我們如果是用統籌分配稅款加上補助的部分台北市是六都裡面排名第五名
transcript.whisperx[21].start 503.789
transcript.whisperx[21].end 525.422
transcript.whisperx[21].text 這個啦 大家都希望來我講一下給大家科普 也不是科普嘛中央給地方就三筆錢第一個 統總額稅款第二個 一般性補助款第三個 計畫型補助款一定要這三個加起來一起看六都裡面 台北市永遠都是第四名 第五名
transcript.whisperx[22].start 526.723
transcript.whisperx[22].end 554.624
transcript.whisperx[22].text 很簡單 因為它是台北市因為它是台北市這就是這樣啊 大小園啊 老公宅啊所以這個主地產不能夠只有挑一項來講啊台北市它是排第二 並不是排第五喔我們把三項合起來 它是排第二喔那是你講的 來來來 我們副市長你第二 你講第五呢是 報告一下 我們一百四年的部分是總共八百六十億元 六都排名第五第五啦
transcript.whisperx[23].start 555.244
transcript.whisperx[23].end 562.409
transcript.whisperx[23].text 所以今年是第五 去年是第四因為我們這邊數字是顯示第二喔不是第五喔解救辦法
transcript.whisperx[24].start 576.178
transcript.whisperx[24].end 592.853
transcript.whisperx[24].text 我們現在這個左院長實在很厲害啦要給他刪636你就等於哪個人來勒索反正地方政府的補助款大家一定心痛好 再追加預算啊這結果是什麼結果就是沒有刪到這636啊 636跑掉了Let's go
transcript.whisperx[25].start 596.857
transcript.whisperx[25].end 615.742
transcript.whisperx[25].text 昨天636有夠厲害的 滿天過來的刪掉補掉 所以你63636啊因為縱使要辦追加也必須要符合追加的條件才有辦法追加你現在用這個來恐慌我們這是沒辦法做的一步主席長 這樣字字不厚道啦 把636吃掉了
transcript.whisperx[26].start 624.824
transcript.whisperx[26].end 636.056
transcript.whisperx[26].text 不落道 而且傷及地方的這些老的小的基礎的可憐啊這個 小心喔 換完先不來喔