iVOD / 162085

Field Value
IVOD_ID 162085
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/162085
日期 2025-05-29
會議資料.會議代碼 委員會-11-3-23-13
會議資料.會議代碼:str 第11屆第3會期交通委員會第13次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 13
會議資料.種類 委員會
會議資料.委員會代碼[0] 23
會議資料.委員會代碼:str[0] 交通委員會
會議資料.標題 第11屆第3會期交通委員會第13次全體委員會議
影片種類 Clip
開始時間 2025-05-29T10:19:09+08:00
結束時間 2025-05-29T10:27:47+08:00
影片長度 00:08:38
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/99583f279a18fcc1334d10e991e70ed9fa28f537c7c679770b07ac742f6d2320bb574d15a1fc2d705ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 蔡其昌
委員發言時間 10:19:09 - 10:27:47
會議時間 2025-05-29T09:00:00+08:00
會議名稱 立法院第11屆第3會期交通委員會第13次全體委員會議(事由:處理114年度中央政府總預算關於國家運輸安全調查委員會預算凍結案計6案。 【5月28日及29日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.46971875
transcript.pyannote[0].end 3.92909375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 4.09784375
transcript.pyannote[1].end 5.51534375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 9.24471875
transcript.pyannote[2].end 10.02096875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 10.02096875
transcript.pyannote[3].end 10.78034375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 11.35409375
transcript.pyannote[4].end 15.65721875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 16.19721875
transcript.pyannote[5].end 16.72034375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 17.14221875
transcript.pyannote[6].end 20.90534375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 21.36096875
transcript.pyannote[7].end 28.51596875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 29.86596875
transcript.pyannote[8].end 30.38909375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 32.02596875
transcript.pyannote[9].end 35.04659375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 36.22784375
transcript.pyannote[10].end 41.62784375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 42.28596875
transcript.pyannote[11].end 51.93846875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 52.17471875
transcript.pyannote[12].end 61.18596875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 61.30409375
transcript.pyannote[13].end 73.13346875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 73.80846875
transcript.pyannote[14].end 79.25909375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 79.37721875
transcript.pyannote[15].end 80.55846875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 80.65971875
transcript.pyannote[16].end 86.36346875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 86.63346875
transcript.pyannote[17].end 94.73346875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 95.47596875
transcript.pyannote[18].end 97.53471875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 98.07471875
transcript.pyannote[19].end 99.54284375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 100.38659375
transcript.pyannote[20].end 104.08221875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 104.57159375
transcript.pyannote[21].end 107.00159375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 107.69346875
transcript.pyannote[22].end 108.72284375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 109.14471875
transcript.pyannote[23].end 110.34284375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 110.69721875
transcript.pyannote[24].end 111.49034375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 111.62534375
transcript.pyannote[25].end 112.82346875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 113.68409375
transcript.pyannote[26].end 117.48096875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 118.13909375
transcript.pyannote[27].end 119.67471875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 120.23159375
transcript.pyannote[28].end 129.81659375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 130.23846875
transcript.pyannote[29].end 131.35221875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 131.75721875
transcript.pyannote[30].end 136.29659375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 136.46534375
transcript.pyannote[31].end 142.77659375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 143.09721875
transcript.pyannote[32].end 147.33284375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 147.68721875
transcript.pyannote[33].end 154.55534375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 153.89721875
transcript.pyannote[34].end 154.01534375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 154.55534375
transcript.pyannote[35].end 155.26409375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 155.55096875
transcript.pyannote[36].end 167.04284375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 167.44784375
transcript.pyannote[37].end 168.46034375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 168.86534375
transcript.pyannote[38].end 170.51909375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 170.70471875
transcript.pyannote[39].end 172.89846875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 173.59034375
transcript.pyannote[40].end 174.94034375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 175.49721875
transcript.pyannote[41].end 181.85909375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 182.71971875
transcript.pyannote[42].end 183.19221875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 184.00221875
transcript.pyannote[43].end 190.14471875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 191.00534375
transcript.pyannote[44].end 191.52846875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 192.16971875
transcript.pyannote[45].end 193.50284375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 193.55346875
transcript.pyannote[46].end 194.98784375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 195.54471875
transcript.pyannote[47].end 199.35846875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 199.74659375
transcript.pyannote[48].end 201.34971875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 201.78846875
transcript.pyannote[49].end 203.47596875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 204.11721875
transcript.pyannote[50].end 206.29409375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 206.88471875
transcript.pyannote[51].end 216.46971875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 216.58784375
transcript.pyannote[52].end 224.99159375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 225.81846875
transcript.pyannote[53].end 233.42909375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 233.98596875
transcript.pyannote[54].end 237.04034375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 237.52971875
transcript.pyannote[55].end 240.33096875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 240.68534375
transcript.pyannote[56].end 243.77346875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 244.63409375
transcript.pyannote[57].end 255.13034375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 255.50159375
transcript.pyannote[58].end 258.31971875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 258.64034375
transcript.pyannote[59].end 261.08721875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 261.99846875
transcript.pyannote[60].end 266.06534375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 267.68534375
transcript.pyannote[61].end 272.24159375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 272.35971875
transcript.pyannote[62].end 273.08534375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 273.33846875
transcript.pyannote[63].end 273.97971875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 275.21159375
transcript.pyannote[64].end 275.63346875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 276.47721875
transcript.pyannote[65].end 278.18159375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 279.86909375
transcript.pyannote[66].end 281.43846875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 281.94471875
transcript.pyannote[67].end 283.44659375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 284.37471875
transcript.pyannote[68].end 286.28159375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 286.61909375
transcript.pyannote[69].end 287.81721875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 290.17971875
transcript.pyannote[70].end 292.27221875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 293.20034375
transcript.pyannote[71].end 295.69784375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 295.96784375
transcript.pyannote[72].end 296.01846875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 296.28846875
transcript.pyannote[73].end 300.92909375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 301.48596875
transcript.pyannote[74].end 308.79284375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 309.14721875
transcript.pyannote[75].end 309.67034375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 310.19346875
transcript.pyannote[76].end 310.90221875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 310.95284375
transcript.pyannote[77].end 314.78346875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 314.93534375
transcript.pyannote[78].end 321.66846875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 318.95159375
transcript.pyannote[79].end 323.59221875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 321.68534375
transcript.pyannote[80].end 321.70221875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 321.71909375
transcript.pyannote[81].end 321.85409375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 322.59659375
transcript.pyannote[82].end 328.94159375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 326.08971875
transcript.pyannote[83].end 326.37659375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 328.14846875
transcript.pyannote[84].end 328.43534375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 328.62096875
transcript.pyannote[85].end 333.90284375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 334.03784375
transcript.pyannote[86].end 336.72096875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 337.32846875
transcript.pyannote[87].end 342.13784375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 343.62284375
transcript.pyannote[88].end 344.34846875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 344.33159375
transcript.pyannote[89].end 346.20471875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 345.29346875
transcript.pyannote[90].end 349.42784375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 350.23784375
transcript.pyannote[91].end 354.25409375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 354.35534375
transcript.pyannote[92].end 359.75534375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 359.78909375
transcript.pyannote[93].end 360.26159375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 360.26159375
transcript.pyannote[94].end 363.18096875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 360.90284375
transcript.pyannote[95].end 361.67909375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 364.39596875
transcript.pyannote[96].end 364.63221875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 364.63221875
transcript.pyannote[97].end 365.23971875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 364.64909375
transcript.pyannote[98].end 365.10471875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 366.35346875
transcript.pyannote[99].end 369.71159375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 369.22221875
transcript.pyannote[100].end 370.08284375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 370.31909375
transcript.pyannote[101].end 372.96846875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 373.18784375
transcript.pyannote[102].end 374.82471875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 374.70659375
transcript.pyannote[103].end 380.88284375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 381.30471875
transcript.pyannote[104].end 383.48159375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 381.37221875
transcript.pyannote[105].end 381.59159375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 384.59534375
transcript.pyannote[106].end 386.62034375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 386.63721875
transcript.pyannote[107].end 386.75534375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 386.75534375
transcript.pyannote[108].end 387.37971875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 387.37971875
transcript.pyannote[109].end 388.10534375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 387.90284375
transcript.pyannote[110].end 389.70846875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 390.11346875
transcript.pyannote[111].end 390.82221875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 390.82221875
transcript.pyannote[112].end 403.02284375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 403.10721875
transcript.pyannote[113].end 404.99721875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 405.19971875
transcript.pyannote[114].end 407.05596875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 407.46096875
transcript.pyannote[115].end 421.75409375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 417.16409375
transcript.pyannote[116].end 417.70409375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 422.27721875
transcript.pyannote[117].end 422.91846875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 423.23909375
transcript.pyannote[118].end 428.47034375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 428.68971875
transcript.pyannote[119].end 429.66846875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 428.82471875
transcript.pyannote[120].end 429.17909375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 430.12409375
transcript.pyannote[121].end 436.90784375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 437.51534375
transcript.pyannote[122].end 439.15221875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 437.80221875
transcript.pyannote[123].end 438.22409375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 438.79784375
transcript.pyannote[124].end 442.07159375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 441.78471875
transcript.pyannote[125].end 447.03284375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 442.08846875
transcript.pyannote[126].end 444.28221875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 447.35346875
transcript.pyannote[127].end 458.15346875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 451.20096875
transcript.pyannote[128].end 451.55534375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 456.48284375
transcript.pyannote[129].end 456.55034375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 456.80346875
transcript.pyannote[130].end 456.93846875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 458.60909375
transcript.pyannote[131].end 465.02159375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 458.72721875
transcript.pyannote[132].end 459.06471875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 465.24096875
transcript.pyannote[133].end 471.19784375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 471.50159375
transcript.pyannote[134].end 475.24784375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 475.55159375
transcript.pyannote[135].end 477.12096875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 477.12096875
transcript.pyannote[136].end 477.86346875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 477.20534375
transcript.pyannote[137].end 480.29346875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 480.78284375
transcript.pyannote[138].end 500.50971875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 499.66596875
transcript.pyannote[139].end 504.28971875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 504.17159375
transcript.pyannote[140].end 511.66409375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 506.23034375
transcript.pyannote[141].end 506.31471875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 511.78221875
transcript.pyannote[142].end 517.23284375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 511.91721875
transcript.pyannote[143].end 512.33909375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 515.27534375
transcript.pyannote[144].end 517.43534375
transcript.whisperx[0].start 1.489
transcript.whisperx[0].end 29.921
transcript.whisperx[0].text 謝謝主席 請林主任委員好 應安委林主委主委早主委早主委我想從那個三峽的車禍發生到今天在立法院我想很多委員不分朝野都很關心那社會大眾國人對這個案子到底是什麼樣的原因也都充滿著關心猜測那
transcript.whisperx[1].start 32.076
transcript.whisperx[1].end 51.249
transcript.whisperx[1].text 主委現在的調查大概狀況進行到哪裡現在大概一個月內會有粗報出來那麼10月份會有一個事實資料報告出來那依據明年的1月草案就要出來然後明年5月會在委員會通過審查通過
transcript.whisperx[2].start 52.951
transcript.whisperx[2].end 72.988
transcript.whisperx[2].text 我們動員的四個分組的人力大概有數個人力我希望希望能夠縮短這是我的期望好這個就是大家都期待嘛我看徐副委員也是一樣大家都期待你能夠縮短那其實他最關鍵的大家為什麼會著急
transcript.whisperx[3].start 73.889
transcript.whisperx[3].end 97.184
transcript.whisperx[3].text 是因為它會事故發生的原因 它會涉及未來在交通部也好 或者其他相關部會也好在許多政策的擬定上面會以事故最終的原因來做報告 來做調查一個車禍的發生 它有可能是機械問題它有可能是人為問題那人為問題裡面
transcript.whisperx[4].start 100.441
transcript.whisperx[4].end 117.315
transcript.whisperx[4].text 因為大家知道他是一個有年紀的先生那年紀是不是影響駕駛的安全的關鍵或者跟年紀無關年輕人也可能會發生這樣的一個駕駛上的疏忽
transcript.whisperx[5].start 118.228
transcript.whisperx[5].end 146.81
transcript.whisperx[5].text 所以換言之從環境因素機械因素到人為因素人為因素又分是不是年紀或者是不是其他的這個原因它都可能是這一個車禍這個嚴重車禍很重要大家必須要去釐清那也只有釐清的問題我們在法規跟政策上也才可以隨之而走所以雲南會走在最前端的角色也就是為什麼
transcript.whisperx[6].start 147.911
transcript.whisperx[6].end 172.714
transcript.whisperx[6].text 國人同胞跟立法院的委員都要求運安會速度要快調查要明確 原理在這裡是是那我知道嘛 這個從每一次都老問題啦譬如說包括運安會人事啦 人力不足啦運安會為求慎重啦所以其實就哪怕是一個車禍這個比起空中的 海上的都相對來得容易一點 但
transcript.whisperx[7].start 173.829
transcript.whisperx[7].end 189.58
transcript.whisperx[7].text 調查起來還是剛剛主委講完最終確定還是要等到明年了啦所以換言之都超過半年以上那特別是國人對於這個問題包括交通部都引來社會的討論就是到底年紀是不是關鍵
transcript.whisperx[8].start 191.052
transcript.whisperx[8].end 206.12
transcript.whisperx[8].text 很多不是前輩啦 長輩都還來打電話給我說他覺得他很健康他覺得他開車沒有問題他的反應比年輕人還要好那其實個案我沒辦法表示什麼
transcript.whisperx[9].start 207.106
transcript.whisperx[9].end 232.947
transcript.whisperx[9].text 個案我沒辦法表示,老人家也有身體,年輕人也不表示每一個年輕人都身心反應都很快嘛這個很難用年紀絕對來區分,但年紀他一定程度人老化他一定反應速度平均值上面一定比較相對弱一點,這個大概無庸置疑那到底它是什麼那這裡面會涉及到交通部怎麼來定義,也讓很多的老人家他覺得他受到歧視
transcript.whisperx[10].start 234.093
transcript.whisperx[10].end 253.177
transcript.whisperx[10].text 他覺得用年紀來歧視他是不合理的所以這裡面的關鍵我也不知道所以我也無法回答 我就在等運安會的一個結果好 那所以主委我看了一下像日本在2019年在時代也發生過類似老人家的車禍開車造成的慘劇所以日本在2022年他就強制要新車裝上
transcript.whisperx[11].start 262.265
transcript.whisperx[11].end 287.332
transcript.whisperx[11].text 這個所謂的黑盒子啦其實也就是這個EDR那台灣呢到目前為止我們是大客車跟大貨車有裝這個EDR那運安會會不會建議交通部或者相關部會對於未來的新車就是我們的自小客車啦要加裝EDR
transcript.whisperx[12].start 293.245
transcript.whisperx[12].end 297.393
transcript.whisperx[12].text 我們的調查重點裡面有一些屬於車輛機械跟設備檢測的這個分組
transcript.whisperx[13].start 301.553
transcript.whisperx[13].end 328.907
transcript.whisperx[13].text 那我相信我們調查出來的這個結果會跟交通部會有交集啦會有交集那像這次三峽車或者這個舊的這個TOYOTA那個車齁照道理來講它是舊車它應該是沒有EDR啦就所謂新車現在也沒有 但是它現在有那個特斯拉有EDR之外 其他也沒有它這部車剛好有EDR喔 剛好有 OK所以我們現在是在解讀好 那會不會
transcript.whisperx[14].start 329.887
transcript.whisperx[14].end 347.632
transcript.whisperx[14].text 未來在你們的建議當中方便你們的調查你們會不會建議交通部說未來新車啊就以後在台灣賣的車輛都必須把EDR作為一個標準配備運營會有沒有這樣的想法我這邊的資料是台灣在116年
transcript.whisperx[15].start 350.479
transcript.whisperx[15].end 364.766
transcript.whisperx[15].text 現在114嘛 116年就規定都要裝新型的這個EDR對 就是已經116年開始的新車都要裝了對就是這樣子嘛那它不管什麼樣的車型都要裝
transcript.whisperx[16].start 366.394
transcript.whisperx[16].end 383.28
transcript.whisperx[16].text 大大小小的車子啦載貨載人的都要裝嘛對不對那這個是運安會給的建議嗎不是這是交通部的政策好那運安會如果有這樣的EDR對運安會的運作來講譬如說以路上的車禍而言你們的時間可不可以再縮短
transcript.whisperx[17].start 384.736
transcript.whisperx[17].end 406.837
transcript.whisperx[17].text 對我們的調查當然幫助很大幫助很大嗎對很大所以主委你也不反對嗎我贊成你贊成OK好所以簡單講就是說我提這個其實對我來講我並不了解它的成本就是說裝了之後對消費者他的購買新車他要增加多少成本但是我相信對於事故的調查會有幫助
transcript.whisperx[18].start 407.518
transcript.whisperx[18].end 436.661
transcript.whisperx[18].text 那大家會期待過去我們在講說叫你們增加人力啊等等這個問題我覺得都很困難啦講再講講再講其實都效果有限所以我們應該反過來再想其他透過其他的路徑有沒有辦法再讓你們的調查報告可以速度更快可以更精準這個才是第二條除了叫你們增加人力啊增加效率啊之外還有什麼外部輔助的方式
transcript.whisperx[19].start 437.771
transcript.whisperx[19].end 457.95
transcript.whisperx[19].text 這個是本席今天質詢的重點我們的調查品質就會更好啦所以我的意思還是期待啦因為政策的前端就是運安會啦特別像這個事件過後到底政策要怎麼調整法規要不要修改其實前端在你們
transcript.whisperx[20].start 458.88
transcript.whisperx[20].end 480.055
transcript.whisperx[20].text 我覺得這樣也比較科學啦不然老人家會覺得他受到歧視嘛但如果真的怎麼樣的老人家的有些老人家是健康的身心反應都沒有問題但有一些可能不行那這個時候該怎麼去做調整以確保大家的安全這個其實也是很重要的所以不用年紀去歧視老人家但
transcript.whisperx[21].start 481.016
transcript.whisperx[21].end 509.768
transcript.whisperx[21].text 國人的在行的路上的安全像這一次這種讓人家這麼難過的事情我們不希望它再發生所以怎麼樣很精準的把我們想要改變的問題把它集中要害的處理而不要盡量不要去誤傷那個無辜啦我覺得這個是最重要我們的立場也是這樣子啦完整的調查真正對症下藥啦對對對因為要對症下藥啦不然的話每一個政策出來都讓一堆無辜的人也不對
transcript.whisperx[22].start 510.228
transcript.whisperx[22].end 515.22
transcript.whisperx[22].text 那你不處理也不對因為我們不希望看到這種那麼讓人難過的事情再發生