IVOD_ID |
162211 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/162211 |
日期 |
2025-06-04 |
會議資料.會議代碼 |
委員會-11-3-26-15 |
會議資料.會議代碼:str |
第11屆第3會期社會福利及衛生環境委員會第15次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
15 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第3會期社會福利及衛生環境委員會第15次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-06-04T10:58:44+08:00 |
結束時間 |
2025-06-04T11:08:57+08:00 |
影片長度 |
00:10:13 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/dfdeed74d30b9828a68fdaae606ca44969516374867620ceec695a437ff13aed50af9c3d7560ef6a5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
蘇清泉 |
委員發言時間 |
10:58:44 - 11:08:57 |
會議時間 |
2025-06-04T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期社會福利及衛生環境委員會第15次全體委員會議(事由:邀請勞動部部長就「勞工退休金制度改革,含勞保、勞退執行現況」進行專題報告,並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_03 |
transcript.pyannote[0].start |
0.03096875 |
transcript.pyannote[0].end |
3.96284375 |
transcript.pyannote[1].speaker |
SPEAKER_02 |
transcript.pyannote[1].start |
0.89159375 |
transcript.pyannote[1].end |
1.54971875 |
transcript.pyannote[2].speaker |
SPEAKER_03 |
transcript.pyannote[2].start |
4.03034375 |
transcript.pyannote[2].end |
4.16534375 |
transcript.pyannote[3].speaker |
SPEAKER_03 |
transcript.pyannote[3].start |
4.36784375 |
transcript.pyannote[3].end |
5.59971875 |
transcript.pyannote[4].speaker |
SPEAKER_03 |
transcript.pyannote[4].start |
5.73471875 |
transcript.pyannote[4].end |
6.94971875 |
transcript.pyannote[5].speaker |
SPEAKER_03 |
transcript.pyannote[5].start |
9.41346875 |
transcript.pyannote[5].end |
10.45971875 |
transcript.pyannote[6].speaker |
SPEAKER_03 |
transcript.pyannote[6].start |
10.91534375 |
transcript.pyannote[6].end |
13.15971875 |
transcript.pyannote[7].speaker |
SPEAKER_03 |
transcript.pyannote[7].start |
15.13409375 |
transcript.pyannote[7].end |
24.63471875 |
transcript.pyannote[8].speaker |
SPEAKER_03 |
transcript.pyannote[8].start |
24.78659375 |
transcript.pyannote[8].end |
27.35159375 |
transcript.pyannote[9].speaker |
SPEAKER_03 |
transcript.pyannote[9].start |
27.84096875 |
transcript.pyannote[9].end |
30.30471875 |
transcript.pyannote[10].speaker |
SPEAKER_03 |
transcript.pyannote[10].start |
31.01346875 |
transcript.pyannote[10].end |
31.87409375 |
transcript.pyannote[11].speaker |
SPEAKER_03 |
transcript.pyannote[11].start |
32.12721875 |
transcript.pyannote[11].end |
35.73846875 |
transcript.pyannote[12].speaker |
SPEAKER_02 |
transcript.pyannote[12].start |
32.17784375 |
transcript.pyannote[12].end |
33.51096875 |
transcript.pyannote[13].speaker |
SPEAKER_03 |
transcript.pyannote[13].start |
36.10971875 |
transcript.pyannote[13].end |
40.39596875 |
transcript.pyannote[14].speaker |
SPEAKER_03 |
transcript.pyannote[14].start |
41.35784375 |
transcript.pyannote[14].end |
42.48846875 |
transcript.pyannote[15].speaker |
SPEAKER_03 |
transcript.pyannote[15].start |
43.50096875 |
transcript.pyannote[15].end |
46.75784375 |
transcript.pyannote[16].speaker |
SPEAKER_03 |
transcript.pyannote[16].start |
47.17971875 |
transcript.pyannote[16].end |
49.79534375 |
transcript.pyannote[17].speaker |
SPEAKER_03 |
transcript.pyannote[17].start |
49.96409375 |
transcript.pyannote[17].end |
53.52471875 |
transcript.pyannote[18].speaker |
SPEAKER_03 |
transcript.pyannote[18].start |
53.92971875 |
transcript.pyannote[18].end |
56.20784375 |
transcript.pyannote[19].speaker |
SPEAKER_03 |
transcript.pyannote[19].start |
56.37659375 |
transcript.pyannote[19].end |
58.82346875 |
transcript.pyannote[20].speaker |
SPEAKER_03 |
transcript.pyannote[20].start |
58.97534375 |
transcript.pyannote[20].end |
68.79659375 |
transcript.pyannote[21].speaker |
SPEAKER_02 |
transcript.pyannote[21].start |
63.91971875 |
transcript.pyannote[21].end |
64.10534375 |
transcript.pyannote[22].speaker |
SPEAKER_03 |
transcript.pyannote[22].start |
69.82596875 |
transcript.pyannote[22].end |
73.84221875 |
transcript.pyannote[23].speaker |
SPEAKER_03 |
transcript.pyannote[23].start |
74.70284375 |
transcript.pyannote[23].end |
79.19159375 |
transcript.pyannote[24].speaker |
SPEAKER_03 |
transcript.pyannote[24].start |
80.99721875 |
transcript.pyannote[24].end |
81.01409375 |
transcript.pyannote[25].speaker |
SPEAKER_02 |
transcript.pyannote[25].start |
81.01409375 |
transcript.pyannote[25].end |
81.70596875 |
transcript.pyannote[26].speaker |
SPEAKER_03 |
transcript.pyannote[26].start |
81.70596875 |
transcript.pyannote[26].end |
81.97596875 |
transcript.pyannote[27].speaker |
SPEAKER_02 |
transcript.pyannote[27].start |
81.97596875 |
transcript.pyannote[27].end |
86.78534375 |
transcript.pyannote[28].speaker |
SPEAKER_02 |
transcript.pyannote[28].start |
86.92034375 |
transcript.pyannote[28].end |
94.02471875 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
88.45596875 |
transcript.pyannote[29].end |
89.21534375 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
89.36721875 |
transcript.pyannote[30].end |
89.73846875 |
transcript.pyannote[31].speaker |
SPEAKER_03 |
transcript.pyannote[31].start |
94.02471875 |
transcript.pyannote[31].end |
103.44096875 |
transcript.pyannote[32].speaker |
SPEAKER_03 |
transcript.pyannote[32].start |
104.21721875 |
transcript.pyannote[32].end |
114.52784375 |
transcript.pyannote[33].speaker |
SPEAKER_03 |
transcript.pyannote[33].start |
114.79784375 |
transcript.pyannote[33].end |
120.87284375 |
transcript.pyannote[34].speaker |
SPEAKER_03 |
transcript.pyannote[34].start |
121.90221875 |
transcript.pyannote[34].end |
123.03284375 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
123.03284375 |
transcript.pyannote[35].end |
123.35346875 |
transcript.pyannote[36].speaker |
SPEAKER_03 |
transcript.pyannote[36].start |
123.35346875 |
transcript.pyannote[36].end |
124.31534375 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
123.53909375 |
transcript.pyannote[37].end |
124.11284375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
124.65284375 |
transcript.pyannote[38].end |
125.31096875 |
transcript.pyannote[39].speaker |
SPEAKER_03 |
transcript.pyannote[39].start |
124.77096875 |
transcript.pyannote[39].end |
126.44159375 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
126.44159375 |
transcript.pyannote[40].end |
141.12284375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
141.30846875 |
transcript.pyannote[41].end |
156.29346875 |
transcript.pyannote[42].speaker |
SPEAKER_03 |
transcript.pyannote[42].start |
155.73659375 |
transcript.pyannote[42].end |
157.59284375 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
157.77846875 |
transcript.pyannote[43].end |
167.90346875 |
transcript.pyannote[44].speaker |
SPEAKER_03 |
transcript.pyannote[44].start |
167.59971875 |
transcript.pyannote[44].end |
175.68284375 |
transcript.pyannote[45].speaker |
SPEAKER_03 |
transcript.pyannote[45].start |
178.21409375 |
transcript.pyannote[45].end |
180.44159375 |
transcript.pyannote[46].speaker |
SPEAKER_03 |
transcript.pyannote[46].start |
181.01534375 |
transcript.pyannote[46].end |
183.25971875 |
transcript.pyannote[47].speaker |
SPEAKER_03 |
transcript.pyannote[47].start |
183.88409375 |
transcript.pyannote[47].end |
186.78659375 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
187.24221875 |
transcript.pyannote[48].end |
201.95721875 |
transcript.pyannote[49].speaker |
SPEAKER_03 |
transcript.pyannote[49].start |
201.63659375 |
transcript.pyannote[49].end |
204.92721875 |
transcript.pyannote[50].speaker |
SPEAKER_03 |
transcript.pyannote[50].start |
205.09596875 |
transcript.pyannote[50].end |
205.82159375 |
transcript.pyannote[51].speaker |
SPEAKER_03 |
transcript.pyannote[51].start |
205.95659375 |
transcript.pyannote[51].end |
206.04096875 |
transcript.pyannote[52].speaker |
SPEAKER_03 |
transcript.pyannote[52].start |
206.09159375 |
transcript.pyannote[52].end |
209.34846875 |
transcript.pyannote[53].speaker |
SPEAKER_03 |
transcript.pyannote[53].start |
209.82096875 |
transcript.pyannote[53].end |
214.63034375 |
transcript.pyannote[54].speaker |
SPEAKER_03 |
transcript.pyannote[54].start |
214.79909375 |
transcript.pyannote[54].end |
216.35159375 |
transcript.pyannote[55].speaker |
SPEAKER_03 |
transcript.pyannote[55].start |
217.04346875 |
transcript.pyannote[55].end |
219.20346875 |
transcript.pyannote[56].speaker |
SPEAKER_03 |
transcript.pyannote[56].start |
220.45221875 |
transcript.pyannote[56].end |
225.43034375 |
transcript.pyannote[57].speaker |
SPEAKER_03 |
transcript.pyannote[57].start |
225.85221875 |
transcript.pyannote[57].end |
226.72971875 |
transcript.pyannote[58].speaker |
SPEAKER_03 |
transcript.pyannote[58].start |
227.06721875 |
transcript.pyannote[58].end |
228.83909375 |
transcript.pyannote[59].speaker |
SPEAKER_03 |
transcript.pyannote[59].start |
229.58159375 |
transcript.pyannote[59].end |
230.10471875 |
transcript.pyannote[60].speaker |
SPEAKER_02 |
transcript.pyannote[60].start |
231.37034375 |
transcript.pyannote[60].end |
233.04096875 |
transcript.pyannote[61].speaker |
SPEAKER_02 |
transcript.pyannote[61].start |
233.54721875 |
transcript.pyannote[61].end |
238.82909375 |
transcript.pyannote[62].speaker |
SPEAKER_02 |
transcript.pyannote[62].start |
239.43659375 |
transcript.pyannote[62].end |
242.05221875 |
transcript.pyannote[63].speaker |
SPEAKER_02 |
transcript.pyannote[63].start |
242.65971875 |
transcript.pyannote[63].end |
286.02846875 |
transcript.pyannote[64].speaker |
SPEAKER_03 |
transcript.pyannote[64].start |
286.02846875 |
transcript.pyannote[64].end |
287.12534375 |
transcript.pyannote[65].speaker |
SPEAKER_03 |
transcript.pyannote[65].start |
287.32784375 |
transcript.pyannote[65].end |
297.67221875 |
transcript.pyannote[66].speaker |
SPEAKER_03 |
transcript.pyannote[66].start |
298.11096875 |
transcript.pyannote[66].end |
299.71409375 |
transcript.pyannote[67].speaker |
SPEAKER_03 |
transcript.pyannote[67].start |
300.13596875 |
transcript.pyannote[67].end |
315.72846875 |
transcript.pyannote[68].speaker |
SPEAKER_03 |
transcript.pyannote[68].start |
316.60596875 |
transcript.pyannote[68].end |
320.84159375 |
transcript.pyannote[69].speaker |
SPEAKER_03 |
transcript.pyannote[69].start |
322.78221875 |
transcript.pyannote[69].end |
326.69721875 |
transcript.pyannote[70].speaker |
SPEAKER_03 |
transcript.pyannote[70].start |
327.60846875 |
transcript.pyannote[70].end |
329.32971875 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
332.82284375 |
transcript.pyannote[71].end |
339.72471875 |
transcript.pyannote[72].speaker |
SPEAKER_03 |
transcript.pyannote[72].start |
339.82596875 |
transcript.pyannote[72].end |
340.23096875 |
transcript.pyannote[73].speaker |
SPEAKER_01 |
transcript.pyannote[73].start |
340.23096875 |
transcript.pyannote[73].end |
341.51346875 |
transcript.pyannote[74].speaker |
SPEAKER_03 |
transcript.pyannote[74].start |
341.86784375 |
transcript.pyannote[74].end |
342.67784375 |
transcript.pyannote[75].speaker |
SPEAKER_03 |
transcript.pyannote[75].start |
343.36971875 |
transcript.pyannote[75].end |
352.06034375 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
353.10659375 |
transcript.pyannote[76].end |
358.92846875 |
transcript.pyannote[77].speaker |
SPEAKER_03 |
transcript.pyannote[77].start |
359.90721875 |
transcript.pyannote[77].end |
367.33221875 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
367.80471875 |
transcript.pyannote[78].end |
380.56221875 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
380.69721875 |
transcript.pyannote[79].end |
384.03846875 |
transcript.pyannote[80].speaker |
SPEAKER_03 |
transcript.pyannote[80].start |
383.48159375 |
transcript.pyannote[80].end |
396.07034375 |
transcript.pyannote[81].speaker |
SPEAKER_01 |
transcript.pyannote[81].start |
395.47971875 |
transcript.pyannote[81].end |
395.68221875 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
396.07034375 |
transcript.pyannote[82].end |
396.10409375 |
transcript.pyannote[83].speaker |
SPEAKER_03 |
transcript.pyannote[83].start |
396.52596875 |
transcript.pyannote[83].end |
400.18784375 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
398.02784375 |
transcript.pyannote[84].end |
398.71971875 |
transcript.pyannote[85].speaker |
SPEAKER_03 |
transcript.pyannote[85].start |
400.35659375 |
transcript.pyannote[85].end |
402.49971875 |
transcript.pyannote[86].speaker |
SPEAKER_03 |
transcript.pyannote[86].start |
403.61346875 |
transcript.pyannote[86].end |
409.01346875 |
transcript.pyannote[87].speaker |
SPEAKER_03 |
transcript.pyannote[87].start |
409.99221875 |
transcript.pyannote[87].end |
411.57846875 |
transcript.pyannote[88].speaker |
SPEAKER_03 |
transcript.pyannote[88].start |
412.10159375 |
transcript.pyannote[88].end |
422.66534375 |
transcript.pyannote[89].speaker |
SPEAKER_03 |
transcript.pyannote[89].start |
423.79596875 |
transcript.pyannote[89].end |
425.83784375 |
transcript.pyannote[90].speaker |
SPEAKER_03 |
transcript.pyannote[90].start |
426.95159375 |
transcript.pyannote[90].end |
428.55471875 |
transcript.pyannote[91].speaker |
SPEAKER_02 |
transcript.pyannote[91].start |
429.11159375 |
transcript.pyannote[91].end |
429.14534375 |
transcript.pyannote[92].speaker |
SPEAKER_03 |
transcript.pyannote[92].start |
429.14534375 |
transcript.pyannote[92].end |
429.83721875 |
transcript.pyannote[93].speaker |
SPEAKER_02 |
transcript.pyannote[93].start |
429.83721875 |
transcript.pyannote[93].end |
429.85409375 |
transcript.pyannote[94].speaker |
SPEAKER_02 |
transcript.pyannote[94].start |
431.52471875 |
transcript.pyannote[94].end |
432.18284375 |
transcript.pyannote[95].speaker |
SPEAKER_02 |
transcript.pyannote[95].start |
432.52034375 |
transcript.pyannote[95].end |
461.08971875 |
transcript.pyannote[96].speaker |
SPEAKER_03 |
transcript.pyannote[96].start |
461.29221875 |
transcript.pyannote[96].end |
466.94534375 |
transcript.pyannote[97].speaker |
SPEAKER_03 |
transcript.pyannote[97].start |
467.97471875 |
transcript.pyannote[97].end |
471.83909375 |
transcript.pyannote[98].speaker |
SPEAKER_03 |
transcript.pyannote[98].start |
472.22721875 |
transcript.pyannote[98].end |
478.31909375 |
transcript.pyannote[99].speaker |
SPEAKER_03 |
transcript.pyannote[99].start |
478.58909375 |
transcript.pyannote[99].end |
494.58659375 |
transcript.pyannote[100].speaker |
SPEAKER_03 |
transcript.pyannote[100].start |
496.96596875 |
transcript.pyannote[100].end |
497.97846875 |
transcript.pyannote[101].speaker |
SPEAKER_02 |
transcript.pyannote[101].start |
497.97846875 |
transcript.pyannote[101].end |
499.10909375 |
transcript.pyannote[102].speaker |
SPEAKER_02 |
transcript.pyannote[102].start |
499.96971875 |
transcript.pyannote[102].end |
500.05409375 |
transcript.pyannote[103].speaker |
SPEAKER_02 |
transcript.pyannote[103].start |
500.12159375 |
transcript.pyannote[103].end |
503.53034375 |
transcript.pyannote[104].speaker |
SPEAKER_02 |
transcript.pyannote[104].start |
503.90159375 |
transcript.pyannote[104].end |
506.83784375 |
transcript.pyannote[105].speaker |
SPEAKER_02 |
transcript.pyannote[105].start |
507.47909375 |
transcript.pyannote[105].end |
541.75221875 |
transcript.pyannote[106].speaker |
SPEAKER_03 |
transcript.pyannote[106].start |
540.53721875 |
transcript.pyannote[106].end |
557.07471875 |
transcript.pyannote[107].speaker |
SPEAKER_03 |
transcript.pyannote[107].start |
557.76659375 |
transcript.pyannote[107].end |
569.62971875 |
transcript.pyannote[108].speaker |
SPEAKER_02 |
transcript.pyannote[108].start |
569.62971875 |
transcript.pyannote[108].end |
569.95034375 |
transcript.pyannote[109].speaker |
SPEAKER_03 |
transcript.pyannote[109].start |
569.95034375 |
transcript.pyannote[109].end |
579.78846875 |
transcript.pyannote[110].speaker |
SPEAKER_02 |
transcript.pyannote[110].start |
579.78846875 |
transcript.pyannote[110].end |
580.00784375 |
transcript.pyannote[111].speaker |
SPEAKER_02 |
transcript.pyannote[111].start |
580.05846875 |
transcript.pyannote[111].end |
580.12596875 |
transcript.pyannote[112].speaker |
SPEAKER_03 |
transcript.pyannote[112].start |
580.12596875 |
transcript.pyannote[112].end |
580.96971875 |
transcript.pyannote[113].speaker |
SPEAKER_02 |
transcript.pyannote[113].start |
580.96971875 |
transcript.pyannote[113].end |
589.28909375 |
transcript.pyannote[114].speaker |
SPEAKER_03 |
transcript.pyannote[114].start |
589.28909375 |
transcript.pyannote[114].end |
597.92909375 |
transcript.pyannote[115].speaker |
SPEAKER_03 |
transcript.pyannote[115].start |
598.35096875 |
transcript.pyannote[115].end |
600.02159375 |
transcript.pyannote[116].speaker |
SPEAKER_03 |
transcript.pyannote[116].start |
600.59534375 |
transcript.pyannote[116].end |
604.79721875 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
602.43471875 |
transcript.pyannote[117].end |
603.16034375 |
transcript.pyannote[118].speaker |
SPEAKER_03 |
transcript.pyannote[118].start |
605.11784375 |
transcript.pyannote[118].end |
606.83909375 |
transcript.pyannote[119].speaker |
SPEAKER_03 |
transcript.pyannote[119].start |
607.37909375 |
transcript.pyannote[119].end |
608.91471875 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
608.10471875 |
transcript.pyannote[120].end |
608.88096875 |
transcript.pyannote[121].speaker |
SPEAKER_03 |
transcript.pyannote[121].start |
612.39096875 |
transcript.pyannote[121].end |
613.08284375 |
transcript.whisperx[0].start |
1.45 |
transcript.whisperx[0].end |
12.199 |
transcript.whisperx[0].text |
還有黃署長還有蘇局長蘇仁豪部長好部長辛苦了 |
transcript.whisperx[1].start |
15.388 |
transcript.whisperx[1].end |
42.256 |
transcript.whisperx[1].text |
我現在要肯定一下我們勞動力發展署我們上上上就是這幾天我們去看中區看還有高屏那個那個分署勞動力發展署分署 欸 做得真好耶做得真好謝謝你們給我們肯定中區啊 隔壁啊對地方的產業需要的人不一樣的 |
transcript.whisperx[2].start |
44.29 |
transcript.whisperx[2].end |
67.776 |
transcript.whisperx[2].text |
產業類,譬如說歌詠那些都...那個...那個...踏準的啦,還是說機骸的那中區的話,都是精密機械啊等等啊那都有分,而且還有宿舍那老師都非常投入我看結論一個就是那些老師的薪水可能要更加多一點啦我今天打不掉齁啊第二,來背那個機器 |
transcript.whisperx[3].start |
69.921 |
transcript.whisperx[3].end |
78.896 |
transcript.whisperx[3].text |
有的人捐的 有人去討的 有人去求的 有人去買的要寬烈經費 那個要與時俱進就是買新的 |
transcript.whisperx[4].start |
81.021 |
transcript.whisperx[4].end |
102.734 |
transcript.whisperx[4].text |
可以啦我很謝謝這段時間衛華委員會的訪視我們中分署、高分署、逃分署訪視我們很多分署然後給我們相關的肯定我想這對我們同仁也有很多這個信心上面的提升對啦 就像是發生事情之後低迷我們也是要去鼓勵他們那真的是 欸 那是你們勞動部的亮點 |
transcript.whisperx[5].start |
104.295 |
transcript.whisperx[5].end |
119.31 |
transcript.whisperx[5].text |
真的是亮點,不然的話不知道什麼何無為在跟你們說所以我再一次跟他肯定黃署長加油第二個我要問的,蘇局長還有我們部長今年為什麼會虧損 |
transcript.whisperx[6].start |
127.783 |
transcript.whisperx[6].end |
148.935 |
transcript.whisperx[6].text |
今年因為4月美國宣布關稅措施所以整個市場動盪的情形很劇烈以台股來看到今年的4月底我們台股就跌了超過12%美國以跟我們關係最密切的費辦指數來看也超過15%事實上對我們造成非常大的影響 |
transcript.whisperx[7].start |
149.275 |
transcript.whisperx[7].end |
175.416 |
transcript.whisperx[7].text |
但是跟委員報告因為這個都是屬於平價的損失並沒有實現你們沒有賣掉啦我們會有操作實現利益然後我們這個是目前是帳上的未實現的損失所以最主要是關稅川普喊出來之後他感冒結果我們都得肺炎 |
transcript.whisperx[8].start |
178.404 |
transcript.whisperx[8].end |
186.564 |
transcript.whisperx[8].text |
再來我們要住ICU他亂喊一通我們就死翹翹會不會再回來 應該會可以吧 |
transcript.whisperx[9].start |
188.544 |
transcript.whisperx[9].end |
207.782 |
transcript.whisperx[9].text |
市場其實是一直在波動但是有往上有往下那我們覺得我們投資都是看長期基本面我們基金的運作都是以穩健的方式來進行那我要問部長兩個第一個是關稅如果真的調到10到15% |
transcript.whisperx[10].start |
209.944 |
transcript.whisperx[10].end |
218.907 |
transcript.whisperx[10].text |
我們的產業包括精密機器都受不了他們是真的會受不了那個時候會有人失業喔第二個 台幣如果升值現在已經30塊了嘛32變30 如果到28 越死捏連台積電工業也斷不掉捏這邊呢 |
transcript.whisperx[11].start |
231.683 |
transcript.whisperx[11].end |
258.745 |
transcript.whisperx[11].text |
確實最近這個這個國際上面的經貿的情境的變數很多所以我說跟文說明我們其實也會為各種可能的情境尤其是會為比較嚴峻的情境去預作準備那這也是為什麼我們其實行政院其實也有這個特別條例裡面其實有編列了大概150億那來給勞動部那來作為這個安定就業的支持的做法 |
transcript.whisperx[12].start |
259.085 |
transcript.whisperx[12].end |
284.185 |
transcript.whisperx[12].text |
那可是如果這150億如果到時候真的整體經貿的情境不好那有需要更多我想我們也還有救保或者是救安的基金可以一起綜合的來運用對那這部分都是我們要來來支持相關的勞工所以不管是剛剛講減班休息或可能假設會有出現失業的狀況那我們其實也擬定其實相關的計劃要來支持對 |
transcript.whisperx[13].start |
285.046 |
transcript.whisperx[13].end |
295.975 |
transcript.whisperx[13].text |
好那再來我就問你這個勞保的匯率從30年前我們那個匯率都是6點多那後來健保因為我這一段我都經歷醫院就 |
transcript.whisperx[14].start |
301.3 |
transcript.whisperx[14].end |
329.097 |
transcript.whisperx[14].text |
醫療 本來勞保那6點多%裡面還含醫療那後來醫療切出去之後它還是維持6點多%嘛那醫療的4% 4.5%這樣慢慢增加是健保署的那現在一直增加 增加到已經11%了嘛現在匯率是11%嘛 對不對11 11.5那11.5是不夠的嘛你們的理想是多少 |
transcript.whisperx[15].start |
332.87 |
transcript.whisperx[15].end |
358.127 |
transcript.whisperx[15].text |
跟委員報告 依照最新的精算就是未來服務成本是17.19%多少17.1917.19是你的理想所以我們在醫學上叫期望值這樣公司好像受得了嗎確實是我們要考量到目前最高上限就是12% |
transcript.whisperx[16].start |
360.89 |
transcript.whisperx[16].end |
379.745 |
transcript.whisperx[16].text |
所以你現在顯然不足所以每一年都用撥補 撥補 撥補是這樣嗎各位報告 其實我們勞保是社會保險他的財務本來就是財的是部分提成準備我們不會弄到平衡的費率主要是要照顧勞工 |
transcript.whisperx[17].start |
380.928 |
transcript.whisperx[17].end |
408.038 |
transcript.whisperx[17].text |
所以我們都是沒有達到平衡事實上你那個匯率勞工本身付的差不多20%而已嘛是是那其他都是僱主在付嘛僱主是付80%嘛70%然後10%是政府政府付就跟健保一樣嘛差不多嘛那所以你現在每一年用撥補當然對年輕的人他們會認為 |
transcript.whisperx[18].start |
410.111 |
transcript.whisperx[18].end |
420.74 |
transcript.whisperx[18].text |
這不是世代不正義嗎你以前的老人家每年都不會死每年多到八十歲九十歲一百歲現在年輕人就每年九十歲問題是現在的孩子越來越小了孩子越來越小的負擔就越來越大不然你怎麼選這個那要怎麼做這個跟委員說明這當然是長期以來其實在大家在討論勞保財務裡面 |
transcript.whisperx[19].start |
438.947 |
transcript.whisperx[19].end |
460.237 |
transcript.whisperx[19].text |
這個很重要的問題那不過的確現在當然外界過去其實也有過提議說是不是要提高費率或者是要減少給付但不管是提高費率或減少給付這對於即時勞工的權益的影響其實都蠻大的所以我們其實都是用很審慎的態度在看待這些事情 |
transcript.whisperx[20].start |
461.363 |
transcript.whisperx[20].end |
475.53 |
transcript.whisperx[20].text |
因為我在鄉下,看病人什麼都好,很多我們的老公的朋友退休後,娘的錢都幾千塊而已,一萬塊以下很少,這一萬塊以下實在是不夠生活費啦, |
transcript.whisperx[21].start |
478.692 |
transcript.whisperx[21].end |
479.713 |
transcript.whisperx[21].text |
那這些人將來你有沒有想把他們提高還是怎麼樣 |
transcript.whisperx[22].start |
500.257 |
transcript.whisperx[22].end |
522.856 |
transcript.whisperx[22].text |
跟我的說明這當然是就是像我們剛才說目前其實這個在開源節流的因為目前確實財務我們不會說財務沒有問題可是在要進行開源節流的時候其實大家都想那我要怎麼減少給付可是減少給付會影響勞工的權益所以這的確是一個很大的挑戰 |
transcript.whisperx[23].start |
523.837 |
transcript.whisperx[23].end |
550.276 |
transcript.whisperx[23].text |
所以這也是為什麼其實我們才會一直在想說有沒有可能有一些另外的財政的財源的來源才會有像波普這樣子的想法或者是說我們也希望我們在基金的投資的效益可以做到更好所以才會在這個想法下面不然的確這個議題我想不管各黨來說都是一個非常大的挑戰誰執政誰都要面對啦所以我今天講的重點第一個是錢嘛一些收入很少的你應該給他加一些 |
transcript.whisperx[24].start |
551.437 |
transcript.whisperx[24].end |
572.257 |
transcript.whisperx[24].text |
畢竟是你們要照顧第二是人年輕人越來越少小孩子越來越少這個馬上要面對的那對年輕人他們要繳更多的稅來撥譜來幹嘛這個也要好好的配套那第三個就是你們投資的效率你的效率書記長你說你很年輕你怎麼樣怎麼樣 |
transcript.whisperx[25].start |
573.999 |
transcript.whisperx[25].end |
599.759 |
transcript.whisperx[25].text |
我也要勤奮 但是啊 料錢就是料錢啊因為要創侯探期 這更重要啊短期是有一些虧損啦 但是其實我們經營局這幾年其實整體的效益是很穩健的在成長的那個新加坡淡馬市 我有去查我有認識的朋友在那邊 他們每一年的那個低獲利的都有6%高獲利的有12%以上 |
transcript.whisperx[26].start |
600.78 |
transcript.whisperx[26].end |
608.453 |
transcript.whisperx[26].text |
所以這個是也可以參考一下市長你借給你大家想要怎麼賺錢 好不好大家加油啦 好 謝謝謝謝蘇委員 |