iVOD / 162211

Field Value
IVOD_ID 162211
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/162211
日期 2025-06-04
會議資料.會議代碼 委員會-11-3-26-15
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第15次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 15
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第15次全體委員會議
影片種類 Clip
開始時間 2025-06-04T10:58:44+08:00
結束時間 2025-06-04T11:08:57+08:00
影片長度 00:10:13
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/dfdeed74d30b9828a68fdaae606ca44969516374867620ceec695a437ff13aed50af9c3d7560ef6a5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 蘇清泉
委員發言時間 10:58:44 - 11:08:57
會議時間 2025-06-04T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第15次全體委員會議(事由:邀請勞動部部長就「勞工退休金制度改革,含勞保、勞退執行現況」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 3.96284375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 0.89159375
transcript.pyannote[1].end 1.54971875
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 4.03034375
transcript.pyannote[2].end 4.16534375
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 4.36784375
transcript.pyannote[3].end 5.59971875
transcript.pyannote[4].speaker SPEAKER_03
transcript.pyannote[4].start 5.73471875
transcript.pyannote[4].end 6.94971875
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 9.41346875
transcript.pyannote[5].end 10.45971875
transcript.pyannote[6].speaker SPEAKER_03
transcript.pyannote[6].start 10.91534375
transcript.pyannote[6].end 13.15971875
transcript.pyannote[7].speaker SPEAKER_03
transcript.pyannote[7].start 15.13409375
transcript.pyannote[7].end 24.63471875
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 24.78659375
transcript.pyannote[8].end 27.35159375
transcript.pyannote[9].speaker SPEAKER_03
transcript.pyannote[9].start 27.84096875
transcript.pyannote[9].end 30.30471875
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 31.01346875
transcript.pyannote[10].end 31.87409375
transcript.pyannote[11].speaker SPEAKER_03
transcript.pyannote[11].start 32.12721875
transcript.pyannote[11].end 35.73846875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 32.17784375
transcript.pyannote[12].end 33.51096875
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 36.10971875
transcript.pyannote[13].end 40.39596875
transcript.pyannote[14].speaker SPEAKER_03
transcript.pyannote[14].start 41.35784375
transcript.pyannote[14].end 42.48846875
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 43.50096875
transcript.pyannote[15].end 46.75784375
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 47.17971875
transcript.pyannote[16].end 49.79534375
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 49.96409375
transcript.pyannote[17].end 53.52471875
transcript.pyannote[18].speaker SPEAKER_03
transcript.pyannote[18].start 53.92971875
transcript.pyannote[18].end 56.20784375
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 56.37659375
transcript.pyannote[19].end 58.82346875
transcript.pyannote[20].speaker SPEAKER_03
transcript.pyannote[20].start 58.97534375
transcript.pyannote[20].end 68.79659375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 63.91971875
transcript.pyannote[21].end 64.10534375
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 69.82596875
transcript.pyannote[22].end 73.84221875
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 74.70284375
transcript.pyannote[23].end 79.19159375
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 80.99721875
transcript.pyannote[24].end 81.01409375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 81.01409375
transcript.pyannote[25].end 81.70596875
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 81.70596875
transcript.pyannote[26].end 81.97596875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 81.97596875
transcript.pyannote[27].end 86.78534375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 86.92034375
transcript.pyannote[28].end 94.02471875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 88.45596875
transcript.pyannote[29].end 89.21534375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 89.36721875
transcript.pyannote[30].end 89.73846875
transcript.pyannote[31].speaker SPEAKER_03
transcript.pyannote[31].start 94.02471875
transcript.pyannote[31].end 103.44096875
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 104.21721875
transcript.pyannote[32].end 114.52784375
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 114.79784375
transcript.pyannote[33].end 120.87284375
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 121.90221875
transcript.pyannote[34].end 123.03284375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 123.03284375
transcript.pyannote[35].end 123.35346875
transcript.pyannote[36].speaker SPEAKER_03
transcript.pyannote[36].start 123.35346875
transcript.pyannote[36].end 124.31534375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 123.53909375
transcript.pyannote[37].end 124.11284375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 124.65284375
transcript.pyannote[38].end 125.31096875
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 124.77096875
transcript.pyannote[39].end 126.44159375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 126.44159375
transcript.pyannote[40].end 141.12284375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 141.30846875
transcript.pyannote[41].end 156.29346875
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 155.73659375
transcript.pyannote[42].end 157.59284375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 157.77846875
transcript.pyannote[43].end 167.90346875
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 167.59971875
transcript.pyannote[44].end 175.68284375
transcript.pyannote[45].speaker SPEAKER_03
transcript.pyannote[45].start 178.21409375
transcript.pyannote[45].end 180.44159375
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 181.01534375
transcript.pyannote[46].end 183.25971875
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 183.88409375
transcript.pyannote[47].end 186.78659375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 187.24221875
transcript.pyannote[48].end 201.95721875
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 201.63659375
transcript.pyannote[49].end 204.92721875
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 205.09596875
transcript.pyannote[50].end 205.82159375
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 205.95659375
transcript.pyannote[51].end 206.04096875
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 206.09159375
transcript.pyannote[52].end 209.34846875
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 209.82096875
transcript.pyannote[53].end 214.63034375
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 214.79909375
transcript.pyannote[54].end 216.35159375
transcript.pyannote[55].speaker SPEAKER_03
transcript.pyannote[55].start 217.04346875
transcript.pyannote[55].end 219.20346875
transcript.pyannote[56].speaker SPEAKER_03
transcript.pyannote[56].start 220.45221875
transcript.pyannote[56].end 225.43034375
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 225.85221875
transcript.pyannote[57].end 226.72971875
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 227.06721875
transcript.pyannote[58].end 228.83909375
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 229.58159375
transcript.pyannote[59].end 230.10471875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 231.37034375
transcript.pyannote[60].end 233.04096875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 233.54721875
transcript.pyannote[61].end 238.82909375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 239.43659375
transcript.pyannote[62].end 242.05221875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 242.65971875
transcript.pyannote[63].end 286.02846875
transcript.pyannote[64].speaker SPEAKER_03
transcript.pyannote[64].start 286.02846875
transcript.pyannote[64].end 287.12534375
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 287.32784375
transcript.pyannote[65].end 297.67221875
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 298.11096875
transcript.pyannote[66].end 299.71409375
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 300.13596875
transcript.pyannote[67].end 315.72846875
transcript.pyannote[68].speaker SPEAKER_03
transcript.pyannote[68].start 316.60596875
transcript.pyannote[68].end 320.84159375
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 322.78221875
transcript.pyannote[69].end 326.69721875
transcript.pyannote[70].speaker SPEAKER_03
transcript.pyannote[70].start 327.60846875
transcript.pyannote[70].end 329.32971875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 332.82284375
transcript.pyannote[71].end 339.72471875
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 339.82596875
transcript.pyannote[72].end 340.23096875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 340.23096875
transcript.pyannote[73].end 341.51346875
transcript.pyannote[74].speaker SPEAKER_03
transcript.pyannote[74].start 341.86784375
transcript.pyannote[74].end 342.67784375
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 343.36971875
transcript.pyannote[75].end 352.06034375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 353.10659375
transcript.pyannote[76].end 358.92846875
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 359.90721875
transcript.pyannote[77].end 367.33221875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 367.80471875
transcript.pyannote[78].end 380.56221875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 380.69721875
transcript.pyannote[79].end 384.03846875
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 383.48159375
transcript.pyannote[80].end 396.07034375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 395.47971875
transcript.pyannote[81].end 395.68221875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 396.07034375
transcript.pyannote[82].end 396.10409375
transcript.pyannote[83].speaker SPEAKER_03
transcript.pyannote[83].start 396.52596875
transcript.pyannote[83].end 400.18784375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 398.02784375
transcript.pyannote[84].end 398.71971875
transcript.pyannote[85].speaker SPEAKER_03
transcript.pyannote[85].start 400.35659375
transcript.pyannote[85].end 402.49971875
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 403.61346875
transcript.pyannote[86].end 409.01346875
transcript.pyannote[87].speaker SPEAKER_03
transcript.pyannote[87].start 409.99221875
transcript.pyannote[87].end 411.57846875
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 412.10159375
transcript.pyannote[88].end 422.66534375
transcript.pyannote[89].speaker SPEAKER_03
transcript.pyannote[89].start 423.79596875
transcript.pyannote[89].end 425.83784375
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 426.95159375
transcript.pyannote[90].end 428.55471875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 429.11159375
transcript.pyannote[91].end 429.14534375
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 429.14534375
transcript.pyannote[92].end 429.83721875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 429.83721875
transcript.pyannote[93].end 429.85409375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 431.52471875
transcript.pyannote[94].end 432.18284375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 432.52034375
transcript.pyannote[95].end 461.08971875
transcript.pyannote[96].speaker SPEAKER_03
transcript.pyannote[96].start 461.29221875
transcript.pyannote[96].end 466.94534375
transcript.pyannote[97].speaker SPEAKER_03
transcript.pyannote[97].start 467.97471875
transcript.pyannote[97].end 471.83909375
transcript.pyannote[98].speaker SPEAKER_03
transcript.pyannote[98].start 472.22721875
transcript.pyannote[98].end 478.31909375
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 478.58909375
transcript.pyannote[99].end 494.58659375
transcript.pyannote[100].speaker SPEAKER_03
transcript.pyannote[100].start 496.96596875
transcript.pyannote[100].end 497.97846875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 497.97846875
transcript.pyannote[101].end 499.10909375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 499.96971875
transcript.pyannote[102].end 500.05409375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 500.12159375
transcript.pyannote[103].end 503.53034375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 503.90159375
transcript.pyannote[104].end 506.83784375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 507.47909375
transcript.pyannote[105].end 541.75221875
transcript.pyannote[106].speaker SPEAKER_03
transcript.pyannote[106].start 540.53721875
transcript.pyannote[106].end 557.07471875
transcript.pyannote[107].speaker SPEAKER_03
transcript.pyannote[107].start 557.76659375
transcript.pyannote[107].end 569.62971875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 569.62971875
transcript.pyannote[108].end 569.95034375
transcript.pyannote[109].speaker SPEAKER_03
transcript.pyannote[109].start 569.95034375
transcript.pyannote[109].end 579.78846875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 579.78846875
transcript.pyannote[110].end 580.00784375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 580.05846875
transcript.pyannote[111].end 580.12596875
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 580.12596875
transcript.pyannote[112].end 580.96971875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 580.96971875
transcript.pyannote[113].end 589.28909375
transcript.pyannote[114].speaker SPEAKER_03
transcript.pyannote[114].start 589.28909375
transcript.pyannote[114].end 597.92909375
transcript.pyannote[115].speaker SPEAKER_03
transcript.pyannote[115].start 598.35096875
transcript.pyannote[115].end 600.02159375
transcript.pyannote[116].speaker SPEAKER_03
transcript.pyannote[116].start 600.59534375
transcript.pyannote[116].end 604.79721875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 602.43471875
transcript.pyannote[117].end 603.16034375
transcript.pyannote[118].speaker SPEAKER_03
transcript.pyannote[118].start 605.11784375
transcript.pyannote[118].end 606.83909375
transcript.pyannote[119].speaker SPEAKER_03
transcript.pyannote[119].start 607.37909375
transcript.pyannote[119].end 608.91471875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 608.10471875
transcript.pyannote[120].end 608.88096875
transcript.pyannote[121].speaker SPEAKER_03
transcript.pyannote[121].start 612.39096875
transcript.pyannote[121].end 613.08284375
transcript.whisperx[0].start 1.45
transcript.whisperx[0].end 12.199
transcript.whisperx[0].text 還有黃署長還有蘇局長蘇仁豪部長好部長辛苦了
transcript.whisperx[1].start 15.388
transcript.whisperx[1].end 42.256
transcript.whisperx[1].text 我現在要肯定一下我們勞動力發展署我們上上上就是這幾天我們去看中區看還有高屏那個那個分署勞動力發展署分署 欸 做得真好耶做得真好謝謝你們給我們肯定中區啊 隔壁啊對地方的產業需要的人不一樣的
transcript.whisperx[2].start 44.29
transcript.whisperx[2].end 67.776
transcript.whisperx[2].text 產業類,譬如說歌詠那些都...那個...那個...踏準的啦,還是說機骸的那中區的話,都是精密機械啊等等啊那都有分,而且還有宿舍那老師都非常投入我看結論一個就是那些老師的薪水可能要更加多一點啦我今天打不掉齁啊第二,來背那個機器
transcript.whisperx[3].start 69.921
transcript.whisperx[3].end 78.896
transcript.whisperx[3].text 有的人捐的 有人去討的 有人去求的 有人去買的要寬烈經費 那個要與時俱進就是買新的
transcript.whisperx[4].start 81.021
transcript.whisperx[4].end 102.734
transcript.whisperx[4].text 可以啦我很謝謝這段時間衛華委員會的訪視我們中分署、高分署、逃分署訪視我們很多分署然後給我們相關的肯定我想這對我們同仁也有很多這個信心上面的提升對啦 就像是發生事情之後低迷我們也是要去鼓勵他們那真的是 欸 那是你們勞動部的亮點
transcript.whisperx[5].start 104.295
transcript.whisperx[5].end 119.31
transcript.whisperx[5].text 真的是亮點,不然的話不知道什麼何無為在跟你們說所以我再一次跟他肯定黃署長加油第二個我要問的,蘇局長還有我們部長今年為什麼會虧損
transcript.whisperx[6].start 127.783
transcript.whisperx[6].end 148.935
transcript.whisperx[6].text 今年因為4月美國宣布關稅措施所以整個市場動盪的情形很劇烈以台股來看到今年的4月底我們台股就跌了超過12%美國以跟我們關係最密切的費辦指數來看也超過15%事實上對我們造成非常大的影響
transcript.whisperx[7].start 149.275
transcript.whisperx[7].end 175.416
transcript.whisperx[7].text 但是跟委員報告因為這個都是屬於平價的損失並沒有實現你們沒有賣掉啦我們會有操作實現利益然後我們這個是目前是帳上的未實現的損失所以最主要是關稅川普喊出來之後他感冒結果我們都得肺炎
transcript.whisperx[8].start 178.404
transcript.whisperx[8].end 186.564
transcript.whisperx[8].text 再來我們要住ICU他亂喊一通我們就死翹翹會不會再回來 應該會可以吧
transcript.whisperx[9].start 188.544
transcript.whisperx[9].end 207.782
transcript.whisperx[9].text 市場其實是一直在波動但是有往上有往下那我們覺得我們投資都是看長期基本面我們基金的運作都是以穩健的方式來進行那我要問部長兩個第一個是關稅如果真的調到10到15%
transcript.whisperx[10].start 209.944
transcript.whisperx[10].end 218.907
transcript.whisperx[10].text 我們的產業包括精密機器都受不了他們是真的會受不了那個時候會有人失業喔第二個 台幣如果升值現在已經30塊了嘛32變30 如果到28 越死捏連台積電工業也斷不掉捏這邊呢
transcript.whisperx[11].start 231.683
transcript.whisperx[11].end 258.745
transcript.whisperx[11].text 確實最近這個這個國際上面的經貿的情境的變數很多所以我說跟文說明我們其實也會為各種可能的情境尤其是會為比較嚴峻的情境去預作準備那這也是為什麼我們其實行政院其實也有這個特別條例裡面其實有編列了大概150億那來給勞動部那來作為這個安定就業的支持的做法
transcript.whisperx[12].start 259.085
transcript.whisperx[12].end 284.185
transcript.whisperx[12].text 那可是如果這150億如果到時候真的整體經貿的情境不好那有需要更多我想我們也還有救保或者是救安的基金可以一起綜合的來運用對那這部分都是我們要來來支持相關的勞工所以不管是剛剛講減班休息或可能假設會有出現失業的狀況那我們其實也擬定其實相關的計劃要來支持對
transcript.whisperx[13].start 285.046
transcript.whisperx[13].end 295.975
transcript.whisperx[13].text 好那再來我就問你這個勞保的匯率從30年前我們那個匯率都是6點多那後來健保因為我這一段我都經歷醫院就
transcript.whisperx[14].start 301.3
transcript.whisperx[14].end 329.097
transcript.whisperx[14].text 醫療 本來勞保那6點多%裡面還含醫療那後來醫療切出去之後它還是維持6點多%嘛那醫療的4% 4.5%這樣慢慢增加是健保署的那現在一直增加 增加到已經11%了嘛現在匯率是11%嘛 對不對11 11.5那11.5是不夠的嘛你們的理想是多少
transcript.whisperx[15].start 332.87
transcript.whisperx[15].end 358.127
transcript.whisperx[15].text 跟委員報告 依照最新的精算就是未來服務成本是17.19%多少17.1917.19是你的理想所以我們在醫學上叫期望值這樣公司好像受得了嗎確實是我們要考量到目前最高上限就是12%
transcript.whisperx[16].start 360.89
transcript.whisperx[16].end 379.745
transcript.whisperx[16].text 所以你現在顯然不足所以每一年都用撥補 撥補 撥補是這樣嗎各位報告 其實我們勞保是社會保險他的財務本來就是財的是部分提成準備我們不會弄到平衡的費率主要是要照顧勞工
transcript.whisperx[17].start 380.928
transcript.whisperx[17].end 408.038
transcript.whisperx[17].text 所以我們都是沒有達到平衡事實上你那個匯率勞工本身付的差不多20%而已嘛是是那其他都是僱主在付嘛僱主是付80%嘛70%然後10%是政府政府付就跟健保一樣嘛差不多嘛那所以你現在每一年用撥補當然對年輕的人他們會認為
transcript.whisperx[18].start 410.111
transcript.whisperx[18].end 420.74
transcript.whisperx[18].text 這不是世代不正義嗎你以前的老人家每年都不會死每年多到八十歲九十歲一百歲現在年輕人就每年九十歲問題是現在的孩子越來越小了孩子越來越小的負擔就越來越大不然你怎麼選這個那要怎麼做這個跟委員說明這當然是長期以來其實在大家在討論勞保財務裡面
transcript.whisperx[19].start 438.947
transcript.whisperx[19].end 460.237
transcript.whisperx[19].text 這個很重要的問題那不過的確現在當然外界過去其實也有過提議說是不是要提高費率或者是要減少給付但不管是提高費率或減少給付這對於即時勞工的權益的影響其實都蠻大的所以我們其實都是用很審慎的態度在看待這些事情
transcript.whisperx[20].start 461.363
transcript.whisperx[20].end 475.53
transcript.whisperx[20].text 因為我在鄉下,看病人什麼都好,很多我們的老公的朋友退休後,娘的錢都幾千塊而已,一萬塊以下很少,這一萬塊以下實在是不夠生活費啦,
transcript.whisperx[21].start 478.692
transcript.whisperx[21].end 479.713
transcript.whisperx[21].text 那這些人將來你有沒有想把他們提高還是怎麼樣
transcript.whisperx[22].start 500.257
transcript.whisperx[22].end 522.856
transcript.whisperx[22].text 跟我的說明這當然是就是像我們剛才說目前其實這個在開源節流的因為目前確實財務我們不會說財務沒有問題可是在要進行開源節流的時候其實大家都想那我要怎麼減少給付可是減少給付會影響勞工的權益所以這的確是一個很大的挑戰
transcript.whisperx[23].start 523.837
transcript.whisperx[23].end 550.276
transcript.whisperx[23].text 所以這也是為什麼其實我們才會一直在想說有沒有可能有一些另外的財政的財源的來源才會有像波普這樣子的想法或者是說我們也希望我們在基金的投資的效益可以做到更好所以才會在這個想法下面不然的確這個議題我想不管各黨來說都是一個非常大的挑戰誰執政誰都要面對啦所以我今天講的重點第一個是錢嘛一些收入很少的你應該給他加一些
transcript.whisperx[24].start 551.437
transcript.whisperx[24].end 572.257
transcript.whisperx[24].text 畢竟是你們要照顧第二是人年輕人越來越少小孩子越來越少這個馬上要面對的那對年輕人他們要繳更多的稅來撥譜來幹嘛這個也要好好的配套那第三個就是你們投資的效率你的效率書記長你說你很年輕你怎麼樣怎麼樣
transcript.whisperx[25].start 573.999
transcript.whisperx[25].end 599.759
transcript.whisperx[25].text 我也要勤奮 但是啊 料錢就是料錢啊因為要創侯探期 這更重要啊短期是有一些虧損啦 但是其實我們經營局這幾年其實整體的效益是很穩健的在成長的那個新加坡淡馬市 我有去查我有認識的朋友在那邊 他們每一年的那個低獲利的都有6%高獲利的有12%以上
transcript.whisperx[26].start 600.78
transcript.whisperx[26].end 608.453
transcript.whisperx[26].text 所以這個是也可以參考一下市長你借給你大家想要怎麼賺錢 好不好大家加油啦 好 謝謝謝謝蘇委員