IVOD_ID |
162114 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/162114 |
日期 |
2025-06-02 |
會議資料.會議代碼 |
委員會-11-3-36-19 |
會議資料.會議代碼:str |
第11屆第3會期司法及法制委員會第19次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
19 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
36 |
會議資料.委員會代碼:str[0] |
司法及法制委員會 |
會議資料.標題 |
第11屆第3會期司法及法制委員會第19次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-06-02T09:57:03+08:00 |
結束時間 |
2025-06-02T10:15:34+08:00 |
影片長度 |
00:18:31 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/f1b1c5cbef0f6d9e6c89bec2252a1a8e52232a9b15fab92f821bb1a47d55fe3ed9703f2b8768d29e5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
王義川 |
委員發言時間 |
09:57:03 - 10:15:34 |
會議時間 |
2025-06-02T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期司法及法制委員會第19次全體委員會議(事由:邀請監察院秘書長、審計部審計長、司法院副秘書長、法務部部長、法務部調查局局長、法務部廉政署署長、銓敘部、公務人員保障暨培訓委員會、行政院人事行政總處、行政院主計總處、內政部警政署率所屬相關單位列席就「如何落實清廉政府及公務員瀆職之態樣與防制」進行專題報告,並備質詢。
【6月2日、4日及5日三天一次會】) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
9.81846875 |
transcript.pyannote[0].end |
12.75471875 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
12.33284375 |
transcript.pyannote[1].end |
13.54784375 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
15.96096875 |
transcript.pyannote[2].end |
16.18034375 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
16.18034375 |
transcript.pyannote[3].end |
16.24784375 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
22.30596875 |
transcript.pyannote[4].end |
46.80846875 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
46.70721875 |
transcript.pyannote[5].end |
46.74096875 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
46.75784375 |
transcript.pyannote[6].end |
47.11221875 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
47.11221875 |
transcript.pyannote[7].end |
55.21221875 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
51.44909375 |
transcript.pyannote[8].end |
51.87096875 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
55.21221875 |
transcript.pyannote[9].end |
55.58346875 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
55.58346875 |
transcript.pyannote[10].end |
62.08034375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
62.70471875 |
transcript.pyannote[11].end |
65.03346875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
65.03346875 |
transcript.pyannote[12].end |
65.59034375 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
65.59034375 |
transcript.pyannote[13].end |
65.65784375 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
65.65784375 |
transcript.pyannote[14].end |
65.74221875 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
66.09659375 |
transcript.pyannote[15].end |
66.11346875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
66.11346875 |
transcript.pyannote[16].end |
101.31471875 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
101.46659375 |
transcript.pyannote[17].end |
119.32034375 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
118.62846875 |
transcript.pyannote[18].end |
118.81409375 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
119.40471875 |
transcript.pyannote[19].end |
124.21409375 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
123.47159375 |
transcript.pyannote[20].end |
123.72471875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
124.21409375 |
transcript.pyannote[21].end |
139.67159375 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
139.09784375 |
transcript.pyannote[22].end |
141.02159375 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
141.32534375 |
transcript.pyannote[23].end |
142.00034375 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
142.52346875 |
transcript.pyannote[24].end |
154.43721875 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
153.61034375 |
transcript.pyannote[25].end |
154.67346875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
154.67346875 |
transcript.pyannote[26].end |
154.96034375 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
155.19659375 |
transcript.pyannote[27].end |
160.05659375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
160.09034375 |
transcript.pyannote[28].end |
160.57971875 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
160.63034375 |
transcript.pyannote[29].end |
171.54846875 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
163.07721875 |
transcript.pyannote[30].end |
163.34721875 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
167.59971875 |
transcript.pyannote[31].end |
167.92034375 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
172.24034375 |
transcript.pyannote[32].end |
172.99971875 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
173.30346875 |
transcript.pyannote[33].end |
187.57971875 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
188.17034375 |
transcript.pyannote[34].end |
189.79034375 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
189.45284375 |
transcript.pyannote[35].end |
195.08909375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
194.46471875 |
transcript.pyannote[36].end |
198.66659375 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
198.49784375 |
transcript.pyannote[37].end |
202.59846875 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
203.27346875 |
transcript.pyannote[38].end |
223.74284375 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
215.35596875 |
transcript.pyannote[39].end |
215.72721875 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
218.35971875 |
transcript.pyannote[40].end |
218.74784375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
221.88659375 |
transcript.pyannote[41].end |
222.46034375 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
223.74284375 |
transcript.pyannote[42].end |
228.82221875 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
229.09221875 |
transcript.pyannote[43].end |
232.80471875 |
transcript.pyannote[44].speaker |
SPEAKER_01 |
transcript.pyannote[44].start |
232.73721875 |
transcript.pyannote[44].end |
236.41596875 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
236.77034375 |
transcript.pyannote[45].end |
242.86221875 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
243.26721875 |
transcript.pyannote[46].end |
252.85221875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
250.42221875 |
transcript.pyannote[47].end |
251.02971875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
252.12659375 |
transcript.pyannote[48].end |
256.54784375 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
255.65346875 |
transcript.pyannote[49].end |
256.73346875 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
257.02034375 |
transcript.pyannote[50].end |
257.03721875 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
257.03721875 |
transcript.pyannote[51].end |
257.08784375 |
transcript.pyannote[52].speaker |
SPEAKER_01 |
transcript.pyannote[52].start |
257.08784375 |
transcript.pyannote[52].end |
258.31971875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
257.12159375 |
transcript.pyannote[53].end |
262.43721875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
262.48784375 |
transcript.pyannote[54].end |
265.23846875 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
265.69409375 |
transcript.pyannote[55].end |
283.26096875 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
283.26096875 |
transcript.pyannote[56].end |
293.92596875 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
295.14096875 |
transcript.pyannote[57].end |
303.44346875 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
304.16909375 |
transcript.pyannote[58].end |
312.58971875 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
313.39971875 |
transcript.pyannote[59].end |
318.22596875 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
318.74909375 |
transcript.pyannote[60].end |
320.63909375 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
321.51659375 |
transcript.pyannote[61].end |
346.72784375 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
346.66034375 |
transcript.pyannote[62].end |
353.68034375 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
354.00096875 |
transcript.pyannote[63].end |
356.17784375 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
356.95409375 |
transcript.pyannote[64].end |
358.62471875 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
358.96221875 |
transcript.pyannote[65].end |
359.04659375 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
359.43471875 |
transcript.pyannote[66].end |
364.07534375 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
364.17659375 |
transcript.pyannote[67].end |
365.71221875 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
366.57284375 |
transcript.pyannote[68].end |
369.40784375 |
transcript.pyannote[69].speaker |
SPEAKER_01 |
transcript.pyannote[69].start |
369.69471875 |
transcript.pyannote[69].end |
370.38659375 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
371.73659375 |
transcript.pyannote[70].end |
372.31034375 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
372.66471875 |
transcript.pyannote[71].end |
376.42784375 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
376.93409375 |
transcript.pyannote[72].end |
378.35159375 |
transcript.pyannote[73].speaker |
SPEAKER_01 |
transcript.pyannote[73].start |
378.55409375 |
transcript.pyannote[73].end |
379.87034375 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
380.39346875 |
transcript.pyannote[74].end |
382.45221875 |
transcript.pyannote[75].speaker |
SPEAKER_01 |
transcript.pyannote[75].start |
382.99221875 |
transcript.pyannote[75].end |
390.38346875 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
391.42971875 |
transcript.pyannote[76].end |
393.23534375 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
394.16346875 |
transcript.pyannote[77].end |
395.31096875 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
397.28534375 |
transcript.pyannote[78].end |
397.94346875 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
398.55096875 |
transcript.pyannote[79].end |
401.04846875 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
401.11596875 |
transcript.pyannote[80].end |
410.78534375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
410.88659375 |
transcript.pyannote[81].end |
455.48721875 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
455.48721875 |
transcript.pyannote[82].end |
455.77409375 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
456.31409375 |
transcript.pyannote[83].end |
459.72284375 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
457.84971875 |
transcript.pyannote[84].end |
457.88346875 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
460.24596875 |
transcript.pyannote[85].end |
462.42284375 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
462.82784375 |
transcript.pyannote[86].end |
465.35909375 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
465.59534375 |
transcript.pyannote[87].end |
466.01721875 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
466.11846875 |
transcript.pyannote[88].end |
467.83971875 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
469.00409375 |
transcript.pyannote[89].end |
469.91534375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
470.33721875 |
transcript.pyannote[90].end |
471.73784375 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
472.22721875 |
transcript.pyannote[91].end |
474.64034375 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
475.06221875 |
transcript.pyannote[92].end |
475.66971875 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
476.17596875 |
transcript.pyannote[93].end |
477.01971875 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
477.20534375 |
transcript.pyannote[94].end |
477.59346875 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
477.94784375 |
transcript.pyannote[95].end |
489.50721875 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
490.14846875 |
transcript.pyannote[96].end |
502.92284375 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
503.34471875 |
transcript.pyannote[97].end |
506.02784375 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
506.26409375 |
transcript.pyannote[98].end |
506.61846875 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
508.13721875 |
transcript.pyannote[99].end |
508.76159375 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
509.26784375 |
transcript.pyannote[100].end |
509.87534375 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
510.56721875 |
transcript.pyannote[101].end |
511.83284375 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
510.90471875 |
transcript.pyannote[102].end |
511.91721875 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
512.25471875 |
transcript.pyannote[103].end |
514.95471875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
513.75659375 |
transcript.pyannote[104].end |
520.35471875 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
520.67534375 |
transcript.pyannote[105].end |
526.14284375 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
526.34534375 |
transcript.pyannote[106].end |
529.24784375 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
529.24784375 |
transcript.pyannote[107].end |
529.58534375 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
529.97346875 |
transcript.pyannote[108].end |
530.00721875 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
530.00721875 |
transcript.pyannote[109].end |
537.76971875 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
537.76971875 |
transcript.pyannote[110].end |
550.94909375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
539.76096875 |
transcript.pyannote[111].end |
540.11534375 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
544.16534375 |
transcript.pyannote[112].end |
545.00909375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
546.29159375 |
transcript.pyannote[113].end |
546.51096875 |
transcript.pyannote[114].speaker |
SPEAKER_01 |
transcript.pyannote[114].start |
551.69159375 |
transcript.pyannote[114].end |
552.07971875 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
555.38721875 |
transcript.pyannote[115].end |
555.42096875 |
transcript.pyannote[116].speaker |
SPEAKER_02 |
transcript.pyannote[116].start |
555.42096875 |
transcript.pyannote[116].end |
556.02846875 |
transcript.pyannote[117].speaker |
SPEAKER_01 |
transcript.pyannote[117].start |
556.02846875 |
transcript.pyannote[117].end |
557.51346875 |
transcript.pyannote[118].speaker |
SPEAKER_02 |
transcript.pyannote[118].start |
556.58534375 |
transcript.pyannote[118].end |
557.15909375 |
transcript.pyannote[119].speaker |
SPEAKER_01 |
transcript.pyannote[119].start |
557.73284375 |
transcript.pyannote[119].end |
566.27159375 |
transcript.pyannote[120].speaker |
SPEAKER_01 |
transcript.pyannote[120].start |
566.57534375 |
transcript.pyannote[120].end |
574.70909375 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
575.78909375 |
transcript.pyannote[121].end |
578.67471875 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
580.42971875 |
transcript.pyannote[122].end |
581.02034375 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
582.55596875 |
transcript.pyannote[123].end |
583.11284375 |
transcript.pyannote[124].speaker |
SPEAKER_01 |
transcript.pyannote[124].start |
583.78784375 |
transcript.pyannote[124].end |
585.62721875 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
586.48784375 |
transcript.pyannote[125].end |
588.51284375 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
589.37346875 |
transcript.pyannote[126].end |
592.74846875 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
596.32596875 |
transcript.pyannote[127].end |
597.47346875 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
598.53659375 |
transcript.pyannote[128].end |
599.81909375 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
600.12284375 |
transcript.pyannote[129].end |
601.55721875 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
603.21096875 |
transcript.pyannote[130].end |
604.08846875 |
transcript.pyannote[131].speaker |
SPEAKER_01 |
transcript.pyannote[131].start |
604.42596875 |
transcript.pyannote[131].end |
605.21909375 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
606.75471875 |
transcript.pyannote[132].end |
607.46346875 |
transcript.pyannote[133].speaker |
SPEAKER_02 |
transcript.pyannote[133].start |
608.71221875 |
transcript.pyannote[133].end |
617.95971875 |
transcript.pyannote[134].speaker |
SPEAKER_02 |
transcript.pyannote[134].start |
618.28034375 |
transcript.pyannote[134].end |
622.02659375 |
transcript.pyannote[135].speaker |
SPEAKER_02 |
transcript.pyannote[135].start |
622.29659375 |
transcript.pyannote[135].end |
628.42221875 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
624.70971875 |
transcript.pyannote[136].end |
624.99659375 |
transcript.pyannote[137].speaker |
SPEAKER_01 |
transcript.pyannote[137].start |
626.73471875 |
transcript.pyannote[137].end |
629.92409375 |
transcript.pyannote[138].speaker |
SPEAKER_01 |
transcript.pyannote[138].start |
630.05909375 |
transcript.pyannote[138].end |
637.95659375 |
transcript.pyannote[139].speaker |
SPEAKER_02 |
transcript.pyannote[139].start |
634.42971875 |
transcript.pyannote[139].end |
634.76721875 |
transcript.pyannote[140].speaker |
SPEAKER_02 |
transcript.pyannote[140].start |
637.95659375 |
transcript.pyannote[140].end |
638.36159375 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
638.27721875 |
transcript.pyannote[141].end |
643.89659375 |
transcript.pyannote[142].speaker |
SPEAKER_01 |
transcript.pyannote[142].start |
644.38596875 |
transcript.pyannote[142].end |
655.08471875 |
transcript.pyannote[143].speaker |
SPEAKER_01 |
transcript.pyannote[143].start |
655.62471875 |
transcript.pyannote[143].end |
659.25284375 |
transcript.pyannote[144].speaker |
SPEAKER_01 |
transcript.pyannote[144].start |
659.42159375 |
transcript.pyannote[144].end |
669.96846875 |
transcript.pyannote[145].speaker |
SPEAKER_02 |
transcript.pyannote[145].start |
669.96846875 |
transcript.pyannote[145].end |
670.03596875 |
transcript.pyannote[146].speaker |
SPEAKER_01 |
transcript.pyannote[146].start |
670.03596875 |
transcript.pyannote[146].end |
681.35909375 |
transcript.pyannote[147].speaker |
SPEAKER_01 |
transcript.pyannote[147].start |
681.40971875 |
transcript.pyannote[147].end |
681.74721875 |
transcript.pyannote[148].speaker |
SPEAKER_01 |
transcript.pyannote[148].start |
682.27034375 |
transcript.pyannote[148].end |
683.19846875 |
transcript.pyannote[149].speaker |
SPEAKER_02 |
transcript.pyannote[149].start |
683.19846875 |
transcript.pyannote[149].end |
683.73846875 |
transcript.pyannote[150].speaker |
SPEAKER_01 |
transcript.pyannote[150].start |
684.00846875 |
transcript.pyannote[150].end |
691.85534375 |
transcript.pyannote[151].speaker |
SPEAKER_01 |
transcript.pyannote[151].start |
692.37846875 |
transcript.pyannote[151].end |
697.74471875 |
transcript.pyannote[152].speaker |
SPEAKER_01 |
transcript.pyannote[152].start |
698.38596875 |
transcript.pyannote[152].end |
700.22534375 |
transcript.pyannote[153].speaker |
SPEAKER_01 |
transcript.pyannote[153].start |
701.03534375 |
transcript.pyannote[153].end |
705.06846875 |
transcript.pyannote[154].speaker |
SPEAKER_01 |
transcript.pyannote[154].start |
705.67596875 |
transcript.pyannote[154].end |
706.68846875 |
transcript.pyannote[155].speaker |
SPEAKER_01 |
transcript.pyannote[155].start |
707.19471875 |
transcript.pyannote[155].end |
713.03346875 |
transcript.pyannote[156].speaker |
SPEAKER_01 |
transcript.pyannote[156].start |
713.38784375 |
transcript.pyannote[156].end |
724.96409375 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
725.77409375 |
transcript.pyannote[157].end |
729.62159375 |
transcript.pyannote[158].speaker |
SPEAKER_01 |
transcript.pyannote[158].start |
730.12784375 |
transcript.pyannote[158].end |
735.54471875 |
transcript.pyannote[159].speaker |
SPEAKER_01 |
transcript.pyannote[159].start |
735.93284375 |
transcript.pyannote[159].end |
741.02909375 |
transcript.pyannote[160].speaker |
SPEAKER_01 |
transcript.pyannote[160].start |
741.60284375 |
transcript.pyannote[160].end |
745.48409375 |
transcript.pyannote[161].speaker |
SPEAKER_01 |
transcript.pyannote[161].start |
745.68659375 |
transcript.pyannote[161].end |
748.79159375 |
transcript.pyannote[162].speaker |
SPEAKER_01 |
transcript.pyannote[162].start |
749.33159375 |
transcript.pyannote[162].end |
750.95159375 |
transcript.pyannote[163].speaker |
SPEAKER_01 |
transcript.pyannote[163].start |
751.72784375 |
transcript.pyannote[163].end |
752.36909375 |
transcript.pyannote[164].speaker |
SPEAKER_01 |
transcript.pyannote[164].start |
752.79096875 |
transcript.pyannote[164].end |
753.43221875 |
transcript.pyannote[165].speaker |
SPEAKER_01 |
transcript.pyannote[165].start |
753.65159375 |
transcript.pyannote[165].end |
755.20409375 |
transcript.pyannote[166].speaker |
SPEAKER_01 |
transcript.pyannote[166].start |
756.28409375 |
transcript.pyannote[166].end |
758.61284375 |
transcript.pyannote[167].speaker |
SPEAKER_01 |
transcript.pyannote[167].start |
759.16971875 |
transcript.pyannote[167].end |
761.29596875 |
transcript.pyannote[168].speaker |
SPEAKER_01 |
transcript.pyannote[168].start |
762.13971875 |
transcript.pyannote[168].end |
763.84409375 |
transcript.pyannote[169].speaker |
SPEAKER_01 |
transcript.pyannote[169].start |
764.13096875 |
transcript.pyannote[169].end |
764.73846875 |
transcript.pyannote[170].speaker |
SPEAKER_01 |
transcript.pyannote[170].start |
765.36284375 |
transcript.pyannote[170].end |
767.45534375 |
transcript.pyannote[171].speaker |
SPEAKER_01 |
transcript.pyannote[171].start |
768.56909375 |
transcript.pyannote[171].end |
769.15971875 |
transcript.pyannote[172].speaker |
SPEAKER_01 |
transcript.pyannote[172].start |
769.46346875 |
transcript.pyannote[172].end |
771.10034375 |
transcript.pyannote[173].speaker |
SPEAKER_02 |
transcript.pyannote[173].start |
771.50534375 |
transcript.pyannote[173].end |
781.57971875 |
transcript.pyannote[174].speaker |
SPEAKER_02 |
transcript.pyannote[174].start |
781.63034375 |
transcript.pyannote[174].end |
786.38909375 |
transcript.pyannote[175].speaker |
SPEAKER_02 |
transcript.pyannote[175].start |
786.84471875 |
transcript.pyannote[175].end |
790.27034375 |
transcript.pyannote[176].speaker |
SPEAKER_01 |
transcript.pyannote[176].start |
790.20284375 |
transcript.pyannote[176].end |
792.95346875 |
transcript.pyannote[177].speaker |
SPEAKER_02 |
transcript.pyannote[177].start |
790.33784375 |
transcript.pyannote[177].end |
790.60784375 |
transcript.pyannote[178].speaker |
SPEAKER_01 |
transcript.pyannote[178].start |
793.45971875 |
transcript.pyannote[178].end |
794.20221875 |
transcript.pyannote[179].speaker |
SPEAKER_02 |
transcript.pyannote[179].start |
793.49346875 |
transcript.pyannote[179].end |
794.97846875 |
transcript.pyannote[180].speaker |
SPEAKER_01 |
transcript.pyannote[180].start |
794.97846875 |
transcript.pyannote[180].end |
799.46721875 |
transcript.pyannote[181].speaker |
SPEAKER_02 |
transcript.pyannote[181].start |
795.18096875 |
transcript.pyannote[181].end |
795.87284375 |
transcript.pyannote[182].speaker |
SPEAKER_01 |
transcript.pyannote[182].start |
800.29409375 |
transcript.pyannote[182].end |
801.42471875 |
transcript.pyannote[183].speaker |
SPEAKER_01 |
transcript.pyannote[183].start |
801.76221875 |
transcript.pyannote[183].end |
806.09909375 |
transcript.pyannote[184].speaker |
SPEAKER_01 |
transcript.pyannote[184].start |
806.35221875 |
transcript.pyannote[184].end |
808.88346875 |
transcript.pyannote[185].speaker |
SPEAKER_01 |
transcript.pyannote[185].start |
809.52471875 |
transcript.pyannote[185].end |
816.35909375 |
transcript.pyannote[186].speaker |
SPEAKER_01 |
transcript.pyannote[186].start |
817.13534375 |
transcript.pyannote[186].end |
817.77659375 |
transcript.pyannote[187].speaker |
SPEAKER_01 |
transcript.pyannote[187].start |
818.14784375 |
transcript.pyannote[187].end |
821.28659375 |
transcript.pyannote[188].speaker |
SPEAKER_01 |
transcript.pyannote[188].start |
822.04596875 |
transcript.pyannote[188].end |
825.33659375 |
transcript.pyannote[189].speaker |
SPEAKER_01 |
transcript.pyannote[189].start |
825.77534375 |
transcript.pyannote[189].end |
835.24221875 |
transcript.pyannote[190].speaker |
SPEAKER_01 |
transcript.pyannote[190].start |
836.11971875 |
transcript.pyannote[190].end |
849.11346875 |
transcript.pyannote[191].speaker |
SPEAKER_00 |
transcript.pyannote[191].start |
849.53534375 |
transcript.pyannote[191].end |
859.05284375 |
transcript.pyannote[192].speaker |
SPEAKER_01 |
transcript.pyannote[192].start |
858.31034375 |
transcript.pyannote[192].end |
858.69846875 |
transcript.pyannote[193].speaker |
SPEAKER_00 |
transcript.pyannote[193].start |
859.40721875 |
transcript.pyannote[193].end |
864.63846875 |
transcript.pyannote[194].speaker |
SPEAKER_01 |
transcript.pyannote[194].start |
864.57096875 |
transcript.pyannote[194].end |
864.58784375 |
transcript.pyannote[195].speaker |
SPEAKER_01 |
transcript.pyannote[195].start |
864.63846875 |
transcript.pyannote[195].end |
866.74784375 |
transcript.pyannote[196].speaker |
SPEAKER_00 |
transcript.pyannote[196].start |
865.54971875 |
transcript.pyannote[196].end |
874.49346875 |
transcript.pyannote[197].speaker |
SPEAKER_01 |
transcript.pyannote[197].start |
873.81846875 |
transcript.pyannote[197].end |
880.06221875 |
transcript.pyannote[198].speaker |
SPEAKER_00 |
transcript.pyannote[198].start |
880.26471875 |
transcript.pyannote[198].end |
884.43284375 |
transcript.pyannote[199].speaker |
SPEAKER_01 |
transcript.pyannote[199].start |
884.06159375 |
transcript.pyannote[199].end |
903.26534375 |
transcript.pyannote[200].speaker |
SPEAKER_01 |
transcript.pyannote[200].start |
903.46784375 |
transcript.pyannote[200].end |
905.00346875 |
transcript.pyannote[201].speaker |
SPEAKER_01 |
transcript.pyannote[201].start |
905.13846875 |
transcript.pyannote[201].end |
913.71096875 |
transcript.pyannote[202].speaker |
SPEAKER_00 |
transcript.pyannote[202].start |
914.11596875 |
transcript.pyannote[202].end |
919.39784375 |
transcript.pyannote[203].speaker |
SPEAKER_00 |
transcript.pyannote[203].start |
919.66784375 |
transcript.pyannote[203].end |
929.75909375 |
transcript.pyannote[204].speaker |
SPEAKER_00 |
transcript.pyannote[204].start |
930.31596875 |
transcript.pyannote[204].end |
935.05784375 |
transcript.pyannote[205].speaker |
SPEAKER_01 |
transcript.pyannote[205].start |
935.17596875 |
transcript.pyannote[205].end |
943.22534375 |
transcript.pyannote[206].speaker |
SPEAKER_01 |
transcript.pyannote[206].start |
943.52909375 |
transcript.pyannote[206].end |
946.26284375 |
transcript.pyannote[207].speaker |
SPEAKER_01 |
transcript.pyannote[207].start |
947.32596875 |
transcript.pyannote[207].end |
957.53534375 |
transcript.pyannote[208].speaker |
SPEAKER_01 |
transcript.pyannote[208].start |
957.88971875 |
transcript.pyannote[208].end |
970.14096875 |
transcript.pyannote[209].speaker |
SPEAKER_01 |
transcript.pyannote[209].start |
970.81596875 |
transcript.pyannote[209].end |
977.34659375 |
transcript.pyannote[210].speaker |
SPEAKER_01 |
transcript.pyannote[210].start |
978.34221875 |
transcript.pyannote[210].end |
979.08471875 |
transcript.pyannote[211].speaker |
SPEAKER_01 |
transcript.pyannote[211].start |
979.77659375 |
transcript.pyannote[211].end |
989.19284375 |
transcript.pyannote[212].speaker |
SPEAKER_01 |
transcript.pyannote[212].start |
989.36159375 |
transcript.pyannote[212].end |
989.49659375 |
transcript.pyannote[213].speaker |
SPEAKER_01 |
transcript.pyannote[213].start |
989.71596875 |
transcript.pyannote[213].end |
990.91409375 |
transcript.pyannote[214].speaker |
SPEAKER_01 |
transcript.pyannote[214].start |
991.21784375 |
transcript.pyannote[214].end |
1003.94159375 |
transcript.pyannote[215].speaker |
SPEAKER_00 |
transcript.pyannote[215].start |
997.29284375 |
transcript.pyannote[215].end |
997.64721875 |
transcript.pyannote[216].speaker |
SPEAKER_01 |
transcript.pyannote[216].start |
1004.48159375 |
transcript.pyannote[216].end |
1009.42596875 |
transcript.pyannote[217].speaker |
SPEAKER_01 |
transcript.pyannote[217].start |
1010.21909375 |
transcript.pyannote[217].end |
1013.56034375 |
transcript.pyannote[218].speaker |
SPEAKER_01 |
transcript.pyannote[218].start |
1014.13409375 |
transcript.pyannote[218].end |
1016.20971875 |
transcript.pyannote[219].speaker |
SPEAKER_01 |
transcript.pyannote[219].start |
1016.80034375 |
transcript.pyannote[219].end |
1027.44846875 |
transcript.pyannote[220].speaker |
SPEAKER_01 |
transcript.pyannote[220].start |
1027.88721875 |
transcript.pyannote[220].end |
1032.56159375 |
transcript.pyannote[221].speaker |
SPEAKER_01 |
transcript.pyannote[221].start |
1033.79346875 |
transcript.pyannote[221].end |
1049.85846875 |
transcript.pyannote[222].speaker |
SPEAKER_01 |
transcript.pyannote[222].start |
1050.39846875 |
transcript.pyannote[222].end |
1060.91159375 |
transcript.pyannote[223].speaker |
SPEAKER_00 |
transcript.pyannote[223].start |
1060.27034375 |
transcript.pyannote[223].end |
1080.82409375 |
transcript.pyannote[224].speaker |
SPEAKER_01 |
transcript.pyannote[224].start |
1080.89159375 |
transcript.pyannote[224].end |
1107.85784375 |
transcript.pyannote[225].speaker |
SPEAKER_02 |
transcript.pyannote[225].start |
1106.06909375 |
transcript.pyannote[225].end |
1106.23784375 |
transcript.pyannote[226].speaker |
SPEAKER_02 |
transcript.pyannote[226].start |
1108.76909375 |
transcript.pyannote[226].end |
1111.16534375 |
transcript.whisperx[0].start |
9.861 |
transcript.whisperx[0].end |
12.824 |
transcript.whisperx[0].text |
好 謝謝主席 我們先請廉政署署長麻煩署長 |
transcript.whisperx[1].start |
22.335 |
transcript.whisperx[1].end |
46.221 |
transcript.whisperx[1].text |
好 署長好 署長在你們的報告裡頭你們目前正在進行一個叫做高風險政府採購案件全國性專案集合的一個計畫正在進行中那嘗試透過人工智慧去找出比較高風險的這個政府採購的弊案有可能是這樣 |
transcript.whisperx[2].start |
47.361 |
transcript.whisperx[2].end |
61.231 |
transcript.whisperx[2].text |
那你們去結合了這一個公司登記就是你們叫做商工行政資料開放平台那也去結合了政府採購網然後也去結合了司法院裁判書的系統 |
transcript.whisperx[3].start |
62.779 |
transcript.whisperx[3].end |
78.119 |
transcript.whisperx[3].text |
那目前這個進行的狀況怎麼樣何委員報告我們因為廉政署的工作因為剛好委員今天問我們要講說我們的工作其實是防灘 宿灘再防灘防灘防灘是我們最優先的防止的防 |
transcript.whisperx[4].start |
78.86 |
transcript.whisperx[4].end |
100.552 |
transcript.whisperx[4].text |
所以說在防灘的這個工作上我們一直希望能夠再把那個觸角再往前延伸 察覺到及早去察覺到風險的問題所以我們在這個今年度有透過AI的這個新的一個技術就是嘗試著透過各個不同的跨領域的資料庫委員剛剛連那三個都是我們的一些資料庫 還有其他的去做蒐集 |
transcript.whisperx[5].start |
101.633 |
transcript.whisperx[5].end |
118.633 |
transcript.whisperx[5].text |
那我們針對一些已經出現的高風險的廠商去做一些相關的收集希望能夠針對到說比方委員剛剛講的那幾個部分就可以找到類似像是虛設行號人頭的一個公司還有一些已經是拒絕往來的廠商 |
transcript.whisperx[6].start |
119.914 |
transcript.whisperx[6].end |
141.694 |
transcript.whisperx[6].text |
這個是你們去找到這些廠商下一步呢下一步就是去做 叫我們的政風單位針對那些可能疑似是風險的一些這些案件去做一個專案的集合就從中再發現說有沒有 因為剛剛只是風險再去看有沒有違標 綁標或者是其他的不實驗證你講的都是事後事前 |
transcript.whisperx[7].start |
142.595 |
transcript.whisperx[7].end |
164.441 |
transcript.whisperx[7].text |
事前的部分也是我們會針對這個部分的一些查到的資料去做一些防灘指引跟一些宣導跟一些訓練讓我們的機關的同仁知道說什麼是可以做的我舉一個例子喔是就是說你們現在假設你們發現了某一個廠商你們判斷他高風險是那這一個招標案件進行中進行中喔然後你們系統已經偵測到說這個高風險這家廠商高風險好那這個標案進行中 |
transcript.whisperx[8].start |
172.344 |
transcript.whisperx[8].end |
186.451 |
transcript.whisperx[8].text |
下一步呢跟委員講我們現在廉政署針對我們的政風就對機關採購的部分都有專業的執照所以我們在這個部分會協助機關針對於採購案的這個部分上有什麼任何的不法或疑慮的話都會提醒機關來做處理提醒 |
transcript.whisperx[9].start |
188.306 |
transcript.whisperx[9].end |
199.139 |
transcript.whisperx[9].text |
也如果有不法就會如果你們發現有高風險或者不法你們會提醒怎麼提醒他們也會列做如果真的有一些實證的話也會列入拒絕往來的廠商不是我是說這個標案進行中這個局處長 |
transcript.whisperx[10].start |
204.168 |
transcript.whisperx[10].end |
227.833 |
transcript.whisperx[10].text |
譬如說各縣市有各個局處 各局處標案正進行中有一個標案 忽然間有一個你們原來就找到他可能是高風險然後他也來投標了那你們也找到了 就是說他高風險那你們通知各縣市政風嗎那各縣市的政風處 政風室我們的政風會依照我們的廉政工作守則去強化那個監辦的作為 |
transcript.whisperx[11].start |
229.193 |
transcript.whisperx[11].end |
242.513 |
transcript.whisperx[11].text |
就是說他在這個採購上的一些作為會更加強化強化是說你怎麼樣去提醒這個首長也許這個首長不知道我舉個例子比如說各縣市的局處在做這些事情縣市長不知道 |
transcript.whisperx[12].start |
243.342 |
transcript.whisperx[12].end |
257.998 |
transcript.whisperx[12].text |
對不對 先生講不知道喔可是這明明就是已經是你們系統已經找到他高風險了喔而且他也正在進行中喔那這個時候你們會做什麼提醒這個會跟機關首長報告喔這個 像這樣的如果查覺到進行中的也會正在進行中 查覺到風險機關只要查覺到機關風險都會跟機關首長做通報 |
transcript.whisperx[13].start |
262.623 |
transcript.whisperx[13].end |
286.251 |
transcript.whisperx[13].text |
就會做通報那會不會打草精神當然我們會比較有技術性啦而且在這個機關上面來講原則上機關就是由機關首長來做一個這個算是主導嘛所以我們的相關東西都是看機關首長的一些決心跟作為所以我們原則上會協助機關首長來保護機關安全好那如果說這一個某一個單位他就 |
transcript.whisperx[14].start |
287.031 |
transcript.whisperx[14].end |
312.381 |
transcript.whisperx[14].text |
他的這個單位的採購案接二連三假設他連續有兩三個案子都有問題結果我們在各單位的這個政風人員可能在政風室的主任人員也沒發現都沒發現喔然後已經又過了一兩年喔然後這個案子都已經是最後被偵查到他是一個很嚴重的弊案喔 |
transcript.whisperx[15].start |
313.464 |
transcript.whisperx[15].end |
320.527 |
transcript.whisperx[15].text |
我們對這政風市的人員或各縣市的政風處的人員我們廉政署會做什麼事啊 |
transcript.whisperx[16].start |
321.81 |
transcript.whisperx[16].end |
346.244 |
transcript.whisperx[16].text |
基本上連政署是負責政風人士的一個這個就是這個算是調派那也會對於業務上做監督指導那如果有相關上面裡面他們的一個作為上如果後來事後認定說真的是有一些疏失的部分的話我們也會當然會在這個升遷上以及是在這個業務上面或有行政處分上面都會去做 |
transcript.whisperx[17].start |
346.704 |
transcript.whisperx[17].end |
369.992 |
transcript.whisperx[17].text |
那這一個我剛剛為什麼一直挑這個事前啊 因為你剛剛說房貪嘛 房子嘛那因為有一些是法盲嘛 他不知道這件事情他不能做啦他不知道這件事情他不能做 好 我舉一個例子啦 譬如說這個標案正在進行中那結果有廠商啊 就找了這個局處長啊 就會吃飯 |
transcript.whisperx[18].start |
372.727 |
transcript.whisperx[18].end |
389.438 |
transcript.whisperx[18].text |
那這首長也不知道這傢伙要來投這個單位的案子喔他就去吃飯啦那吃飯之後啊 我們的政風能源也知道然後我們最後有接獲人家的這個不管是什麼舉報或什麼諸如此類的反正我們政風能源就知道了結果那一個廠商也真的來投標了也真的得標了 廉政署 |
transcript.whisperx[19].start |
398.598 |
transcript.whisperx[19].end |
422.837 |
transcript.whisperx[19].text |
遇到這種狀況 你覺得你要提醒你們的政風人員或者你們要提醒這些首長啊就是說我剛剛講這個首長 上面的那個首長你們會做什麼事情啊跟委員報告 其實廉政署執掌的這個法規裡面有利益衝突迴避法然後我們也有這個廉政的這個倫理的一個這個守則所以針對一些相關的部分 該去怎麼做 然後該怎麼樣登錄 |
transcript.whisperx[20].start |
423.778 |
transcript.whisperx[20].end |
451.494 |
transcript.whisperx[20].text |
我們都會去詳細的告訴機關包括首長他們都會知道該怎麼樣的一個分級那如果他真的有這樣的一個作為的話我們如果提醒不行的話那如果接下來就會有一些委員剛剛講的已經去標了甚至產生一些弊端他就會違反到立衝的一個規定我們現在立衝也會針對關係人事先去做一些就是說揭露就如果他還是比方說是這個有這樣的一個關係人的一個利益交易上面的話 |
transcript.whisperx[21].start |
451.954 |
transcript.whisperx[21].end |
476.551 |
transcript.whisperx[21].text |
那這個部分上有可能就會違反立衝法那就是法律的問題了好我再給你一個建議你們現在在處理這個系統啊這個政府的電子採購網啊你們裡頭一直強調的叫做廠商是人頭公司我再給你一個建議多連結一件事情就是這個得標廠商的地址跟電話是也會 |
transcript.whisperx[22].start |
478.922 |
transcript.whisperx[22].end |
505.542 |
transcript.whisperx[22].text |
地址跟電話因為他可能設了不同的名字或者是這一家公司已經被拒絕往來但是他同一個地址同一個聯絡的電話他還是那家廠商所以這個圈子都知道就是那一家只是他換了一個名字這一個連結可能建議你們要來注意第二個你們這一個報告是公開資訊嗎我們這個立法院的部分公開資訊 |
transcript.whisperx[23].start |
509.329 |
transcript.whisperx[23].end |
531.958 |
transcript.whisperx[23].text |
公開啊公開資訊 因為你們進行中啦 還沒有結論成果的部分當然我們現在收集到的這些標案大概會請他們再去做集合大概預計在10月或者是年底的部分會出來成果的一個評估啦那我們都看得到 國人都看得到成果的部分是不會公開啦 |
transcript.whisperx[24].start |
532.571 |
transcript.whisperx[24].end |
549.89 |
transcript.whisperx[24].text |
但是這個目前的這個宣導的這個部分跟教導政風的這個部分會好那你們該公開就公開也不要把你們的所有的手法都跟所有的廠商講這也是很奇怪的事情那這個尊重你們好接下來我們請審計部的副審計長謝謝 |
transcript.whisperx[25].start |
556.625 |
transcript.whisperx[25].end |
574.18 |
transcript.whisperx[25].text |
副審計長好這個審計單位每年都會針對這個前一年的這些狀況去做相關的審計那我請問一下各個不管是中央地方都有這些所謂的配車或者是公務車那如果一個直轄市的首長假日平日 |
transcript.whisperx[26].start |
583.877 |
transcript.whisperx[26].end |
592.524 |
transcript.whisperx[26].text |
坐著他的公務車跑去找廠商處理相關的這個容積率可能會圖利假日平日喔 坐著他的公務車審計單位如果發現你會怎麼處理 |
transcript.whisperx[27].start |
608.732 |
transcript.whisperx[27].end |
634.974 |
transcript.whisperx[27].text |
跟委員報告就是一般如果個案在處理的時候我們都是以派車單的登載內容來看但是委員剛剛特別提醒的就是那些太陽其實那些太陽的資訊我們沒辦法掌握啦就是他個人實際的行程我懂我懂我的意思是說你們剛剛有提到說你們沒辦法去處理一個通案就是說通案 |
transcript.whisperx[28].start |
635.41 |
transcript.whisperx[28].end |
643.595 |
transcript.whisperx[28].text |
因為各個單位的規定都不太一樣有些單位是這個車配給你的連你要開回家都可以 |
transcript.whisperx[29].start |
644.471 |
transcript.whisperx[29].end |
658.577 |
transcript.whisperx[29].text |
那假日呢 你的首長 你不怕司機 你自己開這台公務車回家有些單位是可以這樣 對不對那有些單位呢 接送首長完了之後再怎麼演 這台公務車還是要開回那一個單位那這一個對審計單位來說啊你們就很簡單 他們怎麼規定那你們到時候做相關審計的時候你們就去看他那一個規定嘛 對不對 |
transcript.whisperx[30].start |
670.262 |
transcript.whisperx[30].end |
697.545 |
transcript.whisperx[30].text |
好 那如果說這個單位規定說這台車 啊好你就好你啊啦反正呢 他就跟你講說你就是公務使用嘛齁那公務的這個範圍啊 見仁見智是見仁見智嘛對對那公務的範圍見仁見智 那過去也有發生一些案例啊 譬如說有一些人啊 就是說他也是這一個假日啊 他自己開車 開這台公務車啊 去找他伯娘 |
transcript.whisperx[31].start |
698.427 |
transcript.whisperx[31].end |
720.497 |
transcript.whisperx[31].text |
他說我有付郵費啊我高速公路的ETC的錢我也有繳啊後來就不知道怎麼樣的後來這個新聞就沒再報導了站在審計單位的立場這一種已經配給那個首長的這台車啊這個首長假日自己開還是晚上出去下班啊自己開 開出去然後去做 |
transcript.whisperx[32].start |
726.236 |
transcript.whisperx[32].end |
754.756 |
transcript.whisperx[32].text |
外界認為是私人可是他可能認為這是公務然後最後他就自己付了油費付了高速公路的通行費站在審計單位的立場你這個答案很重要因為現在很多人在看因為現在有被配車的單位的人很多你要一次講清楚就是說到底這些事情可不可以做假日首長自己開著配車 |
transcript.whisperx[33].start |
756.323 |
transcript.whisperx[33].end |
768.9 |
transcript.whisperx[33].text |
跑去做他認為是公務外界認為是私人行程的這個然後他繳了油費繳了這高速公路的通行費那請問在審計單位立場會怎麼處理 |
transcript.whisperx[34].start |
771.564 |
transcript.whisperx[34].end |
795.779 |
transcript.whisperx[34].text |
跟委員報告現在目前為止我們最上位的是公務車的管理手冊的規定針對首長是首長專用車到底專用到什麼程度沒有統一的規定這個也就是會變成個案會審酌不是啦你沒有統一規定怎麼個案啊這個規定跟委員報告這個規定是這個首長我告訴你這個首長他認為我這是公務啊 |
transcript.whisperx[35].start |
800.353 |
transcript.whisperx[35].end |
816.16 |
transcript.whisperx[35].text |
我這是公務啊,外界認為說這哪有公務,這是私人行程,這哪有公務啊到現在回來回去的時候,你省區單位可能說我也沒什麼意見,沒什麼規定來來來,那我問廉政署好不好,廉政署,來來來這個怎麼辦,有人檢舉啦,我舉例說有人檢舉,然後呢 |
transcript.whisperx[36].start |
823.317 |
transcript.whisperx[36].end |
848.92 |
transcript.whisperx[36].text |
這個首長可能就被你們請來了所以你幾月幾號 你就自己開這台公務車走去 假設好 你是一個台北市的官員你開車開去台中那你說我去台中市政考察我去看台中做得怎麼樣啊 我不行他認為這是公務然後這個首長認為 外界會認為這是私人廉政署下一步會是什麼 |
transcript.whisperx[37].start |
850.098 |
transcript.whisperx[37].end |
864.313 |
transcript.whisperx[37].text |
委員報告 其實目前因為這幾個案件現在是在北檢的一個偵查中那個案的部分我們就不太去說那在於監察院內部監察委員的部分他是自律的 |
transcript.whisperx[38].start |
865.434 |
transcript.whisperx[38].end |
879.699 |
transcript.whisperx[38].text |
如果說是一般的公務的部分我們的行政院是有車輛使用的一個規定那其他的院都有自己一個相關的規定所以很簡單就是你們按照每一個機關每一個單位他們的規定去辦 |
transcript.whisperx[39].start |
880.305 |
transcript.whisperx[39].end |
904.17 |
transcript.whisperx[39].text |
就是他們會有一個使用車輛的一個部分 我們會針對那個部分去看對 因為也許每一個縣市也都長不一樣那有些縣市他有些人 有些機關的處長 局長他是專遷專遷這個車子就變成你可以用嘛 對不對 審計單位就是各單位他們有他們自己的規定那對廉政署來說 到所有人檢舉了 |
transcript.whisperx[40].start |
905.31 |
transcript.whisperx[40].end |
934.722 |
transcript.whisperx[40].text |
你們就是看這個規定嘛 對不對看這個規定 這個單位說可以就是可以這個單位說不可以就可能會有貪賭的問題嘛目前上面在法律的適用上面通盤上比較多的是背信跟詐欺跟侵佔然後加134條的一個部分比較多的以往的一個判決的一個結果是這樣子所以說圖利罪的話會不會成立這個得比較看個人要見 |
transcript.whisperx[41].start |
935.236 |
transcript.whisperx[41].end |
946.068 |
transcript.whisperx[41].text |
那署長你覺不覺得我剛剛問的這一些不管是公務車 配車 專屬的什麼車好 要不要全國訂一台 全季的啦 |
transcript.whisperx[42].start |
947.386 |
transcript.whisperx[42].end |
956.129 |
transcript.whisperx[42].text |
你不能說受困 大家都自己頂自己的 自己頂自己的 到時候他可能換單位他不能在這個縣市 奇怪我在這個縣市當首長 當局處長我們那個縣市就可以 奇怪我換這個縣市 我用我以前的經驗來到這裡即使這一個政風單位在我上任的時候也告訴我說 我們的規定是這樣 一分給你嘛 |
transcript.whisperx[43].start |
970.962 |
transcript.whisperx[43].end |
977.105 |
transcript.whisperx[43].text |
可是我印象中可以啊 結果我去幹了這個事情後來才發現說 原來這個管制不可以啦這個事情 最後啦 我建議這個連政署或者是部長也在嘛或者是這個審計單位 大家參詳一下看專攻齁 要整頓好不然大家都要花 都要花這麼大錢其實是很麻煩的啦 |
transcript.whisperx[44].start |
996.954 |
transcript.whisperx[44].end |
1011.478 |
transcript.whisperx[44].text |
好不好 這個你們研究一下 你也不用打呼我 好不好這個就是讓全國的公務員有一個依循的依據因為有時候公務員派公務車出去我請問一下 他如果在外面飛行到自己的店舖 |
transcript.whisperx[45].start |
1014.212 |
transcript.whisperx[45].end |
1016.014 |
transcript.whisperx[45].text |
整群公務車去吃中午茶,吃到兩點半、三點,回到辦公室,叫他去用汽車說這公務人員,12點半、1點、2點,還在餐廳吃飯,整群公務車在衝什麼 |
transcript.whisperx[46].start |
1034.557 |
transcript.whisperx[46].end |
1038.6 |
transcript.whisperx[46].text |
我們廢棄到12點半,我們吃飯吃到2點這到時候,這社會觀感是這樣,新聞一出來,相片一出來後面調查之後說沒問題因為全部都照規矩來,沒問題這些公務員 |
transcript.whisperx[47].start |
1050.447 |
transcript.whisperx[47].end |
1068.315 |
transcript.whisperx[47].text |
他的臉、他的名字都已經在媒體上,無處聲援的啦,那都可能一、兩個月後才發現,其實他沒有怎麼樣啦這個我建議,就是主任委員委員最後報告,就是說有不法的部分,都會依法去交給地檢署,或有貪瀆會交給廉政署 |
transcript.whisperx[48].start |
1068.735 |
transcript.whisperx[48].end |
1092.443 |
transcript.whisperx[48].text |
那至於說我們會針對這一個公務車的這一個部分公車使用我們會編那個防灘指引再一次的去提醒各機關就是針對於這個公車使用的部分的一個界限跟分際OK 最好給大家一個指引啦啊不然各單位自己打招呼不過我跟你講有些公務員第一可能是罰忙第二他搞不清楚第三各單位規定因為也不一樣 |
transcript.whisperx[49].start |
1093.323 |
transcript.whisperx[49].end |
1107.675 |
transcript.whisperx[49].text |
所以我們譬如說像我們最近這些案子我們就要去查那個單位的公務車使用規定因為每一個一定都不一樣啦你別說五院長不一樣啦各部位可能也都長不一樣啦這個規定都不同 好不好好 大家一起加油 謝謝好 謝謝王委員 那下一位我們請 |