IVOD_ID |
162042 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/162042 |
日期 |
2025-05-28 |
會議資料.會議代碼 |
委員會-11-3-19-15 |
會議資料.會議代碼:str |
第11屆第3會期經濟委員會第15次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
15 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.標題 |
第11屆第3會期經濟委員會第15次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-05-28T12:27:17+08:00 |
結束時間 |
2025-05-28T12:40:51+08:00 |
影片長度 |
00:13:34 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/75aba70f567c6f24dff4eeddd8a67c941b5ee1b3bf308d2ea3426710e0a50eedb165d9c3a9e3ea845ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
呂玉玲 |
委員發言時間 |
12:27:17 - 12:40:51 |
會議時間 |
2025-05-28T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期經濟委員會第15次全體委員會議(事由:審查:
一、本院委員謝衣鳯等16人擬具「農民退休儲金條例第七條條文修正草案」案。
二、本院委員郭國文等17人擬具「農民退休儲金條例第七條條文修正草案」案。(詢答)) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
5.04284375 |
transcript.pyannote[0].end |
6.42659375 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
6.73034375 |
transcript.pyannote[1].end |
7.15221875 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
7.47284375 |
transcript.pyannote[2].end |
7.92846875 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
8.28284375 |
transcript.pyannote[3].end |
9.32909375 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
15.62346875 |
transcript.pyannote[4].end |
16.48409375 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
18.47534375 |
transcript.pyannote[5].end |
18.71159375 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
19.31909375 |
transcript.pyannote[6].end |
20.51721875 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
19.47096875 |
transcript.pyannote[7].end |
19.85909375 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
20.19659375 |
transcript.pyannote[8].end |
23.35221875 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
24.14534375 |
transcript.pyannote[9].end |
24.83721875 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
25.09034375 |
transcript.pyannote[10].end |
31.06409375 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
30.00096875 |
transcript.pyannote[11].end |
30.47346875 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
31.62096875 |
transcript.pyannote[12].end |
36.90284375 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
37.40909375 |
transcript.pyannote[13].end |
39.55221875 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
40.00784375 |
transcript.pyannote[14].end |
40.86846875 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
40.93596875 |
transcript.pyannote[15].end |
46.08284375 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
41.39159375 |
transcript.pyannote[16].end |
41.89784375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
44.63159375 |
transcript.pyannote[17].end |
44.98596875 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
46.08284375 |
transcript.pyannote[18].end |
47.23034375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
48.73221875 |
transcript.pyannote[19].end |
53.86221875 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
54.26721875 |
transcript.pyannote[20].end |
58.63784375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
58.78971875 |
transcript.pyannote[21].end |
60.86534375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
61.15221875 |
transcript.pyannote[22].end |
66.97409375 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
66.28221875 |
transcript.pyannote[23].end |
66.90659375 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
66.97409375 |
transcript.pyannote[24].end |
70.50096875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
69.50534375 |
transcript.pyannote[25].end |
70.12971875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
70.50096875 |
transcript.pyannote[26].end |
70.53471875 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
70.53471875 |
transcript.pyannote[27].end |
70.56846875 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
70.56846875 |
transcript.pyannote[28].end |
70.72034375 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
70.58534375 |
transcript.pyannote[29].end |
70.61909375 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
70.72034375 |
transcript.pyannote[30].end |
80.60909375 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
72.27284375 |
transcript.pyannote[31].end |
74.23034375 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
74.85471875 |
transcript.pyannote[32].end |
75.10784375 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
78.06096875 |
transcript.pyannote[33].end |
79.41096875 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
79.57971875 |
transcript.pyannote[34].end |
81.35159375 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
81.35159375 |
transcript.pyannote[35].end |
85.03034375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
81.36846875 |
transcript.pyannote[36].end |
81.53721875 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
82.49909375 |
transcript.pyannote[37].end |
82.83659375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
85.03034375 |
transcript.pyannote[38].end |
86.07659375 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
85.51971875 |
transcript.pyannote[39].end |
88.21971875 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
86.81909375 |
transcript.pyannote[40].end |
87.37596875 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
88.21971875 |
transcript.pyannote[41].end |
91.78034375 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
91.51034375 |
transcript.pyannote[42].end |
96.04971875 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
95.10471875 |
transcript.pyannote[43].end |
95.86409375 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
96.72471875 |
transcript.pyannote[44].end |
97.88909375 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
98.64846875 |
transcript.pyannote[45].end |
99.17159375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
99.37409375 |
transcript.pyannote[46].end |
99.74534375 |
transcript.pyannote[47].speaker |
SPEAKER_01 |
transcript.pyannote[47].start |
100.13346875 |
transcript.pyannote[47].end |
116.16471875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
104.11596875 |
transcript.pyannote[48].end |
104.48721875 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
107.45721875 |
transcript.pyannote[49].end |
107.76096875 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
116.33346875 |
transcript.pyannote[50].end |
124.11284375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
122.37471875 |
transcript.pyannote[51].end |
122.56034375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
124.11284375 |
transcript.pyannote[52].end |
125.76659375 |
transcript.pyannote[53].speaker |
SPEAKER_01 |
transcript.pyannote[53].start |
124.12971875 |
transcript.pyannote[53].end |
131.65596875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
130.99784375 |
transcript.pyannote[54].end |
133.64721875 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
131.85846875 |
transcript.pyannote[55].end |
132.43221875 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
133.57971875 |
transcript.pyannote[56].end |
135.16596875 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
134.15346875 |
transcript.pyannote[57].end |
134.69346875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
135.16596875 |
transcript.pyannote[58].end |
135.70596875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
136.02659375 |
transcript.pyannote[59].end |
150.74159375 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
137.34284375 |
transcript.pyannote[60].end |
138.35534375 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
139.45221875 |
transcript.pyannote[61].end |
141.37596875 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
141.74721875 |
transcript.pyannote[62].end |
144.58221875 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
150.48846875 |
transcript.pyannote[63].end |
156.86721875 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
153.67784375 |
transcript.pyannote[64].end |
154.58909375 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
156.00659375 |
transcript.pyannote[65].end |
156.74909375 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
156.86721875 |
transcript.pyannote[66].end |
157.96409375 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
157.96409375 |
transcript.pyannote[67].end |
158.03159375 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
158.03159375 |
transcript.pyannote[68].end |
158.48721875 |
transcript.pyannote[69].speaker |
SPEAKER_01 |
transcript.pyannote[69].start |
158.48721875 |
transcript.pyannote[69].end |
175.78409375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
168.96659375 |
transcript.pyannote[70].end |
170.16471875 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
175.09221875 |
transcript.pyannote[71].end |
179.34471875 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
179.86784375 |
transcript.pyannote[72].end |
185.30159375 |
transcript.pyannote[73].speaker |
SPEAKER_01 |
transcript.pyannote[73].start |
183.96846875 |
transcript.pyannote[73].end |
192.32159375 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
189.67221875 |
transcript.pyannote[74].end |
194.51534375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
194.83596875 |
transcript.pyannote[75].end |
196.47284375 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
195.03846875 |
transcript.pyannote[76].end |
195.64596875 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
196.86096875 |
transcript.pyannote[77].end |
200.50596875 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
200.10096875 |
transcript.pyannote[78].end |
201.50159375 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
201.50159375 |
transcript.pyannote[79].end |
201.51846875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
201.67034375 |
transcript.pyannote[80].end |
202.71659375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
202.73346875 |
transcript.pyannote[81].end |
207.27284375 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
204.72471875 |
transcript.pyannote[82].end |
205.11284375 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
207.94784375 |
transcript.pyannote[83].end |
209.66909375 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
210.44534375 |
transcript.pyannote[84].end |
212.84159375 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
213.61784375 |
transcript.pyannote[85].end |
214.88346875 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
216.09846875 |
transcript.pyannote[86].end |
218.24159375 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
216.11534375 |
transcript.pyannote[87].end |
216.60471875 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
217.39784375 |
transcript.pyannote[88].end |
221.27909375 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
220.28346875 |
transcript.pyannote[89].end |
229.05846875 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
222.94971875 |
transcript.pyannote[90].end |
223.10159375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
226.83096875 |
transcript.pyannote[91].end |
233.69909375 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
233.83409375 |
transcript.pyannote[92].end |
238.72784375 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
238.08659375 |
transcript.pyannote[93].end |
238.71096875 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
238.72784375 |
transcript.pyannote[94].end |
253.15596875 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
239.50409375 |
transcript.pyannote[95].end |
239.84159375 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
240.31409375 |
transcript.pyannote[96].end |
240.76971875 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
245.76471875 |
transcript.pyannote[97].end |
247.97534375 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
248.86971875 |
transcript.pyannote[98].end |
249.00471875 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
250.40534375 |
transcript.pyannote[99].end |
255.55221875 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
253.51034375 |
transcript.pyannote[100].end |
255.61971875 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
255.92346875 |
transcript.pyannote[101].end |
265.20471875 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
265.28909375 |
transcript.pyannote[102].end |
326.79846875 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
280.47659375 |
transcript.pyannote[103].end |
280.93221875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
282.04596875 |
transcript.pyannote[104].end |
282.56909375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
286.21409375 |
transcript.pyannote[105].end |
286.92284375 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
287.02409375 |
transcript.pyannote[106].end |
287.24346875 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
288.74534375 |
transcript.pyannote[107].end |
289.50471875 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
293.41971875 |
transcript.pyannote[108].end |
293.87534375 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
323.22096875 |
transcript.pyannote[109].end |
323.71034375 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
325.22909375 |
transcript.pyannote[110].end |
325.48221875 |
transcript.pyannote[111].speaker |
SPEAKER_01 |
transcript.pyannote[111].start |
326.91659375 |
transcript.pyannote[111].end |
370.20096875 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
370.33596875 |
transcript.pyannote[112].end |
375.92159375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
376.29284375 |
transcript.pyannote[113].end |
376.81596875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
377.08596875 |
transcript.pyannote[114].end |
378.18284375 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
378.30096875 |
transcript.pyannote[115].end |
386.60346875 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
386.83971875 |
transcript.pyannote[116].end |
393.08346875 |
transcript.pyannote[117].speaker |
SPEAKER_01 |
transcript.pyannote[117].start |
393.20159375 |
transcript.pyannote[117].end |
393.40409375 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
393.40409375 |
transcript.pyannote[118].end |
399.52971875 |
transcript.pyannote[119].speaker |
SPEAKER_01 |
transcript.pyannote[119].start |
400.13721875 |
transcript.pyannote[119].end |
403.02284375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
403.02284375 |
transcript.pyannote[120].end |
407.02221875 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
403.03971875 |
transcript.pyannote[121].end |
446.74596875 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
408.86159375 |
transcript.pyannote[122].end |
410.34659375 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
415.45971875 |
transcript.pyannote[123].end |
415.69596875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
418.12596875 |
transcript.pyannote[124].end |
418.54784375 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
423.03659375 |
transcript.pyannote[125].end |
423.57659375 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
424.89284375 |
transcript.pyannote[126].end |
425.33159375 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
425.88846875 |
transcript.pyannote[127].end |
426.22596875 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
432.95909375 |
transcript.pyannote[128].end |
433.09409375 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
433.51596875 |
transcript.pyannote[129].end |
433.87034375 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
440.02971875 |
transcript.pyannote[130].end |
441.19409375 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
442.51034375 |
transcript.pyannote[131].end |
443.05034375 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
446.74596875 |
transcript.pyannote[132].end |
460.43159375 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
446.77971875 |
transcript.pyannote[133].end |
447.13409375 |
transcript.pyannote[134].speaker |
SPEAKER_01 |
transcript.pyannote[134].start |
450.28971875 |
transcript.pyannote[134].end |
450.57659375 |
transcript.pyannote[135].speaker |
SPEAKER_01 |
transcript.pyannote[135].start |
459.33471875 |
transcript.pyannote[135].end |
516.54096875 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
461.02221875 |
transcript.pyannote[136].end |
461.34284375 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
462.11909375 |
transcript.pyannote[137].end |
462.74346875 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
463.41846875 |
transcript.pyannote[138].end |
463.92471875 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
464.75159375 |
transcript.pyannote[139].end |
465.10596875 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
465.22409375 |
transcript.pyannote[140].end |
465.24096875 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
465.29159375 |
transcript.pyannote[141].end |
465.84846875 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
467.68784375 |
transcript.pyannote[142].end |
467.97471875 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
469.08846875 |
transcript.pyannote[143].end |
469.64534375 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
470.47221875 |
transcript.pyannote[144].end |
470.82659375 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
471.16409375 |
transcript.pyannote[145].end |
471.73784375 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
479.38221875 |
transcript.pyannote[146].end |
479.46659375 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
496.45971875 |
transcript.pyannote[147].end |
497.57346875 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
497.79284375 |
transcript.pyannote[148].end |
500.56034375 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
501.43784375 |
transcript.pyannote[149].end |
501.74159375 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
502.36596875 |
transcript.pyannote[150].end |
502.72034375 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
513.09846875 |
transcript.pyannote[151].end |
513.68909375 |
transcript.pyannote[152].speaker |
SPEAKER_01 |
transcript.pyannote[152].start |
517.08096875 |
transcript.pyannote[152].end |
520.38846875 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
519.27471875 |
transcript.pyannote[153].end |
542.32596875 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
542.59596875 |
transcript.pyannote[154].end |
552.85596875 |
transcript.pyannote[155].speaker |
SPEAKER_01 |
transcript.pyannote[155].start |
545.88659375 |
transcript.pyannote[155].end |
546.71346875 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
552.99096875 |
transcript.pyannote[156].end |
568.98846875 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
556.07909375 |
transcript.pyannote[157].end |
556.53471875 |
transcript.pyannote[158].speaker |
SPEAKER_01 |
transcript.pyannote[158].start |
558.93096875 |
transcript.pyannote[158].end |
561.19221875 |
transcript.pyannote[159].speaker |
SPEAKER_01 |
transcript.pyannote[159].start |
569.02221875 |
transcript.pyannote[159].end |
569.46096875 |
transcript.pyannote[160].speaker |
SPEAKER_01 |
transcript.pyannote[160].start |
569.74784375 |
transcript.pyannote[160].end |
571.55346875 |
transcript.pyannote[161].speaker |
SPEAKER_01 |
transcript.pyannote[161].start |
571.67159375 |
transcript.pyannote[161].end |
573.25784375 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
571.78971875 |
transcript.pyannote[162].end |
571.84034375 |
transcript.pyannote[163].speaker |
SPEAKER_00 |
transcript.pyannote[163].start |
571.89096875 |
transcript.pyannote[163].end |
571.94159375 |
transcript.pyannote[164].speaker |
SPEAKER_00 |
transcript.pyannote[164].start |
575.53596875 |
transcript.pyannote[164].end |
579.18096875 |
transcript.pyannote[165].speaker |
SPEAKER_01 |
transcript.pyannote[165].start |
577.84784375 |
transcript.pyannote[165].end |
581.05409375 |
transcript.pyannote[166].speaker |
SPEAKER_00 |
transcript.pyannote[166].start |
581.45909375 |
transcript.pyannote[166].end |
590.74034375 |
transcript.pyannote[167].speaker |
SPEAKER_01 |
transcript.pyannote[167].start |
591.12846875 |
transcript.pyannote[167].end |
592.15784375 |
transcript.pyannote[168].speaker |
SPEAKER_01 |
transcript.pyannote[168].start |
592.39409375 |
transcript.pyannote[168].end |
593.50784375 |
transcript.pyannote[169].speaker |
SPEAKER_00 |
transcript.pyannote[169].start |
593.74409375 |
transcript.pyannote[169].end |
594.14909375 |
transcript.pyannote[170].speaker |
SPEAKER_01 |
transcript.pyannote[170].start |
594.14909375 |
transcript.pyannote[170].end |
595.83659375 |
transcript.pyannote[171].speaker |
SPEAKER_00 |
transcript.pyannote[171].start |
596.81534375 |
transcript.pyannote[171].end |
598.21596875 |
transcript.pyannote[172].speaker |
SPEAKER_01 |
transcript.pyannote[172].start |
598.21596875 |
transcript.pyannote[172].end |
598.23284375 |
transcript.pyannote[173].speaker |
SPEAKER_00 |
transcript.pyannote[173].start |
598.23284375 |
transcript.pyannote[173].end |
598.24971875 |
transcript.pyannote[174].speaker |
SPEAKER_01 |
transcript.pyannote[174].start |
598.30034375 |
transcript.pyannote[174].end |
598.40159375 |
transcript.pyannote[175].speaker |
SPEAKER_00 |
transcript.pyannote[175].start |
598.40159375 |
transcript.pyannote[175].end |
598.41846875 |
transcript.pyannote[176].speaker |
SPEAKER_01 |
transcript.pyannote[176].start |
598.41846875 |
transcript.pyannote[176].end |
602.63721875 |
transcript.pyannote[177].speaker |
SPEAKER_01 |
transcript.pyannote[177].start |
603.00846875 |
transcript.pyannote[177].end |
606.43409375 |
transcript.pyannote[178].speaker |
SPEAKER_00 |
transcript.pyannote[178].start |
604.79721875 |
transcript.pyannote[178].end |
604.84784375 |
transcript.pyannote[179].speaker |
SPEAKER_00 |
transcript.pyannote[179].start |
604.93221875 |
transcript.pyannote[179].end |
605.08409375 |
transcript.pyannote[180].speaker |
SPEAKER_01 |
transcript.pyannote[180].start |
606.99096875 |
transcript.pyannote[180].end |
610.66971875 |
transcript.pyannote[181].speaker |
SPEAKER_00 |
transcript.pyannote[181].start |
610.24784375 |
transcript.pyannote[181].end |
610.43346875 |
transcript.pyannote[182].speaker |
SPEAKER_00 |
transcript.pyannote[182].start |
610.87221875 |
transcript.pyannote[182].end |
611.31096875 |
transcript.pyannote[183].speaker |
SPEAKER_01 |
transcript.pyannote[183].start |
611.31096875 |
transcript.pyannote[183].end |
616.32284375 |
transcript.pyannote[184].speaker |
SPEAKER_00 |
transcript.pyannote[184].start |
614.43284375 |
transcript.pyannote[184].end |
614.61846875 |
transcript.pyannote[185].speaker |
SPEAKER_00 |
transcript.pyannote[185].start |
615.27659375 |
transcript.pyannote[185].end |
615.68159375 |
transcript.pyannote[186].speaker |
SPEAKER_01 |
transcript.pyannote[186].start |
617.43659375 |
transcript.pyannote[186].end |
617.89221875 |
transcript.pyannote[187].speaker |
SPEAKER_01 |
transcript.pyannote[187].start |
618.66846875 |
transcript.pyannote[187].end |
638.19284375 |
transcript.pyannote[188].speaker |
SPEAKER_00 |
transcript.pyannote[188].start |
623.81534375 |
transcript.pyannote[188].end |
623.93346875 |
transcript.pyannote[189].speaker |
SPEAKER_00 |
transcript.pyannote[189].start |
624.13596875 |
transcript.pyannote[189].end |
624.16971875 |
transcript.pyannote[190].speaker |
SPEAKER_00 |
transcript.pyannote[190].start |
628.01721875 |
transcript.pyannote[190].end |
628.23659375 |
transcript.pyannote[191].speaker |
SPEAKER_00 |
transcript.pyannote[191].start |
634.10909375 |
transcript.pyannote[191].end |
634.29471875 |
transcript.pyannote[192].speaker |
SPEAKER_00 |
transcript.pyannote[192].start |
635.25659375 |
transcript.pyannote[192].end |
635.56034375 |
transcript.pyannote[193].speaker |
SPEAKER_01 |
transcript.pyannote[193].start |
638.47971875 |
transcript.pyannote[193].end |
652.13159375 |
transcript.pyannote[194].speaker |
SPEAKER_01 |
transcript.pyannote[194].start |
652.73909375 |
transcript.pyannote[194].end |
710.40096875 |
transcript.pyannote[195].speaker |
SPEAKER_00 |
transcript.pyannote[195].start |
669.27659375 |
transcript.pyannote[195].end |
671.62221875 |
transcript.pyannote[196].speaker |
SPEAKER_00 |
transcript.pyannote[196].start |
674.06909375 |
transcript.pyannote[196].end |
674.55846875 |
transcript.pyannote[197].speaker |
SPEAKER_01 |
transcript.pyannote[197].start |
710.45159375 |
transcript.pyannote[197].end |
710.51909375 |
transcript.pyannote[198].speaker |
SPEAKER_00 |
transcript.pyannote[198].start |
710.51909375 |
transcript.pyannote[198].end |
710.75534375 |
transcript.pyannote[199].speaker |
SPEAKER_01 |
transcript.pyannote[199].start |
710.75534375 |
transcript.pyannote[199].end |
712.94909375 |
transcript.pyannote[200].speaker |
SPEAKER_01 |
transcript.pyannote[200].start |
713.35409375 |
transcript.pyannote[200].end |
716.64471875 |
transcript.pyannote[201].speaker |
SPEAKER_00 |
transcript.pyannote[201].start |
716.39159375 |
transcript.pyannote[201].end |
722.66909375 |
transcript.pyannote[202].speaker |
SPEAKER_01 |
transcript.pyannote[202].start |
721.60596875 |
transcript.pyannote[202].end |
724.37346875 |
transcript.pyannote[203].speaker |
SPEAKER_00 |
transcript.pyannote[203].start |
723.34409375 |
transcript.pyannote[203].end |
725.57159375 |
transcript.pyannote[204].speaker |
SPEAKER_01 |
transcript.pyannote[204].start |
725.72346875 |
transcript.pyannote[204].end |
726.60096875 |
transcript.pyannote[205].speaker |
SPEAKER_00 |
transcript.pyannote[205].start |
726.60096875 |
transcript.pyannote[205].end |
749.93909375 |
transcript.pyannote[206].speaker |
SPEAKER_00 |
transcript.pyannote[206].start |
750.14159375 |
transcript.pyannote[206].end |
753.80346875 |
transcript.pyannote[207].speaker |
SPEAKER_00 |
transcript.pyannote[207].start |
753.92159375 |
transcript.pyannote[207].end |
754.37721875 |
transcript.pyannote[208].speaker |
SPEAKER_01 |
transcript.pyannote[208].start |
754.37721875 |
transcript.pyannote[208].end |
765.44721875 |
transcript.pyannote[209].speaker |
SPEAKER_00 |
transcript.pyannote[209].start |
761.44784375 |
transcript.pyannote[209].end |
761.93721875 |
transcript.pyannote[210].speaker |
SPEAKER_00 |
transcript.pyannote[210].start |
765.24471875 |
transcript.pyannote[210].end |
770.50971875 |
transcript.pyannote[211].speaker |
SPEAKER_00 |
transcript.pyannote[211].start |
770.88096875 |
transcript.pyannote[211].end |
773.05784375 |
transcript.pyannote[212].speaker |
SPEAKER_00 |
transcript.pyannote[212].start |
773.98596875 |
transcript.pyannote[212].end |
774.81284375 |
transcript.pyannote[213].speaker |
SPEAKER_01 |
transcript.pyannote[213].start |
774.81284375 |
transcript.pyannote[213].end |
776.38221875 |
transcript.pyannote[214].speaker |
SPEAKER_00 |
transcript.pyannote[214].start |
775.09971875 |
transcript.pyannote[214].end |
775.65659375 |
transcript.pyannote[215].speaker |
SPEAKER_00 |
transcript.pyannote[215].start |
775.92659375 |
transcript.pyannote[215].end |
781.10721875 |
transcript.pyannote[216].speaker |
SPEAKER_01 |
transcript.pyannote[216].start |
778.32284375 |
transcript.pyannote[216].end |
778.74471875 |
transcript.pyannote[217].speaker |
SPEAKER_01 |
transcript.pyannote[217].start |
779.11596875 |
transcript.pyannote[217].end |
782.28846875 |
transcript.pyannote[218].speaker |
SPEAKER_00 |
transcript.pyannote[218].start |
782.28846875 |
transcript.pyannote[218].end |
787.87409375 |
transcript.pyannote[219].speaker |
SPEAKER_01 |
transcript.pyannote[219].start |
786.97971875 |
transcript.pyannote[219].end |
788.81909375 |
transcript.pyannote[220].speaker |
SPEAKER_00 |
transcript.pyannote[220].start |
788.81909375 |
transcript.pyannote[220].end |
791.23221875 |
transcript.pyannote[221].speaker |
SPEAKER_01 |
transcript.pyannote[221].start |
791.23221875 |
transcript.pyannote[221].end |
806.52096875 |
transcript.pyannote[222].speaker |
SPEAKER_00 |
transcript.pyannote[222].start |
794.96159375 |
transcript.pyannote[222].end |
797.29034375 |
transcript.pyannote[223].speaker |
SPEAKER_00 |
transcript.pyannote[223].start |
799.04534375 |
transcript.pyannote[223].end |
799.38284375 |
transcript.pyannote[224].speaker |
SPEAKER_00 |
transcript.pyannote[224].start |
805.03596875 |
transcript.pyannote[224].end |
808.49534375 |
transcript.pyannote[225].speaker |
SPEAKER_01 |
transcript.pyannote[225].start |
807.29721875 |
transcript.pyannote[225].end |
810.82409375 |
transcript.pyannote[226].speaker |
SPEAKER_00 |
transcript.pyannote[226].start |
809.35596875 |
transcript.pyannote[226].end |
809.87909375 |
transcript.pyannote[227].speaker |
SPEAKER_00 |
transcript.pyannote[227].start |
810.82409375 |
transcript.pyannote[227].end |
812.19096875 |
transcript.pyannote[228].speaker |
SPEAKER_01 |
transcript.pyannote[228].start |
811.41471875 |
transcript.pyannote[228].end |
812.02221875 |
transcript.pyannote[229].speaker |
SPEAKER_01 |
transcript.pyannote[229].start |
812.29221875 |
transcript.pyannote[229].end |
813.30471875 |
transcript.pyannote[230].speaker |
SPEAKER_01 |
transcript.pyannote[230].start |
813.81096875 |
transcript.pyannote[230].end |
814.38471875 |
transcript.whisperx[0].start |
5.426 |
transcript.whisperx[0].end |
8.729 |
transcript.whisperx[0].text |
謝謝主席 請陳部長我剛才延伸我們林委員剛剛想問的 |
transcript.whisperx[1].start |
24.232 |
transcript.whisperx[1].end |
46.185 |
transcript.whisperx[1].text |
有勞保的人沒有辦法投農保因為我們只能一個保公保、勞保跟我們的農保就只能選擇一個那有勞保的人可以來申請農民退休儲金嗎?現在也不行不行嗎?那你剛剛說你要研議你答應靈魂要研議我不懂你要怎麼研議啊我們這樣講喔 |
transcript.whisperx[2].start |
48.82 |
transcript.whisperx[2].end |
66.413 |
transcript.whisperx[2].text |
老保如果他還是有受僱於人的話是由他們的僱主去提領嘛6%那剛才我講的就是說有一些年輕人他可能20幾歲到30歲之間他是在公司服務所以沒有錯 |
transcript.whisperx[3].start |
67.113 |
transcript.whisperx[3].end |
95.879 |
transcript.whisperx[3].text |
他原來是有在公司服務他投了勞保但是他勞保之後他又轉做我們的親農你轉做親農之後的話你就不在公司工作了嗎還是同時有在公司工作他是用職業公會那就算選擇性只能一個保嗎只能一個保嗎可以雙重保險嗎不可以對不對但是他可以加入農民職業他又投勞保來加入農民的退休儲金可以這樣子 |
transcript.whisperx[4].start |
96.799 |
transcript.whisperx[4].end |
115.857 |
transcript.whisperx[4].text |
可以修法就可以了修法對那因為我們知道說我們有公保跟勞保的部分的話可以分開計算合併給付但是你要選擇性的你第一個階段的話如果是你是勞保後來你轉做公務人員的時候你就是沒有勞保了要改成公保 |
transcript.whisperx[5].start |
116.457 |
transcript.whisperx[5].end |
135.297 |
transcript.whisperx[5].text |
被停掉一個才可以繼續另外一個但是你的年資可以繼續計算是這樣子才分開計算合併來給付但是你現在把勞保可以繼續保勞保那你又可以來申請農民的退休雛金我跟委員報告齁這樣子雙保啦不會 |
transcript.whisperx[6].start |
136.859 |
transcript.whisperx[6].end |
145.689 |
transcript.whisperx[6].text |
老保退休金老保年金他不能領老保退休金他如果來加入我們農業退出儲金的話就不能老保退休金 |
transcript.whisperx[7].start |
151.015 |
transcript.whisperx[7].end |
178.737 |
transcript.whisperx[7].text |
他可以保勞保不能領勞保退休金他可以來領農民的退休儲金法要修得清楚我也請部長到時候要講清楚不同的保險可以這樣子那當時我們是一個階段的勞保完畢下個階段是公保才可以分開計算合併給付你現在是同時有勞保又同時有農民退休這個儲金勞保對應的是農保啦他現在勞保就不能來保農保 |
transcript.whisperx[8].start |
179.958 |
transcript.whisperx[8].end |
207.033 |
transcript.whisperx[8].text |
但是他在農保的時候他沒有雇主嘛而且他是實際從事農業你的意思是說他繼續保勞保然後繼續又可以這邊申請農民的退休儲金喔所以是兩個不同的保險他一定要從事農業勞保對應的是農保然後勞工的退休儲金對應的是農民退休儲金那他的勞保可以繼續保嗎勞保繼續保啊農民退休儲金繼續儲嗎我們可以開放他可以加入 |
transcript.whisperx[9].start |
208.084 |
transcript.whisperx[9].end |
236.509 |
transcript.whisperx[9].text |
因為他實際從事農業這裡 這裡輕容一半喔 幾乎一半喔所以他可以做兩個工作沒有你投勞保是不是要有勞保的工作他是一個職業的工會去投保嘛職業工會 你在工會上你有等於說不管你是個人的工作還是工作室還是自由業反正你有投勞保的人可以投我跟委員說明一下喔像漁會 漁業的 從事漁業的有很多是勞保的喔很多是從事勞保 就是甲類會員的部分嘛 |
transcript.whisperx[10].start |
237.189 |
transcript.whisperx[10].end |
247.079 |
transcript.whisperx[10].text |
同樣的修法講清楚因為本席今天不是問這問題只是這個延伸樓會有很多的爭議的地方我們會把它釐清會有雙保不是兩保並行會有衝突的地方我們會把它釐清一定要注意謝謝 |
transcript.whisperx[11].start |
255.988 |
transcript.whisperx[11].end |
270.953 |
transcript.whisperx[11].text |
今天我們主席特別安排了我們農民的退休儲金的部分就是因為你們的執行率不好但是早上聽到部長你特別有講到你有報告所以是母數的計算不一樣因為我們得到你們農業部給我們的資訊是28.7%的達成率 |
transcript.whisperx[12].start |
282.577 |
transcript.whisperx[12].end |
285.98 |
transcript.whisperx[12].text |
那但是你的說母數不一樣你們達成了已經49%了那不要在數字上變化我們講實質確確的來執行的工作才是重要的那不管怎麼樣講未滿65歲他們的農保人數這在這邊是大概達成的還是28.7啦將近5年的時間了那部長講說大概他的原因就是意願的問題 |
transcript.whisperx[13].start |
309.68 |
transcript.whisperx[13].end |
312.663 |
transcript.whisperx[13].text |
還有就是說他們的能力問題投不了這麼高如果說以勞基法的話我們現在是28590他如果說是10%的話要2859元那有些人攪不起嘛所以他就沒有來投入那最重要還有一個問題 |
transcript.whisperx[14].start |
327.057 |
transcript.whisperx[14].end |
349.291 |
transcript.whisperx[14].text |
就是他們那個老農津貼啊現在可以領多少錢8114元他也許說認為我8100塊夠了但是部長你們利益良善你希望他能夠一萬兩萬領多一點嘛所以希望他們的農民的這個退休儲金但是退休儲金的部分的話我們看到你的沒有達成執行率不彰的情況之下可能就是我們 |
transcript.whisperx[15].start |
350.071 |
transcript.whisperx[15].end |
369.996 |
transcript.whisperx[15].text |
提出的誘因不夠 那當然我們有提到啦 誘因要提高的話 是不是你們對等這個提撥的金額可以提高 甚至說可以1.5倍那部長說還要再研議嘛 那這個研議的話 我看你要下個月你就要提出來行政院版本了 那你研議目前討論下來 是不是願意支持這個方案 |
transcript.whisperx[16].start |
370.376 |
transcript.whisperx[16].end |
399.299 |
transcript.whisperx[16].text |
不過我想基本上委員所提的版本是1比1.5是把總額提高嘛就是農民出100我們政府出150嘛從100變成150這是一個方案那我們也提到另外一個想法就是說總額不變100對100但是過去農民交100現在只要交80或70這個我們要討論就是說他的負擔減輕了保障不變那也有可能這兩個案子可以某個程度的融合啦融合的部分這是一個部分 |
transcript.whisperx[17].start |
400.182 |
transcript.whisperx[17].end |
405.868 |
transcript.whisperx[17].text |
不管你怎麼融合農民的權益不能損失我絕對不會請你盡快提出來啦我們希望實質的來幫助農民不要讓農民覺得很辛苦的話就不耕農了因為現在青年要返鄉去雇農的話這個情況也不是很好嘛 |
transcript.whisperx[18].start |
418.703 |
transcript.whisperx[18].end |
446.335 |
transcript.whisperx[18].text |
所以我們在地方上才會成立這個青農把我們做代耕的工作不用再交給電農由青農來做青農組團來做不管是耕種或是收割青農都有專業的包括還有科技智慧的技術都有來協助我們這部分的話也請部長要繼續支持我們的青農尤其農機具這個部分就要支持他們他們有用無人機來灑農藥或是用機械來收成這部分都非常的好 |
transcript.whisperx[19].start |
446.895 |
transcript.whisperx[19].end |
471.05 |
transcript.whisperx[19].text |
我們農機的農事服務業現在推的也還不錯包括您桃園那邊有很多大的專業農來申請農機的服務所以除了他自己耕作以外他還服務別人所以我們農耕可以改善他的辛苦可以用科技上的一些技術跟設備來幫忙這點部分的話我們也希望部長能繼續支持他們可以加強他的農機具方面好不好 |
transcript.whisperx[20].start |
472.011 |
transcript.whisperx[20].end |
497.125 |
transcript.whisperx[20].text |
好 接下來要請教的就是我們的移工的問題那現在我知道你們移工的人數有提高到2萬這2萬的話我們看看我們申請的制度上需不需要來檢討因為還很多人請不到這個農事的移工那尤其是說你們在這個小型的10人以下的跟我們的農企業的部分的話本勞跟外勞是1比1嘛對 本勞跟 |
transcript.whisperx[21].start |
497.945 |
transcript.whisperx[21].end |
515.838 |
transcript.whisperx[21].text |
移工是1比1吧一個本勞就可以請一個移工嘛對不對那食人以上的這個小型的農戶的話才會有35%這工作喔但是現在還是缺很多移工 |
transcript.whisperx[22].start |
517.179 |
transcript.whisperx[22].end |
541.769 |
transcript.whisperx[22].text |
那部長你知道這個原因嗎我想第一個 制度上有沒有問題第一個部分就是移工申請來了以後的品項有的品項有開有的品項沒開那這個部分我們會滾動檢討第二個部分就是移工請來以後不是那麼單純白天做事晚上就讓他亂跑你如果自己自營的話你就要準備他的房子還要做一些管理吃住的地方對吃住的地方所以我們現在有請 |
transcript.whisperx[23].start |
542.709 |
transcript.whisperx[23].end |
566.255 |
transcript.whisperx[23].text |
那個農會去協助變成一個外展 外展的部分那這個部分我們會加強還有一個就是移工那時候外展的部分只能在同一個縣市嘛有時候我們收割的時候是有跨縣市的從南到北所以我們在研議就是跨縣跨區跨區的部分所以很多問題就是我們遇到了我們就想辦法去解決讓農民來這個我想我們會持續來滾動檢討 |
transcript.whisperx[24].start |
569.056 |
transcript.whisperx[24].end |
591.68 |
transcript.whisperx[24].text |
OK 部長你剛剛提到了外展你知道外展的特性是什麼嗎外展的特性就是它的基數 你喜歡講基數 外展的基數是什麼沒有 它會根據你的用工的單位本身所需要的勞力的種植生產的技術所以會不一樣會用農漁會來做申請嘛用農漁會 為什麼用農漁會申請 |
transcript.whisperx[25].start |
596.872 |
transcript.whisperx[25].end |
616.281 |
transcript.whisperx[25].text |
沒有 合作社也可以啊合作社也可以那因為部長你剛才談到少了一個問題我們很多的農作是季節性的是所以如果你請這個移工的話我不需要12個月都在做事是好 也許做三個月 休三個月做三個月 休三個月有這種情形所以很多 |
transcript.whisperx[26].start |
619.337 |
transcript.whisperx[26].end |
636.569 |
transcript.whisperx[26].text |
小戶的那個農戶的話他們也許用電農幫忙耕作就可以了那現在電農工資上漲了2000塊以上他們有時候收成起來又比例上的話覺得收入不好也沒有辦法做就會影響到他們請電農的 |
transcript.whisperx[27].start |
638.57 |
transcript.whisperx[27].end |
650.923 |
transcript.whisperx[27].text |
意願所以就辦休耕就有休耕期發生那現在你有這兩個制度方面的話那因為原額的話你剛剛提了高到兩萬那這兩萬裡面的話但是你又不是實質的數量 |
transcript.whisperx[28].start |
652.813 |
transcript.whisperx[28].end |
672.068 |
transcript.whisperx[28].text |
又不是實質的數量 本席有查了一些資料齁看到你們那個 這個原額 我們第一個講到這個原額不夠還有你的制度 1對1的就是外展部分跟10人以下的部分 是1比1的方式那你如果說10人以上的部分的話 你是35%但是這原額還是不夠 遠遠還是不夠因為有些的是屬於大戶的農戶嘛 |
transcript.whisperx[29].start |
678.052 |
transcript.whisperx[29].end |
707.621 |
transcript.whisperx[29].text |
他有些的外銷的他做多的有機蔬菜或者是他有什麼水果大量要出口的他農業的一些移工就還是不夠所以制度上你必須要去做調整喔那還有說你增加到兩萬人那本期查了一些資料喔這兩萬人裡面現有的這個移工喔一萬一千兩百零五人失聯的有兩千零一十九人輸出的有三百八十五人回國的回去他們國家的回國的有一千五百三十三人 |
transcript.whisperx[30].start |
708.261 |
transcript.whisperx[30].end |
722.875 |
transcript.whisperx[30].text |
為什麼要把他們算在兩萬人以內他已經四年轉出會回國啦我們現在要講限職部分我們要提高到兩萬人啦我跟委員報告齁您這個資訊就是勞動部都是用累計的啦用累計的部分想回國的就扣掉了啦 |
transcript.whisperx[31].start |
725.777 |
transcript.whisperx[31].end |
754.566 |
transcript.whisperx[31].text |
必須要扣掉回頭一定會扣掉轉出也會扣掉啦是就是實際在從事農業的我們才會去算啦現在大概是一萬五千多人一萬五千多人我們核准是兩萬人嘛但是有申請然後正在申請的現在在職的啦在職大概一萬五千多人是所以後續跟委員講的這個部分包括移工的部分季節性的部分所以為什麼我們要找農會因為農會可以服務更多的不同的農作物的產業嘛所以可是 |
transcript.whisperx[32].start |
755.086 |
transcript.whisperx[32].end |
772.727 |
transcript.whisperx[32].text |
不是啊 我剛剛跟你講的制度面就是要討論到農會的部分農會如果他的員工50人他的隊長就可以申請50人但是你在這個區域裡面的話這50個人他還不夠用啊沒有 所以我要去想辦法去爭取他現在是1比3嘛想辦法變成1比2這樣的話他就可以拚得更多 |
transcript.whisperx[33].start |
774.042 |
transcript.whisperx[33].end |
790.862 |
transcript.whisperx[33].text |
有一比二 不是一比一嗎沒有 一比一是十人以下就是一比一那你比例怎麼調 你一比二怎麼調的我們希望說更多啦他可以有本勞 一個人可以顧兩個嘛所以這個還沒有公布實施吧沒有 我們這個要去爭取 |
transcript.whisperx[34].start |
791.423 |
transcript.whisperx[34].end |
797.826 |
transcript.whisperx[34].text |
所以未來你會公佈實施所以你也發現問題了所以你要做個調整對不對這樣的話他可以聘更多人那部長有發現這個問題的話趕快做調整來公佈讓我們的農民可以繼續把我們的農作物做得更好好不好農民權益一定要捍衛的好一定會支持你做調整出來盡快送來好不好好謝謝 |