iVOD / 162036

Field Value
IVOD_ID 162036
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/162036
日期 2025-05-28
會議資料.會議代碼 委員會-11-3-19-15
會議資料.會議代碼:str 第11屆第3會期經濟委員會第15次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 15
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第15次全體委員會議
影片種類 Clip
開始時間 2025-05-28T12:21:42+08:00
結束時間 2025-05-28T12:27:12+08:00
影片長度 00:05:30
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/75aba70f567c6f24c6036dbfb488bc551b5ee1b3bf308d2ea3426710e0a50eed1a06a885b33e9f7b5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 林俊憲
委員發言時間 12:21:42 - 12:27:12
會議時間 2025-05-28T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第15次全體委員會議(事由:審查: 一、本院委員謝衣鳯等16人擬具「農民退休儲金條例第七條條文修正草案」案。 二、本院委員郭國文等17人擬具「農民退休儲金條例第七條條文修正草案」案。(詢答))
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 5.80221875
transcript.pyannote[0].end 6.89909375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 7.35471875
transcript.pyannote[1].end 9.32909375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 10.66221875
transcript.pyannote[2].end 10.67909375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 10.67909375
transcript.pyannote[3].end 10.84784375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 10.84784375
transcript.pyannote[4].end 11.15159375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 15.10034375
transcript.pyannote[5].end 16.88909375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 17.49659375
transcript.pyannote[6].end 19.45409375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 20.33159375
transcript.pyannote[7].end 26.06909375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 21.61409375
transcript.pyannote[8].end 22.40721875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 26.35596875
transcript.pyannote[9].end 29.54534375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 29.64659375
transcript.pyannote[10].end 29.74784375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 29.74784375
transcript.pyannote[11].end 29.76471875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 29.76471875
transcript.pyannote[12].end 29.81534375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 29.81534375
transcript.pyannote[13].end 32.05971875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 32.05971875
transcript.pyannote[14].end 32.29596875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 32.29596875
transcript.pyannote[15].end 32.53221875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 32.53221875
transcript.pyannote[16].end 32.71784375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 32.71784375
transcript.pyannote[17].end 33.67971875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 32.76846875
transcript.pyannote[18].end 33.51096875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 33.67971875
transcript.pyannote[19].end 33.79784375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 33.79784375
transcript.pyannote[20].end 33.81471875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 33.81471875
transcript.pyannote[21].end 34.70909375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 35.21534375
transcript.pyannote[22].end 36.10971875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 36.81846875
transcript.pyannote[23].end 41.13846875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 41.39159375
transcript.pyannote[24].end 41.74596875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 42.53909375
transcript.pyannote[25].end 43.34909375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 44.34471875
transcript.pyannote[26].end 51.73596875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 46.25159375
transcript.pyannote[27].end 46.94346875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 51.06096875
transcript.pyannote[28].end 51.49971875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 52.39409375
transcript.pyannote[29].end 60.59534375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 57.25409375
transcript.pyannote[30].end 57.86159375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 60.84846875
transcript.pyannote[31].end 65.97846875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 66.28221875
transcript.pyannote[32].end 69.62346875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 66.55221875
transcript.pyannote[33].end 66.78846875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 68.45909375
transcript.pyannote[34].end 69.16784375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 70.19721875
transcript.pyannote[35].end 72.84659375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 73.36971875
transcript.pyannote[36].end 74.19659375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 74.36534375
transcript.pyannote[37].end 83.61284375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 79.81596875
transcript.pyannote[38].end 79.84971875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 82.90409375
transcript.pyannote[39].end 83.52846875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 83.95034375
transcript.pyannote[40].end 92.10096875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 92.57346875
transcript.pyannote[41].end 93.72096875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 93.72096875
transcript.pyannote[42].end 94.37909375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 96.33659375
transcript.pyannote[43].end 96.35346875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 96.35346875
transcript.pyannote[44].end 100.43721875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 98.54721875
transcript.pyannote[45].end 99.61034375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 99.96471875
transcript.pyannote[46].end 103.00221875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 103.00221875
transcript.pyannote[47].end 103.03596875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 103.03596875
transcript.pyannote[48].end 103.74471875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 104.77409375
transcript.pyannote[49].end 111.10221875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 108.57096875
transcript.pyannote[50].end 108.99284375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 111.84471875
transcript.pyannote[51].end 113.80221875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 114.13971875
transcript.pyannote[52].end 114.91596875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 115.62471875
transcript.pyannote[53].end 117.90284375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 118.44284375
transcript.pyannote[54].end 119.69159375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 120.18096875
transcript.pyannote[55].end 120.53534375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 121.09221875
transcript.pyannote[56].end 122.42534375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 123.18471875
transcript.pyannote[57].end 124.26471875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 124.88909375
transcript.pyannote[58].end 125.86784375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 126.47534375
transcript.pyannote[59].end 129.07409375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 129.42846875
transcript.pyannote[60].end 130.74471875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 131.43659375
transcript.pyannote[61].end 132.48284375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 133.09034375
transcript.pyannote[62].end 134.64284375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 135.62159375
transcript.pyannote[63].end 137.15721875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 137.95034375
transcript.pyannote[64].end 140.54909375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 138.00096875
transcript.pyannote[65].end 138.89534375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 140.88659375
transcript.pyannote[66].end 149.89784375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 149.88096875
transcript.pyannote[67].end 150.16784375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 150.10034375
transcript.pyannote[68].end 153.66096875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 152.78346875
transcript.pyannote[69].end 154.18409375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 154.09971875
transcript.pyannote[70].end 160.98471875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 157.89659375
transcript.pyannote[71].end 158.35221875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 160.98471875
transcript.pyannote[72].end 161.38971875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 161.38971875
transcript.pyannote[73].end 166.08096875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 166.14846875
transcript.pyannote[74].end 173.05034375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 166.50284375
transcript.pyannote[75].end 166.58721875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 173.48909375
transcript.pyannote[76].end 174.99096875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 175.12596875
transcript.pyannote[77].end 178.66971875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 177.45471875
transcript.pyannote[78].end 178.63596875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 179.51346875
transcript.pyannote[79].end 181.42034375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 182.01096875
transcript.pyannote[80].end 182.28096875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 182.66909375
transcript.pyannote[81].end 184.94721875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 185.04846875
transcript.pyannote[82].end 185.70659375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 185.94284375
transcript.pyannote[83].end 190.88721875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 189.33471875
transcript.pyannote[84].end 189.63846875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 191.20784375
transcript.pyannote[85].end 194.11034375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 192.40596875
transcript.pyannote[86].end 192.84471875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 192.89534375
transcript.pyannote[87].end 193.28346875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 194.29596875
transcript.pyannote[88].end 196.35471875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 194.56596875
transcript.pyannote[89].end 194.59971875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 197.09721875
transcript.pyannote[90].end 200.47221875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 201.07971875
transcript.pyannote[91].end 204.70784375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 205.18034375
transcript.pyannote[92].end 206.47971875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 206.76659375
transcript.pyannote[93].end 207.99846875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 208.43721875
transcript.pyannote[94].end 226.32471875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 211.03596875
transcript.pyannote[95].end 212.14971875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 214.76534375
transcript.pyannote[96].end 214.83284375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 217.71846875
transcript.pyannote[97].end 218.37659375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 219.05159375
transcript.pyannote[98].end 219.18659375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 226.96596875
transcript.pyannote[99].end 230.03721875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 230.45909375
transcript.pyannote[100].end 230.96534375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 230.96534375
transcript.pyannote[101].end 235.84221875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 234.71159375
transcript.pyannote[102].end 235.03221875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 236.19659375
transcript.pyannote[103].end 239.06534375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 239.65596875
transcript.pyannote[104].end 244.34721875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 244.44846875
transcript.pyannote[105].end 252.64971875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 249.51096875
transcript.pyannote[106].end 249.67971875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 249.84846875
transcript.pyannote[107].end 249.88221875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 252.90284375
transcript.pyannote[108].end 266.01471875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 265.10346875
transcript.pyannote[109].end 288.00284375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 268.78221875
transcript.pyannote[110].end 269.15346875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 270.68909375
transcript.pyannote[111].end 271.97159375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 272.05596875
transcript.pyannote[112].end 272.79846875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 273.20346875
transcript.pyannote[113].end 273.32159375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 274.01346875
transcript.pyannote[114].end 274.72221875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 288.03659375
transcript.pyannote[115].end 292.66034375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 291.58034375
transcript.pyannote[116].end 292.17096875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 292.93034375
transcript.pyannote[117].end 297.50346875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 295.90034375
transcript.pyannote[118].end 297.87471875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 298.12784375
transcript.pyannote[119].end 305.31659375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 305.31659375
transcript.pyannote[120].end 309.65346875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 309.90659375
transcript.pyannote[121].end 319.08659375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 319.17096875
transcript.pyannote[122].end 322.69784375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 322.90034375
transcript.pyannote[123].end 323.89596875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 324.01409375
transcript.pyannote[124].end 324.43596875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 324.62159375
transcript.pyannote[125].end 324.95909375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 325.31346875
transcript.pyannote[126].end 325.93784375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 326.00534375
transcript.pyannote[127].end 326.05596875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 326.05596875
transcript.pyannote[128].end 328.31721875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 326.07284375
transcript.pyannote[129].end 326.61284375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 326.62971875
transcript.pyannote[130].end 327.57471875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 328.45221875
transcript.pyannote[131].end 328.84034375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 328.97534375
transcript.pyannote[132].end 329.97096875
transcript.whisperx[0].start 5.994
transcript.whisperx[0].end 9.176
transcript.whisperx[0].text 好 感謝主席 本席邀請我們農業部陳部長陳部長各位好 保長你好保長 我今天想要跟你探討一個問題大概到今年為止 2024年我們的農業就業人口數大概將近50萬到49萬4千幾個
transcript.whisperx[1].start 29.813
transcript.whisperx[1].end 43.087
transcript.whisperx[1].text 現在應該更加四十八萬外傾那其中啊大概占我國總經理人數都差不多4%多啦但是我其中
transcript.whisperx[2].start 44.42
transcript.whisperx[2].end 69.371
transcript.whisperx[2].text 政府很關心農民 照顧農民所以我們從2021年我們就制定農民退休金的除息條例但是我看實施以來 我們最近的提繳人數逐月的降低啦我給你看這個曲線 大家來倒立農民退休除金的提繳人數好像參與人數就會越來越少
transcript.whisperx[3].start 70.371
transcript.whisperx[3].end 93.341
transcript.whisperx[3].text 到底是怎麼回事呢?是缺乏誘因呢?還是我們是不是應該,政府可以努力安裝來提供農民元利來參與退休儲金提交的意願?因為我們目的是要保障農民的生活,以及最重要的就是吸引年輕人投入。我們現在的親農人數大概有多少?
transcript.whisperx[4].start 96.417
transcript.whisperx[4].end 122.217
transcript.whisperx[4].text 我們福島有關的都是七萬人左右七萬人左右我另外一個數字給部長當參考啦就是說很多人他要到農藥陣營其實有可能是勞工啦有可能在別的職場工作啦所以目前有參與勞保的農民大概有四萬三千九百多人就是說這些人是勞保啦但是他現在從事的是
transcript.whisperx[5].start 123.226
transcript.whisperx[5].end 129.772
transcript.whisperx[5].text 農業過去參與其他職業有了抱財心那很多人就因為他捨不得勞保所以就沒有來參加我們的
transcript.whisperx[6].start 138.347
transcript.whisperx[6].end 160.464
transcript.whisperx[6].text 農民退休的儲蓄啦 你知道這個總共嗎?我了解 我真的很感謝喔 就是委員提出這個觀察啦這個觀察真的非常重要 就是說我們現在有很多青農喔 大家有一半是假期從事勞工的但是因為勞工做了一段時間不做了從事農業 但是又捨不得放棄
transcript.whisperx[7].start 161.905
transcript.whisperx[7].end 177.772
transcript.whisperx[7].text 這個保溫完全沒有保障,我們現在的農業處境完全不能加保啦,不能加保所以我以為這樣說的話,這個部分我們要能夠解決了以後,才能夠讓這個覆蓋率能夠拉高對,因為你現在這個農民健康保險條例第五條你就知道了
transcript.whisperx[8].start 180.529
transcript.whisperx[8].end 187.314
transcript.whisperx[8].text 第三條就是如果你要參與農民的退休儲蓄,必須要有農報,更何況你第五條也寫到了,你要參與農民儲蓄保險
transcript.whisperx[9].start 201.144
transcript.whisperx[9].end 225.909
transcript.whisperx[9].text 必須為領取相關的社會保險 讓人給付啦他這兩條白紙的齁 所以這過去啊總是農業進行在白的政府的 在白的行業的他先 他是臣服勞保的 他就不敢放棄啊你知道他也不行啦 他一定要放棄才可以來參加 農民隊就出去嘛所以當然就幹給他的意願嘛 不然你 你如果知道這個情形
transcript.whisperx[10].start 227.009
transcript.whisperx[10].end 252.195
transcript.whisperx[10].text 那我是覺得農業部應該要想辦法來處理對 謝謝委員關心那這個部分第一個就是要去修法我們也同意委員的這個看法就是說這個青農的主力有一半是曾經是保勞保的部分然後我們可以設計他勞保繼續保因為他是用自營工作者但是他可以加入農民退休儲金
transcript.whisperx[11].start 253.115
transcript.whisperx[11].end 269.85
transcript.whisperx[11].text 那這樣的話他以後的保障會更多的時候他就有意願來繼續從事農業啦那這個部分如果委員支持我想我們會盡快的去在版本裡面去提出來配套因為你如果不修法你就抵觸啦政府要發展輕農
transcript.whisperx[12].start 271.672
transcript.whisperx[12].end 277.155
transcript.whisperx[12].text 對 輕點返鄉從事農業的這樣的一個政策方向你是否讓這個勞保跟農民退休儲蓄來脫鉤的話你不脫鉤的話 這個問題就會存在所以我們這個問題來處理
transcript.whisperx[13].start 288.123
transcript.whisperx[13].end 308.822
transcript.whisperx[13].text 從補充業界來處理喔你家這個人數啊我掌握的人數啊目前有勞保但是他從事農業的你看有將近4萬4千4萬幾人欸對喔好不好好啊這補充業家我們請部長如果有支持那我們農業部應該盡速來修改相關的規範我跟委員報告齁我們現在已經有安排跟行政院報告
transcript.whisperx[14].start 310.143
transcript.whisperx[14].end 323.836
transcript.whisperx[14].text 農民稅有儲金的包括委員也有提案的這個1比1.5的部分還有一些我們的想法包括您剛才講的這個東西我們把它把它變成一個完整的方案來爭取行政院的支持這樣好好好 抱歉先夠了謝謝謝謝主席謝謝好 謝謝