iVOD / 16203

Field Value
video_url https://h264media01.ly.gov.tw:443/vod_1/_definst_/mp4:1M/bfaf9b39ac01a6855998180c4b1e7cf47931ae751f1d07216059d4d42a7fce219bce6836c4e2e2c65ea18f28b6918d91.mp4/playlist.m3u8
會議時間 2024-10-24T09:00:00+08:00
會議名稱 立法院第11屆第2會期社會福利及衛生環境、經濟委員會第1次聯席會議(事由:審查委員吳春城等42人擬具「壯世代政策與產業發展促進法草案」案。 【如經復議則不予審查】)
委員名稱 完整會議
影片長度 22093
委員發言時間 08:31:47 - 14:40:00
transcript.pyannote[0].speaker SPEAKER_39
transcript.pyannote[0].start 284.57721875
transcript.pyannote[0].end 285.25221875
transcript.pyannote[1].speaker SPEAKER_09
transcript.pyannote[1].start 285.25221875
transcript.pyannote[1].end 286.14659375
transcript.pyannote[2].speaker SPEAKER_38
transcript.pyannote[2].start 1573.11846875
transcript.pyannote[2].end 1574.31659375
transcript.pyannote[3].speaker SPEAKER_13
transcript.pyannote[3].start 1704.79409375
transcript.pyannote[3].end 1707.20721875
transcript.pyannote[4].speaker SPEAKER_13
transcript.pyannote[4].start 1711.94909375
transcript.pyannote[4].end 1712.43846875
transcript.pyannote[5].speaker SPEAKER_13
transcript.pyannote[5].start 1712.82659375
transcript.pyannote[5].end 1715.40846875
transcript.pyannote[6].speaker SPEAKER_13
transcript.pyannote[6].start 1726.20846875
transcript.pyannote[6].end 1727.74409375
transcript.pyannote[7].speaker SPEAKER_13
transcript.pyannote[7].start 1728.01409375
transcript.pyannote[7].end 1728.03096875
transcript.pyannote[8].speaker SPEAKER_13
transcript.pyannote[8].start 1728.08159375
transcript.pyannote[8].end 1728.16596875
transcript.pyannote[9].speaker SPEAKER_30
transcript.pyannote[9].start 1728.16596875
transcript.pyannote[9].end 1731.03471875
transcript.pyannote[10].speaker SPEAKER_13
transcript.pyannote[10].start 1733.63346875
transcript.pyannote[10].end 1735.08471875
transcript.pyannote[11].speaker SPEAKER_13
transcript.pyannote[11].start 1735.94534375
transcript.pyannote[11].end 1761.94971875
transcript.pyannote[12].speaker SPEAKER_13
transcript.pyannote[12].start 1762.81034375
transcript.pyannote[12].end 1766.18534375
transcript.pyannote[13].speaker SPEAKER_13
transcript.pyannote[13].start 1766.92784375
transcript.pyannote[13].end 1779.73596875
transcript.pyannote[14].speaker SPEAKER_13
transcript.pyannote[14].start 1780.36034375
transcript.pyannote[14].end 1782.97596875
transcript.pyannote[15].speaker SPEAKER_13
transcript.pyannote[15].start 1783.24596875
transcript.pyannote[15].end 1789.55721875
transcript.pyannote[16].speaker SPEAKER_13
transcript.pyannote[16].start 1790.08034375
transcript.pyannote[16].end 1792.91534375
transcript.pyannote[17].speaker SPEAKER_13
transcript.pyannote[17].start 1793.62409375
transcript.pyannote[17].end 1796.89784375
transcript.pyannote[18].speaker SPEAKER_13
transcript.pyannote[18].start 1797.74159375
transcript.pyannote[18].end 1797.85971875
transcript.pyannote[19].speaker SPEAKER_13
transcript.pyannote[19].start 1798.18034375
transcript.pyannote[19].end 1799.85096875
transcript.pyannote[20].speaker SPEAKER_13
transcript.pyannote[20].start 1799.96909375
transcript.pyannote[20].end 1800.03659375
transcript.pyannote[21].speaker SPEAKER_13
transcript.pyannote[21].start 1800.34034375
transcript.pyannote[21].end 1800.91409375
transcript.pyannote[22].speaker SPEAKER_38
transcript.pyannote[22].start 1805.36909375
transcript.pyannote[22].end 1805.38596875
transcript.pyannote[23].speaker SPEAKER_13
transcript.pyannote[23].start 1805.38596875
transcript.pyannote[23].end 1805.77409375
transcript.pyannote[24].speaker SPEAKER_38
transcript.pyannote[24].start 1805.43659375
transcript.pyannote[24].end 1805.67284375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 1805.77409375
transcript.pyannote[25].end 1805.79096875
transcript.pyannote[26].speaker SPEAKER_38
transcript.pyannote[26].start 1809.60471875
transcript.pyannote[26].end 1812.96284375
transcript.pyannote[27].speaker SPEAKER_13
transcript.pyannote[27].start 1844.82284375
transcript.pyannote[27].end 1845.27846875
transcript.pyannote[28].speaker SPEAKER_13
transcript.pyannote[28].start 1846.24034375
transcript.pyannote[28].end 1852.01159375
transcript.pyannote[29].speaker SPEAKER_13
transcript.pyannote[29].start 1853.12534375
transcript.pyannote[29].end 1853.85096875
transcript.pyannote[30].speaker SPEAKER_13
transcript.pyannote[30].start 1854.13784375
transcript.pyannote[30].end 1854.69471875
transcript.pyannote[31].speaker SPEAKER_13
transcript.pyannote[31].start 1855.42034375
transcript.pyannote[31].end 1856.23034375
transcript.pyannote[32].speaker SPEAKER_13
transcript.pyannote[32].start 1857.09096875
transcript.pyannote[32].end 1858.71096875
transcript.pyannote[33].speaker SPEAKER_19
transcript.pyannote[33].start 1861.00596875
transcript.pyannote[33].end 1877.71221875
transcript.pyannote[34].speaker SPEAKER_19
transcript.pyannote[34].start 1878.06659375
transcript.pyannote[34].end 1881.01971875
transcript.pyannote[35].speaker SPEAKER_19
transcript.pyannote[35].start 1881.42471875
transcript.pyannote[35].end 1932.33659375
transcript.pyannote[36].speaker SPEAKER_19
transcript.pyannote[36].start 1932.80909375
transcript.pyannote[36].end 1933.58534375
transcript.pyannote[37].speaker SPEAKER_19
transcript.pyannote[37].start 1933.83846875
transcript.pyannote[37].end 1934.15909375
transcript.pyannote[38].speaker SPEAKER_19
transcript.pyannote[38].start 1935.22221875
transcript.pyannote[38].end 1935.62721875
transcript.pyannote[39].speaker SPEAKER_19
transcript.pyannote[39].start 1935.81284375
transcript.pyannote[39].end 1936.35284375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 1936.35284375
transcript.pyannote[40].end 1938.34409375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 1938.51284375
transcript.pyannote[41].end 1938.52971875
transcript.pyannote[42].speaker SPEAKER_19
transcript.pyannote[42].start 1938.52971875
transcript.pyannote[42].end 1938.59721875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 1938.59721875
transcript.pyannote[43].end 1938.66471875
transcript.pyannote[44].speaker SPEAKER_13
transcript.pyannote[44].start 1938.59721875
transcript.pyannote[44].end 1938.66471875
transcript.pyannote[45].speaker SPEAKER_19
transcript.pyannote[45].start 1938.66471875
transcript.pyannote[45].end 1938.68159375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 1938.68159375
transcript.pyannote[46].end 1938.69846875
transcript.pyannote[47].speaker SPEAKER_13
transcript.pyannote[47].start 1938.68159375
transcript.pyannote[47].end 1938.69846875
transcript.pyannote[48].speaker SPEAKER_19
transcript.pyannote[48].start 1938.69846875
transcript.pyannote[48].end 1938.71534375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 1938.71534375
transcript.pyannote[49].end 1938.73221875
transcript.pyannote[50].speaker SPEAKER_13
transcript.pyannote[50].start 1938.71534375
transcript.pyannote[50].end 1938.73221875
transcript.pyannote[51].speaker SPEAKER_19
transcript.pyannote[51].start 1938.73221875
transcript.pyannote[51].end 1938.83346875
transcript.pyannote[52].speaker SPEAKER_13
transcript.pyannote[52].start 1938.83346875
transcript.pyannote[52].end 1939.00221875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 1938.83346875
transcript.pyannote[53].end 1941.14534375
transcript.pyannote[54].speaker SPEAKER_13
transcript.pyannote[54].start 1942.36034375
transcript.pyannote[54].end 1949.73471875
transcript.pyannote[55].speaker SPEAKER_19
transcript.pyannote[55].start 1948.26659375
transcript.pyannote[55].end 1949.17784375
transcript.pyannote[56].speaker SPEAKER_19
transcript.pyannote[56].start 1949.19471875
transcript.pyannote[56].end 1972.27971875
transcript.pyannote[57].speaker SPEAKER_19
transcript.pyannote[57].start 1972.93784375
transcript.pyannote[57].end 1986.91034375
transcript.pyannote[58].speaker SPEAKER_13
transcript.pyannote[58].start 1989.62721875
transcript.pyannote[58].end 1990.84221875
transcript.pyannote[59].speaker SPEAKER_13
transcript.pyannote[59].start 1992.31034375
transcript.pyannote[59].end 1993.35659375
transcript.pyannote[60].speaker SPEAKER_30
transcript.pyannote[60].start 2003.46471875
transcript.pyannote[60].end 2009.82659375
transcript.pyannote[61].speaker SPEAKER_30
transcript.pyannote[61].start 2009.87721875
transcript.pyannote[61].end 2021.36909375
transcript.pyannote[62].speaker SPEAKER_30
transcript.pyannote[62].start 2021.68971875
transcript.pyannote[62].end 2035.18971875
transcript.pyannote[63].speaker SPEAKER_30
transcript.pyannote[63].start 2035.37534375
transcript.pyannote[63].end 2043.27284375
transcript.pyannote[64].speaker SPEAKER_30
transcript.pyannote[64].start 2043.28971875
transcript.pyannote[64].end 2043.40784375
transcript.pyannote[65].speaker SPEAKER_30
transcript.pyannote[65].start 2043.45846875
transcript.pyannote[65].end 2050.00596875
transcript.pyannote[66].speaker SPEAKER_30
transcript.pyannote[66].start 2050.56284375
transcript.pyannote[66].end 2056.65471875
transcript.pyannote[67].speaker SPEAKER_30
transcript.pyannote[67].start 2057.11034375
transcript.pyannote[67].end 2061.46409375
transcript.pyannote[68].speaker SPEAKER_30
transcript.pyannote[68].start 2061.63284375
transcript.pyannote[68].end 2061.93659375
transcript.pyannote[69].speaker SPEAKER_30
transcript.pyannote[69].start 2062.12221875
transcript.pyannote[69].end 2071.15034375
transcript.pyannote[70].speaker SPEAKER_30
transcript.pyannote[70].start 2071.77471875
transcript.pyannote[70].end 2085.67971875
transcript.pyannote[71].speaker SPEAKER_30
transcript.pyannote[71].start 2085.76409375
transcript.pyannote[71].end 2089.62846875
transcript.pyannote[72].speaker SPEAKER_30
transcript.pyannote[72].start 2090.32034375
transcript.pyannote[72].end 2102.65596875
transcript.pyannote[73].speaker SPEAKER_30
transcript.pyannote[73].start 2103.34784375
transcript.pyannote[73].end 2113.91159375
transcript.pyannote[74].speaker SPEAKER_30
transcript.pyannote[74].start 2114.45159375
transcript.pyannote[74].end 2131.96784375
transcript.pyannote[75].speaker SPEAKER_13
transcript.pyannote[75].start 2133.09846875
transcript.pyannote[75].end 2143.07159375
transcript.pyannote[76].speaker SPEAKER_13
transcript.pyannote[76].start 2143.27409375
transcript.pyannote[76].end 2152.31909375
transcript.pyannote[77].speaker SPEAKER_13
transcript.pyannote[77].start 2152.70721875
transcript.pyannote[77].end 2156.80784375
transcript.pyannote[78].speaker SPEAKER_13
transcript.pyannote[78].start 2157.36471875
transcript.pyannote[78].end 2162.37659375
transcript.pyannote[79].speaker SPEAKER_13
transcript.pyannote[79].start 2163.18659375
transcript.pyannote[79].end 2164.53659375
transcript.pyannote[80].speaker SPEAKER_31
transcript.pyannote[80].start 2171.21909375
transcript.pyannote[80].end 2178.28971875
transcript.pyannote[81].speaker SPEAKER_31
transcript.pyannote[81].start 2178.88034375
transcript.pyannote[81].end 2218.50284375
transcript.pyannote[82].speaker SPEAKER_31
transcript.pyannote[82].start 2218.82346875
transcript.pyannote[82].end 2228.96534375
transcript.pyannote[83].speaker SPEAKER_31
transcript.pyannote[83].start 2229.18471875
transcript.pyannote[83].end 2229.47159375
transcript.pyannote[84].speaker SPEAKER_31
transcript.pyannote[84].start 2229.89346875
transcript.pyannote[84].end 2247.24096875
transcript.pyannote[85].speaker SPEAKER_31
transcript.pyannote[85].start 2247.64596875
transcript.pyannote[85].end 2299.21596875
transcript.pyannote[86].speaker SPEAKER_31
transcript.pyannote[86].start 2299.48596875
transcript.pyannote[86].end 2310.25221875
transcript.pyannote[87].speaker SPEAKER_13
transcript.pyannote[87].start 2315.43284375
transcript.pyannote[87].end 2318.57159375
transcript.pyannote[88].speaker SPEAKER_16
transcript.pyannote[88].start 2326.28346875
transcript.pyannote[88].end 2345.63909375
transcript.pyannote[89].speaker SPEAKER_16
transcript.pyannote[89].start 2345.92596875
transcript.pyannote[89].end 2368.74096875
transcript.pyannote[90].speaker SPEAKER_16
transcript.pyannote[90].start 2369.01096875
transcript.pyannote[90].end 2376.18284375
transcript.pyannote[91].speaker SPEAKER_16
transcript.pyannote[91].start 2376.65534375
transcript.pyannote[91].end 2393.34471875
transcript.pyannote[92].speaker SPEAKER_16
transcript.pyannote[92].start 2393.90159375
transcript.pyannote[92].end 2397.46221875
transcript.pyannote[93].speaker SPEAKER_16
transcript.pyannote[93].start 2397.49596875
transcript.pyannote[93].end 2397.52971875
transcript.pyannote[94].speaker SPEAKER_16
transcript.pyannote[94].start 2397.69846875
transcript.pyannote[94].end 2398.76159375
transcript.pyannote[95].speaker SPEAKER_16
transcript.pyannote[95].start 2399.28471875
transcript.pyannote[95].end 2399.80784375
transcript.pyannote[96].speaker SPEAKER_16
transcript.pyannote[96].start 2400.21284375
transcript.pyannote[96].end 2409.17346875
transcript.pyannote[97].speaker SPEAKER_16
transcript.pyannote[97].start 2409.42659375
transcript.pyannote[97].end 2418.03284375
transcript.pyannote[98].speaker SPEAKER_16
transcript.pyannote[98].start 2418.10034375
transcript.pyannote[98].end 2422.15034375
transcript.pyannote[99].speaker SPEAKER_16
transcript.pyannote[99].start 2423.41596875
transcript.pyannote[99].end 2423.43284375
transcript.pyannote[100].speaker SPEAKER_13
transcript.pyannote[100].start 2423.43284375
transcript.pyannote[100].end 2424.36096875
transcript.pyannote[101].speaker SPEAKER_13
transcript.pyannote[101].start 2424.76596875
transcript.pyannote[101].end 2427.63471875
transcript.pyannote[102].speaker SPEAKER_13
transcript.pyannote[102].start 2429.03534375
transcript.pyannote[102].end 2433.59159375
transcript.pyannote[103].speaker SPEAKER_25
transcript.pyannote[103].start 2437.33784375
transcript.pyannote[103].end 2514.91221875
transcript.pyannote[104].speaker SPEAKER_25
transcript.pyannote[104].start 2517.61221875
transcript.pyannote[104].end 2543.51534375
transcript.pyannote[105].speaker SPEAKER_25
transcript.pyannote[105].start 2544.49409375
transcript.pyannote[105].end 2571.88221875
transcript.pyannote[106].speaker SPEAKER_25
transcript.pyannote[106].start 2572.52346875
transcript.pyannote[106].end 2650.08096875
transcript.pyannote[107].speaker SPEAKER_25
transcript.pyannote[107].start 2650.67159375
transcript.pyannote[107].end 2652.00471875
transcript.pyannote[108].speaker SPEAKER_25
transcript.pyannote[108].start 2653.01721875
transcript.pyannote[108].end 2736.37971875
transcript.pyannote[109].speaker SPEAKER_25
transcript.pyannote[109].start 2736.86909375
transcript.pyannote[109].end 2877.75846875
transcript.pyannote[110].speaker SPEAKER_13
transcript.pyannote[110].start 2880.32346875
transcript.pyannote[110].end 2881.26846875
transcript.pyannote[111].speaker SPEAKER_13
transcript.pyannote[111].start 2881.99409375
transcript.pyannote[111].end 2889.80721875
transcript.pyannote[112].speaker SPEAKER_13
transcript.pyannote[112].start 2890.58346875
transcript.pyannote[112].end 2896.81034375
transcript.pyannote[113].speaker SPEAKER_13
transcript.pyannote[113].start 2897.14784375
transcript.pyannote[113].end 2909.01096875
transcript.pyannote[114].speaker SPEAKER_13
transcript.pyannote[114].start 2910.25971875
transcript.pyannote[114].end 2918.62971875
transcript.pyannote[115].speaker SPEAKER_13
transcript.pyannote[115].start 2919.33846875
transcript.pyannote[115].end 2920.48596875
transcript.pyannote[116].speaker SPEAKER_13
transcript.pyannote[116].start 2924.63721875
transcript.pyannote[116].end 2927.69159375
transcript.pyannote[117].speaker SPEAKER_13
transcript.pyannote[117].start 2929.49721875
transcript.pyannote[117].end 2930.17221875
transcript.pyannote[118].speaker SPEAKER_13
transcript.pyannote[118].start 2932.06221875
transcript.pyannote[118].end 2932.68659375
transcript.pyannote[119].speaker SPEAKER_13
transcript.pyannote[119].start 2936.14596875
transcript.pyannote[119].end 2939.28471875
transcript.pyannote[120].speaker SPEAKER_13
transcript.pyannote[120].start 2940.58409375
transcript.pyannote[120].end 2943.67221875
transcript.pyannote[121].speaker SPEAKER_13
transcript.pyannote[121].start 2945.86596875
transcript.pyannote[121].end 2950.18596875
transcript.pyannote[122].speaker SPEAKER_13
transcript.pyannote[122].start 2951.31659375
transcript.pyannote[122].end 2952.02534375
transcript.pyannote[123].speaker SPEAKER_13
transcript.pyannote[123].start 2952.76784375
transcript.pyannote[123].end 2953.94909375
transcript.pyannote[124].speaker SPEAKER_13
transcript.pyannote[124].start 2955.68721875
transcript.pyannote[124].end 2956.75034375
transcript.pyannote[125].speaker SPEAKER_13
transcript.pyannote[125].start 2958.38721875
transcript.pyannote[125].end 2959.45034375
transcript.pyannote[126].speaker SPEAKER_13
transcript.pyannote[126].start 2961.07034375
transcript.pyannote[126].end 2962.15034375
transcript.pyannote[127].speaker SPEAKER_13
transcript.pyannote[127].start 2962.79159375
transcript.pyannote[127].end 2965.69409375
transcript.pyannote[128].speaker SPEAKER_13
transcript.pyannote[128].start 2968.32659375
transcript.pyannote[128].end 2969.52471875
transcript.pyannote[129].speaker SPEAKER_13
transcript.pyannote[129].start 2970.41909375
transcript.pyannote[129].end 2974.26659375
transcript.pyannote[130].speaker SPEAKER_13
transcript.pyannote[130].start 2974.89096875
transcript.pyannote[130].end 2975.61659375
transcript.pyannote[131].speaker SPEAKER_13
transcript.pyannote[131].start 2976.27471875
transcript.pyannote[131].end 2977.03409375
transcript.pyannote[132].speaker SPEAKER_13
transcript.pyannote[132].start 2977.97909375
transcript.pyannote[132].end 2980.52721875
transcript.pyannote[133].speaker SPEAKER_13
transcript.pyannote[133].start 2981.57346875
transcript.pyannote[133].end 2982.33284375
transcript.pyannote[134].speaker SPEAKER_13
transcript.pyannote[134].start 2983.44659375
transcript.pyannote[134].end 2991.85034375
transcript.pyannote[135].speaker SPEAKER_13
transcript.pyannote[135].start 2992.81221875
transcript.pyannote[135].end 2997.09846875
transcript.pyannote[136].speaker SPEAKER_13
transcript.pyannote[136].start 2998.90409375
transcript.pyannote[136].end 3001.65471875
transcript.pyannote[137].speaker SPEAKER_13
transcript.pyannote[137].start 3003.57846875
transcript.pyannote[137].end 3006.00846875
transcript.pyannote[138].speaker SPEAKER_13
transcript.pyannote[138].start 3008.30346875
transcript.pyannote[138].end 3010.54784375
transcript.pyannote[139].speaker SPEAKER_13
transcript.pyannote[139].start 3013.33221875
transcript.pyannote[139].end 3015.47534375
transcript.pyannote[140].speaker SPEAKER_13
transcript.pyannote[140].start 3015.98159375
transcript.pyannote[140].end 3016.77471875
transcript.pyannote[141].speaker SPEAKER_13
transcript.pyannote[141].start 3018.34409375
transcript.pyannote[141].end 3021.33096875
transcript.pyannote[142].speaker SPEAKER_13
transcript.pyannote[142].start 3023.50784375
transcript.pyannote[142].end 3025.80284375
transcript.pyannote[143].speaker SPEAKER_13
transcript.pyannote[143].start 3026.20784375
transcript.pyannote[143].end 3027.15284375
transcript.pyannote[144].speaker SPEAKER_13
transcript.pyannote[144].start 3030.15659375
transcript.pyannote[144].end 3032.04659375
transcript.pyannote[145].speaker SPEAKER_13
transcript.pyannote[145].start 3032.23221875
transcript.pyannote[145].end 3033.43034375
transcript.pyannote[146].speaker SPEAKER_13
transcript.pyannote[146].start 3035.87721875
transcript.pyannote[146].end 3036.80534375
transcript.pyannote[147].speaker SPEAKER_13
transcript.pyannote[147].start 3037.07534375
transcript.pyannote[147].end 3038.83034375
transcript.pyannote[148].speaker SPEAKER_13
transcript.pyannote[148].start 3041.31096875
transcript.pyannote[148].end 3044.68596875
transcript.pyannote[149].speaker SPEAKER_13
transcript.pyannote[149].start 3047.52096875
transcript.pyannote[149].end 3050.49096875
transcript.pyannote[150].speaker SPEAKER_13
transcript.pyannote[150].start 3052.70159375
transcript.pyannote[150].end 3056.02596875
transcript.pyannote[151].speaker SPEAKER_13
transcript.pyannote[151].start 3058.40534375
transcript.pyannote[151].end 3061.24034375
transcript.pyannote[152].speaker SPEAKER_13
transcript.pyannote[152].start 3064.07534375
transcript.pyannote[152].end 3066.37034375
transcript.pyannote[153].speaker SPEAKER_13
transcript.pyannote[153].start 3068.46284375
transcript.pyannote[153].end 3070.82534375
transcript.pyannote[154].speaker SPEAKER_13
transcript.pyannote[154].start 3071.92221875
transcript.pyannote[154].end 3072.25971875
transcript.pyannote[155].speaker SPEAKER_13
transcript.pyannote[155].start 3073.96409375
transcript.pyannote[155].end 3076.81596875
transcript.pyannote[156].speaker SPEAKER_13
transcript.pyannote[156].start 3077.86221875
transcript.pyannote[156].end 3078.21659375
transcript.pyannote[157].speaker SPEAKER_13
transcript.pyannote[157].start 3079.43159375
transcript.pyannote[157].end 3082.41846875
transcript.pyannote[158].speaker SPEAKER_13
transcript.pyannote[158].start 3083.92034375
transcript.pyannote[158].end 3084.73034375
transcript.pyannote[159].speaker SPEAKER_13
transcript.pyannote[159].start 3085.35471875
transcript.pyannote[159].end 3089.01659375
transcript.pyannote[160].speaker SPEAKER_13
transcript.pyannote[160].start 3091.51409375
transcript.pyannote[160].end 3096.96471875
transcript.pyannote[161].speaker SPEAKER_13
transcript.pyannote[161].start 3099.39471875
transcript.pyannote[161].end 3101.03159375
transcript.pyannote[162].speaker SPEAKER_13
transcript.pyannote[162].start 3101.41971875
transcript.pyannote[162].end 3102.73596875
transcript.pyannote[163].speaker SPEAKER_13
transcript.pyannote[163].start 3104.91284375
transcript.pyannote[163].end 3107.03909375
transcript.pyannote[164].speaker SPEAKER_13
transcript.pyannote[164].start 3107.98409375
transcript.pyannote[164].end 3109.55346875
transcript.pyannote[165].speaker SPEAKER_13
transcript.pyannote[165].start 3112.97909375
transcript.pyannote[165].end 3115.96596875
transcript.pyannote[166].speaker SPEAKER_13
transcript.pyannote[166].start 3117.01221875
transcript.pyannote[166].end 3117.34971875
transcript.pyannote[167].speaker SPEAKER_13
transcript.pyannote[167].start 3118.42971875
transcript.pyannote[167].end 3123.23909375
transcript.pyannote[168].speaker SPEAKER_13
transcript.pyannote[168].start 3126.14159375
transcript.pyannote[168].end 3129.31409375
transcript.pyannote[169].speaker SPEAKER_13
transcript.pyannote[169].start 3131.76096875
transcript.pyannote[169].end 3134.95034375
transcript.pyannote[170].speaker SPEAKER_13
transcript.pyannote[170].start 3137.31284375
transcript.pyannote[170].end 3138.49409375
transcript.pyannote[171].speaker SPEAKER_13
transcript.pyannote[171].start 3139.35471875
transcript.pyannote[171].end 3142.72971875
transcript.pyannote[172].speaker SPEAKER_13
transcript.pyannote[172].start 3145.29471875
transcript.pyannote[172].end 3148.58534375
transcript.pyannote[173].speaker SPEAKER_13
transcript.pyannote[173].start 3148.73721875
transcript.pyannote[173].end 3149.51346875
transcript.pyannote[174].speaker SPEAKER_13
transcript.pyannote[174].start 3150.20534375
transcript.pyannote[174].end 3150.64409375
transcript.pyannote[175].speaker SPEAKER_13
transcript.pyannote[175].start 3150.96471875
transcript.pyannote[175].end 3151.33596875
transcript.pyannote[176].speaker SPEAKER_13
transcript.pyannote[176].start 3153.25971875
transcript.pyannote[176].end 3156.95534375
transcript.pyannote[177].speaker SPEAKER_13
transcript.pyannote[177].start 3157.47846875
transcript.pyannote[177].end 3157.74846875
transcript.pyannote[178].speaker SPEAKER_13
transcript.pyannote[178].start 3158.67659375
transcript.pyannote[178].end 3159.14909375
transcript.pyannote[179].speaker SPEAKER_13
transcript.pyannote[179].start 3159.95909375
transcript.pyannote[179].end 3162.72659375
transcript.pyannote[180].speaker SPEAKER_13
transcript.pyannote[180].start 3164.22846875
transcript.pyannote[180].end 3167.40096875
transcript.pyannote[181].speaker SPEAKER_13
transcript.pyannote[181].start 3167.94096875
transcript.pyannote[181].end 3169.72971875
transcript.pyannote[182].speaker SPEAKER_13
transcript.pyannote[182].start 3170.32034375
transcript.pyannote[182].end 3173.91471875
transcript.pyannote[183].speaker SPEAKER_13
transcript.pyannote[183].start 3174.79221875
transcript.pyannote[183].end 3175.09596875
transcript.pyannote[184].speaker SPEAKER_13
transcript.pyannote[184].start 3176.54721875
transcript.pyannote[184].end 3179.97284375
transcript.pyannote[185].speaker SPEAKER_13
transcript.pyannote[185].start 3180.98534375
transcript.pyannote[185].end 3181.57596875
transcript.pyannote[186].speaker SPEAKER_13
transcript.pyannote[186].start 3182.03159375
transcript.pyannote[186].end 3182.87534375
transcript.pyannote[187].speaker SPEAKER_13
transcript.pyannote[187].start 3184.39409375
transcript.pyannote[187].end 3185.47409375
transcript.pyannote[188].speaker SPEAKER_13
transcript.pyannote[188].start 3188.57909375
transcript.pyannote[188].end 3195.73409375
transcript.pyannote[189].speaker SPEAKER_13
transcript.pyannote[189].start 3198.02909375
transcript.pyannote[189].end 3198.80534375
transcript.pyannote[190].speaker SPEAKER_13
transcript.pyannote[190].start 3198.92346875
transcript.pyannote[190].end 3201.42096875
transcript.pyannote[191].speaker SPEAKER_13
transcript.pyannote[191].start 3202.11284375
transcript.pyannote[191].end 3202.56846875
transcript.pyannote[192].speaker SPEAKER_13
transcript.pyannote[192].start 3205.08284375
transcript.pyannote[192].end 3210.53346875
transcript.pyannote[193].speaker SPEAKER_13
transcript.pyannote[193].start 3212.03534375
transcript.pyannote[193].end 3212.40659375
transcript.pyannote[194].speaker SPEAKER_13
transcript.pyannote[194].start 3213.65534375
transcript.pyannote[194].end 3216.96284375
transcript.pyannote[195].speaker SPEAKER_13
transcript.pyannote[195].start 3217.89096875
transcript.pyannote[195].end 3219.03846875
transcript.pyannote[196].speaker SPEAKER_13
transcript.pyannote[196].start 3220.89471875
transcript.pyannote[196].end 3226.04159375
transcript.pyannote[197].speaker SPEAKER_13
transcript.pyannote[197].start 3226.68284375
transcript.pyannote[197].end 3227.86409375
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 3237.17909375
transcript.pyannote[198].end 3365.81721875
transcript.pyannote[199].speaker SPEAKER_01
transcript.pyannote[199].start 3366.47534375
transcript.pyannote[199].end 3391.51784375
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 3392.66534375
transcript.pyannote[200].end 3396.22596875
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 3397.12034375
transcript.pyannote[201].end 3421.82534375
transcript.pyannote[202].speaker SPEAKER_01
transcript.pyannote[202].start 3422.16284375
transcript.pyannote[202].end 3449.60159375
transcript.pyannote[203].speaker SPEAKER_01
transcript.pyannote[203].start 3451.87971875
transcript.pyannote[203].end 3473.47971875
transcript.pyannote[204].speaker SPEAKER_01
transcript.pyannote[204].start 3474.23909375
transcript.pyannote[204].end 3496.17659375
transcript.pyannote[205].speaker SPEAKER_01
transcript.pyannote[205].start 3496.81784375
transcript.pyannote[205].end 3497.22284375
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 3499.02846875
transcript.pyannote[206].end 3559.03596875
transcript.pyannote[207].speaker SPEAKER_01
transcript.pyannote[207].start 3559.62659375
transcript.pyannote[207].end 3560.01471875
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 3562.03971875
transcript.pyannote[208].end 3572.63721875
transcript.pyannote[209].speaker SPEAKER_01
transcript.pyannote[209].start 3573.07596875
transcript.pyannote[209].end 3594.06846875
transcript.pyannote[210].speaker SPEAKER_01
transcript.pyannote[210].start 3594.74346875
transcript.pyannote[210].end 3599.01284375
transcript.pyannote[211].speaker SPEAKER_01
transcript.pyannote[211].start 3599.85659375
transcript.pyannote[211].end 3645.60471875
transcript.pyannote[212].speaker SPEAKER_01
transcript.pyannote[212].start 3646.27971875
transcript.pyannote[212].end 3680.28284375
transcript.pyannote[213].speaker SPEAKER_13
transcript.pyannote[213].start 3682.15596875
transcript.pyannote[213].end 3683.67471875
transcript.pyannote[214].speaker SPEAKER_13
transcript.pyannote[214].start 3684.45096875
transcript.pyannote[214].end 3686.34096875
transcript.pyannote[215].speaker SPEAKER_13
transcript.pyannote[215].start 3687.25221875
transcript.pyannote[215].end 3690.71159375
transcript.pyannote[216].speaker SPEAKER_26
transcript.pyannote[216].start 3696.78659375
transcript.pyannote[216].end 3700.43159375
transcript.pyannote[217].speaker SPEAKER_26
transcript.pyannote[217].start 3700.63409375
transcript.pyannote[217].end 3701.24159375
transcript.pyannote[218].speaker SPEAKER_26
transcript.pyannote[218].start 3701.44409375
transcript.pyannote[218].end 3716.73284375
transcript.pyannote[219].speaker SPEAKER_26
transcript.pyannote[219].start 3717.22221875
transcript.pyannote[219].end 3720.15846875
transcript.pyannote[220].speaker SPEAKER_26
transcript.pyannote[220].start 3720.58034375
transcript.pyannote[220].end 3724.59659375
transcript.pyannote[221].speaker SPEAKER_38
transcript.pyannote[221].start 3724.86659375
transcript.pyannote[221].end 3725.03534375
transcript.pyannote[222].speaker SPEAKER_26
transcript.pyannote[222].start 3725.18721875
transcript.pyannote[222].end 3725.71034375
transcript.pyannote[223].speaker SPEAKER_26
transcript.pyannote[223].start 3726.55409375
transcript.pyannote[223].end 3728.81534375
transcript.pyannote[224].speaker SPEAKER_26
transcript.pyannote[224].start 3728.96721875
transcript.pyannote[224].end 3732.34221875
transcript.pyannote[225].speaker SPEAKER_26
transcript.pyannote[225].start 3733.10159375
transcript.pyannote[225].end 3734.87346875
transcript.pyannote[226].speaker SPEAKER_26
transcript.pyannote[226].start 3735.12659375
transcript.pyannote[226].end 3736.99971875
transcript.pyannote[227].speaker SPEAKER_26
transcript.pyannote[227].start 3737.35409375
transcript.pyannote[227].end 3737.99534375
transcript.pyannote[228].speaker SPEAKER_26
transcript.pyannote[228].start 3738.46784375
transcript.pyannote[228].end 3743.76659375
transcript.pyannote[229].speaker SPEAKER_26
transcript.pyannote[229].start 3744.35721875
transcript.pyannote[229].end 3745.33596875
transcript.pyannote[230].speaker SPEAKER_26
transcript.pyannote[230].start 3745.63971875
transcript.pyannote[230].end 3748.96409375
transcript.pyannote[231].speaker SPEAKER_26
transcript.pyannote[231].start 3749.28471875
transcript.pyannote[231].end 3759.98346875
transcript.pyannote[232].speaker SPEAKER_26
transcript.pyannote[232].start 3760.25346875
transcript.pyannote[232].end 3766.98659375
transcript.pyannote[233].speaker SPEAKER_26
transcript.pyannote[233].start 3767.37471875
transcript.pyannote[233].end 3770.32784375
transcript.pyannote[234].speaker SPEAKER_26
transcript.pyannote[234].start 3771.00284375
transcript.pyannote[234].end 3771.54284375
transcript.pyannote[235].speaker SPEAKER_26
transcript.pyannote[235].start 3771.94784375
transcript.pyannote[235].end 3789.04221875
transcript.pyannote[236].speaker SPEAKER_26
transcript.pyannote[236].start 3789.07596875
transcript.pyannote[236].end 3795.13409375
transcript.pyannote[237].speaker SPEAKER_26
transcript.pyannote[237].start 3795.89346875
transcript.pyannote[237].end 3797.78346875
transcript.pyannote[238].speaker SPEAKER_26
transcript.pyannote[238].start 3798.40784375
transcript.pyannote[238].end 3800.01096875
transcript.pyannote[239].speaker SPEAKER_26
transcript.pyannote[239].start 3800.46659375
transcript.pyannote[239].end 3805.14096875
transcript.pyannote[240].speaker SPEAKER_26
transcript.pyannote[240].start 3806.03534375
transcript.pyannote[240].end 3806.59221875
transcript.pyannote[241].speaker SPEAKER_26
transcript.pyannote[241].start 3806.96346875
transcript.pyannote[241].end 3815.43471875
transcript.pyannote[242].speaker SPEAKER_26
transcript.pyannote[242].start 3815.72159375
transcript.pyannote[242].end 3820.42971875
transcript.pyannote[243].speaker SPEAKER_26
transcript.pyannote[243].start 3821.05409375
transcript.pyannote[243].end 3825.91409375
transcript.pyannote[244].speaker SPEAKER_26
transcript.pyannote[244].start 3827.06159375
transcript.pyannote[244].end 3828.78284375
transcript.pyannote[245].speaker SPEAKER_26
transcript.pyannote[245].start 3829.06971875
transcript.pyannote[245].end 3856.00221875
transcript.pyannote[246].speaker SPEAKER_26
transcript.pyannote[246].start 3856.30596875
transcript.pyannote[246].end 3880.65659375
transcript.pyannote[247].speaker SPEAKER_26
transcript.pyannote[247].start 3881.14596875
transcript.pyannote[247].end 3904.83846875
transcript.pyannote[248].speaker SPEAKER_26
transcript.pyannote[248].start 3905.27721875
transcript.pyannote[248].end 3912.16221875
transcript.pyannote[249].speaker SPEAKER_26
transcript.pyannote[249].start 3912.48284375
transcript.pyannote[249].end 3922.65846875
transcript.pyannote[250].speaker SPEAKER_26
transcript.pyannote[250].start 3923.19846875
transcript.pyannote[250].end 3938.62221875
transcript.pyannote[251].speaker SPEAKER_26
transcript.pyannote[251].start 3938.74034375
transcript.pyannote[251].end 3942.53721875
transcript.pyannote[252].speaker SPEAKER_26
transcript.pyannote[252].start 3942.72284375
transcript.pyannote[252].end 3953.70846875
transcript.pyannote[253].speaker SPEAKER_13
transcript.pyannote[253].start 3958.06221875
transcript.pyannote[253].end 3971.41034375
transcript.pyannote[254].speaker SPEAKER_13
transcript.pyannote[254].start 3971.71409375
transcript.pyannote[254].end 3975.12284375
transcript.pyannote[255].speaker SPEAKER_13
transcript.pyannote[255].start 3976.65846875
transcript.pyannote[255].end 3982.90221875
transcript.pyannote[256].speaker SPEAKER_13
transcript.pyannote[256].start 3983.50971875
transcript.pyannote[256].end 3995.01846875
transcript.pyannote[257].speaker SPEAKER_13
transcript.pyannote[257].start 3995.33909375
transcript.pyannote[257].end 3998.61284375
transcript.pyannote[258].speaker SPEAKER_25
transcript.pyannote[258].start 4002.51096875
transcript.pyannote[258].end 4007.55659375
transcript.pyannote[259].speaker SPEAKER_13
transcript.pyannote[259].start 4007.96159375
transcript.pyannote[259].end 4009.59846875
transcript.pyannote[260].speaker SPEAKER_25
transcript.pyannote[260].start 4012.04534375
transcript.pyannote[260].end 4057.86096875
transcript.pyannote[261].speaker SPEAKER_38
transcript.pyannote[261].start 4057.86096875
transcript.pyannote[261].end 4058.01284375
transcript.pyannote[262].speaker SPEAKER_25
transcript.pyannote[262].start 4058.01284375
transcript.pyannote[262].end 4058.14784375
transcript.pyannote[263].speaker SPEAKER_25
transcript.pyannote[263].start 4058.18159375
transcript.pyannote[263].end 4068.17159375
transcript.pyannote[264].speaker SPEAKER_25
transcript.pyannote[264].start 4068.54284375
transcript.pyannote[264].end 4071.22596875
transcript.pyannote[265].speaker SPEAKER_25
transcript.pyannote[265].start 4071.66471875
transcript.pyannote[265].end 4081.13159375
transcript.pyannote[266].speaker SPEAKER_25
transcript.pyannote[266].start 4081.26659375
transcript.pyannote[266].end 4122.98159375
transcript.pyannote[267].speaker SPEAKER_18
transcript.pyannote[267].start 4122.98159375
transcript.pyannote[267].end 4123.62284375
transcript.pyannote[268].speaker SPEAKER_18
transcript.pyannote[268].start 4124.06159375
transcript.pyannote[268].end 4141.37534375
transcript.pyannote[269].speaker SPEAKER_18
transcript.pyannote[269].start 4141.67909375
transcript.pyannote[269].end 4152.49596875
transcript.pyannote[270].speaker SPEAKER_25
transcript.pyannote[270].start 4149.72846875
transcript.pyannote[270].end 4149.91409375
transcript.pyannote[271].speaker SPEAKER_25
transcript.pyannote[271].start 4150.63971875
transcript.pyannote[271].end 4181.87534375
transcript.pyannote[272].speaker SPEAKER_18
transcript.pyannote[272].start 4155.12846875
transcript.pyannote[272].end 4155.55034375
transcript.pyannote[273].speaker SPEAKER_00
transcript.pyannote[273].start 4162.67159375
transcript.pyannote[273].end 4163.14409375
transcript.pyannote[274].speaker SPEAKER_00
transcript.pyannote[274].start 4167.29534375
transcript.pyannote[274].end 4167.68346875
transcript.pyannote[275].speaker SPEAKER_18
transcript.pyannote[275].start 4181.75721875
transcript.pyannote[275].end 4182.85409375
transcript.pyannote[276].speaker SPEAKER_25
transcript.pyannote[276].start 4183.32659375
transcript.pyannote[276].end 4205.28096875
transcript.pyannote[277].speaker SPEAKER_29
transcript.pyannote[277].start 4187.35971875
transcript.pyannote[277].end 4187.56221875
transcript.pyannote[278].speaker SPEAKER_25
transcript.pyannote[278].start 4205.63534375
transcript.pyannote[278].end 4237.96784375
transcript.pyannote[279].speaker SPEAKER_26
transcript.pyannote[279].start 4237.96784375
transcript.pyannote[279].end 4238.23784375
transcript.pyannote[280].speaker SPEAKER_25
transcript.pyannote[280].start 4239.26721875
transcript.pyannote[280].end 4239.28409375
transcript.pyannote[281].speaker SPEAKER_26
transcript.pyannote[281].start 4239.28409375
transcript.pyannote[281].end 4248.88596875
transcript.pyannote[282].speaker SPEAKER_25
transcript.pyannote[282].start 4247.48534375
transcript.pyannote[282].end 4247.55284375
transcript.pyannote[283].speaker SPEAKER_05
transcript.pyannote[283].start 4248.88596875
transcript.pyannote[283].end 4270.03034375
transcript.pyannote[284].speaker SPEAKER_26
transcript.pyannote[284].start 4249.05471875
transcript.pyannote[284].end 4250.06721875
transcript.pyannote[285].speaker SPEAKER_25
transcript.pyannote[285].start 4269.92909375
transcript.pyannote[285].end 4295.35971875
transcript.pyannote[286].speaker SPEAKER_29
transcript.pyannote[286].start 4280.37471875
transcript.pyannote[286].end 4280.86409375
transcript.pyannote[287].speaker SPEAKER_25
transcript.pyannote[287].start 4295.57909375
transcript.pyannote[287].end 4307.45909375
transcript.pyannote[288].speaker SPEAKER_38
transcript.pyannote[288].start 4307.45909375
transcript.pyannote[288].end 4307.72909375
transcript.pyannote[289].speaker SPEAKER_25
transcript.pyannote[289].start 4307.94846875
transcript.pyannote[289].end 4317.06096875
transcript.pyannote[290].speaker SPEAKER_38
transcript.pyannote[290].start 4308.15096875
transcript.pyannote[290].end 4308.33659375
transcript.pyannote[291].speaker SPEAKER_26
transcript.pyannote[291].start 4317.16221875
transcript.pyannote[291].end 4336.28159375
transcript.pyannote[292].speaker SPEAKER_25
transcript.pyannote[292].start 4321.19534375
transcript.pyannote[292].end 4322.12346875
transcript.pyannote[293].speaker SPEAKER_25
transcript.pyannote[293].start 4333.09221875
transcript.pyannote[293].end 4340.23034375
transcript.pyannote[294].speaker SPEAKER_25
transcript.pyannote[294].start 4340.70284375
transcript.pyannote[294].end 4383.71721875
transcript.pyannote[295].speaker SPEAKER_00
transcript.pyannote[295].start 4345.51221875
transcript.pyannote[295].end 4345.86659375
transcript.pyannote[296].speaker SPEAKER_00
transcript.pyannote[296].start 4346.23784375
transcript.pyannote[296].end 4346.32221875
transcript.pyannote[297].speaker SPEAKER_38
transcript.pyannote[297].start 4372.49534375
transcript.pyannote[297].end 4373.10284375
transcript.pyannote[298].speaker SPEAKER_38
transcript.pyannote[298].start 4383.71721875
transcript.pyannote[298].end 4384.03784375
transcript.pyannote[299].speaker SPEAKER_25
transcript.pyannote[299].start 4384.32471875
transcript.pyannote[299].end 4437.02534375
transcript.pyannote[300].speaker SPEAKER_38
transcript.pyannote[300].start 4418.74971875
transcript.pyannote[300].end 4419.35721875
transcript.pyannote[301].speaker SPEAKER_00
transcript.pyannote[301].start 4419.35721875
transcript.pyannote[301].end 4419.40784375
transcript.pyannote[302].speaker SPEAKER_00
transcript.pyannote[302].start 4424.18346875
transcript.pyannote[302].end 4424.67284375
transcript.pyannote[303].speaker SPEAKER_26
transcript.pyannote[303].start 4427.72721875
transcript.pyannote[303].end 4428.21659375
transcript.pyannote[304].speaker SPEAKER_26
transcript.pyannote[304].start 4433.48159375
transcript.pyannote[304].end 4434.05534375
transcript.pyannote[305].speaker SPEAKER_38
transcript.pyannote[305].start 4434.05534375
transcript.pyannote[305].end 4434.07221875
transcript.pyannote[306].speaker SPEAKER_26
transcript.pyannote[306].start 4434.19034375
transcript.pyannote[306].end 4435.32096875
transcript.pyannote[307].speaker SPEAKER_13
transcript.pyannote[307].start 4436.23221875
transcript.pyannote[307].end 4436.63721875
transcript.pyannote[308].speaker SPEAKER_13
transcript.pyannote[308].start 4437.02534375
transcript.pyannote[308].end 4442.72909375
transcript.pyannote[309].speaker SPEAKER_31
transcript.pyannote[309].start 4452.12846875
transcript.pyannote[309].end 4465.52721875
transcript.pyannote[310].speaker SPEAKER_13
transcript.pyannote[310].start 4462.15221875
transcript.pyannote[310].end 4462.16909375
transcript.pyannote[311].speaker SPEAKER_38
transcript.pyannote[311].start 4462.16909375
transcript.pyannote[311].end 4462.43909375
transcript.pyannote[312].speaker SPEAKER_13
transcript.pyannote[312].start 4462.43909375
transcript.pyannote[312].end 4462.45596875
transcript.pyannote[313].speaker SPEAKER_38
transcript.pyannote[313].start 4462.45596875
transcript.pyannote[313].end 4462.48971875
transcript.pyannote[314].speaker SPEAKER_13
transcript.pyannote[314].start 4462.48971875
transcript.pyannote[314].end 4462.52346875
transcript.pyannote[315].speaker SPEAKER_13
transcript.pyannote[315].start 4462.82721875
transcript.pyannote[315].end 4462.84409375
transcript.pyannote[316].speaker SPEAKER_38
transcript.pyannote[316].start 4462.84409375
transcript.pyannote[316].end 4463.62034375
transcript.pyannote[317].speaker SPEAKER_38
transcript.pyannote[317].start 4465.86471875
transcript.pyannote[317].end 4466.18534375
transcript.pyannote[318].speaker SPEAKER_31
transcript.pyannote[318].start 4466.18534375
transcript.pyannote[318].end 4469.30721875
transcript.pyannote[319].speaker SPEAKER_31
transcript.pyannote[319].start 4470.16784375
transcript.pyannote[319].end 4472.73284375
transcript.pyannote[320].speaker SPEAKER_31
transcript.pyannote[320].start 4472.78346875
transcript.pyannote[320].end 4475.41596875
transcript.pyannote[321].speaker SPEAKER_31
transcript.pyannote[321].start 4475.92221875
transcript.pyannote[321].end 4476.58034375
transcript.pyannote[322].speaker SPEAKER_31
transcript.pyannote[322].start 4482.13221875
transcript.pyannote[322].end 4491.02534375
transcript.pyannote[323].speaker SPEAKER_31
transcript.pyannote[323].start 4491.43034375
transcript.pyannote[323].end 4498.09596875
transcript.pyannote[324].speaker SPEAKER_31
transcript.pyannote[324].start 4498.43346875
transcript.pyannote[324].end 4499.69909375
transcript.pyannote[325].speaker SPEAKER_31
transcript.pyannote[325].start 4500.49221875
transcript.pyannote[325].end 4501.16721875
transcript.pyannote[326].speaker SPEAKER_31
transcript.pyannote[326].start 4501.31909375
transcript.pyannote[326].end 4508.40659375
transcript.pyannote[327].speaker SPEAKER_31
transcript.pyannote[327].start 4508.65971875
transcript.pyannote[327].end 4512.06846875
transcript.pyannote[328].speaker SPEAKER_31
transcript.pyannote[328].start 4512.38909375
transcript.pyannote[328].end 4584.05721875
transcript.pyannote[329].speaker SPEAKER_31
transcript.pyannote[329].start 4584.41159375
transcript.pyannote[329].end 4587.49971875
transcript.pyannote[330].speaker SPEAKER_07
transcript.pyannote[330].start 4588.03971875
transcript.pyannote[330].end 4592.96721875
transcript.pyannote[331].speaker SPEAKER_31
transcript.pyannote[331].start 4592.96721875
transcript.pyannote[331].end 4600.03784375
transcript.pyannote[332].speaker SPEAKER_31
transcript.pyannote[332].start 4600.12221875
transcript.pyannote[332].end 4609.62284375
transcript.pyannote[333].speaker SPEAKER_07
transcript.pyannote[333].start 4609.62284375
transcript.pyannote[333].end 4613.58846875
transcript.pyannote[334].speaker SPEAKER_07
transcript.pyannote[334].start 4614.04409375
transcript.pyannote[334].end 4630.68284375
transcript.pyannote[335].speaker SPEAKER_31
transcript.pyannote[335].start 4630.68284375
transcript.pyannote[335].end 4658.88096875
transcript.pyannote[336].speaker SPEAKER_31
transcript.pyannote[336].start 4659.20159375
transcript.pyannote[336].end 4661.04096875
transcript.pyannote[337].speaker SPEAKER_31
transcript.pyannote[337].start 4661.29409375
transcript.pyannote[337].end 4662.61034375
transcript.pyannote[338].speaker SPEAKER_31
transcript.pyannote[338].start 4663.42034375
transcript.pyannote[338].end 4666.49159375
transcript.pyannote[339].speaker SPEAKER_07
transcript.pyannote[339].start 4667.67284375
transcript.pyannote[339].end 4670.03534375
transcript.pyannote[340].speaker SPEAKER_07
transcript.pyannote[340].start 4670.35596875
transcript.pyannote[340].end 4676.51534375
transcript.pyannote[341].speaker SPEAKER_38
transcript.pyannote[341].start 4673.71409375
transcript.pyannote[341].end 4673.76471875
transcript.pyannote[342].speaker SPEAKER_07
transcript.pyannote[342].start 4676.85284375
transcript.pyannote[342].end 4685.22284375
transcript.pyannote[343].speaker SPEAKER_31
transcript.pyannote[343].start 4681.66221875
transcript.pyannote[343].end 4682.59034375
transcript.pyannote[344].speaker SPEAKER_07
transcript.pyannote[344].start 4685.39159375
transcript.pyannote[344].end 4686.11721875
transcript.pyannote[345].speaker SPEAKER_38
transcript.pyannote[345].start 4685.49284375
transcript.pyannote[345].end 4686.08346875
transcript.pyannote[346].speaker SPEAKER_38
transcript.pyannote[346].start 4686.11721875
transcript.pyannote[346].end 4686.15096875
transcript.pyannote[347].speaker SPEAKER_38
transcript.pyannote[347].start 4686.21846875
transcript.pyannote[347].end 4686.48846875
transcript.pyannote[348].speaker SPEAKER_07
transcript.pyannote[348].start 4687.07909375
transcript.pyannote[348].end 4690.43721875
transcript.pyannote[349].speaker SPEAKER_07
transcript.pyannote[349].start 4690.77471875
transcript.pyannote[349].end 4694.36909375
transcript.pyannote[350].speaker SPEAKER_07
transcript.pyannote[350].start 4694.62221875
transcript.pyannote[350].end 4698.31784375
transcript.pyannote[351].speaker SPEAKER_07
transcript.pyannote[351].start 4698.97596875
transcript.pyannote[351].end 4702.70534375
transcript.pyannote[352].speaker SPEAKER_07
transcript.pyannote[352].start 4703.12721875
transcript.pyannote[352].end 4716.91409375
transcript.pyannote[353].speaker SPEAKER_31
transcript.pyannote[353].start 4716.91409375
transcript.pyannote[353].end 4716.94784375
transcript.pyannote[354].speaker SPEAKER_31
transcript.pyannote[354].start 4717.58909375
transcript.pyannote[354].end 4718.04471875
transcript.pyannote[355].speaker SPEAKER_31
transcript.pyannote[355].start 4718.65221875
transcript.pyannote[355].end 4730.95409375
transcript.pyannote[356].speaker SPEAKER_31
transcript.pyannote[356].start 4731.34221875
transcript.pyannote[356].end 4732.25346875
transcript.pyannote[357].speaker SPEAKER_08
transcript.pyannote[357].start 4733.21534375
transcript.pyannote[357].end 4786.96221875
transcript.pyannote[358].speaker SPEAKER_31
transcript.pyannote[358].start 4786.96221875
transcript.pyannote[358].end 4819.34534375
transcript.pyannote[359].speaker SPEAKER_31
transcript.pyannote[359].start 4819.46346875
transcript.pyannote[359].end 4827.79971875
transcript.pyannote[360].speaker SPEAKER_31
transcript.pyannote[360].start 4828.06971875
transcript.pyannote[360].end 4844.72534375
transcript.pyannote[361].speaker SPEAKER_18
transcript.pyannote[361].start 4845.75471875
transcript.pyannote[361].end 4846.14284375
transcript.pyannote[362].speaker SPEAKER_18
transcript.pyannote[362].start 4846.59846875
transcript.pyannote[362].end 4852.72409375
transcript.pyannote[363].speaker SPEAKER_31
transcript.pyannote[363].start 4853.16284375
transcript.pyannote[363].end 4854.90096875
transcript.pyannote[364].speaker SPEAKER_31
transcript.pyannote[364].start 4855.40721875
transcript.pyannote[364].end 4894.11846875
transcript.pyannote[365].speaker SPEAKER_00
transcript.pyannote[365].start 4861.95471875
transcript.pyannote[365].end 4863.30471875
transcript.pyannote[366].speaker SPEAKER_00
transcript.pyannote[366].start 4866.02159375
transcript.pyannote[366].end 4866.57846875
transcript.pyannote[367].speaker SPEAKER_31
transcript.pyannote[367].start 4894.47284375
transcript.pyannote[367].end 4902.65721875
transcript.pyannote[368].speaker SPEAKER_08
transcript.pyannote[368].start 4902.65721875
transcript.pyannote[368].end 4920.61221875
transcript.pyannote[369].speaker SPEAKER_08
transcript.pyannote[369].start 4920.93284375
transcript.pyannote[369].end 4920.98346875
transcript.pyannote[370].speaker SPEAKER_31
transcript.pyannote[370].start 4920.98346875
transcript.pyannote[370].end 4927.36221875
transcript.pyannote[371].speaker SPEAKER_31
transcript.pyannote[371].start 4927.68284375
transcript.pyannote[371].end 4928.27346875
transcript.pyannote[372].speaker SPEAKER_31
transcript.pyannote[372].start 4928.49284375
transcript.pyannote[372].end 4944.74346875
transcript.pyannote[373].speaker SPEAKER_31
transcript.pyannote[373].start 4945.68846875
transcript.pyannote[373].end 4947.74721875
transcript.pyannote[374].speaker SPEAKER_31
transcript.pyannote[374].start 4947.76409375
transcript.pyannote[374].end 4947.78096875
transcript.pyannote[375].speaker SPEAKER_31
transcript.pyannote[375].start 4947.81471875
transcript.pyannote[375].end 4960.09971875
transcript.pyannote[376].speaker SPEAKER_41
transcript.pyannote[376].start 4961.33159375
transcript.pyannote[376].end 4988.97284375
transcript.pyannote[377].speaker SPEAKER_00
transcript.pyannote[377].start 4967.37284375
transcript.pyannote[377].end 4967.40659375
transcript.pyannote[378].speaker SPEAKER_31
transcript.pyannote[378].start 4967.40659375
transcript.pyannote[378].end 4967.94659375
transcript.pyannote[379].speaker SPEAKER_31
transcript.pyannote[379].start 4988.97284375
transcript.pyannote[379].end 5016.34409375
transcript.pyannote[380].speaker SPEAKER_41
transcript.pyannote[380].start 5016.73221875
transcript.pyannote[380].end 5016.78284375
transcript.pyannote[381].speaker SPEAKER_41
transcript.pyannote[381].start 5017.10346875
transcript.pyannote[381].end 5033.99534375
transcript.pyannote[382].speaker SPEAKER_31
transcript.pyannote[382].start 5031.07596875
transcript.pyannote[382].end 5031.70034375
transcript.pyannote[383].speaker SPEAKER_31
transcript.pyannote[383].start 5033.99534375
transcript.pyannote[383].end 5034.83909375
transcript.pyannote[384].speaker SPEAKER_41
transcript.pyannote[384].start 5034.01221875
transcript.pyannote[384].end 5034.56909375
transcript.pyannote[385].speaker SPEAKER_41
transcript.pyannote[385].start 5034.83909375
transcript.pyannote[385].end 5034.97409375
transcript.pyannote[386].speaker SPEAKER_31
transcript.pyannote[386].start 5034.97409375
transcript.pyannote[386].end 5035.24409375
transcript.pyannote[387].speaker SPEAKER_41
transcript.pyannote[387].start 5035.24409375
transcript.pyannote[387].end 5035.37909375
transcript.pyannote[388].speaker SPEAKER_31
transcript.pyannote[388].start 5035.37909375
transcript.pyannote[388].end 5035.95284375
transcript.pyannote[389].speaker SPEAKER_31
transcript.pyannote[389].start 5036.54346875
transcript.pyannote[389].end 5038.50096875
transcript.pyannote[390].speaker SPEAKER_38
transcript.pyannote[390].start 5038.38284375
transcript.pyannote[390].end 5038.75409375
transcript.pyannote[391].speaker SPEAKER_31
transcript.pyannote[391].start 5038.55159375
transcript.pyannote[391].end 5063.18909375
transcript.pyannote[392].speaker SPEAKER_31
transcript.pyannote[392].start 5063.88096875
transcript.pyannote[392].end 5066.39534375
transcript.pyannote[393].speaker SPEAKER_31
transcript.pyannote[393].start 5066.80034375
transcript.pyannote[393].end 5083.37159375
transcript.pyannote[394].speaker SPEAKER_31
transcript.pyannote[394].start 5083.81034375
transcript.pyannote[394].end 5099.03159375
transcript.pyannote[395].speaker SPEAKER_26
transcript.pyannote[395].start 5099.55471875
transcript.pyannote[395].end 5107.92471875
transcript.pyannote[396].speaker SPEAKER_26
transcript.pyannote[396].start 5108.04284375
transcript.pyannote[396].end 5108.58284375
transcript.pyannote[397].speaker SPEAKER_26
transcript.pyannote[397].start 5108.76846875
transcript.pyannote[397].end 5110.67534375
transcript.pyannote[398].speaker SPEAKER_31
transcript.pyannote[398].start 5109.19034375
transcript.pyannote[398].end 5109.39284375
transcript.pyannote[399].speaker SPEAKER_31
transcript.pyannote[399].start 5110.67534375
transcript.pyannote[399].end 5110.70909375
transcript.pyannote[400].speaker SPEAKER_05
transcript.pyannote[400].start 5111.36721875
transcript.pyannote[400].end 5122.36971875
transcript.pyannote[401].speaker SPEAKER_31
transcript.pyannote[401].start 5122.36971875
transcript.pyannote[401].end 5134.01346875
transcript.pyannote[402].speaker SPEAKER_38
transcript.pyannote[402].start 5133.67596875
transcript.pyannote[402].end 5134.43534375
transcript.pyannote[403].speaker SPEAKER_31
transcript.pyannote[403].start 5134.23284375
transcript.pyannote[403].end 5159.41034375
transcript.pyannote[404].speaker SPEAKER_19
transcript.pyannote[404].start 5141.26971875
transcript.pyannote[404].end 5142.04596875
transcript.pyannote[405].speaker SPEAKER_23
transcript.pyannote[405].start 5147.49659375
transcript.pyannote[405].end 5147.56409375
transcript.pyannote[406].speaker SPEAKER_19
transcript.pyannote[406].start 5147.56409375
transcript.pyannote[406].end 5147.59784375
transcript.pyannote[407].speaker SPEAKER_23
transcript.pyannote[407].start 5147.59784375
transcript.pyannote[407].end 5147.66534375
transcript.pyannote[408].speaker SPEAKER_19
transcript.pyannote[408].start 5147.66534375
transcript.pyannote[408].end 5147.69909375
transcript.pyannote[409].speaker SPEAKER_38
transcript.pyannote[409].start 5147.69909375
transcript.pyannote[409].end 5147.76659375
transcript.pyannote[410].speaker SPEAKER_23
transcript.pyannote[410].start 5147.76659375
transcript.pyannote[410].end 5147.96909375
transcript.pyannote[411].speaker SPEAKER_19
transcript.pyannote[411].start 5147.96909375
transcript.pyannote[411].end 5147.98596875
transcript.pyannote[412].speaker SPEAKER_31
transcript.pyannote[412].start 5159.66346875
transcript.pyannote[412].end 5164.35471875
transcript.pyannote[413].speaker SPEAKER_26
transcript.pyannote[413].start 5164.35471875
transcript.pyannote[413].end 5164.37159375
transcript.pyannote[414].speaker SPEAKER_31
transcript.pyannote[414].start 5164.65846875
transcript.pyannote[414].end 5165.97471875
transcript.pyannote[415].speaker SPEAKER_26
transcript.pyannote[415].start 5165.97471875
transcript.pyannote[415].end 5175.64409375
transcript.pyannote[416].speaker SPEAKER_26
transcript.pyannote[416].start 5175.91409375
transcript.pyannote[416].end 5178.31034375
transcript.pyannote[417].speaker SPEAKER_26
transcript.pyannote[417].start 5178.46221875
transcript.pyannote[417].end 5187.45659375
transcript.pyannote[418].speaker SPEAKER_00
transcript.pyannote[418].start 5179.52534375
transcript.pyannote[418].end 5179.54221875
transcript.pyannote[419].speaker SPEAKER_31
transcript.pyannote[419].start 5179.54221875
transcript.pyannote[419].end 5180.31846875
transcript.pyannote[420].speaker SPEAKER_31
transcript.pyannote[420].start 5187.33846875
transcript.pyannote[420].end 5193.68346875
transcript.pyannote[421].speaker SPEAKER_31
transcript.pyannote[421].start 5193.93659375
transcript.pyannote[421].end 5215.60409375
transcript.pyannote[422].speaker SPEAKER_31
transcript.pyannote[422].start 5215.70534375
transcript.pyannote[422].end 5221.42596875
transcript.pyannote[423].speaker SPEAKER_31
transcript.pyannote[423].start 5221.54409375
transcript.pyannote[423].end 5227.72034375
transcript.pyannote[424].speaker SPEAKER_31
transcript.pyannote[424].start 5228.37846875
transcript.pyannote[424].end 5237.03534375
transcript.pyannote[425].speaker SPEAKER_07
transcript.pyannote[425].start 5237.03534375
transcript.pyannote[425].end 5244.12284375
transcript.pyannote[426].speaker SPEAKER_07
transcript.pyannote[426].start 5244.15659375
transcript.pyannote[426].end 5245.91159375
transcript.pyannote[427].speaker SPEAKER_07
transcript.pyannote[427].start 5246.19846875
transcript.pyannote[427].end 5256.12096875
transcript.pyannote[428].speaker SPEAKER_07
transcript.pyannote[428].start 5256.52596875
transcript.pyannote[428].end 5261.89221875
transcript.pyannote[429].speaker SPEAKER_07
transcript.pyannote[429].start 5261.97659375
transcript.pyannote[429].end 5264.72721875
transcript.pyannote[430].speaker SPEAKER_08
transcript.pyannote[430].start 5264.72721875
transcript.pyannote[430].end 5286.51284375
transcript.pyannote[431].speaker SPEAKER_38
transcript.pyannote[431].start 5278.27784375
transcript.pyannote[431].end 5278.64909375
transcript.pyannote[432].speaker SPEAKER_06
transcript.pyannote[432].start 5278.64909375
transcript.pyannote[432].end 5278.66596875
transcript.pyannote[433].speaker SPEAKER_31
transcript.pyannote[433].start 5284.47096875
transcript.pyannote[433].end 5289.02721875
transcript.pyannote[434].speaker SPEAKER_31
transcript.pyannote[434].start 5289.24659375
transcript.pyannote[434].end 5303.50596875
transcript.pyannote[435].speaker SPEAKER_31
transcript.pyannote[435].start 5303.74221875
transcript.pyannote[435].end 5315.60534375
transcript.pyannote[436].speaker SPEAKER_31
transcript.pyannote[436].start 5315.95971875
transcript.pyannote[436].end 5316.56721875
transcript.pyannote[437].speaker SPEAKER_13
transcript.pyannote[437].start 5317.14096875
transcript.pyannote[437].end 5318.60909375
transcript.pyannote[438].speaker SPEAKER_13
transcript.pyannote[438].start 5319.41909375
transcript.pyannote[438].end 5326.47284375
transcript.pyannote[439].speaker SPEAKER_13
transcript.pyannote[439].start 5326.99596875
transcript.pyannote[439].end 5340.02346875
transcript.pyannote[440].speaker SPEAKER_23
transcript.pyannote[440].start 5348.35971875
transcript.pyannote[440].end 5356.18971875
transcript.pyannote[441].speaker SPEAKER_23
transcript.pyannote[441].start 5356.34159375
transcript.pyannote[441].end 5359.24409375
transcript.pyannote[442].speaker SPEAKER_26
transcript.pyannote[442].start 5362.06221875
transcript.pyannote[442].end 5362.11284375
transcript.pyannote[443].speaker SPEAKER_23
transcript.pyannote[443].start 5362.11284375
transcript.pyannote[443].end 5362.33221875
transcript.pyannote[444].speaker SPEAKER_23
transcript.pyannote[444].start 5362.80471875
transcript.pyannote[444].end 5363.91846875
transcript.pyannote[445].speaker SPEAKER_23
transcript.pyannote[445].start 5364.35721875
transcript.pyannote[445].end 5368.62659375
transcript.pyannote[446].speaker SPEAKER_23
transcript.pyannote[446].start 5368.93034375
transcript.pyannote[446].end 5370.63471875
transcript.pyannote[447].speaker SPEAKER_23
transcript.pyannote[447].start 5370.82034375
transcript.pyannote[447].end 5374.61721875
transcript.pyannote[448].speaker SPEAKER_23
transcript.pyannote[448].start 5375.08971875
transcript.pyannote[448].end 5380.87784375
transcript.pyannote[449].speaker SPEAKER_23
transcript.pyannote[449].start 5381.50221875
transcript.pyannote[449].end 5390.66534375
transcript.pyannote[450].speaker SPEAKER_23
transcript.pyannote[450].start 5390.95221875
transcript.pyannote[450].end 5393.58471875
transcript.pyannote[451].speaker SPEAKER_23
transcript.pyannote[451].start 5394.39471875
transcript.pyannote[451].end 5400.01409375
transcript.pyannote[452].speaker SPEAKER_23
transcript.pyannote[452].start 5400.19971875
transcript.pyannote[452].end 5403.52409375
transcript.pyannote[453].speaker SPEAKER_23
transcript.pyannote[453].start 5404.04721875
transcript.pyannote[453].end 5405.32971875
transcript.pyannote[454].speaker SPEAKER_23
transcript.pyannote[454].start 5406.15659375
transcript.pyannote[454].end 5408.19846875
transcript.pyannote[455].speaker SPEAKER_23
transcript.pyannote[455].start 5408.46846875
transcript.pyannote[455].end 5410.40909375
transcript.pyannote[456].speaker SPEAKER_23
transcript.pyannote[456].start 5411.43846875
transcript.pyannote[456].end 5412.72096875
transcript.pyannote[457].speaker SPEAKER_23
transcript.pyannote[457].start 5413.41284375
transcript.pyannote[457].end 5418.45846875
transcript.pyannote[458].speaker SPEAKER_23
transcript.pyannote[458].start 5419.80846875
transcript.pyannote[458].end 5423.45346875
transcript.pyannote[459].speaker SPEAKER_23
transcript.pyannote[459].start 5423.90909375
transcript.pyannote[459].end 5424.43221875
transcript.pyannote[460].speaker SPEAKER_23
transcript.pyannote[460].start 5425.22534375
transcript.pyannote[460].end 5426.64284375
transcript.pyannote[461].speaker SPEAKER_23
transcript.pyannote[461].start 5426.89596875
transcript.pyannote[461].end 5428.16159375
transcript.pyannote[462].speaker SPEAKER_23
transcript.pyannote[462].start 5429.37659375
transcript.pyannote[462].end 5429.54534375
transcript.pyannote[463].speaker SPEAKER_23
transcript.pyannote[463].start 5430.35534375
transcript.pyannote[463].end 5435.02971875
transcript.pyannote[464].speaker SPEAKER_23
transcript.pyannote[464].start 5435.33346875
transcript.pyannote[464].end 5436.37971875
transcript.pyannote[465].speaker SPEAKER_23
transcript.pyannote[465].start 5437.03784375
transcript.pyannote[465].end 5443.04534375
transcript.pyannote[466].speaker SPEAKER_23
transcript.pyannote[466].start 5443.73721875
transcript.pyannote[466].end 5445.07034375
transcript.pyannote[467].speaker SPEAKER_23
transcript.pyannote[467].start 5445.71159375
transcript.pyannote[467].end 5447.17971875
transcript.pyannote[468].speaker SPEAKER_23
transcript.pyannote[468].start 5447.87159375
transcript.pyannote[468].end 5449.37346875
transcript.pyannote[469].speaker SPEAKER_23
transcript.pyannote[469].start 5450.13284375
transcript.pyannote[469].end 5450.53784375
transcript.pyannote[470].speaker SPEAKER_23
transcript.pyannote[470].start 5450.72346875
transcript.pyannote[470].end 5457.96284375
transcript.pyannote[471].speaker SPEAKER_23
transcript.pyannote[471].start 5459.22846875
transcript.pyannote[471].end 5462.72159375
transcript.pyannote[472].speaker SPEAKER_23
transcript.pyannote[472].start 5463.75096875
transcript.pyannote[472].end 5464.84784375
transcript.pyannote[473].speaker SPEAKER_23
transcript.pyannote[473].start 5465.52284375
transcript.pyannote[473].end 5466.97409375
transcript.pyannote[474].speaker SPEAKER_23
transcript.pyannote[474].start 5468.03721875
transcript.pyannote[474].end 5469.80909375
transcript.pyannote[475].speaker SPEAKER_23
transcript.pyannote[475].start 5470.33221875
transcript.pyannote[475].end 5472.00284375
transcript.pyannote[476].speaker SPEAKER_23
transcript.pyannote[476].start 5473.89284375
transcript.pyannote[476].end 5475.76596875
transcript.pyannote[477].speaker SPEAKER_23
transcript.pyannote[477].start 5476.18784375
transcript.pyannote[477].end 5477.45346875
transcript.pyannote[478].speaker SPEAKER_23
transcript.pyannote[478].start 5477.77409375
transcript.pyannote[478].end 5481.08159375
transcript.pyannote[479].speaker SPEAKER_23
transcript.pyannote[479].start 5481.92534375
transcript.pyannote[479].end 5483.12346875
transcript.pyannote[480].speaker SPEAKER_23
transcript.pyannote[480].start 5485.43534375
transcript.pyannote[480].end 5488.03409375
transcript.pyannote[481].speaker SPEAKER_23
transcript.pyannote[481].start 5489.87346875
transcript.pyannote[481].end 5492.75909375
transcript.pyannote[482].speaker SPEAKER_23
transcript.pyannote[482].start 5493.28221875
transcript.pyannote[482].end 5494.21034375
transcript.pyannote[483].speaker SPEAKER_23
transcript.pyannote[483].start 5494.51409375
transcript.pyannote[483].end 5496.30284375
transcript.pyannote[484].speaker SPEAKER_09
transcript.pyannote[484].start 5496.67409375
transcript.pyannote[484].end 5496.70784375
transcript.pyannote[485].speaker SPEAKER_23
transcript.pyannote[485].start 5498.04096875
transcript.pyannote[485].end 5498.59784375
transcript.pyannote[486].speaker SPEAKER_23
transcript.pyannote[486].start 5500.79159375
transcript.pyannote[486].end 5505.34784375
transcript.pyannote[487].speaker SPEAKER_23
transcript.pyannote[487].start 5505.53346875
transcript.pyannote[487].end 5510.52846875
transcript.pyannote[488].speaker SPEAKER_23
transcript.pyannote[488].start 5511.54096875
transcript.pyannote[488].end 5512.58721875
transcript.pyannote[489].speaker SPEAKER_23
transcript.pyannote[489].start 5513.38034375
transcript.pyannote[489].end 5517.91971875
transcript.pyannote[490].speaker SPEAKER_23
transcript.pyannote[490].start 5518.57784375
transcript.pyannote[490].end 5520.94034375
transcript.pyannote[491].speaker SPEAKER_09
transcript.pyannote[491].start 5520.94034375
transcript.pyannote[491].end 5523.03284375
transcript.pyannote[492].speaker SPEAKER_23
transcript.pyannote[492].start 5522.93159375
transcript.pyannote[492].end 5526.79596875
transcript.pyannote[493].speaker SPEAKER_23
transcript.pyannote[493].start 5527.11659375
transcript.pyannote[493].end 5531.23409375
transcript.pyannote[494].speaker SPEAKER_23
transcript.pyannote[494].start 5531.57159375
transcript.pyannote[494].end 5535.65534375
transcript.pyannote[495].speaker SPEAKER_23
transcript.pyannote[495].start 5537.19096875
transcript.pyannote[495].end 5537.89971875
transcript.pyannote[496].speaker SPEAKER_23
transcript.pyannote[496].start 5538.57471875
transcript.pyannote[496].end 5539.72221875
transcript.pyannote[497].speaker SPEAKER_23
transcript.pyannote[497].start 5540.75159375
transcript.pyannote[497].end 5541.66284375
transcript.pyannote[498].speaker SPEAKER_23
transcript.pyannote[498].start 5542.15221875
transcript.pyannote[498].end 5544.81846875
transcript.pyannote[499].speaker SPEAKER_23
transcript.pyannote[499].start 5545.79721875
transcript.pyannote[499].end 5549.30721875
transcript.pyannote[500].speaker SPEAKER_23
transcript.pyannote[500].start 5549.64471875
transcript.pyannote[500].end 5551.02846875
transcript.pyannote[501].speaker SPEAKER_23
transcript.pyannote[501].start 5551.43346875
transcript.pyannote[501].end 5553.96471875
transcript.pyannote[502].speaker SPEAKER_23
transcript.pyannote[502].start 5554.47096875
transcript.pyannote[502].end 5556.20909375
transcript.pyannote[503].speaker SPEAKER_23
transcript.pyannote[503].start 5557.35659375
transcript.pyannote[503].end 5560.02284375
transcript.pyannote[504].speaker SPEAKER_23
transcript.pyannote[504].start 5560.81596875
transcript.pyannote[504].end 5562.52034375
transcript.pyannote[505].speaker SPEAKER_23
transcript.pyannote[505].start 5564.54534375
transcript.pyannote[505].end 5566.13159375
transcript.pyannote[506].speaker SPEAKER_23
transcript.pyannote[506].start 5566.35096875
transcript.pyannote[506].end 5568.03846875
transcript.pyannote[507].speaker SPEAKER_23
transcript.pyannote[507].start 5568.42659375
transcript.pyannote[507].end 5569.60784375
transcript.pyannote[508].speaker SPEAKER_23
transcript.pyannote[508].start 5570.78909375
transcript.pyannote[508].end 5572.47659375
transcript.pyannote[509].speaker SPEAKER_23
transcript.pyannote[509].start 5573.21909375
transcript.pyannote[509].end 5575.17659375
transcript.pyannote[510].speaker SPEAKER_23
transcript.pyannote[510].start 5576.49284375
transcript.pyannote[510].end 5577.03284375
transcript.pyannote[511].speaker SPEAKER_23
transcript.pyannote[511].start 5577.15096875
transcript.pyannote[511].end 5580.99846875
transcript.pyannote[512].speaker SPEAKER_23
transcript.pyannote[512].start 5581.42034375
transcript.pyannote[512].end 5582.29784375
transcript.pyannote[513].speaker SPEAKER_23
transcript.pyannote[513].start 5582.90534375
transcript.pyannote[513].end 5585.57159375
transcript.pyannote[514].speaker SPEAKER_23
transcript.pyannote[514].start 5587.24221875
transcript.pyannote[514].end 5592.10221875
transcript.pyannote[515].speaker SPEAKER_23
transcript.pyannote[515].start 5593.04721875
transcript.pyannote[515].end 5594.19471875
transcript.pyannote[516].speaker SPEAKER_23
transcript.pyannote[516].start 5595.10596875
transcript.pyannote[516].end 5602.21034375
transcript.pyannote[517].speaker SPEAKER_23
transcript.pyannote[517].start 5602.85159375
transcript.pyannote[517].end 5605.51784375
transcript.pyannote[518].speaker SPEAKER_23
transcript.pyannote[518].start 5606.61471875
transcript.pyannote[518].end 5611.12034375
transcript.pyannote[519].speaker SPEAKER_23
transcript.pyannote[519].start 5611.57596875
transcript.pyannote[519].end 5614.47846875
transcript.pyannote[520].speaker SPEAKER_23
transcript.pyannote[520].start 5615.25471875
transcript.pyannote[520].end 5616.38534375
transcript.pyannote[521].speaker SPEAKER_23
transcript.pyannote[521].start 5617.33034375
transcript.pyannote[521].end 5620.06409375
transcript.pyannote[522].speaker SPEAKER_23
transcript.pyannote[522].start 5620.63784375
transcript.pyannote[522].end 5624.01284375
transcript.pyannote[523].speaker SPEAKER_23
transcript.pyannote[523].start 5624.50221875
transcript.pyannote[523].end 5625.91971875
transcript.pyannote[524].speaker SPEAKER_23
transcript.pyannote[524].start 5626.94909375
transcript.pyannote[524].end 5629.59846875
transcript.pyannote[525].speaker SPEAKER_23
transcript.pyannote[525].start 5630.13846875
transcript.pyannote[525].end 5631.42096875
transcript.pyannote[526].speaker SPEAKER_23
transcript.pyannote[526].start 5631.57284375
transcript.pyannote[526].end 5634.45846875
transcript.pyannote[527].speaker SPEAKER_23
transcript.pyannote[527].start 5635.45409375
transcript.pyannote[527].end 5637.04034375
transcript.pyannote[528].speaker SPEAKER_23
transcript.pyannote[528].start 5637.68159375
transcript.pyannote[528].end 5640.80346875
transcript.pyannote[529].speaker SPEAKER_23
transcript.pyannote[529].start 5641.05659375
transcript.pyannote[529].end 5642.35596875
transcript.pyannote[530].speaker SPEAKER_23
transcript.pyannote[530].start 5643.41909375
transcript.pyannote[530].end 5644.58346875
transcript.pyannote[531].speaker SPEAKER_23
transcript.pyannote[531].start 5645.83221875
transcript.pyannote[531].end 5647.35096875
transcript.pyannote[532].speaker SPEAKER_23
transcript.pyannote[532].start 5648.29596875
transcript.pyannote[532].end 5649.67971875
transcript.pyannote[533].speaker SPEAKER_23
transcript.pyannote[533].start 5651.45159375
transcript.pyannote[533].end 5652.85221875
transcript.pyannote[534].speaker SPEAKER_23
transcript.pyannote[534].start 5653.08846875
transcript.pyannote[534].end 5653.94909375
transcript.pyannote[535].speaker SPEAKER_23
transcript.pyannote[535].start 5655.99096875
transcript.pyannote[535].end 5658.01596875
transcript.pyannote[536].speaker SPEAKER_23
transcript.pyannote[536].start 5658.48846875
transcript.pyannote[536].end 5660.44596875
transcript.pyannote[537].speaker SPEAKER_23
transcript.pyannote[537].start 5661.03659375
transcript.pyannote[537].end 5663.58471875
transcript.pyannote[538].speaker SPEAKER_23
transcript.pyannote[538].start 5664.25971875
transcript.pyannote[538].end 5667.71909375
transcript.pyannote[539].speaker SPEAKER_23
transcript.pyannote[539].start 5668.14096875
transcript.pyannote[539].end 5669.25471875
transcript.pyannote[540].speaker SPEAKER_23
transcript.pyannote[540].start 5669.69346875
transcript.pyannote[540].end 5670.87471875
transcript.pyannote[541].speaker SPEAKER_23
transcript.pyannote[541].start 5672.51159375
transcript.pyannote[541].end 5673.76034375
transcript.pyannote[542].speaker SPEAKER_23
transcript.pyannote[542].start 5674.03034375
transcript.pyannote[542].end 5677.03409375
transcript.pyannote[543].speaker SPEAKER_23
transcript.pyannote[543].start 5677.54034375
transcript.pyannote[543].end 5679.61596875
transcript.pyannote[544].speaker SPEAKER_23
transcript.pyannote[544].start 5681.57346875
transcript.pyannote[544].end 5687.63159375
transcript.pyannote[545].speaker SPEAKER_23
transcript.pyannote[545].start 5687.78346875
transcript.pyannote[545].end 5690.02784375
transcript.pyannote[546].speaker SPEAKER_23
transcript.pyannote[546].start 5690.82096875
transcript.pyannote[546].end 5695.27596875
transcript.pyannote[547].speaker SPEAKER_23
transcript.pyannote[547].start 5695.74846875
transcript.pyannote[547].end 5696.28846875
transcript.pyannote[548].speaker SPEAKER_23
transcript.pyannote[548].start 5696.44034375
transcript.pyannote[548].end 5699.71409375
transcript.pyannote[549].speaker SPEAKER_23
transcript.pyannote[549].start 5700.06846875
transcript.pyannote[549].end 5701.30034375
transcript.pyannote[550].speaker SPEAKER_23
transcript.pyannote[550].start 5702.54909375
transcript.pyannote[550].end 5705.21534375
transcript.pyannote[551].speaker SPEAKER_23
transcript.pyannote[551].start 5705.38409375
transcript.pyannote[551].end 5705.99159375
transcript.pyannote[552].speaker SPEAKER_23
transcript.pyannote[552].start 5706.61596875
transcript.pyannote[552].end 5708.18534375
transcript.pyannote[553].speaker SPEAKER_23
transcript.pyannote[553].start 5708.55659375
transcript.pyannote[553].end 5713.04534375
transcript.pyannote[554].speaker SPEAKER_09
transcript.pyannote[554].start 5713.16346875
transcript.pyannote[554].end 5713.73721875
transcript.pyannote[555].speaker SPEAKER_23
transcript.pyannote[555].start 5713.73721875
transcript.pyannote[555].end 5729.21159375
transcript.pyannote[556].speaker SPEAKER_23
transcript.pyannote[556].start 5729.97096875
transcript.pyannote[556].end 5735.11784375
transcript.pyannote[557].speaker SPEAKER_09
transcript.pyannote[557].start 5735.11784375
transcript.pyannote[557].end 5736.53534375
transcript.pyannote[558].speaker SPEAKER_23
transcript.pyannote[558].start 5735.64096875
transcript.pyannote[558].end 5736.19784375
transcript.pyannote[559].speaker SPEAKER_23
transcript.pyannote[559].start 5736.38346875
transcript.pyannote[559].end 5738.02034375
transcript.pyannote[560].speaker SPEAKER_23
transcript.pyannote[560].start 5738.50971875
transcript.pyannote[560].end 5740.31534375
transcript.pyannote[561].speaker SPEAKER_23
transcript.pyannote[561].start 5740.65284375
transcript.pyannote[561].end 5742.08721875
transcript.pyannote[562].speaker SPEAKER_23
transcript.pyannote[562].start 5742.47534375
transcript.pyannote[562].end 5742.91409375
transcript.pyannote[563].speaker SPEAKER_23
transcript.pyannote[563].start 5743.20096875
transcript.pyannote[563].end 5745.71534375
transcript.pyannote[564].speaker SPEAKER_23
transcript.pyannote[564].start 5746.47471875
transcript.pyannote[564].end 5746.94721875
transcript.pyannote[565].speaker SPEAKER_09
transcript.pyannote[565].start 5746.94721875
transcript.pyannote[565].end 5747.26784375
transcript.pyannote[566].speaker SPEAKER_23
transcript.pyannote[566].start 5748.31409375
transcript.pyannote[566].end 5749.76534375
transcript.pyannote[567].speaker SPEAKER_23
transcript.pyannote[567].start 5750.33909375
transcript.pyannote[567].end 5751.21659375
transcript.pyannote[568].speaker SPEAKER_09
transcript.pyannote[568].start 5751.45284375
transcript.pyannote[568].end 5751.77346875
transcript.pyannote[569].speaker SPEAKER_23
transcript.pyannote[569].start 5751.77346875
transcript.pyannote[569].end 5752.88721875
transcript.pyannote[570].speaker SPEAKER_23
transcript.pyannote[570].start 5753.07284375
transcript.pyannote[570].end 5756.61659375
transcript.pyannote[571].speaker SPEAKER_23
transcript.pyannote[571].start 5757.35909375
transcript.pyannote[571].end 5760.22784375
transcript.pyannote[572].speaker SPEAKER_38
transcript.pyannote[572].start 5760.22784375
transcript.pyannote[572].end 5760.56534375
transcript.pyannote[573].speaker SPEAKER_23
transcript.pyannote[573].start 5760.91971875
transcript.pyannote[573].end 5761.64534375
transcript.pyannote[574].speaker SPEAKER_23
transcript.pyannote[574].start 5762.70846875
transcript.pyannote[574].end 5763.16409375
transcript.pyannote[575].speaker SPEAKER_23
transcript.pyannote[575].start 5763.55221875
transcript.pyannote[575].end 5769.23909375
transcript.pyannote[576].speaker SPEAKER_23
transcript.pyannote[576].start 5769.89721875
transcript.pyannote[576].end 5770.47096875
transcript.pyannote[577].speaker SPEAKER_23
transcript.pyannote[577].start 5770.85909375
transcript.pyannote[577].end 5774.36909375
transcript.pyannote[578].speaker SPEAKER_38
transcript.pyannote[578].start 5774.47034375
transcript.pyannote[578].end 5774.65596875
transcript.pyannote[579].speaker SPEAKER_23
transcript.pyannote[579].start 5775.12846875
transcript.pyannote[579].end 5775.83721875
transcript.pyannote[580].speaker SPEAKER_23
transcript.pyannote[580].start 5776.02284375
transcript.pyannote[580].end 5777.10284375
transcript.pyannote[581].speaker SPEAKER_23
transcript.pyannote[581].start 5777.52471875
transcript.pyannote[581].end 5779.75221875
transcript.pyannote[582].speaker SPEAKER_23
transcript.pyannote[582].start 5780.32596875
transcript.pyannote[582].end 5782.68846875
transcript.pyannote[583].speaker SPEAKER_08
transcript.pyannote[583].start 5782.68846875
transcript.pyannote[583].end 5782.80659375
transcript.pyannote[584].speaker SPEAKER_23
transcript.pyannote[584].start 5782.80659375
transcript.pyannote[584].end 5786.62034375
transcript.pyannote[585].speaker SPEAKER_08
transcript.pyannote[585].start 5786.62034375
transcript.pyannote[585].end 5830.03971875
transcript.pyannote[586].speaker SPEAKER_08
transcript.pyannote[586].start 5830.27596875
transcript.pyannote[586].end 5830.95096875
transcript.pyannote[587].speaker SPEAKER_23
transcript.pyannote[587].start 5830.61346875
transcript.pyannote[587].end 5831.96346875
transcript.pyannote[588].speaker SPEAKER_23
transcript.pyannote[588].start 5832.41909375
transcript.pyannote[588].end 5834.17409375
transcript.pyannote[589].speaker SPEAKER_23
transcript.pyannote[589].start 5834.37659375
transcript.pyannote[589].end 5835.87846875
transcript.pyannote[590].speaker SPEAKER_23
transcript.pyannote[590].start 5836.45221875
transcript.pyannote[590].end 5843.57346875
transcript.pyannote[591].speaker SPEAKER_38
transcript.pyannote[591].start 5843.97846875
transcript.pyannote[591].end 5844.46784375
transcript.pyannote[592].speaker SPEAKER_23
transcript.pyannote[592].start 5844.46784375
transcript.pyannote[592].end 5847.40409375
transcript.pyannote[593].speaker SPEAKER_23
transcript.pyannote[593].start 5848.12971875
transcript.pyannote[593].end 5850.28971875
transcript.pyannote[594].speaker SPEAKER_23
transcript.pyannote[594].start 5851.23471875
transcript.pyannote[594].end 5855.25096875
transcript.pyannote[595].speaker SPEAKER_09
transcript.pyannote[595].start 5854.15409375
transcript.pyannote[595].end 5854.76159375
transcript.pyannote[596].speaker SPEAKER_09
transcript.pyannote[596].start 5855.25096875
transcript.pyannote[596].end 5856.04409375
transcript.pyannote[597].speaker SPEAKER_23
transcript.pyannote[597].start 5855.77409375
transcript.pyannote[597].end 5856.63471875
transcript.pyannote[598].speaker SPEAKER_09
transcript.pyannote[598].start 5856.58409375
transcript.pyannote[598].end 5856.60096875
transcript.pyannote[599].speaker SPEAKER_09
transcript.pyannote[599].start 5856.63471875
transcript.pyannote[599].end 5857.05659375
transcript.pyannote[600].speaker SPEAKER_23
transcript.pyannote[600].start 5857.34346875
transcript.pyannote[600].end 5858.79471875
transcript.pyannote[601].speaker SPEAKER_23
transcript.pyannote[601].start 5860.06034375
transcript.pyannote[601].end 5862.79409375
transcript.pyannote[602].speaker SPEAKER_09
transcript.pyannote[602].start 5862.79409375
transcript.pyannote[602].end 5863.58721875
transcript.pyannote[603].speaker SPEAKER_23
transcript.pyannote[603].start 5863.55346875
transcript.pyannote[603].end 5865.57846875
transcript.pyannote[604].speaker SPEAKER_09
transcript.pyannote[604].start 5863.60409375
transcript.pyannote[604].end 5863.62096875
transcript.pyannote[605].speaker SPEAKER_09
transcript.pyannote[605].start 5865.57846875
transcript.pyannote[605].end 5865.67971875
transcript.pyannote[606].speaker SPEAKER_23
transcript.pyannote[606].start 5865.96659375
transcript.pyannote[606].end 5867.14784375
transcript.pyannote[607].speaker SPEAKER_23
transcript.pyannote[607].start 5868.07596875
transcript.pyannote[607].end 5869.20659375
transcript.pyannote[608].speaker SPEAKER_23
transcript.pyannote[608].start 5869.91534375
transcript.pyannote[608].end 5870.40471875
transcript.pyannote[609].speaker SPEAKER_23
transcript.pyannote[609].start 5871.63659375
transcript.pyannote[609].end 5872.15971875
transcript.pyannote[610].speaker SPEAKER_23
transcript.pyannote[610].start 5873.32409375
transcript.pyannote[610].end 5876.15909375
transcript.pyannote[611].speaker SPEAKER_23
transcript.pyannote[611].start 5876.27721875
transcript.pyannote[611].end 5876.98596875
transcript.pyannote[612].speaker SPEAKER_23
transcript.pyannote[612].start 5878.72409375
transcript.pyannote[612].end 5880.58034375
transcript.pyannote[613].speaker SPEAKER_23
transcript.pyannote[613].start 5881.03596875
transcript.pyannote[613].end 5882.06534375
transcript.pyannote[614].speaker SPEAKER_23
transcript.pyannote[614].start 5883.24659375
transcript.pyannote[614].end 5883.68534375
transcript.pyannote[615].speaker SPEAKER_23
transcript.pyannote[615].start 5884.00596875
transcript.pyannote[615].end 5885.33909375
transcript.pyannote[616].speaker SPEAKER_23
transcript.pyannote[616].start 5886.18284375
transcript.pyannote[616].end 5886.55409375
transcript.pyannote[617].speaker SPEAKER_23
transcript.pyannote[617].start 5887.73534375
transcript.pyannote[617].end 5888.89971875
transcript.pyannote[618].speaker SPEAKER_23
transcript.pyannote[618].start 5889.72659375
transcript.pyannote[618].end 5891.34659375
transcript.pyannote[619].speaker SPEAKER_23
transcript.pyannote[619].start 5892.12284375
transcript.pyannote[619].end 5893.08471875
transcript.pyannote[620].speaker SPEAKER_23
transcript.pyannote[620].start 5893.21971875
transcript.pyannote[620].end 5894.09721875
transcript.pyannote[621].speaker SPEAKER_23
transcript.pyannote[621].start 5894.94096875
transcript.pyannote[621].end 5895.71721875
transcript.pyannote[622].speaker SPEAKER_23
transcript.pyannote[622].start 5897.43846875
transcript.pyannote[622].end 5897.84346875
transcript.pyannote[623].speaker SPEAKER_23
transcript.pyannote[623].start 5898.73784375
transcript.pyannote[623].end 5899.75034375
transcript.pyannote[624].speaker SPEAKER_23
transcript.pyannote[624].start 5900.40846875
transcript.pyannote[624].end 5901.45471875
transcript.pyannote[625].speaker SPEAKER_23
transcript.pyannote[625].start 5902.28159375
transcript.pyannote[625].end 5903.00721875
transcript.pyannote[626].speaker SPEAKER_09
transcript.pyannote[626].start 5903.31096875
transcript.pyannote[626].end 5903.68221875
transcript.pyannote[627].speaker SPEAKER_23
transcript.pyannote[627].start 5905.30221875
transcript.pyannote[627].end 5915.32596875
transcript.pyannote[628].speaker SPEAKER_23
transcript.pyannote[628].start 5916.65909375
transcript.pyannote[628].end 5925.99096875
transcript.pyannote[629].speaker SPEAKER_23
transcript.pyannote[629].start 5926.39596875
transcript.pyannote[629].end 5930.59784375
transcript.pyannote[630].speaker SPEAKER_23
transcript.pyannote[630].start 5931.07034375
transcript.pyannote[630].end 5932.67346875
transcript.pyannote[631].speaker SPEAKER_23
transcript.pyannote[631].start 5933.39909375
transcript.pyannote[631].end 5934.71534375
transcript.pyannote[632].speaker SPEAKER_23
transcript.pyannote[632].start 5935.67721875
transcript.pyannote[632].end 5936.08221875
transcript.pyannote[633].speaker SPEAKER_23
transcript.pyannote[633].start 5936.92596875
transcript.pyannote[633].end 5937.60096875
transcript.pyannote[634].speaker SPEAKER_23
transcript.pyannote[634].start 5938.52909375
transcript.pyannote[634].end 5939.06909375
transcript.pyannote[635].speaker SPEAKER_23
transcript.pyannote[635].start 5940.26721875
transcript.pyannote[635].end 5942.00534375
transcript.pyannote[636].speaker SPEAKER_23
transcript.pyannote[636].start 5942.27534375
transcript.pyannote[636].end 5942.95034375
transcript.pyannote[637].speaker SPEAKER_23
transcript.pyannote[637].start 5945.53221875
transcript.pyannote[637].end 5948.35034375
transcript.pyannote[638].speaker SPEAKER_23
transcript.pyannote[638].start 5950.44284375
transcript.pyannote[638].end 5952.26534375
transcript.pyannote[639].speaker SPEAKER_23
transcript.pyannote[639].start 5952.56909375
transcript.pyannote[639].end 5958.72846875
transcript.pyannote[640].speaker SPEAKER_38
transcript.pyannote[640].start 5958.72846875
transcript.pyannote[640].end 5958.94784375
transcript.pyannote[641].speaker SPEAKER_23
transcript.pyannote[641].start 5959.42034375
transcript.pyannote[641].end 5961.66471875
transcript.pyannote[642].speaker SPEAKER_23
transcript.pyannote[642].start 5962.18784375
transcript.pyannote[642].end 5963.72346875
transcript.pyannote[643].speaker SPEAKER_23
transcript.pyannote[643].start 5964.31409375
transcript.pyannote[643].end 5966.18721875
transcript.pyannote[644].speaker SPEAKER_23
transcript.pyannote[644].start 5966.55846875
transcript.pyannote[644].end 5977.03784375
transcript.pyannote[645].speaker SPEAKER_23
transcript.pyannote[645].start 5977.15596875
transcript.pyannote[645].end 5981.25659375
transcript.pyannote[646].speaker SPEAKER_23
transcript.pyannote[646].start 5981.91471875
transcript.pyannote[646].end 5985.30659375
transcript.pyannote[647].speaker SPEAKER_23
transcript.pyannote[647].start 5985.98159375
transcript.pyannote[647].end 5987.23034375
transcript.pyannote[648].speaker SPEAKER_23
transcript.pyannote[648].start 5987.75346875
transcript.pyannote[648].end 5988.31034375
transcript.pyannote[649].speaker SPEAKER_23
transcript.pyannote[649].start 5988.68159375
transcript.pyannote[649].end 5989.69409375
transcript.pyannote[650].speaker SPEAKER_23
transcript.pyannote[650].start 5990.72346875
transcript.pyannote[650].end 5992.71471875
transcript.pyannote[651].speaker SPEAKER_09
transcript.pyannote[651].start 5992.71471875
transcript.pyannote[651].end 5993.42346875
transcript.pyannote[652].speaker SPEAKER_23
transcript.pyannote[652].start 5993.54159375
transcript.pyannote[652].end 5997.33846875
transcript.pyannote[653].speaker SPEAKER_23
transcript.pyannote[653].start 5999.44784375
transcript.pyannote[653].end 6002.33346875
transcript.pyannote[654].speaker SPEAKER_23
transcript.pyannote[654].start 6002.80596875
transcript.pyannote[654].end 6004.98284375
transcript.pyannote[655].speaker SPEAKER_23
transcript.pyannote[655].start 6006.50159375
transcript.pyannote[655].end 6007.80096875
transcript.pyannote[656].speaker SPEAKER_23
transcript.pyannote[656].start 6007.95284375
transcript.pyannote[656].end 6008.91471875
transcript.pyannote[657].speaker SPEAKER_23
transcript.pyannote[657].start 6009.72471875
transcript.pyannote[657].end 6012.13784375
transcript.pyannote[658].speaker SPEAKER_23
transcript.pyannote[658].start 6013.57221875
transcript.pyannote[658].end 6015.31034375
transcript.pyannote[659].speaker SPEAKER_23
transcript.pyannote[659].start 6017.03159375
transcript.pyannote[659].end 6019.20846875
transcript.pyannote[660].speaker SPEAKER_09
transcript.pyannote[660].start 6019.25909375
transcript.pyannote[660].end 6020.25471875
transcript.pyannote[661].speaker SPEAKER_23
transcript.pyannote[661].start 6020.71034375
transcript.pyannote[661].end 6021.80721875
transcript.pyannote[662].speaker SPEAKER_23
transcript.pyannote[662].start 6022.39784375
transcript.pyannote[662].end 6023.56221875
transcript.pyannote[663].speaker SPEAKER_23
transcript.pyannote[663].start 6023.64659375
transcript.pyannote[663].end 6026.07659375
transcript.pyannote[664].speaker SPEAKER_23
transcript.pyannote[664].start 6027.30846875
transcript.pyannote[664].end 6029.23221875
transcript.pyannote[665].speaker SPEAKER_23
transcript.pyannote[665].start 6030.80159375
transcript.pyannote[665].end 6031.54409375
transcript.pyannote[666].speaker SPEAKER_09
transcript.pyannote[666].start 6031.54409375
transcript.pyannote[666].end 6032.30346875
transcript.pyannote[667].speaker SPEAKER_23
transcript.pyannote[667].start 6033.07971875
transcript.pyannote[667].end 6035.29034375
transcript.pyannote[668].speaker SPEAKER_09
transcript.pyannote[668].start 6035.29034375
transcript.pyannote[668].end 6035.56034375
transcript.pyannote[669].speaker SPEAKER_09
transcript.pyannote[669].start 6035.71221875
transcript.pyannote[669].end 6035.96534375
transcript.pyannote[670].speaker SPEAKER_23
transcript.pyannote[670].start 6036.26909375
transcript.pyannote[670].end 6044.45346875
transcript.pyannote[671].speaker SPEAKER_09
transcript.pyannote[671].start 6042.14159375
transcript.pyannote[671].end 6042.22596875
transcript.pyannote[672].speaker SPEAKER_38
transcript.pyannote[672].start 6042.22596875
transcript.pyannote[672].end 6042.36096875
transcript.pyannote[673].speaker SPEAKER_38
transcript.pyannote[673].start 6042.46221875
transcript.pyannote[673].end 6042.69846875
transcript.pyannote[674].speaker SPEAKER_38
transcript.pyannote[674].start 6044.36909375
transcript.pyannote[674].end 6044.77409375
transcript.pyannote[675].speaker SPEAKER_23
transcript.pyannote[675].start 6044.77409375
transcript.pyannote[675].end 6046.46159375
transcript.pyannote[676].speaker SPEAKER_23
transcript.pyannote[676].start 6047.01846875
transcript.pyannote[676].end 6048.55409375
transcript.pyannote[677].speaker SPEAKER_23
transcript.pyannote[677].start 6049.04346875
transcript.pyannote[677].end 6050.30909375
transcript.pyannote[678].speaker SPEAKER_23
transcript.pyannote[678].start 6051.11909375
transcript.pyannote[678].end 6053.61659375
transcript.pyannote[679].speaker SPEAKER_13
transcript.pyannote[679].start 6053.85284375
transcript.pyannote[679].end 6053.93721875
transcript.pyannote[680].speaker SPEAKER_08
transcript.pyannote[680].start 6053.93721875
transcript.pyannote[680].end 6054.12284375
transcript.pyannote[681].speaker SPEAKER_23
transcript.pyannote[681].start 6054.12284375
transcript.pyannote[681].end 6054.13971875
transcript.pyannote[682].speaker SPEAKER_08
transcript.pyannote[682].start 6054.13971875
transcript.pyannote[682].end 6054.20721875
transcript.pyannote[683].speaker SPEAKER_23
transcript.pyannote[683].start 6054.20721875
transcript.pyannote[683].end 6054.61221875
transcript.pyannote[684].speaker SPEAKER_08
transcript.pyannote[684].start 6054.61221875
transcript.pyannote[684].end 6056.08034375
transcript.pyannote[685].speaker SPEAKER_13
transcript.pyannote[685].start 6056.40096875
transcript.pyannote[685].end 6060.07971875
transcript.pyannote[686].speaker SPEAKER_13
transcript.pyannote[686].start 6060.85596875
transcript.pyannote[686].end 6063.53909375
transcript.pyannote[687].speaker SPEAKER_21
transcript.pyannote[687].start 6072.38159375
transcript.pyannote[687].end 6079.46909375
transcript.pyannote[688].speaker SPEAKER_13
transcript.pyannote[688].start 6086.32034375
transcript.pyannote[688].end 6087.60284375
transcript.pyannote[689].speaker SPEAKER_26
transcript.pyannote[689].start 6088.46346875
transcript.pyannote[689].end 6089.34096875
transcript.pyannote[690].speaker SPEAKER_21
transcript.pyannote[690].start 6089.96534375
transcript.pyannote[690].end 6095.66909375
transcript.pyannote[691].speaker SPEAKER_21
transcript.pyannote[691].start 6096.22596875
transcript.pyannote[691].end 6182.71034375
transcript.pyannote[692].speaker SPEAKER_21
transcript.pyannote[692].start 6183.50346875
transcript.pyannote[692].end 6214.77284375
transcript.pyannote[693].speaker SPEAKER_21
transcript.pyannote[693].start 6214.90784375
transcript.pyannote[693].end 6229.01534375
transcript.pyannote[694].speaker SPEAKER_21
transcript.pyannote[694].start 6230.34846875
transcript.pyannote[694].end 6252.11721875
transcript.pyannote[695].speaker SPEAKER_21
transcript.pyannote[695].start 6252.47159375
transcript.pyannote[695].end 6259.03596875
transcript.pyannote[696].speaker SPEAKER_18
transcript.pyannote[696].start 6259.03596875
transcript.pyannote[696].end 6259.62659375
transcript.pyannote[697].speaker SPEAKER_38
transcript.pyannote[697].start 6259.86284375
transcript.pyannote[697].end 6260.31846875
transcript.pyannote[698].speaker SPEAKER_21
transcript.pyannote[698].start 6260.43659375
transcript.pyannote[698].end 6260.45346875
transcript.pyannote[699].speaker SPEAKER_18
transcript.pyannote[699].start 6260.45346875
transcript.pyannote[699].end 6271.87784375
transcript.pyannote[700].speaker SPEAKER_21
transcript.pyannote[700].start 6271.87784375
transcript.pyannote[700].end 6282.98159375
transcript.pyannote[701].speaker SPEAKER_21
transcript.pyannote[701].start 6283.53846875
transcript.pyannote[701].end 6344.32221875
transcript.pyannote[702].speaker SPEAKER_21
transcript.pyannote[702].start 6344.91284375
transcript.pyannote[702].end 6393.00659375
transcript.pyannote[703].speaker SPEAKER_38
transcript.pyannote[703].start 6363.07034375
transcript.pyannote[703].end 6363.45846875
transcript.pyannote[704].speaker SPEAKER_00
transcript.pyannote[704].start 6363.45846875
transcript.pyannote[704].end 6363.55971875
transcript.pyannote[705].speaker SPEAKER_26
transcript.pyannote[705].start 6392.65221875
transcript.pyannote[705].end 6439.02471875
transcript.pyannote[706].speaker SPEAKER_21
transcript.pyannote[706].start 6398.27159375
transcript.pyannote[706].end 6399.73971875
transcript.pyannote[707].speaker SPEAKER_00
transcript.pyannote[707].start 6399.73971875
transcript.pyannote[707].end 6399.75659375
transcript.pyannote[708].speaker SPEAKER_21
transcript.pyannote[708].start 6400.02659375
transcript.pyannote[708].end 6400.36409375
transcript.pyannote[709].speaker SPEAKER_00
transcript.pyannote[709].start 6400.36409375
transcript.pyannote[709].end 6400.38096875
transcript.pyannote[710].speaker SPEAKER_42
transcript.pyannote[710].start 6402.57471875
transcript.pyannote[710].end 6403.97534375
transcript.pyannote[711].speaker SPEAKER_25
transcript.pyannote[711].start 6403.97534375
transcript.pyannote[711].end 6404.04284375
transcript.pyannote[712].speaker SPEAKER_00
transcript.pyannote[712].start 6404.04284375
transcript.pyannote[712].end 6404.22846875
transcript.pyannote[713].speaker SPEAKER_00
transcript.pyannote[713].start 6419.29784375
transcript.pyannote[713].end 6419.63534375
transcript.pyannote[714].speaker SPEAKER_20
transcript.pyannote[714].start 6429.49034375
transcript.pyannote[714].end 6429.84471875
transcript.pyannote[715].speaker SPEAKER_21
transcript.pyannote[715].start 6439.02471875
transcript.pyannote[715].end 6457.21596875
transcript.pyannote[716].speaker SPEAKER_38
transcript.pyannote[716].start 6447.14159375
transcript.pyannote[716].end 6447.69846875
transcript.pyannote[717].speaker SPEAKER_00
transcript.pyannote[717].start 6447.69846875
transcript.pyannote[717].end 6447.74909375
transcript.pyannote[718].speaker SPEAKER_00
transcript.pyannote[718].start 6448.62659375
transcript.pyannote[718].end 6448.64346875
transcript.pyannote[719].speaker SPEAKER_38
transcript.pyannote[719].start 6448.64346875
transcript.pyannote[719].end 6448.99784375
transcript.pyannote[720].speaker SPEAKER_00
transcript.pyannote[720].start 6448.99784375
transcript.pyannote[720].end 6449.03159375
transcript.pyannote[721].speaker SPEAKER_21
transcript.pyannote[721].start 6457.63784375
transcript.pyannote[721].end 6465.61971875
transcript.pyannote[722].speaker SPEAKER_21
transcript.pyannote[722].start 6466.31159375
transcript.pyannote[722].end 6470.20971875
transcript.pyannote[723].speaker SPEAKER_18
transcript.pyannote[723].start 6471.30659375
transcript.pyannote[723].end 6472.69034375
transcript.pyannote[724].speaker SPEAKER_21
transcript.pyannote[724].start 6472.50471875
transcript.pyannote[724].end 6538.06409375
transcript.pyannote[725].speaker SPEAKER_38
transcript.pyannote[725].start 6496.55159375
transcript.pyannote[725].end 6496.65284375
transcript.pyannote[726].speaker SPEAKER_21
transcript.pyannote[726].start 6538.21596875
transcript.pyannote[726].end 6573.09659375
transcript.pyannote[727].speaker SPEAKER_38
transcript.pyannote[727].start 6542.19846875
transcript.pyannote[727].end 6542.60346875
transcript.pyannote[728].speaker SPEAKER_21
transcript.pyannote[728].start 6574.81784375
transcript.pyannote[728].end 6575.83034375
transcript.pyannote[729].speaker SPEAKER_21
transcript.pyannote[729].start 6576.58971875
transcript.pyannote[729].end 6581.53409375
transcript.pyannote[730].speaker SPEAKER_26
transcript.pyannote[730].start 6579.79596875
transcript.pyannote[730].end 6580.35284375
transcript.pyannote[731].speaker SPEAKER_26
transcript.pyannote[731].start 6581.11221875
transcript.pyannote[731].end 6583.54221875
transcript.pyannote[732].speaker SPEAKER_21
transcript.pyannote[732].start 6582.49596875
transcript.pyannote[732].end 6584.33534375
transcript.pyannote[733].speaker SPEAKER_26
transcript.pyannote[733].start 6583.62659375
transcript.pyannote[733].end 6584.40284375
transcript.pyannote[734].speaker SPEAKER_26
transcript.pyannote[734].start 6584.70659375
transcript.pyannote[734].end 6589.76909375
transcript.pyannote[735].speaker SPEAKER_38
transcript.pyannote[735].start 6589.76909375
transcript.pyannote[735].end 6589.85346875
transcript.pyannote[736].speaker SPEAKER_26
transcript.pyannote[736].start 6589.85346875
transcript.pyannote[736].end 6599.42159375
transcript.pyannote[737].speaker SPEAKER_38
transcript.pyannote[737].start 6589.87034375
transcript.pyannote[737].end 6590.00534375
transcript.pyannote[738].speaker SPEAKER_38
transcript.pyannote[738].start 6596.48534375
transcript.pyannote[738].end 6597.21096875
transcript.pyannote[739].speaker SPEAKER_38
transcript.pyannote[739].start 6597.41346875
transcript.pyannote[739].end 6598.81409375
transcript.pyannote[740].speaker SPEAKER_26
transcript.pyannote[740].start 6599.55659375
transcript.pyannote[740].end 6604.02846875
transcript.pyannote[741].speaker SPEAKER_38
transcript.pyannote[741].start 6599.64096875
transcript.pyannote[741].end 6600.02909375
transcript.pyannote[742].speaker SPEAKER_21
transcript.pyannote[742].start 6600.02909375
transcript.pyannote[742].end 6602.18909375
transcript.pyannote[743].speaker SPEAKER_21
transcript.pyannote[743].start 6604.02846875
transcript.pyannote[743].end 6605.31096875
transcript.pyannote[744].speaker SPEAKER_26
transcript.pyannote[744].start 6604.65284375
transcript.pyannote[744].end 6605.90159375
transcript.pyannote[745].speaker SPEAKER_21
transcript.pyannote[745].start 6605.59784375
transcript.pyannote[745].end 6616.14471875
transcript.pyannote[746].speaker SPEAKER_21
transcript.pyannote[746].start 6616.90409375
transcript.pyannote[746].end 6619.68846875
transcript.pyannote[747].speaker SPEAKER_26
transcript.pyannote[747].start 6620.16096875
transcript.pyannote[747].end 6621.07221875
transcript.pyannote[748].speaker SPEAKER_21
transcript.pyannote[748].start 6620.70096875
transcript.pyannote[748].end 6636.63096875
transcript.pyannote[749].speaker SPEAKER_13
transcript.pyannote[749].start 6636.63096875
transcript.pyannote[749].end 6639.31409375
transcript.pyannote[750].speaker SPEAKER_13
transcript.pyannote[750].start 6640.83284375
transcript.pyannote[750].end 6653.18534375
transcript.pyannote[751].speaker SPEAKER_17
transcript.pyannote[751].start 6656.59409375
transcript.pyannote[751].end 6658.97346875
transcript.pyannote[752].speaker SPEAKER_26
transcript.pyannote[752].start 6664.18784375
transcript.pyannote[752].end 6664.74471875
transcript.pyannote[753].speaker SPEAKER_17
transcript.pyannote[753].start 6665.01471875
transcript.pyannote[753].end 6665.60534375
transcript.pyannote[754].speaker SPEAKER_26
transcript.pyannote[754].start 6665.60534375
transcript.pyannote[754].end 6665.97659375
transcript.pyannote[755].speaker SPEAKER_17
transcript.pyannote[755].start 6666.44909375
transcript.pyannote[755].end 6668.76096875
transcript.pyannote[756].speaker SPEAKER_17
transcript.pyannote[756].start 6669.67221875
transcript.pyannote[756].end 6670.58346875
transcript.pyannote[757].speaker SPEAKER_17
transcript.pyannote[757].start 6671.19096875
transcript.pyannote[757].end 6672.25409375
transcript.pyannote[758].speaker SPEAKER_17
transcript.pyannote[758].start 6672.74346875
transcript.pyannote[758].end 6674.85284375
transcript.pyannote[759].speaker SPEAKER_26
transcript.pyannote[759].start 6675.00471875
transcript.pyannote[759].end 6677.33346875
transcript.pyannote[760].speaker SPEAKER_17
transcript.pyannote[760].start 6676.59096875
transcript.pyannote[760].end 6679.67909375
transcript.pyannote[761].speaker SPEAKER_26
transcript.pyannote[761].start 6678.44721875
transcript.pyannote[761].end 6678.68346875
transcript.pyannote[762].speaker SPEAKER_17
transcript.pyannote[762].start 6679.89846875
transcript.pyannote[762].end 6682.37909375
transcript.pyannote[763].speaker SPEAKER_17
transcript.pyannote[763].start 6685.77096875
transcript.pyannote[763].end 6686.15909375
transcript.pyannote[764].speaker SPEAKER_26
transcript.pyannote[764].start 6686.15909375
transcript.pyannote[764].end 6690.85034375
transcript.pyannote[765].speaker SPEAKER_26
transcript.pyannote[765].start 6690.93471875
transcript.pyannote[765].end 6691.40721875
transcript.pyannote[766].speaker SPEAKER_17
transcript.pyannote[766].start 6691.40721875
transcript.pyannote[766].end 6698.91659375
transcript.pyannote[767].speaker SPEAKER_26
transcript.pyannote[767].start 6691.45784375
transcript.pyannote[767].end 6692.52096875
transcript.pyannote[768].speaker SPEAKER_38
transcript.pyannote[768].start 6692.52096875
transcript.pyannote[768].end 6692.68971875
transcript.pyannote[769].speaker SPEAKER_38
transcript.pyannote[769].start 6694.25909375
transcript.pyannote[769].end 6694.69784375
transcript.pyannote[770].speaker SPEAKER_38
transcript.pyannote[770].start 6698.79846875
transcript.pyannote[770].end 6699.54096875
transcript.pyannote[771].speaker SPEAKER_17
transcript.pyannote[771].start 6699.22034375
transcript.pyannote[771].end 6710.05409375
transcript.pyannote[772].speaker SPEAKER_17
transcript.pyannote[772].start 6710.37471875
transcript.pyannote[772].end 6712.85534375
transcript.pyannote[773].speaker SPEAKER_38
transcript.pyannote[773].start 6713.98596875
transcript.pyannote[773].end 6714.35721875
transcript.pyannote[774].speaker SPEAKER_17
transcript.pyannote[774].start 6714.94784375
transcript.pyannote[774].end 6715.72409375
transcript.pyannote[775].speaker SPEAKER_38
transcript.pyannote[775].start 6715.72409375
transcript.pyannote[775].end 6716.39909375
transcript.pyannote[776].speaker SPEAKER_17
transcript.pyannote[776].start 6716.17971875
transcript.pyannote[776].end 6722.55846875
transcript.pyannote[777].speaker SPEAKER_17
transcript.pyannote[777].start 6723.48659375
transcript.pyannote[777].end 6732.83534375
transcript.pyannote[778].speaker SPEAKER_17
transcript.pyannote[778].start 6733.51034375
transcript.pyannote[778].end 6744.63096875
transcript.pyannote[779].speaker SPEAKER_38
transcript.pyannote[779].start 6737.25659375
transcript.pyannote[779].end 6737.56034375
transcript.pyannote[780].speaker SPEAKER_38
transcript.pyannote[780].start 6738.80909375
transcript.pyannote[780].end 6738.96096875
transcript.pyannote[781].speaker SPEAKER_38
transcript.pyannote[781].start 6739.09596875
transcript.pyannote[781].end 6740.14221875
transcript.pyannote[782].speaker SPEAKER_38
transcript.pyannote[782].start 6740.19284375
transcript.pyannote[782].end 6740.63159375
transcript.pyannote[783].speaker SPEAKER_17
transcript.pyannote[783].start 6745.01909375
transcript.pyannote[783].end 6745.50846875
transcript.pyannote[784].speaker SPEAKER_17
transcript.pyannote[784].start 6745.87971875
transcript.pyannote[784].end 6746.45346875
transcript.pyannote[785].speaker SPEAKER_17
transcript.pyannote[785].start 6747.43221875
transcript.pyannote[785].end 6758.23221875
transcript.pyannote[786].speaker SPEAKER_17
transcript.pyannote[786].start 6759.02534375
transcript.pyannote[786].end 6761.16846875
transcript.pyannote[787].speaker SPEAKER_11
transcript.pyannote[787].start 6760.67909375
transcript.pyannote[787].end 6761.62409375
transcript.pyannote[788].speaker SPEAKER_17
transcript.pyannote[788].start 6761.91096875
transcript.pyannote[788].end 6769.99409375
transcript.pyannote[789].speaker SPEAKER_26
transcript.pyannote[789].start 6770.78721875
transcript.pyannote[789].end 6780.45659375
transcript.pyannote[790].speaker SPEAKER_17
transcript.pyannote[790].start 6776.49096875
transcript.pyannote[790].end 6776.91284375
transcript.pyannote[791].speaker SPEAKER_17
transcript.pyannote[791].start 6780.45659375
transcript.pyannote[791].end 6780.99659375
transcript.pyannote[792].speaker SPEAKER_17
transcript.pyannote[792].start 6782.75159375
transcript.pyannote[792].end 6790.86846875
transcript.pyannote[793].speaker SPEAKER_17
transcript.pyannote[793].start 6792.48846875
transcript.pyannote[793].end 6793.04534375
transcript.pyannote[794].speaker SPEAKER_17
transcript.pyannote[794].start 6793.65284375
transcript.pyannote[794].end 6796.33596875
transcript.pyannote[795].speaker SPEAKER_26
transcript.pyannote[795].start 6797.24721875
transcript.pyannote[795].end 6798.86721875
transcript.pyannote[796].speaker SPEAKER_17
transcript.pyannote[796].start 6798.86721875
transcript.pyannote[796].end 6799.30596875
transcript.pyannote[797].speaker SPEAKER_26
transcript.pyannote[797].start 6798.91784375
transcript.pyannote[797].end 6800.25096875
transcript.pyannote[798].speaker SPEAKER_17
transcript.pyannote[798].start 6800.25096875
transcript.pyannote[798].end 6804.87471875
transcript.pyannote[799].speaker SPEAKER_17
transcript.pyannote[799].start 6804.97596875
transcript.pyannote[799].end 6806.83221875
transcript.pyannote[800].speaker SPEAKER_17
transcript.pyannote[800].start 6807.65909375
transcript.pyannote[800].end 6814.12221875
transcript.pyannote[801].speaker SPEAKER_17
transcript.pyannote[801].start 6814.15596875
transcript.pyannote[801].end 6817.51409375
transcript.pyannote[802].speaker SPEAKER_17
transcript.pyannote[802].start 6818.45909375
transcript.pyannote[802].end 6829.76534375
transcript.pyannote[803].speaker SPEAKER_26
transcript.pyannote[803].start 6830.23784375
transcript.pyannote[803].end 6831.43596875
transcript.pyannote[804].speaker SPEAKER_26
transcript.pyannote[804].start 6831.53721875
transcript.pyannote[804].end 6840.00846875
transcript.pyannote[805].speaker SPEAKER_17
transcript.pyannote[805].start 6837.57846875
transcript.pyannote[805].end 6841.40909375
transcript.pyannote[806].speaker SPEAKER_26
transcript.pyannote[806].start 6840.58221875
transcript.pyannote[806].end 6843.92346875
transcript.pyannote[807].speaker SPEAKER_17
transcript.pyannote[807].start 6843.21471875
transcript.pyannote[807].end 6845.49284375
transcript.pyannote[808].speaker SPEAKER_26
transcript.pyannote[808].start 6844.14284375
transcript.pyannote[808].end 6849.82971875
transcript.pyannote[809].speaker SPEAKER_17
transcript.pyannote[809].start 6848.80034375
transcript.pyannote[809].end 6863.73471875
transcript.pyannote[810].speaker SPEAKER_17
transcript.pyannote[810].start 6864.13971875
transcript.pyannote[810].end 6883.57971875
transcript.pyannote[811].speaker SPEAKER_00
transcript.pyannote[811].start 6877.82534375
transcript.pyannote[811].end 6878.16284375
transcript.pyannote[812].speaker SPEAKER_17
transcript.pyannote[812].start 6883.90034375
transcript.pyannote[812].end 6887.95034375
transcript.pyannote[813].speaker SPEAKER_17
transcript.pyannote[813].start 6888.35534375
transcript.pyannote[813].end 6891.96659375
transcript.pyannote[814].speaker SPEAKER_17
transcript.pyannote[814].start 6892.32096875
transcript.pyannote[814].end 6897.26534375
transcript.pyannote[815].speaker SPEAKER_17
transcript.pyannote[815].start 6897.83909375
transcript.pyannote[815].end 6899.66159375
transcript.pyannote[816].speaker SPEAKER_17
transcript.pyannote[816].start 6901.56846875
transcript.pyannote[816].end 6908.62221875
transcript.pyannote[817].speaker SPEAKER_17
transcript.pyannote[817].start 6908.82471875
transcript.pyannote[817].end 6911.84534375
transcript.pyannote[818].speaker SPEAKER_38
transcript.pyannote[818].start 6911.65971875
transcript.pyannote[818].end 6912.14909375
transcript.pyannote[819].speaker SPEAKER_17
transcript.pyannote[819].start 6912.30096875
transcript.pyannote[819].end 6920.53596875
transcript.pyannote[820].speaker SPEAKER_38
transcript.pyannote[820].start 6916.24971875
transcript.pyannote[820].end 6916.41846875
transcript.pyannote[821].speaker SPEAKER_38
transcript.pyannote[821].start 6920.53596875
transcript.pyannote[821].end 6920.92409375
transcript.pyannote[822].speaker SPEAKER_17
transcript.pyannote[822].start 6921.21096875
transcript.pyannote[822].end 6924.41721875
transcript.pyannote[823].speaker SPEAKER_17
transcript.pyannote[823].start 6924.75471875
transcript.pyannote[823].end 6925.86846875
transcript.pyannote[824].speaker SPEAKER_17
transcript.pyannote[824].start 6926.20596875
transcript.pyannote[824].end 6932.92221875
transcript.pyannote[825].speaker SPEAKER_38
transcript.pyannote[825].start 6932.92221875
transcript.pyannote[825].end 6933.69846875
transcript.pyannote[826].speaker SPEAKER_17
transcript.pyannote[826].start 6933.68159375
transcript.pyannote[826].end 6935.84159375
transcript.pyannote[827].speaker SPEAKER_38
transcript.pyannote[827].start 6934.10346875
transcript.pyannote[827].end 6934.76159375
transcript.pyannote[828].speaker SPEAKER_17
transcript.pyannote[828].start 6936.29721875
transcript.pyannote[828].end 6944.81909375
transcript.pyannote[829].speaker SPEAKER_38
transcript.pyannote[829].start 6941.74784375
transcript.pyannote[829].end 6941.78159375
transcript.pyannote[830].speaker SPEAKER_05
transcript.pyannote[830].start 6941.78159375
transcript.pyannote[830].end 6942.08534375
transcript.pyannote[831].speaker SPEAKER_38
transcript.pyannote[831].start 6942.08534375
transcript.pyannote[831].end 6942.13596875
transcript.pyannote[832].speaker SPEAKER_05
transcript.pyannote[832].start 6943.01346875
transcript.pyannote[832].end 6943.23284375
transcript.pyannote[833].speaker SPEAKER_38
transcript.pyannote[833].start 6943.23284375
transcript.pyannote[833].end 6943.30034375
transcript.pyannote[834].speaker SPEAKER_17
transcript.pyannote[834].start 6946.01721875
transcript.pyannote[834].end 6946.47284375
transcript.pyannote[835].speaker SPEAKER_17
transcript.pyannote[835].start 6946.67534375
transcript.pyannote[835].end 6948.10971875
transcript.pyannote[836].speaker SPEAKER_17
transcript.pyannote[836].start 6948.48096875
transcript.pyannote[836].end 6967.33034375
transcript.pyannote[837].speaker SPEAKER_17
transcript.pyannote[837].start 6968.49471875
transcript.pyannote[837].end 6987.25971875
transcript.pyannote[838].speaker SPEAKER_17
transcript.pyannote[838].start 6987.71534375
transcript.pyannote[838].end 6999.59534375
transcript.pyannote[839].speaker SPEAKER_17
transcript.pyannote[839].start 6999.93284375
transcript.pyannote[839].end 7009.92284375
transcript.pyannote[840].speaker SPEAKER_17
transcript.pyannote[840].start 7010.19284375
transcript.pyannote[840].end 7011.00284375
transcript.pyannote[841].speaker SPEAKER_17
transcript.pyannote[841].start 7011.71159375
transcript.pyannote[841].end 7015.99784375
transcript.pyannote[842].speaker SPEAKER_17
transcript.pyannote[842].start 7016.41971875
transcript.pyannote[842].end 7026.00471875
transcript.pyannote[843].speaker SPEAKER_17
transcript.pyannote[843].start 7026.61221875
transcript.pyannote[843].end 7031.28659375
transcript.pyannote[844].speaker SPEAKER_17
transcript.pyannote[844].start 7031.35409375
transcript.pyannote[844].end 7035.06659375
transcript.pyannote[845].speaker SPEAKER_17
transcript.pyannote[845].start 7035.47159375
transcript.pyannote[845].end 7042.45784375
transcript.pyannote[846].speaker SPEAKER_17
transcript.pyannote[846].start 7042.71096875
transcript.pyannote[846].end 7045.78221875
transcript.pyannote[847].speaker SPEAKER_17
transcript.pyannote[847].start 7046.28846875
transcript.pyannote[847].end 7055.09721875
transcript.pyannote[848].speaker SPEAKER_17
transcript.pyannote[848].start 7055.40096875
transcript.pyannote[848].end 7075.14471875
transcript.pyannote[849].speaker SPEAKER_17
transcript.pyannote[849].start 7076.24159375
transcript.pyannote[849].end 7091.10846875
transcript.pyannote[850].speaker SPEAKER_17
transcript.pyannote[850].start 7091.32784375
transcript.pyannote[850].end 7095.42846875
transcript.pyannote[851].speaker SPEAKER_17
transcript.pyannote[851].start 7095.90096875
transcript.pyannote[851].end 7102.85346875
transcript.pyannote[852].speaker SPEAKER_17
transcript.pyannote[852].start 7103.62971875
transcript.pyannote[852].end 7108.08471875
transcript.pyannote[853].speaker SPEAKER_17
transcript.pyannote[853].start 7108.13534375
transcript.pyannote[853].end 7111.45971875
transcript.pyannote[854].speaker SPEAKER_17
transcript.pyannote[854].start 7111.71284375
transcript.pyannote[854].end 7116.72471875
transcript.pyannote[855].speaker SPEAKER_17
transcript.pyannote[855].start 7117.65284375
transcript.pyannote[855].end 7122.20909375
transcript.pyannote[856].speaker SPEAKER_17
transcript.pyannote[856].start 7122.78284375
transcript.pyannote[856].end 7132.38471875
transcript.pyannote[857].speaker SPEAKER_17
transcript.pyannote[857].start 7132.87409375
transcript.pyannote[857].end 7152.82034375
transcript.pyannote[858].speaker SPEAKER_17
transcript.pyannote[858].start 7152.98909375
transcript.pyannote[858].end 7187.61659375
transcript.pyannote[859].speaker SPEAKER_17
transcript.pyannote[859].start 7187.85284375
transcript.pyannote[859].end 7201.69034375
transcript.pyannote[860].speaker SPEAKER_17
transcript.pyannote[860].start 7202.24721875
transcript.pyannote[860].end 7213.03034375
transcript.pyannote[861].speaker SPEAKER_17
transcript.pyannote[861].start 7213.84034375
transcript.pyannote[861].end 7214.34659375
transcript.pyannote[862].speaker SPEAKER_17
transcript.pyannote[862].start 7214.56596875
transcript.pyannote[862].end 7222.78409375
transcript.pyannote[863].speaker SPEAKER_17
transcript.pyannote[863].start 7223.30721875
transcript.pyannote[863].end 7230.02346875
transcript.pyannote[864].speaker SPEAKER_17
transcript.pyannote[864].start 7230.22596875
transcript.pyannote[864].end 7232.41971875
transcript.pyannote[865].speaker SPEAKER_17
transcript.pyannote[865].start 7232.85846875
transcript.pyannote[865].end 7234.44471875
transcript.pyannote[866].speaker SPEAKER_17
transcript.pyannote[866].start 7234.88346875
transcript.pyannote[866].end 7237.73534375
transcript.pyannote[867].speaker SPEAKER_17
transcript.pyannote[867].start 7238.29221875
transcript.pyannote[867].end 7245.70034375
transcript.pyannote[868].speaker SPEAKER_17
transcript.pyannote[868].start 7246.02096875
transcript.pyannote[868].end 7257.44534375
transcript.pyannote[869].speaker SPEAKER_17
transcript.pyannote[869].start 7257.63096875
transcript.pyannote[869].end 7264.12784375
transcript.pyannote[870].speaker SPEAKER_17
transcript.pyannote[870].start 7264.95471875
transcript.pyannote[870].end 7282.03221875
transcript.pyannote[871].speaker SPEAKER_17
transcript.pyannote[871].start 7282.57221875
transcript.pyannote[871].end 7287.24659375
transcript.pyannote[872].speaker SPEAKER_17
transcript.pyannote[872].start 7287.49971875
transcript.pyannote[872].end 7299.83534375
transcript.pyannote[873].speaker SPEAKER_17
transcript.pyannote[873].start 7300.10534375
transcript.pyannote[873].end 7303.02471875
transcript.pyannote[874].speaker SPEAKER_17
transcript.pyannote[874].start 7303.83471875
transcript.pyannote[874].end 7314.98909375
transcript.pyannote[875].speaker SPEAKER_17
transcript.pyannote[875].start 7315.59659375
transcript.pyannote[875].end 7322.51534375
transcript.pyannote[876].speaker SPEAKER_17
transcript.pyannote[876].start 7322.95409375
transcript.pyannote[876].end 7323.46034375
transcript.pyannote[877].speaker SPEAKER_17
transcript.pyannote[877].start 7324.38846875
transcript.pyannote[877].end 7329.26534375
transcript.pyannote[878].speaker SPEAKER_17
transcript.pyannote[878].start 7329.46784375
transcript.pyannote[878].end 7333.55159375
transcript.pyannote[879].speaker SPEAKER_17
transcript.pyannote[879].start 7333.83846875
transcript.pyannote[879].end 7338.39471875
transcript.pyannote[880].speaker SPEAKER_26
transcript.pyannote[880].start 7339.22159375
transcript.pyannote[880].end 7375.85721875
transcript.pyannote[881].speaker SPEAKER_17
transcript.pyannote[881].start 7341.26346875
transcript.pyannote[881].end 7341.68534375
transcript.pyannote[882].speaker SPEAKER_17
transcript.pyannote[882].start 7355.45534375
transcript.pyannote[882].end 7355.75909375
transcript.pyannote[883].speaker SPEAKER_17
transcript.pyannote[883].start 7356.40034375
transcript.pyannote[883].end 7359.35346875
transcript.pyannote[884].speaker SPEAKER_17
transcript.pyannote[884].start 7372.44846875
transcript.pyannote[884].end 7376.80221875
transcript.pyannote[885].speaker SPEAKER_38
transcript.pyannote[885].start 7375.85721875
transcript.pyannote[885].end 7375.89096875
transcript.pyannote[886].speaker SPEAKER_26
transcript.pyannote[886].start 7376.70096875
transcript.pyannote[886].end 7377.13971875
transcript.pyannote[887].speaker SPEAKER_17
transcript.pyannote[887].start 7376.95409375
transcript.pyannote[887].end 7388.58096875
transcript.pyannote[888].speaker SPEAKER_38
transcript.pyannote[888].start 7377.13971875
transcript.pyannote[888].end 7377.35909375
transcript.pyannote[889].speaker SPEAKER_38
transcript.pyannote[889].start 7377.98346875
transcript.pyannote[889].end 7378.74284375
transcript.pyannote[890].speaker SPEAKER_17
transcript.pyannote[890].start 7389.23909375
transcript.pyannote[890].end 7397.00159375
transcript.pyannote[891].speaker SPEAKER_17
transcript.pyannote[891].start 7397.25471875
transcript.pyannote[891].end 7399.19534375
transcript.pyannote[892].speaker SPEAKER_26
transcript.pyannote[892].start 7397.86221875
transcript.pyannote[892].end 7407.09284375
transcript.pyannote[893].speaker SPEAKER_17
transcript.pyannote[893].start 7403.86971875
transcript.pyannote[893].end 7404.32534375
transcript.pyannote[894].speaker SPEAKER_17
transcript.pyannote[894].start 7405.87784375
transcript.pyannote[894].end 7409.48909375
transcript.pyannote[895].speaker SPEAKER_26
transcript.pyannote[895].start 7408.74659375
transcript.pyannote[895].end 7416.94784375
transcript.pyannote[896].speaker SPEAKER_17
transcript.pyannote[896].start 7414.88909375
transcript.pyannote[896].end 7427.83221875
transcript.pyannote[897].speaker SPEAKER_26
transcript.pyannote[897].start 7427.83221875
transcript.pyannote[897].end 7428.49034375
transcript.pyannote[898].speaker SPEAKER_17
transcript.pyannote[898].start 7428.23721875
transcript.pyannote[898].end 7428.57471875
transcript.pyannote[899].speaker SPEAKER_17
transcript.pyannote[899].start 7428.64221875
transcript.pyannote[899].end 7428.97971875
transcript.pyannote[900].speaker SPEAKER_13
transcript.pyannote[900].start 7429.73909375
transcript.pyannote[900].end 7431.03846875
transcript.pyannote[901].speaker SPEAKER_13
transcript.pyannote[901].start 7431.71346875
transcript.pyannote[901].end 7432.42221875
transcript.pyannote[902].speaker SPEAKER_13
transcript.pyannote[902].start 7432.96221875
transcript.pyannote[902].end 7435.44284375
transcript.pyannote[903].speaker SPEAKER_29
transcript.pyannote[903].start 7444.03221875
transcript.pyannote[903].end 7446.88409375
transcript.pyannote[904].speaker SPEAKER_29
transcript.pyannote[904].start 7449.66846875
transcript.pyannote[904].end 7450.24221875
transcript.pyannote[905].speaker SPEAKER_29
transcript.pyannote[905].start 7451.17034375
transcript.pyannote[905].end 7451.87909375
transcript.pyannote[906].speaker SPEAKER_29
transcript.pyannote[906].start 7452.09846875
transcript.pyannote[906].end 7487.99159375
transcript.pyannote[907].speaker SPEAKER_29
transcript.pyannote[907].start 7488.05909375
transcript.pyannote[907].end 7500.44534375
transcript.pyannote[908].speaker SPEAKER_38
transcript.pyannote[908].start 7491.94034375
transcript.pyannote[908].end 7491.95721875
transcript.pyannote[909].speaker SPEAKER_26
transcript.pyannote[909].start 7500.44534375
transcript.pyannote[909].end 7516.32471875
transcript.pyannote[910].speaker SPEAKER_29
transcript.pyannote[910].start 7503.31409375
transcript.pyannote[910].end 7503.61784375
transcript.pyannote[911].speaker SPEAKER_26
transcript.pyannote[911].start 7516.64534375
transcript.pyannote[911].end 7518.01221875
transcript.pyannote[912].speaker SPEAKER_29
transcript.pyannote[912].start 7518.31596875
transcript.pyannote[912].end 7523.29409375
transcript.pyannote[913].speaker SPEAKER_26
transcript.pyannote[913].start 7518.70409375
transcript.pyannote[913].end 7520.32409375
transcript.pyannote[914].speaker SPEAKER_26
transcript.pyannote[914].start 7522.85534375
transcript.pyannote[914].end 7532.40659375
transcript.pyannote[915].speaker SPEAKER_29
transcript.pyannote[915].start 7530.73596875
transcript.pyannote[915].end 7533.70596875
transcript.pyannote[916].speaker SPEAKER_26
transcript.pyannote[916].start 7534.46534375
transcript.pyannote[916].end 7534.56659375
transcript.pyannote[917].speaker SPEAKER_29
transcript.pyannote[917].start 7534.56659375
transcript.pyannote[917].end 7535.66346875
transcript.pyannote[918].speaker SPEAKER_26
transcript.pyannote[918].start 7535.66346875
transcript.pyannote[918].end 7536.01784375
transcript.pyannote[919].speaker SPEAKER_29
transcript.pyannote[919].start 7535.68034375
transcript.pyannote[919].end 7536.25409375
transcript.pyannote[920].speaker SPEAKER_26
transcript.pyannote[920].start 7536.25409375
transcript.pyannote[920].end 7536.28784375
transcript.pyannote[921].speaker SPEAKER_26
transcript.pyannote[921].start 7536.84471875
transcript.pyannote[921].end 7539.54471875
transcript.pyannote[922].speaker SPEAKER_29
transcript.pyannote[922].start 7538.58284375
transcript.pyannote[922].end 7544.25284375
transcript.pyannote[923].speaker SPEAKER_26
transcript.pyannote[923].start 7541.19846875
transcript.pyannote[923].end 7542.19409375
transcript.pyannote[924].speaker SPEAKER_26
transcript.pyannote[924].start 7543.49346875
transcript.pyannote[924].end 7544.21909375
transcript.pyannote[925].speaker SPEAKER_26
transcript.pyannote[925].start 7544.25284375
transcript.pyannote[925].end 7545.02909375
transcript.pyannote[926].speaker SPEAKER_29
transcript.pyannote[926].start 7545.02909375
transcript.pyannote[926].end 7545.45096875
transcript.pyannote[927].speaker SPEAKER_26
transcript.pyannote[927].start 7545.45096875
transcript.pyannote[927].end 7546.88534375
transcript.pyannote[928].speaker SPEAKER_29
transcript.pyannote[928].start 7546.88534375
transcript.pyannote[928].end 7547.00346875
transcript.pyannote[929].speaker SPEAKER_26
transcript.pyannote[929].start 7547.00346875
transcript.pyannote[929].end 7547.03721875
transcript.pyannote[930].speaker SPEAKER_29
transcript.pyannote[930].start 7547.03721875
transcript.pyannote[930].end 7557.38159375
transcript.pyannote[931].speaker SPEAKER_38
transcript.pyannote[931].start 7552.55534375
transcript.pyannote[931].end 7552.87596875
transcript.pyannote[932].speaker SPEAKER_29
transcript.pyannote[932].start 7557.61784375
transcript.pyannote[932].end 7559.72721875
transcript.pyannote[933].speaker SPEAKER_29
transcript.pyannote[933].start 7561.22909375
transcript.pyannote[933].end 7581.96846875
transcript.pyannote[934].speaker SPEAKER_26
transcript.pyannote[934].start 7581.96846875
transcript.pyannote[934].end 7583.38596875
transcript.pyannote[935].speaker SPEAKER_29
transcript.pyannote[935].start 7583.38596875
transcript.pyannote[935].end 7583.47034375
transcript.pyannote[936].speaker SPEAKER_26
transcript.pyannote[936].start 7583.47034375
transcript.pyannote[936].end 7583.50409375
transcript.pyannote[937].speaker SPEAKER_26
transcript.pyannote[937].start 7584.82034375
transcript.pyannote[937].end 7589.19096875
transcript.pyannote[938].speaker SPEAKER_29
transcript.pyannote[938].start 7587.50346875
transcript.pyannote[938].end 7593.07221875
transcript.pyannote[939].speaker SPEAKER_26
transcript.pyannote[939].start 7590.54096875
transcript.pyannote[939].end 7591.11471875
transcript.pyannote[940].speaker SPEAKER_38
transcript.pyannote[940].start 7591.11471875
transcript.pyannote[940].end 7591.13159375
transcript.pyannote[941].speaker SPEAKER_26
transcript.pyannote[941].start 7592.51534375
transcript.pyannote[941].end 7592.97096875
transcript.pyannote[942].speaker SPEAKER_38
transcript.pyannote[942].start 7592.97096875
transcript.pyannote[942].end 7593.03846875
transcript.pyannote[943].speaker SPEAKER_38
transcript.pyannote[943].start 7593.07221875
transcript.pyannote[943].end 7593.13971875
transcript.pyannote[944].speaker SPEAKER_29
transcript.pyannote[944].start 7593.13971875
transcript.pyannote[944].end 7604.76659375
transcript.pyannote[945].speaker SPEAKER_29
transcript.pyannote[945].start 7605.27284375
transcript.pyannote[945].end 7609.00221875
transcript.pyannote[946].speaker SPEAKER_29
transcript.pyannote[946].start 7609.25534375
transcript.pyannote[946].end 7609.27221875
transcript.pyannote[947].speaker SPEAKER_26
transcript.pyannote[947].start 7609.27221875
transcript.pyannote[947].end 7620.89909375
transcript.pyannote[948].speaker SPEAKER_29
transcript.pyannote[948].start 7617.16971875
transcript.pyannote[948].end 7617.60846875
transcript.pyannote[949].speaker SPEAKER_29
transcript.pyannote[949].start 7619.14409375
transcript.pyannote[949].end 7619.16096875
transcript.pyannote[950].speaker SPEAKER_29
transcript.pyannote[950].start 7620.89909375
transcript.pyannote[950].end 7621.30409375
transcript.pyannote[951].speaker SPEAKER_26
transcript.pyannote[951].start 7621.30409375
transcript.pyannote[951].end 7621.82721875
transcript.pyannote[952].speaker SPEAKER_29
transcript.pyannote[952].start 7621.64159375
transcript.pyannote[952].end 7625.97846875
transcript.pyannote[953].speaker SPEAKER_26
transcript.pyannote[953].start 7623.85221875
transcript.pyannote[953].end 7624.84784375
transcript.pyannote[954].speaker SPEAKER_29
transcript.pyannote[954].start 7626.26534375
transcript.pyannote[954].end 7626.28221875
transcript.pyannote[955].speaker SPEAKER_26
transcript.pyannote[955].start 7626.28221875
transcript.pyannote[955].end 7640.96346875
transcript.pyannote[956].speaker SPEAKER_29
transcript.pyannote[956].start 7637.65596875
transcript.pyannote[956].end 7639.93409375
transcript.pyannote[957].speaker SPEAKER_29
transcript.pyannote[957].start 7640.15346875
transcript.pyannote[957].end 7648.62471875
transcript.pyannote[958].speaker SPEAKER_26
transcript.pyannote[958].start 7643.49471875
transcript.pyannote[958].end 7643.62971875
transcript.pyannote[959].speaker SPEAKER_29
transcript.pyannote[959].start 7649.16471875
transcript.pyannote[959].end 7694.28846875
transcript.pyannote[960].speaker SPEAKER_29
transcript.pyannote[960].start 7694.47409375
transcript.pyannote[960].end 7712.41221875
transcript.pyannote[961].speaker SPEAKER_29
transcript.pyannote[961].start 7713.66096875
transcript.pyannote[961].end 7713.69471875
transcript.pyannote[962].speaker SPEAKER_26
transcript.pyannote[962].start 7713.69471875
transcript.pyannote[962].end 7714.20096875
transcript.pyannote[963].speaker SPEAKER_29
transcript.pyannote[963].start 7714.20096875
transcript.pyannote[963].end 7714.58909375
transcript.pyannote[964].speaker SPEAKER_26
transcript.pyannote[964].start 7714.58909375
transcript.pyannote[964].end 7714.67346875
transcript.pyannote[965].speaker SPEAKER_29
transcript.pyannote[965].start 7714.67346875
transcript.pyannote[965].end 7714.72409375
transcript.pyannote[966].speaker SPEAKER_26
transcript.pyannote[966].start 7714.72409375
transcript.pyannote[966].end 7741.09971875
transcript.pyannote[967].speaker SPEAKER_00
transcript.pyannote[967].start 7725.16971875
transcript.pyannote[967].end 7725.23721875
transcript.pyannote[968].speaker SPEAKER_38
transcript.pyannote[968].start 7725.23721875
transcript.pyannote[968].end 7725.50721875
transcript.pyannote[969].speaker SPEAKER_00
transcript.pyannote[969].start 7725.50721875
transcript.pyannote[969].end 7725.65909375
transcript.pyannote[970].speaker SPEAKER_38
transcript.pyannote[970].start 7733.38784375
transcript.pyannote[970].end 7733.42159375
transcript.pyannote[971].speaker SPEAKER_26
transcript.pyannote[971].start 7741.26846875
transcript.pyannote[971].end 7748.03534375
transcript.pyannote[972].speaker SPEAKER_29
transcript.pyannote[972].start 7743.73221875
transcript.pyannote[972].end 7746.11159375
transcript.pyannote[973].speaker SPEAKER_29
transcript.pyannote[973].start 7746.31409375
transcript.pyannote[973].end 7759.17284375
transcript.pyannote[974].speaker SPEAKER_38
transcript.pyannote[974].start 7748.03534375
transcript.pyannote[974].end 7748.05221875
transcript.pyannote[975].speaker SPEAKER_29
transcript.pyannote[975].start 7759.93221875
transcript.pyannote[975].end 7766.66534375
transcript.pyannote[976].speaker SPEAKER_29
transcript.pyannote[976].start 7766.78346875
transcript.pyannote[976].end 7786.07159375
transcript.pyannote[977].speaker SPEAKER_38
transcript.pyannote[977].start 7783.55721875
transcript.pyannote[977].end 7784.24909375
transcript.pyannote[978].speaker SPEAKER_00
transcript.pyannote[978].start 7785.37971875
transcript.pyannote[978].end 7785.39659375
transcript.pyannote[979].speaker SPEAKER_29
transcript.pyannote[979].start 7786.35846875
transcript.pyannote[979].end 7792.39971875
transcript.pyannote[980].speaker SPEAKER_38
transcript.pyannote[980].start 7787.72534375
transcript.pyannote[980].end 7787.84346875
transcript.pyannote[981].speaker SPEAKER_29
transcript.pyannote[981].start 7792.72034375
transcript.pyannote[981].end 7801.07346875
transcript.pyannote[982].speaker SPEAKER_29
transcript.pyannote[982].start 7801.42784375
transcript.pyannote[982].end 7807.53659375
transcript.pyannote[983].speaker SPEAKER_26
transcript.pyannote[983].start 7801.61346875
transcript.pyannote[983].end 7801.84971875
transcript.pyannote[984].speaker SPEAKER_38
transcript.pyannote[984].start 7801.84971875
transcript.pyannote[984].end 7801.96784375
transcript.pyannote[985].speaker SPEAKER_26
transcript.pyannote[985].start 7801.96784375
transcript.pyannote[985].end 7802.11971875
transcript.pyannote[986].speaker SPEAKER_38
transcript.pyannote[986].start 7802.11971875
transcript.pyannote[986].end 7802.47409375
transcript.pyannote[987].speaker SPEAKER_26
transcript.pyannote[987].start 7802.47409375
transcript.pyannote[987].end 7802.57534375
transcript.pyannote[988].speaker SPEAKER_29
transcript.pyannote[988].start 7808.09346875
transcript.pyannote[988].end 7811.23221875
transcript.pyannote[989].speaker SPEAKER_26
transcript.pyannote[989].start 7808.14409375
transcript.pyannote[989].end 7808.51534375
transcript.pyannote[990].speaker SPEAKER_26
transcript.pyannote[990].start 7810.30409375
transcript.pyannote[990].end 7811.21534375
transcript.pyannote[991].speaker SPEAKER_26
transcript.pyannote[991].start 7811.23221875
transcript.pyannote[991].end 7813.94909375
transcript.pyannote[992].speaker SPEAKER_29
transcript.pyannote[992].start 7813.30784375
transcript.pyannote[992].end 7834.63784375
transcript.pyannote[993].speaker SPEAKER_29
transcript.pyannote[993].start 7835.65034375
transcript.pyannote[993].end 7842.02909375
transcript.pyannote[994].speaker SPEAKER_29
transcript.pyannote[994].start 7843.31159375
transcript.pyannote[994].end 7843.86846875
transcript.pyannote[995].speaker SPEAKER_29
transcript.pyannote[995].start 7844.84721875
transcript.pyannote[995].end 7851.42846875
transcript.pyannote[996].speaker SPEAKER_29
transcript.pyannote[996].start 7852.00221875
transcript.pyannote[996].end 7870.37909375
transcript.pyannote[997].speaker SPEAKER_38
transcript.pyannote[997].start 7856.67659375
transcript.pyannote[997].end 7856.96346875
transcript.pyannote[998].speaker SPEAKER_38
transcript.pyannote[998].start 7867.34159375
transcript.pyannote[998].end 7867.64534375
transcript.pyannote[999].speaker SPEAKER_29
transcript.pyannote[999].start 7870.63221875
transcript.pyannote[999].end 7871.15534375
transcript.pyannote[1000].speaker SPEAKER_29
transcript.pyannote[1000].start 7871.57721875
transcript.pyannote[1000].end 7875.39096875
transcript.pyannote[1001].speaker SPEAKER_29
transcript.pyannote[1001].start 7875.94784375
transcript.pyannote[1001].end 7877.60159375
transcript.pyannote[1002].speaker SPEAKER_26
transcript.pyannote[1002].start 7876.30221875
transcript.pyannote[1002].end 7880.35221875
transcript.pyannote[1003].speaker SPEAKER_29
transcript.pyannote[1003].start 7877.90534375
transcript.pyannote[1003].end 7884.08159375
transcript.pyannote[1004].speaker SPEAKER_29
transcript.pyannote[1004].start 7885.04346875
transcript.pyannote[1004].end 7893.75096875
transcript.pyannote[1005].speaker SPEAKER_38
transcript.pyannote[1005].start 7889.09346875
transcript.pyannote[1005].end 7889.63346875
transcript.pyannote[1006].speaker SPEAKER_29
transcript.pyannote[1006].start 7894.79721875
transcript.pyannote[1006].end 7922.97846875
transcript.pyannote[1007].speaker SPEAKER_00
transcript.pyannote[1007].start 7908.58409375
transcript.pyannote[1007].end 7909.02284375
transcript.pyannote[1008].speaker SPEAKER_26
transcript.pyannote[1008].start 7910.44034375
transcript.pyannote[1008].end 7912.41471875
transcript.pyannote[1009].speaker SPEAKER_26
transcript.pyannote[1009].start 7922.97846875
transcript.pyannote[1009].end 7923.92346875
transcript.pyannote[1010].speaker SPEAKER_29
transcript.pyannote[1010].start 7923.19784375
transcript.pyannote[1010].end 7923.21471875
transcript.pyannote[1011].speaker SPEAKER_30
transcript.pyannote[1011].start 7923.21471875
transcript.pyannote[1011].end 7923.90659375
transcript.pyannote[1012].speaker SPEAKER_29
transcript.pyannote[1012].start 7923.92346875
transcript.pyannote[1012].end 7923.94034375
transcript.pyannote[1013].speaker SPEAKER_30
transcript.pyannote[1013].start 7923.94034375
transcript.pyannote[1013].end 7923.95721875
transcript.pyannote[1014].speaker SPEAKER_13
transcript.pyannote[1014].start 7925.66159375
transcript.pyannote[1014].end 7928.71596875
transcript.pyannote[1015].speaker SPEAKER_38
transcript.pyannote[1015].start 8381.70846875
transcript.pyannote[1015].end 8382.88971875
transcript.pyannote[1016].speaker SPEAKER_13
transcript.pyannote[1016].start 8603.05784375
transcript.pyannote[1016].end 8609.74034375
transcript.pyannote[1017].speaker SPEAKER_25
transcript.pyannote[1017].start 8619.93284375
transcript.pyannote[1017].end 8623.76346875
transcript.pyannote[1018].speaker SPEAKER_25
transcript.pyannote[1018].start 8624.80971875
transcript.pyannote[1018].end 8626.36221875
transcript.pyannote[1019].speaker SPEAKER_25
transcript.pyannote[1019].start 8626.96971875
transcript.pyannote[1019].end 8628.48846875
transcript.pyannote[1020].speaker SPEAKER_25
transcript.pyannote[1020].start 8630.64846875
transcript.pyannote[1020].end 8631.82971875
transcript.pyannote[1021].speaker SPEAKER_25
transcript.pyannote[1021].start 8633.06159375
transcript.pyannote[1021].end 8633.87159375
transcript.pyannote[1022].speaker SPEAKER_25
transcript.pyannote[1022].start 8634.37784375
transcript.pyannote[1022].end 8635.35659375
transcript.pyannote[1023].speaker SPEAKER_25
transcript.pyannote[1023].start 8635.86284375
transcript.pyannote[1023].end 8637.93846875
transcript.pyannote[1024].speaker SPEAKER_25
transcript.pyannote[1024].start 8639.76096875
transcript.pyannote[1024].end 8642.86596875
transcript.pyannote[1025].speaker SPEAKER_26
transcript.pyannote[1025].start 8648.14784375
transcript.pyannote[1025].end 8648.89034375
transcript.pyannote[1026].speaker SPEAKER_25
transcript.pyannote[1026].start 8649.19409375
transcript.pyannote[1026].end 8660.14596875
transcript.pyannote[1027].speaker SPEAKER_38
transcript.pyannote[1027].start 8660.90534375
transcript.pyannote[1027].end 8661.02346875
transcript.pyannote[1028].speaker SPEAKER_25
transcript.pyannote[1028].start 8661.02346875
transcript.pyannote[1028].end 8772.48284375
transcript.pyannote[1029].speaker SPEAKER_25
transcript.pyannote[1029].start 8772.90471875
transcript.pyannote[1029].end 8773.86659375
transcript.pyannote[1030].speaker SPEAKER_25
transcript.pyannote[1030].start 8774.84534375
transcript.pyannote[1030].end 8848.80846875
transcript.pyannote[1031].speaker SPEAKER_25
transcript.pyannote[1031].start 8849.12909375
transcript.pyannote[1031].end 8863.32096875
transcript.pyannote[1032].speaker SPEAKER_38
transcript.pyannote[1032].start 8864.08034375
transcript.pyannote[1032].end 8864.41784375
transcript.pyannote[1033].speaker SPEAKER_25
transcript.pyannote[1033].start 8864.50221875
transcript.pyannote[1033].end 8867.84346875
transcript.pyannote[1034].speaker SPEAKER_26
transcript.pyannote[1034].start 8868.73784375
transcript.pyannote[1034].end 8871.96096875
transcript.pyannote[1035].speaker SPEAKER_25
transcript.pyannote[1035].start 8869.22721875
transcript.pyannote[1035].end 8872.82159375
transcript.pyannote[1036].speaker SPEAKER_26
transcript.pyannote[1036].start 8872.92284375
transcript.pyannote[1036].end 8873.34471875
transcript.pyannote[1037].speaker SPEAKER_25
transcript.pyannote[1037].start 8873.34471875
transcript.pyannote[1037].end 8877.27659375
transcript.pyannote[1038].speaker SPEAKER_26
transcript.pyannote[1038].start 8878.08659375
transcript.pyannote[1038].end 8879.57159375
transcript.pyannote[1039].speaker SPEAKER_25
transcript.pyannote[1039].start 8879.57159375
transcript.pyannote[1039].end 8881.83284375
transcript.pyannote[1040].speaker SPEAKER_25
transcript.pyannote[1040].start 8881.96784375
transcript.pyannote[1040].end 8893.81409375
transcript.pyannote[1041].speaker SPEAKER_38
transcript.pyannote[1041].start 8893.81409375
transcript.pyannote[1041].end 8893.88159375
transcript.pyannote[1042].speaker SPEAKER_25
transcript.pyannote[1042].start 8893.88159375
transcript.pyannote[1042].end 8893.96596875
transcript.pyannote[1043].speaker SPEAKER_25
transcript.pyannote[1043].start 8894.60721875
transcript.pyannote[1043].end 8902.35284375
transcript.pyannote[1044].speaker SPEAKER_25
transcript.pyannote[1044].start 8902.63971875
transcript.pyannote[1044].end 8911.12784375
transcript.pyannote[1045].speaker SPEAKER_25
transcript.pyannote[1045].start 8911.54971875
transcript.pyannote[1045].end 8915.31284375
transcript.pyannote[1046].speaker SPEAKER_25
transcript.pyannote[1046].start 8915.80221875
transcript.pyannote[1046].end 8917.70909375
transcript.pyannote[1047].speaker SPEAKER_25
transcript.pyannote[1047].start 8918.09721875
transcript.pyannote[1047].end 8931.58034375
transcript.pyannote[1048].speaker SPEAKER_25
transcript.pyannote[1048].start 8932.35659375
transcript.pyannote[1048].end 8935.64721875
transcript.pyannote[1049].speaker SPEAKER_25
transcript.pyannote[1049].start 8936.27159375
transcript.pyannote[1049].end 8938.33034375
transcript.pyannote[1050].speaker SPEAKER_25
transcript.pyannote[1050].start 8938.81971875
transcript.pyannote[1050].end 8939.98409375
transcript.pyannote[1051].speaker SPEAKER_25
transcript.pyannote[1051].start 8940.33846875
transcript.pyannote[1051].end 8941.08096875
transcript.pyannote[1052].speaker SPEAKER_25
transcript.pyannote[1052].start 8941.48596875
transcript.pyannote[1052].end 8945.95784375
transcript.pyannote[1053].speaker SPEAKER_25
transcript.pyannote[1053].start 8946.64971875
transcript.pyannote[1053].end 8959.93034375
transcript.pyannote[1054].speaker SPEAKER_26
transcript.pyannote[1054].start 8959.93034375
transcript.pyannote[1054].end 8960.03159375
transcript.pyannote[1055].speaker SPEAKER_25
transcript.pyannote[1055].start 8960.72346875
transcript.pyannote[1055].end 8960.97659375
transcript.pyannote[1056].speaker SPEAKER_26
transcript.pyannote[1056].start 8960.97659375
transcript.pyannote[1056].end 8967.42284375
transcript.pyannote[1057].speaker SPEAKER_26
transcript.pyannote[1057].start 8967.96284375
transcript.pyannote[1057].end 8969.22846875
transcript.pyannote[1058].speaker SPEAKER_26
transcript.pyannote[1058].start 8969.65034375
transcript.pyannote[1058].end 8970.30846875
transcript.pyannote[1059].speaker SPEAKER_26
transcript.pyannote[1059].start 8971.37159375
transcript.pyannote[1059].end 8972.02971875
transcript.pyannote[1060].speaker SPEAKER_25
transcript.pyannote[1060].start 8972.02971875
transcript.pyannote[1060].end 8972.13096875
transcript.pyannote[1061].speaker SPEAKER_26
transcript.pyannote[1061].start 8972.13096875
transcript.pyannote[1061].end 8972.16471875
transcript.pyannote[1062].speaker SPEAKER_25
transcript.pyannote[1062].start 8972.16471875
transcript.pyannote[1062].end 8972.19846875
transcript.pyannote[1063].speaker SPEAKER_26
transcript.pyannote[1063].start 8972.19846875
transcript.pyannote[1063].end 8972.23221875
transcript.pyannote[1064].speaker SPEAKER_26
transcript.pyannote[1064].start 8972.40096875
transcript.pyannote[1064].end 8972.48534375
transcript.pyannote[1065].speaker SPEAKER_25
transcript.pyannote[1065].start 8972.48534375
transcript.pyannote[1065].end 8973.85221875
transcript.pyannote[1066].speaker SPEAKER_26
transcript.pyannote[1066].start 8973.19409375
transcript.pyannote[1066].end 8973.86909375
transcript.pyannote[1067].speaker SPEAKER_25
transcript.pyannote[1067].start 8973.86909375
transcript.pyannote[1067].end 8974.00409375
transcript.pyannote[1068].speaker SPEAKER_26
transcript.pyannote[1068].start 8974.00409375
transcript.pyannote[1068].end 8974.03784375
transcript.pyannote[1069].speaker SPEAKER_25
transcript.pyannote[1069].start 8974.03784375
transcript.pyannote[1069].end 8974.10534375
transcript.pyannote[1070].speaker SPEAKER_26
transcript.pyannote[1070].start 8974.10534375
transcript.pyannote[1070].end 8974.57784375
transcript.pyannote[1071].speaker SPEAKER_25
transcript.pyannote[1071].start 8974.57784375
transcript.pyannote[1071].end 8974.59471875
transcript.pyannote[1072].speaker SPEAKER_25
transcript.pyannote[1072].start 8975.47221875
transcript.pyannote[1072].end 8977.93596875
transcript.pyannote[1073].speaker SPEAKER_26
transcript.pyannote[1073].start 8976.38346875
transcript.pyannote[1073].end 8977.10909375
transcript.pyannote[1074].speaker SPEAKER_25
transcript.pyannote[1074].start 8977.96971875
transcript.pyannote[1074].end 8979.97784375
transcript.pyannote[1075].speaker SPEAKER_26
transcript.pyannote[1075].start 8978.29034375
transcript.pyannote[1075].end 8978.47596875
transcript.pyannote[1076].speaker SPEAKER_26
transcript.pyannote[1076].start 8979.97784375
transcript.pyannote[1076].end 8980.02846875
transcript.pyannote[1077].speaker SPEAKER_25
transcript.pyannote[1077].start 8980.02846875
transcript.pyannote[1077].end 8980.43346875
transcript.pyannote[1078].speaker SPEAKER_25
transcript.pyannote[1078].start 8981.10846875
transcript.pyannote[1078].end 8981.14221875
transcript.pyannote[1079].speaker SPEAKER_26
transcript.pyannote[1079].start 8981.14221875
transcript.pyannote[1079].end 8981.93534375
transcript.pyannote[1080].speaker SPEAKER_26
transcript.pyannote[1080].start 8983.18409375
transcript.pyannote[1080].end 8984.55096875
transcript.pyannote[1081].speaker SPEAKER_38
transcript.pyannote[1081].start 8984.93909375
transcript.pyannote[1081].end 8985.32721875
transcript.pyannote[1082].speaker SPEAKER_25
transcript.pyannote[1082].start 8985.32721875
transcript.pyannote[1082].end 8985.34409375
transcript.pyannote[1083].speaker SPEAKER_38
transcript.pyannote[1083].start 8985.34409375
transcript.pyannote[1083].end 8985.39471875
transcript.pyannote[1084].speaker SPEAKER_26
transcript.pyannote[1084].start 8986.03596875
transcript.pyannote[1084].end 8987.62221875
transcript.pyannote[1085].speaker SPEAKER_25
transcript.pyannote[1085].start 8987.62221875
transcript.pyannote[1085].end 8988.41534375
transcript.pyannote[1086].speaker SPEAKER_25
transcript.pyannote[1086].start 8988.90471875
transcript.pyannote[1086].end 9001.00409375
transcript.pyannote[1087].speaker SPEAKER_25
transcript.pyannote[1087].start 9001.66221875
transcript.pyannote[1087].end 9009.50909375
transcript.pyannote[1088].speaker SPEAKER_25
transcript.pyannote[1088].start 9009.81284375
transcript.pyannote[1088].end 9021.77721875
transcript.pyannote[1089].speaker SPEAKER_25
transcript.pyannote[1089].start 9022.68846875
transcript.pyannote[1089].end 9027.81846875
transcript.pyannote[1090].speaker SPEAKER_25
transcript.pyannote[1090].start 9028.20659375
transcript.pyannote[1090].end 9083.91096875
transcript.pyannote[1091].speaker SPEAKER_25
transcript.pyannote[1091].start 9086.22284375
transcript.pyannote[1091].end 9087.01596875
transcript.pyannote[1092].speaker SPEAKER_25
transcript.pyannote[1092].start 9088.51784375
transcript.pyannote[1092].end 9089.91846875
transcript.pyannote[1093].speaker SPEAKER_00
transcript.pyannote[1093].start 9088.58534375
transcript.pyannote[1093].end 9089.24346875
transcript.pyannote[1094].speaker SPEAKER_25
transcript.pyannote[1094].start 9090.28971875
transcript.pyannote[1094].end 9092.82096875
transcript.pyannote[1095].speaker SPEAKER_25
transcript.pyannote[1095].start 9092.92221875
transcript.pyannote[1095].end 9093.64784375
transcript.pyannote[1096].speaker SPEAKER_26
transcript.pyannote[1096].start 9093.64784375
transcript.pyannote[1096].end 9093.69846875
transcript.pyannote[1097].speaker SPEAKER_25
transcript.pyannote[1097].start 9094.57596875
transcript.pyannote[1097].end 9138.78846875
transcript.pyannote[1098].speaker SPEAKER_25
transcript.pyannote[1098].start 9139.10909375
transcript.pyannote[1098].end 9181.04346875
transcript.pyannote[1099].speaker SPEAKER_25
transcript.pyannote[1099].start 9181.43159375
transcript.pyannote[1099].end 9184.50284375
transcript.pyannote[1100].speaker SPEAKER_25
transcript.pyannote[1100].start 9185.36346875
transcript.pyannote[1100].end 9193.24409375
transcript.pyannote[1101].speaker SPEAKER_25
transcript.pyannote[1101].start 9193.76721875
transcript.pyannote[1101].end 9215.24909375
transcript.pyannote[1102].speaker SPEAKER_26
transcript.pyannote[1102].start 9216.73409375
transcript.pyannote[1102].end 9227.70284375
transcript.pyannote[1103].speaker SPEAKER_25
transcript.pyannote[1103].start 9225.81284375
transcript.pyannote[1103].end 9227.65221875
transcript.pyannote[1104].speaker SPEAKER_25
transcript.pyannote[1104].start 9227.70284375
transcript.pyannote[1104].end 9227.75346875
transcript.pyannote[1105].speaker SPEAKER_26
transcript.pyannote[1105].start 9227.71971875
transcript.pyannote[1105].end 9227.73659375
transcript.pyannote[1106].speaker SPEAKER_26
transcript.pyannote[1106].start 9227.75346875
transcript.pyannote[1106].end 9227.77034375
transcript.pyannote[1107].speaker SPEAKER_25
transcript.pyannote[1107].start 9227.77034375
transcript.pyannote[1107].end 9227.95596875
transcript.pyannote[1108].speaker SPEAKER_26
transcript.pyannote[1108].start 9227.95596875
transcript.pyannote[1108].end 9228.00659375
transcript.pyannote[1109].speaker SPEAKER_25
transcript.pyannote[1109].start 9228.00659375
transcript.pyannote[1109].end 9230.70659375
transcript.pyannote[1110].speaker SPEAKER_26
transcript.pyannote[1110].start 9230.70659375
transcript.pyannote[1110].end 9231.73596875
transcript.pyannote[1111].speaker SPEAKER_26
transcript.pyannote[1111].start 9231.93846875
transcript.pyannote[1111].end 9243.02534375
transcript.pyannote[1112].speaker SPEAKER_25
transcript.pyannote[1112].start 9231.97221875
transcript.pyannote[1112].end 9232.10721875
transcript.pyannote[1113].speaker SPEAKER_25
transcript.pyannote[1113].start 9243.02534375
transcript.pyannote[1113].end 9243.43034375
transcript.pyannote[1114].speaker SPEAKER_26
transcript.pyannote[1114].start 9243.43034375
transcript.pyannote[1114].end 9244.03784375
transcript.pyannote[1115].speaker SPEAKER_25
transcript.pyannote[1115].start 9244.03784375
transcript.pyannote[1115].end 9245.74221875
transcript.pyannote[1116].speaker SPEAKER_26
transcript.pyannote[1116].start 9245.53971875
transcript.pyannote[1116].end 9248.47596875
transcript.pyannote[1117].speaker SPEAKER_25
transcript.pyannote[1117].start 9248.29034375
transcript.pyannote[1117].end 9249.26909375
transcript.pyannote[1118].speaker SPEAKER_26
transcript.pyannote[1118].start 9250.06221875
transcript.pyannote[1118].end 9252.93096875
transcript.pyannote[1119].speaker SPEAKER_25
transcript.pyannote[1119].start 9252.93096875
transcript.pyannote[1119].end 9254.63534375
transcript.pyannote[1120].speaker SPEAKER_26
transcript.pyannote[1120].start 9255.39471875
transcript.pyannote[1120].end 9258.65159375
transcript.pyannote[1121].speaker SPEAKER_25
transcript.pyannote[1121].start 9255.49596875
transcript.pyannote[1121].end 9256.91346875
transcript.pyannote[1122].speaker SPEAKER_25
transcript.pyannote[1122].start 9258.04409375
transcript.pyannote[1122].end 9259.86659375
transcript.pyannote[1123].speaker SPEAKER_25
transcript.pyannote[1123].start 9260.17034375
transcript.pyannote[1123].end 9260.18721875
transcript.pyannote[1124].speaker SPEAKER_25
transcript.pyannote[1124].start 9260.22096875
transcript.pyannote[1124].end 9260.49096875
transcript.pyannote[1125].speaker SPEAKER_25
transcript.pyannote[1125].start 9261.03096875
transcript.pyannote[1125].end 9261.58784375
transcript.pyannote[1126].speaker SPEAKER_25
transcript.pyannote[1126].start 9262.16159375
transcript.pyannote[1126].end 9263.73096875
transcript.pyannote[1127].speaker SPEAKER_25
transcript.pyannote[1127].start 9265.14846875
transcript.pyannote[1127].end 9265.23284375
transcript.pyannote[1128].speaker SPEAKER_26
transcript.pyannote[1128].start 9265.23284375
transcript.pyannote[1128].end 9267.74721875
transcript.pyannote[1129].speaker SPEAKER_25
transcript.pyannote[1129].start 9267.74721875
transcript.pyannote[1129].end 9271.32471875
transcript.pyannote[1130].speaker SPEAKER_26
transcript.pyannote[1130].start 9267.76409375
transcript.pyannote[1130].end 9269.35034375
transcript.pyannote[1131].speaker SPEAKER_25
transcript.pyannote[1131].start 9271.42596875
transcript.pyannote[1131].end 9276.10034375
transcript.pyannote[1132].speaker SPEAKER_26
transcript.pyannote[1132].start 9271.67909375
transcript.pyannote[1132].end 9272.30346875
transcript.pyannote[1133].speaker SPEAKER_25
transcript.pyannote[1133].start 9277.21409375
transcript.pyannote[1133].end 9281.12909375
transcript.pyannote[1134].speaker SPEAKER_25
transcript.pyannote[1134].start 9281.83784375
transcript.pyannote[1134].end 9283.42409375
transcript.pyannote[1135].speaker SPEAKER_26
transcript.pyannote[1135].start 9283.42409375
transcript.pyannote[1135].end 9283.47471875
transcript.pyannote[1136].speaker SPEAKER_25
transcript.pyannote[1136].start 9283.47471875
transcript.pyannote[1136].end 9283.62659375
transcript.pyannote[1137].speaker SPEAKER_26
transcript.pyannote[1137].start 9283.62659375
transcript.pyannote[1137].end 9283.64346875
transcript.pyannote[1138].speaker SPEAKER_25
transcript.pyannote[1138].start 9283.64346875
transcript.pyannote[1138].end 9283.66034375
transcript.pyannote[1139].speaker SPEAKER_26
transcript.pyannote[1139].start 9283.66034375
transcript.pyannote[1139].end 9283.67721875
transcript.pyannote[1140].speaker SPEAKER_25
transcript.pyannote[1140].start 9283.67721875
transcript.pyannote[1140].end 9285.46596875
transcript.pyannote[1141].speaker SPEAKER_26
transcript.pyannote[1141].start 9285.46596875
transcript.pyannote[1141].end 9285.48284375
transcript.pyannote[1142].speaker SPEAKER_26
transcript.pyannote[1142].start 9286.74846875
transcript.pyannote[1142].end 9287.82846875
transcript.pyannote[1143].speaker SPEAKER_26
transcript.pyannote[1143].start 9287.96346875
transcript.pyannote[1143].end 9289.09409375
transcript.pyannote[1144].speaker SPEAKER_25
transcript.pyannote[1144].start 9288.03096875
transcript.pyannote[1144].end 9293.56596875
transcript.pyannote[1145].speaker SPEAKER_26
transcript.pyannote[1145].start 9289.29659375
transcript.pyannote[1145].end 9290.03909375
transcript.pyannote[1146].speaker SPEAKER_25
transcript.pyannote[1146].start 9294.76409375
transcript.pyannote[1146].end 9297.02534375
transcript.pyannote[1147].speaker SPEAKER_25
transcript.pyannote[1147].start 9297.12659375
transcript.pyannote[1147].end 9300.78846875
transcript.pyannote[1148].speaker SPEAKER_26
transcript.pyannote[1148].start 9301.32846875
transcript.pyannote[1148].end 9309.79971875
transcript.pyannote[1149].speaker SPEAKER_25
transcript.pyannote[1149].start 9305.27721875
transcript.pyannote[1149].end 9305.64846875
transcript.pyannote[1150].speaker SPEAKER_25
transcript.pyannote[1150].start 9306.54284375
transcript.pyannote[1150].end 9306.94784375
transcript.pyannote[1151].speaker SPEAKER_25
transcript.pyannote[1151].start 9307.55534375
transcript.pyannote[1151].end 9310.27221875
transcript.pyannote[1152].speaker SPEAKER_38
transcript.pyannote[1152].start 9309.79971875
transcript.pyannote[1152].end 9310.00221875
transcript.pyannote[1153].speaker SPEAKER_26
transcript.pyannote[1153].start 9310.00221875
transcript.pyannote[1153].end 9310.03596875
transcript.pyannote[1154].speaker SPEAKER_38
transcript.pyannote[1154].start 9310.03596875
transcript.pyannote[1154].end 9310.17096875
transcript.pyannote[1155].speaker SPEAKER_26
transcript.pyannote[1155].start 9310.27221875
transcript.pyannote[1155].end 9310.30596875
transcript.pyannote[1156].speaker SPEAKER_25
transcript.pyannote[1156].start 9310.30596875
transcript.pyannote[1156].end 9334.97721875
transcript.pyannote[1157].speaker SPEAKER_26
transcript.pyannote[1157].start 9334.97721875
transcript.pyannote[1157].end 9361.06596875
transcript.pyannote[1158].speaker SPEAKER_25
transcript.pyannote[1158].start 9342.68909375
transcript.pyannote[1158].end 9343.97159375
transcript.pyannote[1159].speaker SPEAKER_25
transcript.pyannote[1159].start 9346.46909375
transcript.pyannote[1159].end 9346.90784375
transcript.pyannote[1160].speaker SPEAKER_25
transcript.pyannote[1160].start 9358.61909375
transcript.pyannote[1160].end 9370.81971875
transcript.pyannote[1161].speaker SPEAKER_00
transcript.pyannote[1161].start 9364.18784375
transcript.pyannote[1161].end 9364.22159375
transcript.pyannote[1162].speaker SPEAKER_26
transcript.pyannote[1162].start 9364.22159375
transcript.pyannote[1162].end 9364.27221875
transcript.pyannote[1163].speaker SPEAKER_38
transcript.pyannote[1163].start 9364.69409375
transcript.pyannote[1163].end 9364.72784375
transcript.pyannote[1164].speaker SPEAKER_26
transcript.pyannote[1164].start 9364.72784375
transcript.pyannote[1164].end 9365.31846875
transcript.pyannote[1165].speaker SPEAKER_26
transcript.pyannote[1165].start 9365.60534375
transcript.pyannote[1165].end 9366.36471875
transcript.pyannote[1166].speaker SPEAKER_26
transcript.pyannote[1166].start 9366.60096875
transcript.pyannote[1166].end 9366.97221875
transcript.pyannote[1167].speaker SPEAKER_25
transcript.pyannote[1167].start 9371.46096875
transcript.pyannote[1167].end 9375.73034375
transcript.pyannote[1168].speaker SPEAKER_00
transcript.pyannote[1168].start 9372.03471875
transcript.pyannote[1168].end 9372.64221875
transcript.pyannote[1169].speaker SPEAKER_00
transcript.pyannote[1169].start 9373.26659375
transcript.pyannote[1169].end 9373.67159375
transcript.pyannote[1170].speaker SPEAKER_25
transcript.pyannote[1170].start 9376.69221875
transcript.pyannote[1170].end 9379.49346875
transcript.pyannote[1171].speaker SPEAKER_25
transcript.pyannote[1171].start 9380.06721875
transcript.pyannote[1171].end 9389.61846875
transcript.pyannote[1172].speaker SPEAKER_25
transcript.pyannote[1172].start 9390.07409375
transcript.pyannote[1172].end 9392.40284375
transcript.pyannote[1173].speaker SPEAKER_25
transcript.pyannote[1173].start 9392.75721875
transcript.pyannote[1173].end 9395.42346875
transcript.pyannote[1174].speaker SPEAKER_25
transcript.pyannote[1174].start 9396.08159375
transcript.pyannote[1174].end 9403.84409375
transcript.pyannote[1175].speaker SPEAKER_25
transcript.pyannote[1175].start 9404.46846875
transcript.pyannote[1175].end 9427.03034375
transcript.pyannote[1176].speaker SPEAKER_26
transcript.pyannote[1176].start 9427.03034375
transcript.pyannote[1176].end 9445.03596875
transcript.pyannote[1177].speaker SPEAKER_25
transcript.pyannote[1177].start 9432.61596875
transcript.pyannote[1177].end 9436.68284375
transcript.pyannote[1178].speaker SPEAKER_25
transcript.pyannote[1178].start 9443.28096875
transcript.pyannote[1178].end 9443.77034375
transcript.pyannote[1179].speaker SPEAKER_25
transcript.pyannote[1179].start 9445.03596875
transcript.pyannote[1179].end 9455.66721875
transcript.pyannote[1180].speaker SPEAKER_26
transcript.pyannote[1180].start 9455.66721875
transcript.pyannote[1180].end 9456.86534375
transcript.pyannote[1181].speaker SPEAKER_25
transcript.pyannote[1181].start 9456.86534375
transcript.pyannote[1181].end 9456.88221875
transcript.pyannote[1182].speaker SPEAKER_26
transcript.pyannote[1182].start 9456.88221875
transcript.pyannote[1182].end 9461.55659375
transcript.pyannote[1183].speaker SPEAKER_25
transcript.pyannote[1183].start 9459.61596875
transcript.pyannote[1183].end 9461.59034375
transcript.pyannote[1184].speaker SPEAKER_26
transcript.pyannote[1184].start 9461.59034375
transcript.pyannote[1184].end 9461.64096875
transcript.pyannote[1185].speaker SPEAKER_25
transcript.pyannote[1185].start 9461.64096875
transcript.pyannote[1185].end 9461.80971875
transcript.pyannote[1186].speaker SPEAKER_26
transcript.pyannote[1186].start 9461.80971875
transcript.pyannote[1186].end 9461.82659375
transcript.pyannote[1187].speaker SPEAKER_26
transcript.pyannote[1187].start 9462.60284375
transcript.pyannote[1187].end 9462.70409375
transcript.pyannote[1188].speaker SPEAKER_25
transcript.pyannote[1188].start 9463.56471875
transcript.pyannote[1188].end 9477.70596875
transcript.pyannote[1189].speaker SPEAKER_26
transcript.pyannote[1189].start 9470.55096875
transcript.pyannote[1189].end 9471.51284375
transcript.pyannote[1190].speaker SPEAKER_25
transcript.pyannote[1190].start 9477.89159375
transcript.pyannote[1190].end 9477.94221875
transcript.pyannote[1191].speaker SPEAKER_26
transcript.pyannote[1191].start 9477.94221875
transcript.pyannote[1191].end 9478.76909375
transcript.pyannote[1192].speaker SPEAKER_25
transcript.pyannote[1192].start 9478.76909375
transcript.pyannote[1192].end 9478.78596875
transcript.pyannote[1193].speaker SPEAKER_26
transcript.pyannote[1193].start 9478.78596875
transcript.pyannote[1193].end 9478.80284375
transcript.pyannote[1194].speaker SPEAKER_25
transcript.pyannote[1194].start 9478.80284375
transcript.pyannote[1194].end 9478.81971875
transcript.pyannote[1195].speaker SPEAKER_26
transcript.pyannote[1195].start 9478.81971875
transcript.pyannote[1195].end 9478.83659375
transcript.pyannote[1196].speaker SPEAKER_25
transcript.pyannote[1196].start 9478.83659375
transcript.pyannote[1196].end 9478.87034375
transcript.pyannote[1197].speaker SPEAKER_26
transcript.pyannote[1197].start 9478.87034375
transcript.pyannote[1197].end 9478.95471875
transcript.pyannote[1198].speaker SPEAKER_25
transcript.pyannote[1198].start 9478.95471875
transcript.pyannote[1198].end 9479.17409375
transcript.pyannote[1199].speaker SPEAKER_26
transcript.pyannote[1199].start 9479.17409375
transcript.pyannote[1199].end 9479.61284375
transcript.pyannote[1200].speaker SPEAKER_25
transcript.pyannote[1200].start 9479.61284375
transcript.pyannote[1200].end 9479.69721875
transcript.pyannote[1201].speaker SPEAKER_25
transcript.pyannote[1201].start 9480.76034375
transcript.pyannote[1201].end 9483.10596875
transcript.pyannote[1202].speaker SPEAKER_25
transcript.pyannote[1202].start 9483.32534375
transcript.pyannote[1202].end 9483.96659375
transcript.pyannote[1203].speaker SPEAKER_26
transcript.pyannote[1203].start 9483.96659375
transcript.pyannote[1203].end 9485.72159375
transcript.pyannote[1204].speaker SPEAKER_26
transcript.pyannote[1204].start 9486.36284375
transcript.pyannote[1204].end 9487.54409375
transcript.pyannote[1205].speaker SPEAKER_26
transcript.pyannote[1205].start 9488.15159375
transcript.pyannote[1205].end 9494.56409375
transcript.pyannote[1206].speaker SPEAKER_25
transcript.pyannote[1206].start 9489.28221875
transcript.pyannote[1206].end 9504.52034375
transcript.pyannote[1207].speaker SPEAKER_25
transcript.pyannote[1207].start 9504.87471875
transcript.pyannote[1207].end 9505.95471875
transcript.pyannote[1208].speaker SPEAKER_25
transcript.pyannote[1208].start 9506.73096875
transcript.pyannote[1208].end 9507.99659375
transcript.pyannote[1209].speaker SPEAKER_25
transcript.pyannote[1209].start 9508.41846875
transcript.pyannote[1209].end 9509.00909375
transcript.pyannote[1210].speaker SPEAKER_25
transcript.pyannote[1210].start 9509.53221875
transcript.pyannote[1210].end 9511.64159375
transcript.pyannote[1211].speaker SPEAKER_25
transcript.pyannote[1211].start 9511.87784375
transcript.pyannote[1211].end 9513.91971875
transcript.pyannote[1212].speaker SPEAKER_25
transcript.pyannote[1212].start 9514.07159375
transcript.pyannote[1212].end 9514.99971875
transcript.pyannote[1213].speaker SPEAKER_25
transcript.pyannote[1213].start 9515.30346875
transcript.pyannote[1213].end 9517.46346875
transcript.pyannote[1214].speaker SPEAKER_25
transcript.pyannote[1214].start 9517.95284375
transcript.pyannote[1214].end 9520.80471875
transcript.pyannote[1215].speaker SPEAKER_25
transcript.pyannote[1215].start 9521.90159375
transcript.pyannote[1215].end 9523.28534375
transcript.pyannote[1216].speaker SPEAKER_25
transcript.pyannote[1216].start 9525.34409375
transcript.pyannote[1216].end 9528.07784375
transcript.pyannote[1217].speaker SPEAKER_25
transcript.pyannote[1217].start 9528.70221875
transcript.pyannote[1217].end 9531.53721875
transcript.pyannote[1218].speaker SPEAKER_25
transcript.pyannote[1218].start 9532.65096875
transcript.pyannote[1218].end 9544.15971875
transcript.pyannote[1219].speaker SPEAKER_25
transcript.pyannote[1219].start 9544.69971875
transcript.pyannote[1219].end 9550.30221875
transcript.pyannote[1220].speaker SPEAKER_25
transcript.pyannote[1220].start 9550.77471875
transcript.pyannote[1220].end 9553.81221875
transcript.pyannote[1221].speaker SPEAKER_25
transcript.pyannote[1221].start 9555.49971875
transcript.pyannote[1221].end 9556.88346875
transcript.pyannote[1222].speaker SPEAKER_25
transcript.pyannote[1222].start 9557.17034375
transcript.pyannote[1222].end 9558.38534375
transcript.pyannote[1223].speaker SPEAKER_26
transcript.pyannote[1223].start 9557.44034375
transcript.pyannote[1223].end 9559.33034375
transcript.pyannote[1224].speaker SPEAKER_26
transcript.pyannote[1224].start 9559.43159375
transcript.pyannote[1224].end 9559.68471875
transcript.pyannote[1225].speaker SPEAKER_25
transcript.pyannote[1225].start 9559.68471875
transcript.pyannote[1225].end 9571.53096875
transcript.pyannote[1226].speaker SPEAKER_25
transcript.pyannote[1226].start 9572.44221875
transcript.pyannote[1226].end 9574.60221875
transcript.pyannote[1227].speaker SPEAKER_25
transcript.pyannote[1227].start 9575.10846875
transcript.pyannote[1227].end 9580.15409375
transcript.pyannote[1228].speaker SPEAKER_25
transcript.pyannote[1228].start 9580.54221875
transcript.pyannote[1228].end 9589.75596875
transcript.pyannote[1229].speaker SPEAKER_25
transcript.pyannote[1229].start 9590.98784375
transcript.pyannote[1229].end 9592.00034375
transcript.pyannote[1230].speaker SPEAKER_38
transcript.pyannote[1230].start 9591.13971875
transcript.pyannote[1230].end 9591.47721875
transcript.pyannote[1231].speaker SPEAKER_25
transcript.pyannote[1231].start 9592.33784375
transcript.pyannote[1231].end 9600.64034375
transcript.pyannote[1232].speaker SPEAKER_25
transcript.pyannote[1232].start 9600.80909375
transcript.pyannote[1232].end 9603.74534375
transcript.pyannote[1233].speaker SPEAKER_25
transcript.pyannote[1233].start 9605.73659375
transcript.pyannote[1233].end 9608.99346875
transcript.pyannote[1234].speaker SPEAKER_25
transcript.pyannote[1234].start 9609.49971875
transcript.pyannote[1234].end 9610.54596875
transcript.pyannote[1235].speaker SPEAKER_26
transcript.pyannote[1235].start 9610.32659375
transcript.pyannote[1235].end 9613.11096875
transcript.pyannote[1236].speaker SPEAKER_25
transcript.pyannote[1236].start 9611.49096875
transcript.pyannote[1236].end 9612.52034375
transcript.pyannote[1237].speaker SPEAKER_25
transcript.pyannote[1237].start 9612.75659375
transcript.pyannote[1237].end 9616.04721875
transcript.pyannote[1238].speaker SPEAKER_25
transcript.pyannote[1238].start 9616.21596875
transcript.pyannote[1238].end 9620.85659375
transcript.pyannote[1239].speaker SPEAKER_25
transcript.pyannote[1239].start 9621.17721875
transcript.pyannote[1239].end 9637.88346875
transcript.pyannote[1240].speaker SPEAKER_25
transcript.pyannote[1240].start 9638.28846875
transcript.pyannote[1240].end 9640.12784375
transcript.pyannote[1241].speaker SPEAKER_25
transcript.pyannote[1241].start 9641.07284375
transcript.pyannote[1241].end 9642.13596875
transcript.pyannote[1242].speaker SPEAKER_25
transcript.pyannote[1242].start 9642.55784375
transcript.pyannote[1242].end 9644.27909375
transcript.pyannote[1243].speaker SPEAKER_25
transcript.pyannote[1243].start 9644.90346875
transcript.pyannote[1243].end 9645.93284375
transcript.pyannote[1244].speaker SPEAKER_25
transcript.pyannote[1244].start 9646.43909375
transcript.pyannote[1244].end 9650.23596875
transcript.pyannote[1245].speaker SPEAKER_25
transcript.pyannote[1245].start 9651.13034375
transcript.pyannote[1245].end 9651.97409375
transcript.pyannote[1246].speaker SPEAKER_26
transcript.pyannote[1246].start 9653.44221875
transcript.pyannote[1246].end 9655.60221875
transcript.pyannote[1247].speaker SPEAKER_25
transcript.pyannote[1247].start 9655.78784375
transcript.pyannote[1247].end 9656.24346875
transcript.pyannote[1248].speaker SPEAKER_25
transcript.pyannote[1248].start 9656.83409375
transcript.pyannote[1248].end 9657.30659375
transcript.pyannote[1249].speaker SPEAKER_25
transcript.pyannote[1249].start 9657.54284375
transcript.pyannote[1249].end 9663.14534375
transcript.pyannote[1250].speaker SPEAKER_25
transcript.pyannote[1250].start 9663.66846875
transcript.pyannote[1250].end 9666.57096875
transcript.pyannote[1251].speaker SPEAKER_25
transcript.pyannote[1251].start 9666.90846875
transcript.pyannote[1251].end 9667.41471875
transcript.pyannote[1252].speaker SPEAKER_25
transcript.pyannote[1252].start 9667.65096875
transcript.pyannote[1252].end 9697.70534375
transcript.pyannote[1253].speaker SPEAKER_25
transcript.pyannote[1253].start 9698.41409375
transcript.pyannote[1253].end 9730.30784375
transcript.pyannote[1254].speaker SPEAKER_25
transcript.pyannote[1254].start 9730.71284375
transcript.pyannote[1254].end 9734.81346875
transcript.pyannote[1255].speaker SPEAKER_25
transcript.pyannote[1255].start 9735.16784375
transcript.pyannote[1255].end 9769.59284375
transcript.pyannote[1256].speaker SPEAKER_25
transcript.pyannote[1256].start 9769.72784375
transcript.pyannote[1256].end 9772.90034375
transcript.pyannote[1257].speaker SPEAKER_25
transcript.pyannote[1257].start 9773.23784375
transcript.pyannote[1257].end 9774.21659375
transcript.pyannote[1258].speaker SPEAKER_25
transcript.pyannote[1258].start 9775.22909375
transcript.pyannote[1258].end 9780.12284375
transcript.pyannote[1259].speaker SPEAKER_25
transcript.pyannote[1259].start 9780.61221875
transcript.pyannote[1259].end 9786.65346875
transcript.pyannote[1260].speaker SPEAKER_26
transcript.pyannote[1260].start 9787.29471875
transcript.pyannote[1260].end 9798.82034375
transcript.pyannote[1261].speaker SPEAKER_26
transcript.pyannote[1261].start 9799.37721875
transcript.pyannote[1261].end 9813.01221875
transcript.pyannote[1262].speaker SPEAKER_25
transcript.pyannote[1262].start 9809.80596875
transcript.pyannote[1262].end 9811.25721875
transcript.pyannote[1263].speaker SPEAKER_25
transcript.pyannote[1263].start 9812.08409375
transcript.pyannote[1263].end 9816.89346875
transcript.pyannote[1264].speaker SPEAKER_25
transcript.pyannote[1264].start 9817.33221875
transcript.pyannote[1264].end 9827.60909375
transcript.pyannote[1265].speaker SPEAKER_26
transcript.pyannote[1265].start 9819.88034375
transcript.pyannote[1265].end 9819.96471875
transcript.pyannote[1266].speaker SPEAKER_00
transcript.pyannote[1266].start 9820.20096875
transcript.pyannote[1266].end 9820.23471875
transcript.pyannote[1267].speaker SPEAKER_00
transcript.pyannote[1267].start 9821.16284375
transcript.pyannote[1267].end 9821.78721875
transcript.pyannote[1268].speaker SPEAKER_00
transcript.pyannote[1268].start 9822.91784375
transcript.pyannote[1268].end 9822.95159375
transcript.pyannote[1269].speaker SPEAKER_22
transcript.pyannote[1269].start 9824.57159375
transcript.pyannote[1269].end 9825.68534375
transcript.pyannote[1270].speaker SPEAKER_25
transcript.pyannote[1270].start 9828.08159375
transcript.pyannote[1270].end 9837.12659375
transcript.pyannote[1271].speaker SPEAKER_25
transcript.pyannote[1271].start 9837.71721875
transcript.pyannote[1271].end 9850.89659375
transcript.pyannote[1272].speaker SPEAKER_26
transcript.pyannote[1272].start 9849.07409375
transcript.pyannote[1272].end 9853.22534375
transcript.pyannote[1273].speaker SPEAKER_25
transcript.pyannote[1273].start 9853.74846875
transcript.pyannote[1273].end 9858.72659375
transcript.pyannote[1274].speaker SPEAKER_25
transcript.pyannote[1274].start 9858.97971875
transcript.pyannote[1274].end 9860.02596875
transcript.pyannote[1275].speaker SPEAKER_13
transcript.pyannote[1275].start 9860.02596875
transcript.pyannote[1275].end 9860.09346875
transcript.pyannote[1276].speaker SPEAKER_25
transcript.pyannote[1276].start 9860.09346875
transcript.pyannote[1276].end 9860.17784375
transcript.pyannote[1277].speaker SPEAKER_13
transcript.pyannote[1277].start 9860.17784375
transcript.pyannote[1277].end 9860.21159375
transcript.pyannote[1278].speaker SPEAKER_25
transcript.pyannote[1278].start 9860.21159375
transcript.pyannote[1278].end 9860.92034375
transcript.pyannote[1279].speaker SPEAKER_13
transcript.pyannote[1279].start 9860.92034375
transcript.pyannote[1279].end 9861.00471875
transcript.pyannote[1280].speaker SPEAKER_25
transcript.pyannote[1280].start 9861.00471875
transcript.pyannote[1280].end 9861.02159375
transcript.pyannote[1281].speaker SPEAKER_13
transcript.pyannote[1281].start 9861.02159375
transcript.pyannote[1281].end 9864.85221875
transcript.pyannote[1282].speaker SPEAKER_25
transcript.pyannote[1282].start 9865.12221875
transcript.pyannote[1282].end 9868.88534375
transcript.pyannote[1283].speaker SPEAKER_13
transcript.pyannote[1283].start 9867.01221875
transcript.pyannote[1283].end 9869.50971875
transcript.pyannote[1284].speaker SPEAKER_25
transcript.pyannote[1284].start 9869.94846875
transcript.pyannote[1284].end 9870.38721875
transcript.pyannote[1285].speaker SPEAKER_13
transcript.pyannote[1285].start 9870.64034375
transcript.pyannote[1285].end 9870.97784375
transcript.pyannote[1286].speaker SPEAKER_13
transcript.pyannote[1286].start 9871.63596875
transcript.pyannote[1286].end 9873.52596875
transcript.pyannote[1287].speaker SPEAKER_25
transcript.pyannote[1287].start 9872.09159375
transcript.pyannote[1287].end 9873.17159375
transcript.pyannote[1288].speaker SPEAKER_38
transcript.pyannote[1288].start 9873.17159375
transcript.pyannote[1288].end 9873.28971875
transcript.pyannote[1289].speaker SPEAKER_13
transcript.pyannote[1289].start 9874.28534375
transcript.pyannote[1289].end 9880.47846875
transcript.pyannote[1290].speaker SPEAKER_19
transcript.pyannote[1290].start 9885.50721875
transcript.pyannote[1290].end 9887.97096875
transcript.pyannote[1291].speaker SPEAKER_25
transcript.pyannote[1291].start 9887.76846875
transcript.pyannote[1291].end 9891.02534375
transcript.pyannote[1292].speaker SPEAKER_25
transcript.pyannote[1292].start 9891.43034375
transcript.pyannote[1292].end 9891.51471875
transcript.pyannote[1293].speaker SPEAKER_19
transcript.pyannote[1293].start 9895.22721875
transcript.pyannote[1293].end 9896.10471875
transcript.pyannote[1294].speaker SPEAKER_19
transcript.pyannote[1294].start 9899.98596875
transcript.pyannote[1294].end 9981.74534375
transcript.pyannote[1295].speaker SPEAKER_23
transcript.pyannote[1295].start 9909.03096875
transcript.pyannote[1295].end 9909.35159375
transcript.pyannote[1296].speaker SPEAKER_00
transcript.pyannote[1296].start 9918.31221875
transcript.pyannote[1296].end 9918.86909375
transcript.pyannote[1297].speaker SPEAKER_19
transcript.pyannote[1297].start 9982.23471875
transcript.pyannote[1297].end 10012.96409375
transcript.pyannote[1298].speaker SPEAKER_26
transcript.pyannote[1298].start 10012.96409375
transcript.pyannote[1298].end 10032.45471875
transcript.pyannote[1299].speaker SPEAKER_19
transcript.pyannote[1299].start 10027.88159375
transcript.pyannote[1299].end 10028.16846875
transcript.pyannote[1300].speaker SPEAKER_19
transcript.pyannote[1300].start 10029.06284375
transcript.pyannote[1300].end 10029.38346875
transcript.pyannote[1301].speaker SPEAKER_19
transcript.pyannote[1301].start 10031.10471875
transcript.pyannote[1301].end 10035.74534375
transcript.pyannote[1302].speaker SPEAKER_19
transcript.pyannote[1302].start 10036.11659375
transcript.pyannote[1302].end 10040.85846875
transcript.pyannote[1303].speaker SPEAKER_19
transcript.pyannote[1303].start 10041.26346875
transcript.pyannote[1303].end 10045.11096875
transcript.pyannote[1304].speaker SPEAKER_26
transcript.pyannote[1304].start 10045.11096875
transcript.pyannote[1304].end 10045.12784375
transcript.pyannote[1305].speaker SPEAKER_19
transcript.pyannote[1305].start 10045.12784375
transcript.pyannote[1305].end 10045.21221875
transcript.pyannote[1306].speaker SPEAKER_26
transcript.pyannote[1306].start 10045.21221875
transcript.pyannote[1306].end 10045.49909375
transcript.pyannote[1307].speaker SPEAKER_19
transcript.pyannote[1307].start 10045.49909375
transcript.pyannote[1307].end 10045.71846875
transcript.pyannote[1308].speaker SPEAKER_26
transcript.pyannote[1308].start 10045.51596875
transcript.pyannote[1308].end 10055.43846875
transcript.pyannote[1309].speaker SPEAKER_38
transcript.pyannote[1309].start 10052.77221875
transcript.pyannote[1309].end 10053.46409375
transcript.pyannote[1310].speaker SPEAKER_38
transcript.pyannote[1310].start 10054.40909375
transcript.pyannote[1310].end 10055.42159375
transcript.pyannote[1311].speaker SPEAKER_38
transcript.pyannote[1311].start 10055.43846875
transcript.pyannote[1311].end 10055.47221875
transcript.pyannote[1312].speaker SPEAKER_26
transcript.pyannote[1312].start 10055.47221875
transcript.pyannote[1312].end 10055.52284375
transcript.pyannote[1313].speaker SPEAKER_26
transcript.pyannote[1313].start 10055.65784375
transcript.pyannote[1313].end 10066.12034375
transcript.pyannote[1314].speaker SPEAKER_19
transcript.pyannote[1314].start 10062.28971875
transcript.pyannote[1314].end 10062.81284375
transcript.pyannote[1315].speaker SPEAKER_19
transcript.pyannote[1315].start 10065.81659375
transcript.pyannote[1315].end 10066.10346875
transcript.pyannote[1316].speaker SPEAKER_19
transcript.pyannote[1316].start 10066.12034375
transcript.pyannote[1316].end 10086.48846875
transcript.pyannote[1317].speaker SPEAKER_24
transcript.pyannote[1317].start 10078.92846875
transcript.pyannote[1317].end 10078.94534375
transcript.pyannote[1318].speaker SPEAKER_38
transcript.pyannote[1318].start 10078.94534375
transcript.pyannote[1318].end 10079.28284375
transcript.pyannote[1319].speaker SPEAKER_24
transcript.pyannote[1319].start 10079.28284375
transcript.pyannote[1319].end 10079.35034375
transcript.pyannote[1320].speaker SPEAKER_00
transcript.pyannote[1320].start 10079.35034375
transcript.pyannote[1320].end 10079.36721875
transcript.pyannote[1321].speaker SPEAKER_00
transcript.pyannote[1321].start 10081.24034375
transcript.pyannote[1321].end 10081.25721875
transcript.pyannote[1322].speaker SPEAKER_24
transcript.pyannote[1322].start 10081.25721875
transcript.pyannote[1322].end 10081.54409375
transcript.pyannote[1323].speaker SPEAKER_19
transcript.pyannote[1323].start 10086.77534375
transcript.pyannote[1323].end 10090.90971875
transcript.pyannote[1324].speaker SPEAKER_38
transcript.pyannote[1324].start 10088.49659375
transcript.pyannote[1324].end 10088.86784375
transcript.pyannote[1325].speaker SPEAKER_19
transcript.pyannote[1325].start 10091.33159375
transcript.pyannote[1325].end 10099.61721875
transcript.pyannote[1326].speaker SPEAKER_05
transcript.pyannote[1326].start 10100.42721875
transcript.pyannote[1326].end 10124.13659375
transcript.pyannote[1327].speaker SPEAKER_19
transcript.pyannote[1327].start 10122.78659375
transcript.pyannote[1327].end 10125.77346875
transcript.pyannote[1328].speaker SPEAKER_05
transcript.pyannote[1328].start 10125.77346875
transcript.pyannote[1328].end 10130.56596875
transcript.pyannote[1329].speaker SPEAKER_19
transcript.pyannote[1329].start 10128.89534375
transcript.pyannote[1329].end 10129.41846875
transcript.pyannote[1330].speaker SPEAKER_19
transcript.pyannote[1330].start 10130.17784375
transcript.pyannote[1330].end 10130.66721875
transcript.pyannote[1331].speaker SPEAKER_19
transcript.pyannote[1331].start 10130.83596875
transcript.pyannote[1331].end 10138.29471875
transcript.pyannote[1332].speaker SPEAKER_26
transcript.pyannote[1332].start 10135.00409375
transcript.pyannote[1332].end 10138.83471875
transcript.pyannote[1333].speaker SPEAKER_19
transcript.pyannote[1333].start 10138.83471875
transcript.pyannote[1333].end 10139.32409375
transcript.pyannote[1334].speaker SPEAKER_19
transcript.pyannote[1334].start 10139.45909375
transcript.pyannote[1334].end 10149.63471875
transcript.pyannote[1335].speaker SPEAKER_26
transcript.pyannote[1335].start 10139.52659375
transcript.pyannote[1335].end 10140.11721875
transcript.pyannote[1336].speaker SPEAKER_26
transcript.pyannote[1336].start 10142.34471875
transcript.pyannote[1336].end 10142.74971875
transcript.pyannote[1337].speaker SPEAKER_26
transcript.pyannote[1337].start 10143.34034375
transcript.pyannote[1337].end 10144.33596875
transcript.pyannote[1338].speaker SPEAKER_19
transcript.pyannote[1338].start 10149.88784375
transcript.pyannote[1338].end 10163.35409375
transcript.pyannote[1339].speaker SPEAKER_19
transcript.pyannote[1339].start 10163.57346875
transcript.pyannote[1339].end 10211.02596875
transcript.pyannote[1340].speaker SPEAKER_00
transcript.pyannote[1340].start 10177.02284375
transcript.pyannote[1340].end 10177.14096875
transcript.pyannote[1341].speaker SPEAKER_38
transcript.pyannote[1341].start 10177.14096875
transcript.pyannote[1341].end 10177.17471875
transcript.pyannote[1342].speaker SPEAKER_00
transcript.pyannote[1342].start 10177.17471875
transcript.pyannote[1342].end 10177.34346875
transcript.pyannote[1343].speaker SPEAKER_19
transcript.pyannote[1343].start 10211.22846875
transcript.pyannote[1343].end 10217.86034375
transcript.pyannote[1344].speaker SPEAKER_19
transcript.pyannote[1344].start 10218.45096875
transcript.pyannote[1344].end 10246.48034375
transcript.pyannote[1345].speaker SPEAKER_19
transcript.pyannote[1345].start 10247.03721875
transcript.pyannote[1345].end 10287.53721875
transcript.pyannote[1346].speaker SPEAKER_00
transcript.pyannote[1346].start 10258.41096875
transcript.pyannote[1346].end 10258.46159375
transcript.pyannote[1347].speaker SPEAKER_00
transcript.pyannote[1347].start 10258.47846875
transcript.pyannote[1347].end 10258.49534375
transcript.pyannote[1348].speaker SPEAKER_26
transcript.pyannote[1348].start 10287.53721875
transcript.pyannote[1348].end 10289.15721875
transcript.pyannote[1349].speaker SPEAKER_19
transcript.pyannote[1349].start 10287.80721875
transcript.pyannote[1349].end 10289.17409375
transcript.pyannote[1350].speaker SPEAKER_19
transcript.pyannote[1350].start 10289.86596875
transcript.pyannote[1350].end 10294.96221875
transcript.pyannote[1351].speaker SPEAKER_26
transcript.pyannote[1351].start 10289.88284375
transcript.pyannote[1351].end 10290.82784375
transcript.pyannote[1352].speaker SPEAKER_19
transcript.pyannote[1352].start 10295.36721875
transcript.pyannote[1352].end 10298.97846875
transcript.pyannote[1353].speaker SPEAKER_26
transcript.pyannote[1353].start 10298.97846875
transcript.pyannote[1353].end 10305.50909375
transcript.pyannote[1354].speaker SPEAKER_19
transcript.pyannote[1354].start 10302.62346875
transcript.pyannote[1354].end 10303.07909375
transcript.pyannote[1355].speaker SPEAKER_19
transcript.pyannote[1355].start 10304.12534375
transcript.pyannote[1355].end 10312.46159375
transcript.pyannote[1356].speaker SPEAKER_26
transcript.pyannote[1356].start 10306.85909375
transcript.pyannote[1356].end 10307.36534375
transcript.pyannote[1357].speaker SPEAKER_26
transcript.pyannote[1357].start 10308.15846875
transcript.pyannote[1357].end 10309.23846875
transcript.pyannote[1358].speaker SPEAKER_26
transcript.pyannote[1358].start 10309.76159375
transcript.pyannote[1358].end 10310.72346875
transcript.pyannote[1359].speaker SPEAKER_26
transcript.pyannote[1359].start 10311.21284375
transcript.pyannote[1359].end 10311.65159375
transcript.pyannote[1360].speaker SPEAKER_26
transcript.pyannote[1360].start 10311.92159375
transcript.pyannote[1360].end 10312.39409375
transcript.pyannote[1361].speaker SPEAKER_26
transcript.pyannote[1361].start 10312.46159375
transcript.pyannote[1361].end 10312.63034375
transcript.pyannote[1362].speaker SPEAKER_19
transcript.pyannote[1362].start 10312.63034375
transcript.pyannote[1362].end 10314.97596875
transcript.pyannote[1363].speaker SPEAKER_26
transcript.pyannote[1363].start 10312.79909375
transcript.pyannote[1363].end 10313.22096875
transcript.pyannote[1364].speaker SPEAKER_26
transcript.pyannote[1364].start 10313.69346875
transcript.pyannote[1364].end 10314.25034375
transcript.pyannote[1365].speaker SPEAKER_26
transcript.pyannote[1365].start 10314.97596875
transcript.pyannote[1365].end 10315.02659375
transcript.pyannote[1366].speaker SPEAKER_19
transcript.pyannote[1366].start 10315.02659375
transcript.pyannote[1366].end 10315.63409375
transcript.pyannote[1367].speaker SPEAKER_26
transcript.pyannote[1367].start 10315.22909375
transcript.pyannote[1367].end 10315.41471875
transcript.pyannote[1368].speaker SPEAKER_19
transcript.pyannote[1368].start 10316.35971875
transcript.pyannote[1368].end 10318.80659375
transcript.pyannote[1369].speaker SPEAKER_26
transcript.pyannote[1369].start 10317.45659375
transcript.pyannote[1369].end 10317.82784375
transcript.pyannote[1370].speaker SPEAKER_13
transcript.pyannote[1370].start 10317.86159375
transcript.pyannote[1370].end 10321.52346875
transcript.pyannote[1371].speaker SPEAKER_38
transcript.pyannote[1371].start 10318.80659375
transcript.pyannote[1371].end 10318.89096875
transcript.pyannote[1372].speaker SPEAKER_19
transcript.pyannote[1372].start 10318.89096875
transcript.pyannote[1372].end 10321.21971875
transcript.pyannote[1373].speaker SPEAKER_13
transcript.pyannote[1373].start 10321.86096875
transcript.pyannote[1373].end 10321.94534375
transcript.pyannote[1374].speaker SPEAKER_13
transcript.pyannote[1374].start 10324.35846875
transcript.pyannote[1374].end 10327.66596875
transcript.pyannote[1375].speaker SPEAKER_24
transcript.pyannote[1375].start 10334.97284375
transcript.pyannote[1375].end 10337.06534375
transcript.pyannote[1376].speaker SPEAKER_38
transcript.pyannote[1376].start 10337.06534375
transcript.pyannote[1376].end 10337.70659375
transcript.pyannote[1377].speaker SPEAKER_38
transcript.pyannote[1377].start 10338.22971875
transcript.pyannote[1377].end 10338.24659375
transcript.pyannote[1378].speaker SPEAKER_24
transcript.pyannote[1378].start 10338.24659375
transcript.pyannote[1378].end 10338.28034375
transcript.pyannote[1379].speaker SPEAKER_38
transcript.pyannote[1379].start 10338.28034375
transcript.pyannote[1379].end 10338.33096875
transcript.pyannote[1380].speaker SPEAKER_24
transcript.pyannote[1380].start 10338.33096875
transcript.pyannote[1380].end 10338.56721875
transcript.pyannote[1381].speaker SPEAKER_38
transcript.pyannote[1381].start 10338.56721875
transcript.pyannote[1381].end 10338.66846875
transcript.pyannote[1382].speaker SPEAKER_24
transcript.pyannote[1382].start 10340.82846875
transcript.pyannote[1382].end 10354.59846875
transcript.pyannote[1383].speaker SPEAKER_24
transcript.pyannote[1383].start 10355.02034375
transcript.pyannote[1383].end 10367.00159375
transcript.pyannote[1384].speaker SPEAKER_24
transcript.pyannote[1384].start 10367.57534375
transcript.pyannote[1384].end 10398.03471875
transcript.pyannote[1385].speaker SPEAKER_38
transcript.pyannote[1385].start 10380.02909375
transcript.pyannote[1385].end 10380.51846875
transcript.pyannote[1386].speaker SPEAKER_20
transcript.pyannote[1386].start 10390.00221875
transcript.pyannote[1386].end 10390.01909375
transcript.pyannote[1387].speaker SPEAKER_38
transcript.pyannote[1387].start 10390.01909375
transcript.pyannote[1387].end 10390.10346875
transcript.pyannote[1388].speaker SPEAKER_24
transcript.pyannote[1388].start 10398.20346875
transcript.pyannote[1388].end 10404.22784375
transcript.pyannote[1389].speaker SPEAKER_24
transcript.pyannote[1389].start 10404.59909375
transcript.pyannote[1389].end 10413.13784375
transcript.pyannote[1390].speaker SPEAKER_24
transcript.pyannote[1390].start 10413.39096875
transcript.pyannote[1390].end 10424.44409375
transcript.pyannote[1391].speaker SPEAKER_07
transcript.pyannote[1391].start 10424.44409375
transcript.pyannote[1391].end 10444.69409375
transcript.pyannote[1392].speaker SPEAKER_24
transcript.pyannote[1392].start 10443.76596875
transcript.pyannote[1392].end 10453.95846875
transcript.pyannote[1393].speaker SPEAKER_07
transcript.pyannote[1393].start 10452.96284375
transcript.pyannote[1393].end 10458.26159375
transcript.pyannote[1394].speaker SPEAKER_24
transcript.pyannote[1394].start 10458.93659375
transcript.pyannote[1394].end 10499.89221875
transcript.pyannote[1395].speaker SPEAKER_07
transcript.pyannote[1395].start 10463.29034375
transcript.pyannote[1395].end 10463.64471875
transcript.pyannote[1396].speaker SPEAKER_07
transcript.pyannote[1396].start 10465.23096875
transcript.pyannote[1396].end 10466.56409375
transcript.pyannote[1397].speaker SPEAKER_38
transcript.pyannote[1397].start 10466.56409375
transcript.pyannote[1397].end 10466.61471875
transcript.pyannote[1398].speaker SPEAKER_24
transcript.pyannote[1398].start 10500.49971875
transcript.pyannote[1398].end 10500.75284375
transcript.pyannote[1399].speaker SPEAKER_26
transcript.pyannote[1399].start 10500.75284375
transcript.pyannote[1399].end 10511.41784375
transcript.pyannote[1400].speaker SPEAKER_24
transcript.pyannote[1400].start 10510.25346875
transcript.pyannote[1400].end 10511.01284375
transcript.pyannote[1401].speaker SPEAKER_24
transcript.pyannote[1401].start 10511.41784375
transcript.pyannote[1401].end 10515.83909375
transcript.pyannote[1402].speaker SPEAKER_26
transcript.pyannote[1402].start 10511.62034375
transcript.pyannote[1402].end 10513.25721875
transcript.pyannote[1403].speaker SPEAKER_07
transcript.pyannote[1403].start 10515.83909375
transcript.pyannote[1403].end 10516.26096875
transcript.pyannote[1404].speaker SPEAKER_24
transcript.pyannote[1404].start 10515.92346875
transcript.pyannote[1404].end 10517.37471875
transcript.pyannote[1405].speaker SPEAKER_07
transcript.pyannote[1405].start 10517.37471875
transcript.pyannote[1405].end 10526.01471875
transcript.pyannote[1406].speaker SPEAKER_24
transcript.pyannote[1406].start 10524.07409375
transcript.pyannote[1406].end 10525.99784375
transcript.pyannote[1407].speaker SPEAKER_24
transcript.pyannote[1407].start 10526.01471875
transcript.pyannote[1407].end 10556.05221875
transcript.pyannote[1408].speaker SPEAKER_24
transcript.pyannote[1408].start 10556.52471875
transcript.pyannote[1408].end 10563.84846875
transcript.pyannote[1409].speaker SPEAKER_38
transcript.pyannote[1409].start 10559.83221875
transcript.pyannote[1409].end 10560.28784375
transcript.pyannote[1410].speaker SPEAKER_24
transcript.pyannote[1410].start 10564.01721875
transcript.pyannote[1410].end 10567.30784375
transcript.pyannote[1411].speaker SPEAKER_38
transcript.pyannote[1411].start 10567.30784375
transcript.pyannote[1411].end 10567.64534375
transcript.pyannote[1412].speaker SPEAKER_24
transcript.pyannote[1412].start 10567.64534375
transcript.pyannote[1412].end 10572.91034375
transcript.pyannote[1413].speaker SPEAKER_24
transcript.pyannote[1413].start 10573.33221875
transcript.pyannote[1413].end 10582.34346875
transcript.pyannote[1414].speaker SPEAKER_07
transcript.pyannote[1414].start 10582.34346875
transcript.pyannote[1414].end 10589.19471875
transcript.pyannote[1415].speaker SPEAKER_24
transcript.pyannote[1415].start 10588.13159375
transcript.pyannote[1415].end 10598.13846875
transcript.pyannote[1416].speaker SPEAKER_26
transcript.pyannote[1416].start 10597.41284375
transcript.pyannote[1416].end 10604.50034375
transcript.pyannote[1417].speaker SPEAKER_24
transcript.pyannote[1417].start 10599.60659375
transcript.pyannote[1417].end 10601.66534375
transcript.pyannote[1418].speaker SPEAKER_24
transcript.pyannote[1418].start 10603.62284375
transcript.pyannote[1418].end 10603.96034375
transcript.pyannote[1419].speaker SPEAKER_24
transcript.pyannote[1419].start 10604.50034375
transcript.pyannote[1419].end 10604.53409375
transcript.pyannote[1420].speaker SPEAKER_26
transcript.pyannote[1420].start 10604.53409375
transcript.pyannote[1420].end 10605.98534375
transcript.pyannote[1421].speaker SPEAKER_24
transcript.pyannote[1421].start 10604.93909375
transcript.pyannote[1421].end 10623.07971875
transcript.pyannote[1422].speaker SPEAKER_26
transcript.pyannote[1422].start 10608.66846875
transcript.pyannote[1422].end 10609.07346875
transcript.pyannote[1423].speaker SPEAKER_26
transcript.pyannote[1423].start 10611.26721875
transcript.pyannote[1423].end 10612.39784375
transcript.pyannote[1424].speaker SPEAKER_38
transcript.pyannote[1424].start 10612.39784375
transcript.pyannote[1424].end 10612.43159375
transcript.pyannote[1425].speaker SPEAKER_26
transcript.pyannote[1425].start 10622.37096875
transcript.pyannote[1425].end 10623.60284375
transcript.pyannote[1426].speaker SPEAKER_24
transcript.pyannote[1426].start 10623.33284375
transcript.pyannote[1426].end 10628.88471875
transcript.pyannote[1427].speaker SPEAKER_24
transcript.pyannote[1427].start 10629.01971875
transcript.pyannote[1427].end 10636.32659375
transcript.pyannote[1428].speaker SPEAKER_24
transcript.pyannote[1428].start 10636.54596875
transcript.pyannote[1428].end 10652.17221875
transcript.pyannote[1429].speaker SPEAKER_24
transcript.pyannote[1429].start 10652.39159375
transcript.pyannote[1429].end 10657.65659375
transcript.pyannote[1430].speaker SPEAKER_26
transcript.pyannote[1430].start 10658.12909375
transcript.pyannote[1430].end 10662.17909375
transcript.pyannote[1431].speaker SPEAKER_26
transcript.pyannote[1431].start 10662.31409375
transcript.pyannote[1431].end 10672.92846875
transcript.pyannote[1432].speaker SPEAKER_24
transcript.pyannote[1432].start 10669.38471875
transcript.pyannote[1432].end 10670.68409375
transcript.pyannote[1433].speaker SPEAKER_24
transcript.pyannote[1433].start 10672.13534375
transcript.pyannote[1433].end 10672.69221875
transcript.pyannote[1434].speaker SPEAKER_26
transcript.pyannote[1434].start 10673.13096875
transcript.pyannote[1434].end 10678.00784375
transcript.pyannote[1435].speaker SPEAKER_26
transcript.pyannote[1435].start 10678.51409375
transcript.pyannote[1435].end 10678.83471875
transcript.pyannote[1436].speaker SPEAKER_26
transcript.pyannote[1436].start 10679.40846875
transcript.pyannote[1436].end 10679.42534375
transcript.pyannote[1437].speaker SPEAKER_24
transcript.pyannote[1437].start 10679.42534375
transcript.pyannote[1437].end 10716.04409375
transcript.pyannote[1438].speaker SPEAKER_26
transcript.pyannote[1438].start 10679.44221875
transcript.pyannote[1438].end 10682.29409375
transcript.pyannote[1439].speaker SPEAKER_26
transcript.pyannote[1439].start 10683.42471875
transcript.pyannote[1439].end 10684.87596875
transcript.pyannote[1440].speaker SPEAKER_38
transcript.pyannote[1440].start 10684.87596875
transcript.pyannote[1440].end 10684.94346875
transcript.pyannote[1441].speaker SPEAKER_26
transcript.pyannote[1441].start 10694.81534375
transcript.pyannote[1441].end 10695.49034375
transcript.pyannote[1442].speaker SPEAKER_38
transcript.pyannote[1442].start 10700.65409375
transcript.pyannote[1442].end 10701.02534375
transcript.pyannote[1443].speaker SPEAKER_25
transcript.pyannote[1443].start 10701.02534375
transcript.pyannote[1443].end 10701.05909375
transcript.pyannote[1444].speaker SPEAKER_00
transcript.pyannote[1444].start 10703.59034375
transcript.pyannote[1444].end 10704.26534375
transcript.pyannote[1445].speaker SPEAKER_00
transcript.pyannote[1445].start 10707.85971875
transcript.pyannote[1445].end 10708.02846875
transcript.pyannote[1446].speaker SPEAKER_26
transcript.pyannote[1446].start 10708.02846875
transcript.pyannote[1446].end 10708.28159375
transcript.pyannote[1447].speaker SPEAKER_00
transcript.pyannote[1447].start 10708.28159375
transcript.pyannote[1447].end 10708.48409375
transcript.pyannote[1448].speaker SPEAKER_26
transcript.pyannote[1448].start 10715.97659375
transcript.pyannote[1448].end 10720.60034375
transcript.pyannote[1449].speaker SPEAKER_24
transcript.pyannote[1449].start 10716.06096875
transcript.pyannote[1449].end 10716.58409375
transcript.pyannote[1450].speaker SPEAKER_26
transcript.pyannote[1450].start 10720.76909375
transcript.pyannote[1450].end 10736.78346875
transcript.pyannote[1451].speaker SPEAKER_24
transcript.pyannote[1451].start 10735.87221875
transcript.pyannote[1451].end 10737.84659375
transcript.pyannote[1452].speaker SPEAKER_26
transcript.pyannote[1452].start 10738.03221875
transcript.pyannote[1452].end 10753.60784375
transcript.pyannote[1453].speaker SPEAKER_24
transcript.pyannote[1453].start 10739.93909375
transcript.pyannote[1453].end 10742.53784375
transcript.pyannote[1454].speaker SPEAKER_24
transcript.pyannote[1454].start 10742.58846875
transcript.pyannote[1454].end 10744.95096875
transcript.pyannote[1455].speaker SPEAKER_24
transcript.pyannote[1455].start 10748.54534375
transcript.pyannote[1455].end 10751.32971875
transcript.pyannote[1456].speaker SPEAKER_24
transcript.pyannote[1456].start 10752.74721875
transcript.pyannote[1456].end 10753.38846875
transcript.pyannote[1457].speaker SPEAKER_26
transcript.pyannote[1457].start 10754.14784375
transcript.pyannote[1457].end 10759.96971875
transcript.pyannote[1458].speaker SPEAKER_24
transcript.pyannote[1458].start 10759.96971875
transcript.pyannote[1458].end 10760.34096875
transcript.pyannote[1459].speaker SPEAKER_24
transcript.pyannote[1459].start 10760.91471875
transcript.pyannote[1459].end 10792.43721875
transcript.pyannote[1460].speaker SPEAKER_26
transcript.pyannote[1460].start 10764.69471875
transcript.pyannote[1460].end 10765.28534375
transcript.pyannote[1461].speaker SPEAKER_26
transcript.pyannote[1461].start 10766.17971875
transcript.pyannote[1461].end 10767.31034375
transcript.pyannote[1462].speaker SPEAKER_00
transcript.pyannote[1462].start 10772.72721875
transcript.pyannote[1462].end 10772.74409375
transcript.pyannote[1463].speaker SPEAKER_38
transcript.pyannote[1463].start 10772.74409375
transcript.pyannote[1463].end 10772.81159375
transcript.pyannote[1464].speaker SPEAKER_00
transcript.pyannote[1464].start 10772.81159375
transcript.pyannote[1464].end 10774.12784375
transcript.pyannote[1465].speaker SPEAKER_26
transcript.pyannote[1465].start 10791.72846875
transcript.pyannote[1465].end 10792.38659375
transcript.pyannote[1466].speaker SPEAKER_26
transcript.pyannote[1466].start 10792.43721875
transcript.pyannote[1466].end 10792.87596875
transcript.pyannote[1467].speaker SPEAKER_04
transcript.pyannote[1467].start 10795.15409375
transcript.pyannote[1467].end 10798.78221875
transcript.pyannote[1468].speaker SPEAKER_13
transcript.pyannote[1468].start 10811.03346875
transcript.pyannote[1468].end 10811.79284375
transcript.pyannote[1469].speaker SPEAKER_13
transcript.pyannote[1469].start 10812.19784375
transcript.pyannote[1469].end 10812.92346875
transcript.pyannote[1470].speaker SPEAKER_13
transcript.pyannote[1470].start 10813.21034375
transcript.pyannote[1470].end 10813.95284375
transcript.pyannote[1471].speaker SPEAKER_13
transcript.pyannote[1471].start 10815.35346875
transcript.pyannote[1471].end 10816.31534375
transcript.pyannote[1472].speaker SPEAKER_13
transcript.pyannote[1472].start 10817.32784375
transcript.pyannote[1472].end 10818.89721875
transcript.pyannote[1473].speaker SPEAKER_13
transcript.pyannote[1473].start 10819.16721875
transcript.pyannote[1473].end 10819.35284375
transcript.pyannote[1474].speaker SPEAKER_13
transcript.pyannote[1474].start 10823.70659375
transcript.pyannote[1474].end 10824.09471875
transcript.pyannote[1475].speaker SPEAKER_13
transcript.pyannote[1475].start 10825.56284375
transcript.pyannote[1475].end 10828.04346875
transcript.pyannote[1476].speaker SPEAKER_13
transcript.pyannote[1476].start 10829.02221875
transcript.pyannote[1476].end 10831.01346875
transcript.pyannote[1477].speaker SPEAKER_13
transcript.pyannote[1477].start 10831.62096875
transcript.pyannote[1477].end 10835.11409375
transcript.pyannote[1478].speaker SPEAKER_11
transcript.pyannote[1478].start 10835.46846875
transcript.pyannote[1478].end 10835.95784375
transcript.pyannote[1479].speaker SPEAKER_11
transcript.pyannote[1479].start 10836.98721875
transcript.pyannote[1479].end 10839.18096875
transcript.pyannote[1480].speaker SPEAKER_11
transcript.pyannote[1480].start 10839.45096875
transcript.pyannote[1480].end 10853.74409375
transcript.pyannote[1481].speaker SPEAKER_11
transcript.pyannote[1481].start 10854.03096875
transcript.pyannote[1481].end 10857.49034375
transcript.pyannote[1482].speaker SPEAKER_11
transcript.pyannote[1482].start 10857.84471875
transcript.pyannote[1482].end 10861.52346875
transcript.pyannote[1483].speaker SPEAKER_11
transcript.pyannote[1483].start 10861.99596875
transcript.pyannote[1483].end 10863.43034375
transcript.pyannote[1484].speaker SPEAKER_11
transcript.pyannote[1484].start 10863.83534375
transcript.pyannote[1484].end 10877.03159375
transcript.pyannote[1485].speaker SPEAKER_11
transcript.pyannote[1485].start 10877.41971875
transcript.pyannote[1485].end 10877.47034375
transcript.pyannote[1486].speaker SPEAKER_11
transcript.pyannote[1486].start 10877.62221875
transcript.pyannote[1486].end 10880.52471875
transcript.pyannote[1487].speaker SPEAKER_11
transcript.pyannote[1487].start 10880.72721875
transcript.pyannote[1487].end 10881.13221875
transcript.pyannote[1488].speaker SPEAKER_11
transcript.pyannote[1488].start 10881.90846875
transcript.pyannote[1488].end 10885.24971875
transcript.pyannote[1489].speaker SPEAKER_11
transcript.pyannote[1489].start 10886.05971875
transcript.pyannote[1489].end 10894.15971875
transcript.pyannote[1490].speaker SPEAKER_13
transcript.pyannote[1490].start 10893.46784375
transcript.pyannote[1490].end 10896.57284375
transcript.pyannote[1491].speaker SPEAKER_13
transcript.pyannote[1491].start 10896.99471875
transcript.pyannote[1491].end 10900.97721875
transcript.pyannote[1492].speaker SPEAKER_13
transcript.pyannote[1492].start 10901.44971875
transcript.pyannote[1492].end 10910.66346875
transcript.pyannote[1493].speaker SPEAKER_13
transcript.pyannote[1493].start 10911.33846875
transcript.pyannote[1493].end 10914.49409375
transcript.pyannote[1494].speaker SPEAKER_13
transcript.pyannote[1494].start 10914.84846875
transcript.pyannote[1494].end 10918.72971875
transcript.pyannote[1495].speaker SPEAKER_13
transcript.pyannote[1495].start 10919.20221875
transcript.pyannote[1495].end 10919.62409375
transcript.pyannote[1496].speaker SPEAKER_13
transcript.pyannote[1496].start 10919.94471875
transcript.pyannote[1496].end 10920.60284375
transcript.pyannote[1497].speaker SPEAKER_13
transcript.pyannote[1497].start 10921.31159375
transcript.pyannote[1497].end 10926.30659375
transcript.pyannote[1498].speaker SPEAKER_13
transcript.pyannote[1498].start 10926.99846875
transcript.pyannote[1498].end 10935.43596875
transcript.pyannote[1499].speaker SPEAKER_13
transcript.pyannote[1499].start 10935.80721875
transcript.pyannote[1499].end 10936.63409375
transcript.pyannote[1500].speaker SPEAKER_13
transcript.pyannote[1500].start 10936.92096875
transcript.pyannote[1500].end 10942.20284375
transcript.pyannote[1501].speaker SPEAKER_13
transcript.pyannote[1501].start 10942.60784375
transcript.pyannote[1501].end 10943.33346875
transcript.pyannote[1502].speaker SPEAKER_13
transcript.pyannote[1502].start 10944.14346875
transcript.pyannote[1502].end 10953.57659375
transcript.pyannote[1503].speaker SPEAKER_13
transcript.pyannote[1503].start 10953.82971875
transcript.pyannote[1503].end 10959.63471875
transcript.pyannote[1504].speaker SPEAKER_13
transcript.pyannote[1504].start 10960.34346875
transcript.pyannote[1504].end 10971.97034375
transcript.pyannote[1505].speaker SPEAKER_11
transcript.pyannote[1505].start 10970.21534375
transcript.pyannote[1505].end 10970.56971875
transcript.pyannote[1506].speaker SPEAKER_11
transcript.pyannote[1506].start 10971.97034375
transcript.pyannote[1506].end 10975.29471875
transcript.pyannote[1507].speaker SPEAKER_13
transcript.pyannote[1507].start 10971.98721875
transcript.pyannote[1507].end 10972.07159375
transcript.pyannote[1508].speaker SPEAKER_11
transcript.pyannote[1508].start 10975.69971875
transcript.pyannote[1508].end 10981.31909375
transcript.pyannote[1509].speaker SPEAKER_11
transcript.pyannote[1509].start 10981.69034375
transcript.pyannote[1509].end 10984.39034375
transcript.pyannote[1510].speaker SPEAKER_11
transcript.pyannote[1510].start 10985.33534375
transcript.pyannote[1510].end 10987.42784375
transcript.pyannote[1511].speaker SPEAKER_11
transcript.pyannote[1511].start 10987.69784375
transcript.pyannote[1511].end 10990.76909375
transcript.pyannote[1512].speaker SPEAKER_11
transcript.pyannote[1512].start 10990.88721875
transcript.pyannote[1512].end 10996.11846875
transcript.pyannote[1513].speaker SPEAKER_11
transcript.pyannote[1513].start 10996.74284375
transcript.pyannote[1513].end 11000.16846875
transcript.pyannote[1514].speaker SPEAKER_11
transcript.pyannote[1514].start 11000.92784375
transcript.pyannote[1514].end 11008.75784375
transcript.pyannote[1515].speaker SPEAKER_11
transcript.pyannote[1515].start 11009.38221875
transcript.pyannote[1515].end 11018.49471875
transcript.pyannote[1516].speaker SPEAKER_11
transcript.pyannote[1516].start 11018.73096875
transcript.pyannote[1516].end 11023.77659375
transcript.pyannote[1517].speaker SPEAKER_11
transcript.pyannote[1517].start 11024.06346875
transcript.pyannote[1517].end 11036.53409375
transcript.pyannote[1518].speaker SPEAKER_13
transcript.pyannote[1518].start 11035.75784375
transcript.pyannote[1518].end 11043.52034375
transcript.pyannote[1519].speaker SPEAKER_13
transcript.pyannote[1519].start 11043.77346875
transcript.pyannote[1519].end 11046.22034375
transcript.pyannote[1520].speaker SPEAKER_13
transcript.pyannote[1520].start 11046.47346875
transcript.pyannote[1520].end 11052.46409375
transcript.pyannote[1521].speaker SPEAKER_13
transcript.pyannote[1521].start 11052.73409375
transcript.pyannote[1521].end 11056.37909375
transcript.pyannote[1522].speaker SPEAKER_13
transcript.pyannote[1522].start 11056.96971875
transcript.pyannote[1522].end 11059.63596875
transcript.pyannote[1523].speaker SPEAKER_13
transcript.pyannote[1523].start 11060.51346875
transcript.pyannote[1523].end 11064.37784375
transcript.pyannote[1524].speaker SPEAKER_13
transcript.pyannote[1524].start 11064.83346875
transcript.pyannote[1524].end 11067.51659375
transcript.pyannote[1525].speaker SPEAKER_38
transcript.pyannote[1525].start 11066.41971875
transcript.pyannote[1525].end 11066.74034375
transcript.pyannote[1526].speaker SPEAKER_38
transcript.pyannote[1526].start 11067.16221875
transcript.pyannote[1526].end 11067.76971875
transcript.pyannote[1527].speaker SPEAKER_13
transcript.pyannote[1527].start 11068.00596875
transcript.pyannote[1527].end 11074.78971875
transcript.pyannote[1528].speaker SPEAKER_13
transcript.pyannote[1528].start 11075.83596875
transcript.pyannote[1528].end 11078.97471875
transcript.pyannote[1529].speaker SPEAKER_26
transcript.pyannote[1529].start 11079.14346875
transcript.pyannote[1529].end 11080.71284375
transcript.pyannote[1530].speaker SPEAKER_13
transcript.pyannote[1530].start 11080.71284375
transcript.pyannote[1530].end 11083.02471875
transcript.pyannote[1531].speaker SPEAKER_13
transcript.pyannote[1531].start 11083.71659375
transcript.pyannote[1531].end 11085.87659375
transcript.pyannote[1532].speaker SPEAKER_26
transcript.pyannote[1532].start 11085.87659375
transcript.pyannote[1532].end 11085.91034375
transcript.pyannote[1533].speaker SPEAKER_38
transcript.pyannote[1533].start 11085.91034375
transcript.pyannote[1533].end 11086.31534375
transcript.pyannote[1534].speaker SPEAKER_13
transcript.pyannote[1534].start 11086.31534375
transcript.pyannote[1534].end 11102.93721875
transcript.pyannote[1535].speaker SPEAKER_13
transcript.pyannote[1535].start 11104.57409375
transcript.pyannote[1535].end 11110.37909375
transcript.pyannote[1536].speaker SPEAKER_13
transcript.pyannote[1536].start 11110.76721875
transcript.pyannote[1536].end 11114.04096875
transcript.pyannote[1537].speaker SPEAKER_05
transcript.pyannote[1537].start 11114.44596875
transcript.pyannote[1537].end 11114.73284375
transcript.pyannote[1538].speaker SPEAKER_13
transcript.pyannote[1538].start 11114.73284375
transcript.pyannote[1538].end 11118.93471875
transcript.pyannote[1539].speaker SPEAKER_05
transcript.pyannote[1539].start 11114.74971875
transcript.pyannote[1539].end 11115.66096875
transcript.pyannote[1540].speaker SPEAKER_05
transcript.pyannote[1540].start 11115.69471875
transcript.pyannote[1540].end 11115.74534375
transcript.pyannote[1541].speaker SPEAKER_13
transcript.pyannote[1541].start 11119.71096875
transcript.pyannote[1541].end 11120.84159375
transcript.pyannote[1542].speaker SPEAKER_13
transcript.pyannote[1542].start 11121.24659375
transcript.pyannote[1542].end 11122.83284375
transcript.pyannote[1543].speaker SPEAKER_13
transcript.pyannote[1543].start 11123.20409375
transcript.pyannote[1543].end 11127.84471875
transcript.pyannote[1544].speaker SPEAKER_13
transcript.pyannote[1544].start 11128.35096875
transcript.pyannote[1544].end 11137.12596875
transcript.pyannote[1545].speaker SPEAKER_13
transcript.pyannote[1545].start 11137.69971875
transcript.pyannote[1545].end 11140.38284375
transcript.pyannote[1546].speaker SPEAKER_13
transcript.pyannote[1546].start 11141.09159375
transcript.pyannote[1546].end 11145.52971875
transcript.pyannote[1547].speaker SPEAKER_13
transcript.pyannote[1547].start 11145.68159375
transcript.pyannote[1547].end 11148.29721875
transcript.pyannote[1548].speaker SPEAKER_00
transcript.pyannote[1548].start 11146.94721875
transcript.pyannote[1548].end 11147.03159375
transcript.pyannote[1549].speaker SPEAKER_38
transcript.pyannote[1549].start 11147.03159375
transcript.pyannote[1549].end 11148.06096875
transcript.pyannote[1550].speaker SPEAKER_00
transcript.pyannote[1550].start 11148.06096875
transcript.pyannote[1550].end 11148.14534375
transcript.pyannote[1551].speaker SPEAKER_13
transcript.pyannote[1551].start 11149.37721875
transcript.pyannote[1551].end 11150.84534375
transcript.pyannote[1552].speaker SPEAKER_13
transcript.pyannote[1552].start 11151.65534375
transcript.pyannote[1552].end 11158.77659375
transcript.pyannote[1553].speaker SPEAKER_13
transcript.pyannote[1553].start 11159.55284375
transcript.pyannote[1553].end 11161.51034375
transcript.pyannote[1554].speaker SPEAKER_13
transcript.pyannote[1554].start 11162.16846875
transcript.pyannote[1554].end 11166.52221875
transcript.pyannote[1555].speaker SPEAKER_13
transcript.pyannote[1555].start 11167.01159375
transcript.pyannote[1555].end 11171.78721875
transcript.pyannote[1556].speaker SPEAKER_13
transcript.pyannote[1556].start 11172.02346875
transcript.pyannote[1556].end 11174.68971875
transcript.pyannote[1557].speaker SPEAKER_13
transcript.pyannote[1557].start 11175.16221875
transcript.pyannote[1557].end 11179.70159375
transcript.pyannote[1558].speaker SPEAKER_13
transcript.pyannote[1558].start 11180.17409375
transcript.pyannote[1558].end 11185.82721875
transcript.pyannote[1559].speaker SPEAKER_13
transcript.pyannote[1559].start 11186.35034375
transcript.pyannote[1559].end 11193.53909375
transcript.pyannote[1560].speaker SPEAKER_13
transcript.pyannote[1560].start 11193.85971875
transcript.pyannote[1560].end 11196.12096875
transcript.pyannote[1561].speaker SPEAKER_13
transcript.pyannote[1561].start 11197.06596875
transcript.pyannote[1561].end 11197.75784375
transcript.pyannote[1562].speaker SPEAKER_13
transcript.pyannote[1562].start 11199.20909375
transcript.pyannote[1562].end 11199.85034375
transcript.pyannote[1563].speaker SPEAKER_13
transcript.pyannote[1563].start 11200.37346875
transcript.pyannote[1563].end 11201.52096875
transcript.pyannote[1564].speaker SPEAKER_13
transcript.pyannote[1564].start 11202.29721875
transcript.pyannote[1564].end 11206.63409375
transcript.pyannote[1565].speaker SPEAKER_13
transcript.pyannote[1565].start 11207.03909375
transcript.pyannote[1565].end 11221.21409375
transcript.pyannote[1566].speaker SPEAKER_13
transcript.pyannote[1566].start 11221.24784375
transcript.pyannote[1566].end 11235.06846875
transcript.pyannote[1567].speaker SPEAKER_13
transcript.pyannote[1567].start 11235.92909375
transcript.pyannote[1567].end 11240.33346875
transcript.pyannote[1568].speaker SPEAKER_13
transcript.pyannote[1568].start 11240.78909375
transcript.pyannote[1568].end 11249.26034375
transcript.pyannote[1569].speaker SPEAKER_08
transcript.pyannote[1569].start 11249.04096875
transcript.pyannote[1569].end 11250.35721875
transcript.pyannote[1570].speaker SPEAKER_13
transcript.pyannote[1570].start 11249.61471875
transcript.pyannote[1570].end 11252.46659375
transcript.pyannote[1571].speaker SPEAKER_13
transcript.pyannote[1571].start 11252.77034375
transcript.pyannote[1571].end 11256.75284375
transcript.pyannote[1572].speaker SPEAKER_38
transcript.pyannote[1572].start 11256.80346875
transcript.pyannote[1572].end 11257.19159375
transcript.pyannote[1573].speaker SPEAKER_13
transcript.pyannote[1573].start 11257.12409375
transcript.pyannote[1573].end 11259.63846875
transcript.pyannote[1574].speaker SPEAKER_13
transcript.pyannote[1574].start 11260.33034375
transcript.pyannote[1574].end 11277.03659375
transcript.pyannote[1575].speaker SPEAKER_13
transcript.pyannote[1575].start 11277.54284375
transcript.pyannote[1575].end 11286.68909375
transcript.pyannote[1576].speaker SPEAKER_13
transcript.pyannote[1576].start 11287.78596875
transcript.pyannote[1576].end 11293.52346875
transcript.pyannote[1577].speaker SPEAKER_04
transcript.pyannote[1577].start 11291.83596875
transcript.pyannote[1577].end 11295.00846875
transcript.pyannote[1578].speaker SPEAKER_13
transcript.pyannote[1578].start 11306.26409375
transcript.pyannote[1578].end 11308.74471875
transcript.pyannote[1579].speaker SPEAKER_04
transcript.pyannote[1579].start 11316.69284375
transcript.pyannote[1579].end 11319.49409375
transcript.pyannote[1580].speaker SPEAKER_04
transcript.pyannote[1580].start 11320.11846875
transcript.pyannote[1580].end 11323.40909375
transcript.pyannote[1581].speaker SPEAKER_04
transcript.pyannote[1581].start 11323.79721875
transcript.pyannote[1581].end 11329.23096875
transcript.pyannote[1582].speaker SPEAKER_04
transcript.pyannote[1582].start 11329.63596875
transcript.pyannote[1582].end 11330.47971875
transcript.pyannote[1583].speaker SPEAKER_04
transcript.pyannote[1583].start 11331.27284375
transcript.pyannote[1583].end 11331.77909375
transcript.pyannote[1584].speaker SPEAKER_04
transcript.pyannote[1584].start 11332.21784375
transcript.pyannote[1584].end 11333.65221875
transcript.pyannote[1585].speaker SPEAKER_04
transcript.pyannote[1585].start 11334.05721875
transcript.pyannote[1585].end 11334.81659375
transcript.pyannote[1586].speaker SPEAKER_04
transcript.pyannote[1586].start 11336.01471875
transcript.pyannote[1586].end 11337.24659375
transcript.pyannote[1587].speaker SPEAKER_13
transcript.pyannote[1587].start 11337.24659375
transcript.pyannote[1587].end 11337.26346875
transcript.pyannote[1588].speaker SPEAKER_04
transcript.pyannote[1588].start 11346.57846875
transcript.pyannote[1588].end 11347.38846875
transcript.pyannote[1589].speaker SPEAKER_04
transcript.pyannote[1589].start 11347.47284375
transcript.pyannote[1589].end 11348.26596875
transcript.pyannote[1590].speaker SPEAKER_04
transcript.pyannote[1590].start 11348.85659375
transcript.pyannote[1590].end 11349.31221875
transcript.pyannote[1591].speaker SPEAKER_04
transcript.pyannote[1591].start 11349.80159375
transcript.pyannote[1591].end 11350.42596875
transcript.pyannote[1592].speaker SPEAKER_04
transcript.pyannote[1592].start 11351.53971875
transcript.pyannote[1592].end 11356.09596875
transcript.pyannote[1593].speaker SPEAKER_04
transcript.pyannote[1593].start 11356.87221875
transcript.pyannote[1593].end 11358.59346875
transcript.pyannote[1594].speaker SPEAKER_04
transcript.pyannote[1594].start 11363.45346875
transcript.pyannote[1594].end 11363.48721875
transcript.pyannote[1595].speaker SPEAKER_15
transcript.pyannote[1595].start 11363.48721875
transcript.pyannote[1595].end 11363.74034375
transcript.pyannote[1596].speaker SPEAKER_04
transcript.pyannote[1596].start 11363.74034375
transcript.pyannote[1596].end 11363.79096875
transcript.pyannote[1597].speaker SPEAKER_03
transcript.pyannote[1597].start 11368.51596875
transcript.pyannote[1597].end 11371.06409375
transcript.pyannote[1598].speaker SPEAKER_04
transcript.pyannote[1598].start 11370.22034375
transcript.pyannote[1598].end 11371.53659375
transcript.pyannote[1599].speaker SPEAKER_03
transcript.pyannote[1599].start 11371.50284375
transcript.pyannote[1599].end 11374.13534375
transcript.pyannote[1600].speaker SPEAKER_04
transcript.pyannote[1600].start 11374.38846875
transcript.pyannote[1600].end 11374.89471875
transcript.pyannote[1601].speaker SPEAKER_04
transcript.pyannote[1601].start 11374.94534375
transcript.pyannote[1601].end 11376.68346875
transcript.pyannote[1602].speaker SPEAKER_03
transcript.pyannote[1602].start 11377.12221875
transcript.pyannote[1602].end 11379.83909375
transcript.pyannote[1603].speaker SPEAKER_04
transcript.pyannote[1603].start 11379.48471875
transcript.pyannote[1603].end 11385.77909375
transcript.pyannote[1604].speaker SPEAKER_03
transcript.pyannote[1604].start 11386.23471875
transcript.pyannote[1604].end 11402.58659375
transcript.pyannote[1605].speaker SPEAKER_03
transcript.pyannote[1605].start 11402.97471875
transcript.pyannote[1605].end 11404.20659375
transcript.pyannote[1606].speaker SPEAKER_04
transcript.pyannote[1606].start 11403.91971875
transcript.pyannote[1606].end 11407.07534375
transcript.pyannote[1607].speaker SPEAKER_04
transcript.pyannote[1607].start 11407.96971875
transcript.pyannote[1607].end 11408.99909375
transcript.pyannote[1608].speaker SPEAKER_03
transcript.pyannote[1608].start 11409.16784375
transcript.pyannote[1608].end 11419.71471875
transcript.pyannote[1609].speaker SPEAKER_04
transcript.pyannote[1609].start 11410.77096875
transcript.pyannote[1609].end 11410.99034375
transcript.pyannote[1610].speaker SPEAKER_04
transcript.pyannote[1610].start 11419.03971875
transcript.pyannote[1610].end 11425.80659375
transcript.pyannote[1611].speaker SPEAKER_04
transcript.pyannote[1611].start 11429.23221875
transcript.pyannote[1611].end 11429.97471875
transcript.pyannote[1612].speaker SPEAKER_38
transcript.pyannote[1612].start 11431.22346875
transcript.pyannote[1612].end 11431.91534375
transcript.pyannote[1613].speaker SPEAKER_04
transcript.pyannote[1613].start 11432.89409375
transcript.pyannote[1613].end 11446.81596875
transcript.pyannote[1614].speaker SPEAKER_03
transcript.pyannote[1614].start 11447.37284375
transcript.pyannote[1614].end 11452.95846875
transcript.pyannote[1615].speaker SPEAKER_04
transcript.pyannote[1615].start 11453.38034375
transcript.pyannote[1615].end 11454.74721875
transcript.pyannote[1616].speaker SPEAKER_03
transcript.pyannote[1616].start 11455.03409375
transcript.pyannote[1616].end 11477.19096875
transcript.pyannote[1617].speaker SPEAKER_00
transcript.pyannote[1617].start 11459.86034375
transcript.pyannote[1617].end 11459.92784375
transcript.pyannote[1618].speaker SPEAKER_04
transcript.pyannote[1618].start 11459.92784375
transcript.pyannote[1618].end 11461.98659375
transcript.pyannote[1619].speaker SPEAKER_00
transcript.pyannote[1619].start 11468.29784375
transcript.pyannote[1619].end 11468.68596875
transcript.pyannote[1620].speaker SPEAKER_38
transcript.pyannote[1620].start 11468.68596875
transcript.pyannote[1620].end 11468.97284375
transcript.pyannote[1621].speaker SPEAKER_00
transcript.pyannote[1621].start 11468.97284375
transcript.pyannote[1621].end 11469.02346875
transcript.pyannote[1622].speaker SPEAKER_04
transcript.pyannote[1622].start 11469.02346875
transcript.pyannote[1622].end 11469.78284375
transcript.pyannote[1623].speaker SPEAKER_00
transcript.pyannote[1623].start 11470.67721875
transcript.pyannote[1623].end 11470.71096875
transcript.pyannote[1624].speaker SPEAKER_04
transcript.pyannote[1624].start 11470.71096875
transcript.pyannote[1624].end 11470.74471875
transcript.pyannote[1625].speaker SPEAKER_00
transcript.pyannote[1625].start 11470.74471875
transcript.pyannote[1625].end 11470.76159375
transcript.pyannote[1626].speaker SPEAKER_04
transcript.pyannote[1626].start 11477.19096875
transcript.pyannote[1626].end 11482.30409375
transcript.pyannote[1627].speaker SPEAKER_04
transcript.pyannote[1627].start 11482.84409375
transcript.pyannote[1627].end 11484.90284375
transcript.pyannote[1628].speaker SPEAKER_04
transcript.pyannote[1628].start 11485.20659375
transcript.pyannote[1628].end 11489.02034375
transcript.pyannote[1629].speaker SPEAKER_03
transcript.pyannote[1629].start 11489.34096875
transcript.pyannote[1629].end 11495.38221875
transcript.pyannote[1630].speaker SPEAKER_04
transcript.pyannote[1630].start 11493.37409375
transcript.pyannote[1630].end 11497.52534375
transcript.pyannote[1631].speaker SPEAKER_04
transcript.pyannote[1631].start 11497.67721875
transcript.pyannote[1631].end 11508.54471875
transcript.pyannote[1632].speaker SPEAKER_04
transcript.pyannote[1632].start 11508.91596875
transcript.pyannote[1632].end 11510.51909375
transcript.pyannote[1633].speaker SPEAKER_04
transcript.pyannote[1633].start 11512.12221875
transcript.pyannote[1633].end 11512.91534375
transcript.pyannote[1634].speaker SPEAKER_03
transcript.pyannote[1634].start 11514.07971875
transcript.pyannote[1634].end 11518.07909375
transcript.pyannote[1635].speaker SPEAKER_04
transcript.pyannote[1635].start 11516.99909375
transcript.pyannote[1635].end 11518.85534375
transcript.pyannote[1636].speaker SPEAKER_03
transcript.pyannote[1636].start 11519.78346875
transcript.pyannote[1636].end 11522.50034375
transcript.pyannote[1637].speaker SPEAKER_04
transcript.pyannote[1637].start 11522.21346875
transcript.pyannote[1637].end 11523.58034375
transcript.pyannote[1638].speaker SPEAKER_03
transcript.pyannote[1638].start 11523.58034375
transcript.pyannote[1638].end 11524.45784375
transcript.pyannote[1639].speaker SPEAKER_03
transcript.pyannote[1639].start 11524.72784375
transcript.pyannote[1639].end 11526.88784375
transcript.pyannote[1640].speaker SPEAKER_04
transcript.pyannote[1640].start 11525.03159375
transcript.pyannote[1640].end 11525.50409375
transcript.pyannote[1641].speaker SPEAKER_04
transcript.pyannote[1641].start 11527.12409375
transcript.pyannote[1641].end 11528.86221875
transcript.pyannote[1642].speaker SPEAKER_03
transcript.pyannote[1642].start 11528.98034375
transcript.pyannote[1642].end 11532.50721875
transcript.pyannote[1643].speaker SPEAKER_04
transcript.pyannote[1643].start 11532.10221875
transcript.pyannote[1643].end 11536.01721875
transcript.pyannote[1644].speaker SPEAKER_03
transcript.pyannote[1644].start 11535.96659375
transcript.pyannote[1644].end 11536.52346875
transcript.pyannote[1645].speaker SPEAKER_04
transcript.pyannote[1645].start 11536.57409375
transcript.pyannote[1645].end 11537.16471875
transcript.pyannote[1646].speaker SPEAKER_04
transcript.pyannote[1646].start 11537.78909375
transcript.pyannote[1646].end 11539.25721875
transcript.pyannote[1647].speaker SPEAKER_03
transcript.pyannote[1647].start 11539.71284375
transcript.pyannote[1647].end 11542.53096875
transcript.pyannote[1648].speaker SPEAKER_04
transcript.pyannote[1648].start 11540.30346875
transcript.pyannote[1648].end 11542.59846875
transcript.pyannote[1649].speaker SPEAKER_03
transcript.pyannote[1649].start 11542.90221875
transcript.pyannote[1649].end 11543.23971875
transcript.pyannote[1650].speaker SPEAKER_04
transcript.pyannote[1650].start 11543.74596875
transcript.pyannote[1650].end 11552.57159375
transcript.pyannote[1651].speaker SPEAKER_03
transcript.pyannote[1651].start 11554.41096875
transcript.pyannote[1651].end 11562.30846875
transcript.pyannote[1652].speaker SPEAKER_04
transcript.pyannote[1652].start 11561.36346875
transcript.pyannote[1652].end 11566.94909375
transcript.pyannote[1653].speaker SPEAKER_03
transcript.pyannote[1653].start 11565.46409375
transcript.pyannote[1653].end 11566.59471875
transcript.pyannote[1654].speaker SPEAKER_03
transcript.pyannote[1654].start 11566.94909375
transcript.pyannote[1654].end 11581.47846875
transcript.pyannote[1655].speaker SPEAKER_04
transcript.pyannote[1655].start 11579.06534375
transcript.pyannote[1655].end 11579.40284375
transcript.pyannote[1656].speaker SPEAKER_04
transcript.pyannote[1656].start 11580.78659375
transcript.pyannote[1656].end 11583.09846875
transcript.pyannote[1657].speaker SPEAKER_03
transcript.pyannote[1657].start 11583.09846875
transcript.pyannote[1657].end 11583.48659375
transcript.pyannote[1658].speaker SPEAKER_04
transcript.pyannote[1658].start 11584.66784375
transcript.pyannote[1658].end 11584.93784375
transcript.pyannote[1659].speaker SPEAKER_04
transcript.pyannote[1659].start 11585.66346875
transcript.pyannote[1659].end 11588.38034375
transcript.pyannote[1660].speaker SPEAKER_03
transcript.pyannote[1660].start 11590.65846875
transcript.pyannote[1660].end 11591.09721875
transcript.pyannote[1661].speaker SPEAKER_03
transcript.pyannote[1661].start 11594.28659375
transcript.pyannote[1661].end 11594.92784375
transcript.pyannote[1662].speaker SPEAKER_04
transcript.pyannote[1662].start 11594.38784375
transcript.pyannote[1662].end 11617.62471875
transcript.pyannote[1663].speaker SPEAKER_38
transcript.pyannote[1663].start 11594.92784375
transcript.pyannote[1663].end 11595.01221875
transcript.pyannote[1664].speaker SPEAKER_04
transcript.pyannote[1664].start 11617.87784375
transcript.pyannote[1664].end 11622.04596875
transcript.pyannote[1665].speaker SPEAKER_04
transcript.pyannote[1665].start 11622.23159375
transcript.pyannote[1665].end 11624.17221875
transcript.pyannote[1666].speaker SPEAKER_04
transcript.pyannote[1666].start 11624.84721875
transcript.pyannote[1666].end 11630.95596875
transcript.pyannote[1667].speaker SPEAKER_04
transcript.pyannote[1667].start 11630.97284375
transcript.pyannote[1667].end 11631.00659375
transcript.pyannote[1668].speaker SPEAKER_04
transcript.pyannote[1668].start 11631.09096875
transcript.pyannote[1668].end 11634.76971875
transcript.pyannote[1669].speaker SPEAKER_04
transcript.pyannote[1669].start 11635.54596875
transcript.pyannote[1669].end 11638.14471875
transcript.pyannote[1670].speaker SPEAKER_04
transcript.pyannote[1670].start 11638.53284375
transcript.pyannote[1670].end 11639.91659375
transcript.pyannote[1671].speaker SPEAKER_26
transcript.pyannote[1671].start 11640.59159375
transcript.pyannote[1671].end 11641.36784375
transcript.pyannote[1672].speaker SPEAKER_26
transcript.pyannote[1672].start 11641.82346875
transcript.pyannote[1672].end 11644.06784375
transcript.pyannote[1673].speaker SPEAKER_04
transcript.pyannote[1673].start 11643.81471875
transcript.pyannote[1673].end 11649.13034375
transcript.pyannote[1674].speaker SPEAKER_26
transcript.pyannote[1674].start 11649.13034375
transcript.pyannote[1674].end 11651.69534375
transcript.pyannote[1675].speaker SPEAKER_04
transcript.pyannote[1675].start 11649.67034375
transcript.pyannote[1675].end 11656.13346875
transcript.pyannote[1676].speaker SPEAKER_26
transcript.pyannote[1676].start 11655.84659375
transcript.pyannote[1676].end 11681.63159375
transcript.pyannote[1677].speaker SPEAKER_04
transcript.pyannote[1677].start 11658.32721875
transcript.pyannote[1677].end 11658.74909375
transcript.pyannote[1678].speaker SPEAKER_38
transcript.pyannote[1678].start 11666.62971875
transcript.pyannote[1678].end 11667.96284375
transcript.pyannote[1679].speaker SPEAKER_22
transcript.pyannote[1679].start 11667.96284375
transcript.pyannote[1679].end 11668.01346875
transcript.pyannote[1680].speaker SPEAKER_21
transcript.pyannote[1680].start 11669.41409375
transcript.pyannote[1680].end 11669.44784375
transcript.pyannote[1681].speaker SPEAKER_22
transcript.pyannote[1681].start 11669.44784375
transcript.pyannote[1681].end 11670.47721875
transcript.pyannote[1682].speaker SPEAKER_21
transcript.pyannote[1682].start 11670.47721875
transcript.pyannote[1682].end 11670.49409375
transcript.pyannote[1683].speaker SPEAKER_04
transcript.pyannote[1683].start 11679.06659375
transcript.pyannote[1683].end 11685.32721875
transcript.pyannote[1684].speaker SPEAKER_04
transcript.pyannote[1684].start 11685.96846875
transcript.pyannote[1684].end 11687.11596875
transcript.pyannote[1685].speaker SPEAKER_26
transcript.pyannote[1685].start 11687.74034375
transcript.pyannote[1685].end 11699.50221875
transcript.pyannote[1686].speaker SPEAKER_04
transcript.pyannote[1686].start 11697.51096875
transcript.pyannote[1686].end 11712.49596875
transcript.pyannote[1687].speaker SPEAKER_26
transcript.pyannote[1687].start 11700.43034375
transcript.pyannote[1687].end 11700.85221875
transcript.pyannote[1688].speaker SPEAKER_38
transcript.pyannote[1688].start 11709.12096875
transcript.pyannote[1688].end 11709.59346875
transcript.pyannote[1689].speaker SPEAKER_40
transcript.pyannote[1689].start 11709.59346875
transcript.pyannote[1689].end 11709.61034375
transcript.pyannote[1690].speaker SPEAKER_38
transcript.pyannote[1690].start 11709.61034375
transcript.pyannote[1690].end 11709.64409375
transcript.pyannote[1691].speaker SPEAKER_26
transcript.pyannote[1691].start 11709.64409375
transcript.pyannote[1691].end 11709.66096875
transcript.pyannote[1692].speaker SPEAKER_04
transcript.pyannote[1692].start 11712.66471875
transcript.pyannote[1692].end 11718.31784375
transcript.pyannote[1693].speaker SPEAKER_40
transcript.pyannote[1693].start 11712.68159375
transcript.pyannote[1693].end 11713.27221875
transcript.pyannote[1694].speaker SPEAKER_26
transcript.pyannote[1694].start 11713.27221875
transcript.pyannote[1694].end 11713.28909375
transcript.pyannote[1695].speaker SPEAKER_26
transcript.pyannote[1695].start 11717.35596875
transcript.pyannote[1695].end 11718.14909375
transcript.pyannote[1696].speaker SPEAKER_04
transcript.pyannote[1696].start 11719.24596875
transcript.pyannote[1696].end 11728.27409375
transcript.pyannote[1697].speaker SPEAKER_38
transcript.pyannote[1697].start 11726.21534375
transcript.pyannote[1697].end 11726.94096875
transcript.pyannote[1698].speaker SPEAKER_04
transcript.pyannote[1698].start 11728.45971875
transcript.pyannote[1698].end 11734.66971875
transcript.pyannote[1699].speaker SPEAKER_38
transcript.pyannote[1699].start 11734.66971875
transcript.pyannote[1699].end 11735.00721875
transcript.pyannote[1700].speaker SPEAKER_04
transcript.pyannote[1700].start 11734.68659375
transcript.pyannote[1700].end 11734.73721875
transcript.pyannote[1701].speaker SPEAKER_04
transcript.pyannote[1701].start 11734.99034375
transcript.pyannote[1701].end 11743.37721875
transcript.pyannote[1702].speaker SPEAKER_26
transcript.pyannote[1702].start 11743.91721875
transcript.pyannote[1702].end 11752.42221875
transcript.pyannote[1703].speaker SPEAKER_04
transcript.pyannote[1703].start 11750.09346875
transcript.pyannote[1703].end 11754.46409375
transcript.pyannote[1704].speaker SPEAKER_04
transcript.pyannote[1704].start 11755.03784375
transcript.pyannote[1704].end 11758.46346875
transcript.pyannote[1705].speaker SPEAKER_26
transcript.pyannote[1705].start 11758.73346875
transcript.pyannote[1705].end 11778.00471875
transcript.pyannote[1706].speaker SPEAKER_04
transcript.pyannote[1706].start 11778.00471875
transcript.pyannote[1706].end 11778.56159375
transcript.pyannote[1707].speaker SPEAKER_26
transcript.pyannote[1707].start 11778.10596875
transcript.pyannote[1707].end 11778.54471875
transcript.pyannote[1708].speaker SPEAKER_26
transcript.pyannote[1708].start 11778.56159375
transcript.pyannote[1708].end 11779.11846875
transcript.pyannote[1709].speaker SPEAKER_04
transcript.pyannote[1709].start 11779.11846875
transcript.pyannote[1709].end 11789.31096875
transcript.pyannote[1710].speaker SPEAKER_26
transcript.pyannote[1710].start 11779.50659375
transcript.pyannote[1710].end 11781.00846875
transcript.pyannote[1711].speaker SPEAKER_26
transcript.pyannote[1711].start 11783.82659375
transcript.pyannote[1711].end 11784.97409375
transcript.pyannote[1712].speaker SPEAKER_17
transcript.pyannote[1712].start 11784.97409375
transcript.pyannote[1712].end 11785.85159375
transcript.pyannote[1713].speaker SPEAKER_26
transcript.pyannote[1713].start 11785.85159375
transcript.pyannote[1713].end 11785.86846875
transcript.pyannote[1714].speaker SPEAKER_17
transcript.pyannote[1714].start 11786.64471875
transcript.pyannote[1714].end 11788.43346875
transcript.pyannote[1715].speaker SPEAKER_04
transcript.pyannote[1715].start 11789.73284375
transcript.pyannote[1715].end 11792.38221875
transcript.pyannote[1716].speaker SPEAKER_07
transcript.pyannote[1716].start 11796.33096875
transcript.pyannote[1716].end 11806.28721875
transcript.pyannote[1717].speaker SPEAKER_06
transcript.pyannote[1717].start 11797.42784375
transcript.pyannote[1717].end 11797.51221875
transcript.pyannote[1718].speaker SPEAKER_06
transcript.pyannote[1718].start 11797.52909375
transcript.pyannote[1718].end 11797.59659375
transcript.pyannote[1719].speaker SPEAKER_07
transcript.pyannote[1719].start 11806.72596875
transcript.pyannote[1719].end 11809.72971875
transcript.pyannote[1720].speaker SPEAKER_07
transcript.pyannote[1720].start 11810.03346875
transcript.pyannote[1720].end 11813.74596875
transcript.pyannote[1721].speaker SPEAKER_04
transcript.pyannote[1721].start 11812.88534375
transcript.pyannote[1721].end 11820.64784375
transcript.pyannote[1722].speaker SPEAKER_07
transcript.pyannote[1722].start 11816.59784375
transcript.pyannote[1722].end 11817.74534375
transcript.pyannote[1723].speaker SPEAKER_07
transcript.pyannote[1723].start 11818.63971875
transcript.pyannote[1723].end 11829.67596875
transcript.pyannote[1724].speaker SPEAKER_07
transcript.pyannote[1724].start 11829.86159375
transcript.pyannote[1724].end 11829.87846875
transcript.pyannote[1725].speaker SPEAKER_04
transcript.pyannote[1725].start 11829.87846875
transcript.pyannote[1725].end 11835.09284375
transcript.pyannote[1726].speaker SPEAKER_07
transcript.pyannote[1726].start 11830.03034375
transcript.pyannote[1726].end 11830.78971875
transcript.pyannote[1727].speaker SPEAKER_07
transcript.pyannote[1727].start 11834.67096875
transcript.pyannote[1727].end 11836.94909375
transcript.pyannote[1728].speaker SPEAKER_04
transcript.pyannote[1728].start 11835.39659375
transcript.pyannote[1728].end 11850.68534375
transcript.pyannote[1729].speaker SPEAKER_07
transcript.pyannote[1729].start 11850.68534375
transcript.pyannote[1729].end 11854.60034375
transcript.pyannote[1730].speaker SPEAKER_04
transcript.pyannote[1730].start 11854.60034375
transcript.pyannote[1730].end 11882.42721875
transcript.pyannote[1731].speaker SPEAKER_07
transcript.pyannote[1731].start 11862.56534375
transcript.pyannote[1731].end 11862.88596875
transcript.pyannote[1732].speaker SPEAKER_11
transcript.pyannote[1732].start 11862.88596875
transcript.pyannote[1732].end 11863.05471875
transcript.pyannote[1733].speaker SPEAKER_00
transcript.pyannote[1733].start 11863.05471875
transcript.pyannote[1733].end 11863.07159375
transcript.pyannote[1734].speaker SPEAKER_00
transcript.pyannote[1734].start 11863.81409375
transcript.pyannote[1734].end 11863.93221875
transcript.pyannote[1735].speaker SPEAKER_00
transcript.pyannote[1735].start 11865.55221875
transcript.pyannote[1735].end 11865.70409375
transcript.pyannote[1736].speaker SPEAKER_38
transcript.pyannote[1736].start 11865.70409375
transcript.pyannote[1736].end 11865.75471875
transcript.pyannote[1737].speaker SPEAKER_00
transcript.pyannote[1737].start 11865.75471875
transcript.pyannote[1737].end 11866.00784375
transcript.pyannote[1738].speaker SPEAKER_38
transcript.pyannote[1738].start 11876.70659375
transcript.pyannote[1738].end 11877.97221875
transcript.pyannote[1739].speaker SPEAKER_38
transcript.pyannote[1739].start 11882.42721875
transcript.pyannote[1739].end 11882.96721875
transcript.pyannote[1740].speaker SPEAKER_13
transcript.pyannote[1740].start 11884.33409375
transcript.pyannote[1740].end 11887.67534375
transcript.pyannote[1741].speaker SPEAKER_13
transcript.pyannote[1741].start 11888.21534375
transcript.pyannote[1741].end 11891.26971875
transcript.pyannote[1742].speaker SPEAKER_01
transcript.pyannote[1742].start 11898.86346875
transcript.pyannote[1742].end 11904.01034375
transcript.pyannote[1743].speaker SPEAKER_01
transcript.pyannote[1743].start 11904.48284375
transcript.pyannote[1743].end 11907.31784375
transcript.pyannote[1744].speaker SPEAKER_01
transcript.pyannote[1744].start 11908.56659375
transcript.pyannote[1744].end 11909.86596875
transcript.pyannote[1745].speaker SPEAKER_01
transcript.pyannote[1745].start 11910.72659375
transcript.pyannote[1745].end 11913.05534375
transcript.pyannote[1746].speaker SPEAKER_01
transcript.pyannote[1746].start 11913.32534375
transcript.pyannote[1746].end 11916.44721875
transcript.pyannote[1747].speaker SPEAKER_01
transcript.pyannote[1747].start 11917.57784375
transcript.pyannote[1747].end 11922.57284375
transcript.pyannote[1748].speaker SPEAKER_01
transcript.pyannote[1748].start 11923.70346875
transcript.pyannote[1748].end 11923.90596875
transcript.pyannote[1749].speaker SPEAKER_01
transcript.pyannote[1749].start 11924.10846875
transcript.pyannote[1749].end 11924.41221875
transcript.pyannote[1750].speaker SPEAKER_01
transcript.pyannote[1750].start 11925.45846875
transcript.pyannote[1750].end 11926.58909375
transcript.pyannote[1751].speaker SPEAKER_01
transcript.pyannote[1751].start 11927.88846875
transcript.pyannote[1751].end 11929.15409375
transcript.pyannote[1752].speaker SPEAKER_01
transcript.pyannote[1752].start 11929.39034375
transcript.pyannote[1752].end 11951.81721875
transcript.pyannote[1753].speaker SPEAKER_01
transcript.pyannote[1753].start 11951.98596875
transcript.pyannote[1753].end 12065.33534375
transcript.pyannote[1754].speaker SPEAKER_01
transcript.pyannote[1754].start 12066.17909375
transcript.pyannote[1754].end 12130.97909375
transcript.pyannote[1755].speaker SPEAKER_01
transcript.pyannote[1755].start 12131.83971875
transcript.pyannote[1755].end 12136.78409375
transcript.pyannote[1756].speaker SPEAKER_01
transcript.pyannote[1756].start 12137.37471875
transcript.pyannote[1756].end 12166.23096875
transcript.pyannote[1757].speaker SPEAKER_01
transcript.pyannote[1757].start 12166.53471875
transcript.pyannote[1757].end 12176.55846875
transcript.pyannote[1758].speaker SPEAKER_01
transcript.pyannote[1758].start 12176.60909375
transcript.pyannote[1758].end 12203.11971875
transcript.pyannote[1759].speaker SPEAKER_01
transcript.pyannote[1759].start 12203.59221875
transcript.pyannote[1759].end 12258.35159375
transcript.pyannote[1760].speaker SPEAKER_01
transcript.pyannote[1760].start 12258.55409375
transcript.pyannote[1760].end 12259.65096875
transcript.pyannote[1761].speaker SPEAKER_01
transcript.pyannote[1761].start 12260.98409375
transcript.pyannote[1761].end 12261.96284375
transcript.pyannote[1762].speaker SPEAKER_13
transcript.pyannote[1762].start 12261.96284375
transcript.pyannote[1762].end 12262.51971875
transcript.pyannote[1763].speaker SPEAKER_01
transcript.pyannote[1763].start 12263.14409375
transcript.pyannote[1763].end 12263.16096875
transcript.pyannote[1764].speaker SPEAKER_13
transcript.pyannote[1764].start 12263.16096875
transcript.pyannote[1764].end 12263.75159375
transcript.pyannote[1765].speaker SPEAKER_13
transcript.pyannote[1765].start 12264.22409375
transcript.pyannote[1765].end 12264.79784375
transcript.pyannote[1766].speaker SPEAKER_13
transcript.pyannote[1766].start 12265.69221875
transcript.pyannote[1766].end 12267.81846875
transcript.pyannote[1767].speaker SPEAKER_34
transcript.pyannote[1767].start 12276.01971875
transcript.pyannote[1767].end 12276.93096875
transcript.pyannote[1768].speaker SPEAKER_34
transcript.pyannote[1768].start 12277.26846875
transcript.pyannote[1768].end 12281.25096875
transcript.pyannote[1769].speaker SPEAKER_34
transcript.pyannote[1769].start 12281.99346875
transcript.pyannote[1769].end 12284.42346875
transcript.pyannote[1770].speaker SPEAKER_34
transcript.pyannote[1770].start 12285.60471875
transcript.pyannote[1770].end 12287.54534375
transcript.pyannote[1771].speaker SPEAKER_34
transcript.pyannote[1771].start 12295.34159375
transcript.pyannote[1771].end 12296.26971875
transcript.pyannote[1772].speaker SPEAKER_34
transcript.pyannote[1772].start 12296.99534375
transcript.pyannote[1772].end 12304.77471875
transcript.pyannote[1773].speaker SPEAKER_34
transcript.pyannote[1773].start 12305.26409375
transcript.pyannote[1773].end 12308.20034375
transcript.pyannote[1774].speaker SPEAKER_34
transcript.pyannote[1774].start 12308.47034375
transcript.pyannote[1774].end 12314.69721875
transcript.pyannote[1775].speaker SPEAKER_34
transcript.pyannote[1775].start 12315.03471875
transcript.pyannote[1775].end 12316.03034375
transcript.pyannote[1776].speaker SPEAKER_34
transcript.pyannote[1776].start 12316.19909375
transcript.pyannote[1776].end 12321.22784375
transcript.pyannote[1777].speaker SPEAKER_34
transcript.pyannote[1777].start 12321.83534375
transcript.pyannote[1777].end 12326.47596875
transcript.pyannote[1778].speaker SPEAKER_34
transcript.pyannote[1778].start 12327.04971875
transcript.pyannote[1778].end 12329.14221875
transcript.pyannote[1779].speaker SPEAKER_34
transcript.pyannote[1779].start 12329.49659375
transcript.pyannote[1779].end 12335.01471875
transcript.pyannote[1780].speaker SPEAKER_34
transcript.pyannote[1780].start 12335.25096875
transcript.pyannote[1780].end 12336.31409375
transcript.pyannote[1781].speaker SPEAKER_34
transcript.pyannote[1781].start 12336.65159375
transcript.pyannote[1781].end 12337.59659375
transcript.pyannote[1782].speaker SPEAKER_34
transcript.pyannote[1782].start 12338.00159375
transcript.pyannote[1782].end 12338.99721875
transcript.pyannote[1783].speaker SPEAKER_34
transcript.pyannote[1783].start 12339.14909375
transcript.pyannote[1783].end 12346.03409375
transcript.pyannote[1784].speaker SPEAKER_34
transcript.pyannote[1784].start 12346.79346875
transcript.pyannote[1784].end 12347.67096875
transcript.pyannote[1785].speaker SPEAKER_34
transcript.pyannote[1785].start 12348.49784375
transcript.pyannote[1785].end 12354.30284375
transcript.pyannote[1786].speaker SPEAKER_34
transcript.pyannote[1786].start 12354.55596875
transcript.pyannote[1786].end 12362.23409375
transcript.pyannote[1787].speaker SPEAKER_34
transcript.pyannote[1787].start 12362.74034375
transcript.pyannote[1787].end 12363.55034375
transcript.pyannote[1788].speaker SPEAKER_34
transcript.pyannote[1788].start 12363.70221875
transcript.pyannote[1788].end 12364.66409375
transcript.pyannote[1789].speaker SPEAKER_34
transcript.pyannote[1789].start 12364.96784375
transcript.pyannote[1789].end 12370.06409375
transcript.pyannote[1790].speaker SPEAKER_34
transcript.pyannote[1790].start 12371.11034375
transcript.pyannote[1790].end 12373.43909375
transcript.pyannote[1791].speaker SPEAKER_08
transcript.pyannote[1791].start 12373.43909375
transcript.pyannote[1791].end 12402.19409375
transcript.pyannote[1792].speaker SPEAKER_34
transcript.pyannote[1792].start 12400.64159375
transcript.pyannote[1792].end 12407.86409375
transcript.pyannote[1793].speaker SPEAKER_08
transcript.pyannote[1793].start 12402.68346875
transcript.pyannote[1793].end 12403.13909375
transcript.pyannote[1794].speaker SPEAKER_34
transcript.pyannote[1794].start 12407.96534375
transcript.pyannote[1794].end 12413.24721875
transcript.pyannote[1795].speaker SPEAKER_34
transcript.pyannote[1795].start 12414.05721875
transcript.pyannote[1795].end 12414.85034375
transcript.pyannote[1796].speaker SPEAKER_34
transcript.pyannote[1796].start 12415.23846875
transcript.pyannote[1796].end 12416.90909375
transcript.pyannote[1797].speaker SPEAKER_34
transcript.pyannote[1797].start 12417.55034375
transcript.pyannote[1797].end 12418.91721875
transcript.pyannote[1798].speaker SPEAKER_34
transcript.pyannote[1798].start 12419.89596875
transcript.pyannote[1798].end 12420.90846875
transcript.pyannote[1799].speaker SPEAKER_34
transcript.pyannote[1799].start 12421.39784375
transcript.pyannote[1799].end 12423.35534375
transcript.pyannote[1800].speaker SPEAKER_34
transcript.pyannote[1800].start 12423.52409375
transcript.pyannote[1800].end 12433.19346875
transcript.pyannote[1801].speaker SPEAKER_34
transcript.pyannote[1801].start 12433.36221875
transcript.pyannote[1801].end 12438.18846875
transcript.pyannote[1802].speaker SPEAKER_34
transcript.pyannote[1802].start 12438.47534375
transcript.pyannote[1802].end 12445.93409375
transcript.pyannote[1803].speaker SPEAKER_34
transcript.pyannote[1803].start 12446.72721875
transcript.pyannote[1803].end 12476.44409375
transcript.pyannote[1804].speaker SPEAKER_34
transcript.pyannote[1804].start 12477.10221875
transcript.pyannote[1804].end 12500.84534375
transcript.pyannote[1805].speaker SPEAKER_38
transcript.pyannote[1805].start 12500.86221875
transcript.pyannote[1805].end 12501.13221875
transcript.pyannote[1806].speaker SPEAKER_34
transcript.pyannote[1806].start 12501.11534375
transcript.pyannote[1806].end 12532.35096875
transcript.pyannote[1807].speaker SPEAKER_34
transcript.pyannote[1807].start 12533.04284375
transcript.pyannote[1807].end 12535.60784375
transcript.pyannote[1808].speaker SPEAKER_34
transcript.pyannote[1808].start 12536.13096875
transcript.pyannote[1808].end 12545.24346875
transcript.pyannote[1809].speaker SPEAKER_34
transcript.pyannote[1809].start 12545.68221875
transcript.pyannote[1809].end 12551.97659375
transcript.pyannote[1810].speaker SPEAKER_26
transcript.pyannote[1810].start 12551.97659375
transcript.pyannote[1810].end 12561.88221875
transcript.pyannote[1811].speaker SPEAKER_26
transcript.pyannote[1811].start 12562.32096875
transcript.pyannote[1811].end 12566.01659375
transcript.pyannote[1812].speaker SPEAKER_34
transcript.pyannote[1812].start 12563.67096875
transcript.pyannote[1812].end 12568.71659375
transcript.pyannote[1813].speaker SPEAKER_38
transcript.pyannote[1813].start 12566.01659375
transcript.pyannote[1813].end 12566.03346875
transcript.pyannote[1814].speaker SPEAKER_38
transcript.pyannote[1814].start 12568.71659375
transcript.pyannote[1814].end 12568.85159375
transcript.pyannote[1815].speaker SPEAKER_34
transcript.pyannote[1815].start 12568.85159375
transcript.pyannote[1815].end 12595.09221875
transcript.pyannote[1816].speaker SPEAKER_34
transcript.pyannote[1816].start 12595.22721875
transcript.pyannote[1816].end 12604.89659375
transcript.pyannote[1817].speaker SPEAKER_34
transcript.pyannote[1817].start 12605.45346875
transcript.pyannote[1817].end 12620.97846875
transcript.pyannote[1818].speaker SPEAKER_26
transcript.pyannote[1818].start 12620.97846875
transcript.pyannote[1818].end 12626.51346875
transcript.pyannote[1819].speaker SPEAKER_26
transcript.pyannote[1819].start 12626.85096875
transcript.pyannote[1819].end 12638.64659375
transcript.pyannote[1820].speaker SPEAKER_34
transcript.pyannote[1820].start 12626.95221875
transcript.pyannote[1820].end 12626.96909375
transcript.pyannote[1821].speaker SPEAKER_38
transcript.pyannote[1821].start 12626.96909375
transcript.pyannote[1821].end 12626.98596875
transcript.pyannote[1822].speaker SPEAKER_34
transcript.pyannote[1822].start 12626.98596875
transcript.pyannote[1822].end 12627.86346875
transcript.pyannote[1823].speaker SPEAKER_00
transcript.pyannote[1823].start 12628.30221875
transcript.pyannote[1823].end 12628.31909375
transcript.pyannote[1824].speaker SPEAKER_34
transcript.pyannote[1824].start 12628.31909375
transcript.pyannote[1824].end 12629.33159375
transcript.pyannote[1825].speaker SPEAKER_38
transcript.pyannote[1825].start 12629.33159375
transcript.pyannote[1825].end 12629.34846875
transcript.pyannote[1826].speaker SPEAKER_34
transcript.pyannote[1826].start 12637.61721875
transcript.pyannote[1826].end 12643.57409375
transcript.pyannote[1827].speaker SPEAKER_26
transcript.pyannote[1827].start 12643.57409375
transcript.pyannote[1827].end 12643.65846875
transcript.pyannote[1828].speaker SPEAKER_34
transcript.pyannote[1828].start 12643.65846875
transcript.pyannote[1828].end 12643.74284375
transcript.pyannote[1829].speaker SPEAKER_26
transcript.pyannote[1829].start 12643.74284375
transcript.pyannote[1829].end 12645.22784375
transcript.pyannote[1830].speaker SPEAKER_34
transcript.pyannote[1830].start 12643.75971875
transcript.pyannote[1830].end 12646.00409375
transcript.pyannote[1831].speaker SPEAKER_34
transcript.pyannote[1831].start 12646.47659375
transcript.pyannote[1831].end 12650.59409375
transcript.pyannote[1832].speaker SPEAKER_26
transcript.pyannote[1832].start 12650.02034375
transcript.pyannote[1832].end 12652.97346875
transcript.pyannote[1833].speaker SPEAKER_34
transcript.pyannote[1833].start 12652.97346875
transcript.pyannote[1833].end 12669.93284375
transcript.pyannote[1834].speaker SPEAKER_26
transcript.pyannote[1834].start 12667.90784375
transcript.pyannote[1834].end 12671.77221875
transcript.pyannote[1835].speaker SPEAKER_34
transcript.pyannote[1835].start 12670.79346875
transcript.pyannote[1835].end 12675.43409375
transcript.pyannote[1836].speaker SPEAKER_26
transcript.pyannote[1836].start 12672.68346875
transcript.pyannote[1836].end 12673.12221875
transcript.pyannote[1837].speaker SPEAKER_34
transcript.pyannote[1837].start 12676.48034375
transcript.pyannote[1837].end 12683.88846875
transcript.pyannote[1838].speaker SPEAKER_34
transcript.pyannote[1838].start 12684.52971875
transcript.pyannote[1838].end 12696.27471875
transcript.pyannote[1839].speaker SPEAKER_34
transcript.pyannote[1839].start 12696.96659375
transcript.pyannote[1839].end 12699.88596875
transcript.pyannote[1840].speaker SPEAKER_34
transcript.pyannote[1840].start 12700.40909375
transcript.pyannote[1840].end 12706.29846875
transcript.pyannote[1841].speaker SPEAKER_26
transcript.pyannote[1841].start 12705.03284375
transcript.pyannote[1841].end 12705.18471875
transcript.pyannote[1842].speaker SPEAKER_34
transcript.pyannote[1842].start 12706.34909375
transcript.pyannote[1842].end 12712.00221875
transcript.pyannote[1843].speaker SPEAKER_26
transcript.pyannote[1843].start 12707.71596875
transcript.pyannote[1843].end 12708.25596875
transcript.pyannote[1844].speaker SPEAKER_26
transcript.pyannote[1844].start 12710.04471875
transcript.pyannote[1844].end 12711.46221875
transcript.pyannote[1845].speaker SPEAKER_34
transcript.pyannote[1845].start 12712.32284375
transcript.pyannote[1845].end 12714.90471875
transcript.pyannote[1846].speaker SPEAKER_34
transcript.pyannote[1846].start 12715.49534375
transcript.pyannote[1846].end 12719.86596875
transcript.pyannote[1847].speaker SPEAKER_38
transcript.pyannote[1847].start 12719.86596875
transcript.pyannote[1847].end 12720.20346875
transcript.pyannote[1848].speaker SPEAKER_34
transcript.pyannote[1848].start 12720.47346875
transcript.pyannote[1848].end 12729.88971875
transcript.pyannote[1849].speaker SPEAKER_38
transcript.pyannote[1849].start 12729.88971875
transcript.pyannote[1849].end 12729.90659375
transcript.pyannote[1850].speaker SPEAKER_34
transcript.pyannote[1850].start 12729.90659375
transcript.pyannote[1850].end 12739.08659375
transcript.pyannote[1851].speaker SPEAKER_38
transcript.pyannote[1851].start 12739.08659375
transcript.pyannote[1851].end 12739.52534375
transcript.pyannote[1852].speaker SPEAKER_34
transcript.pyannote[1852].start 12739.33971875
transcript.pyannote[1852].end 12757.34534375
transcript.pyannote[1853].speaker SPEAKER_34
transcript.pyannote[1853].start 12757.93596875
transcript.pyannote[1853].end 12763.15034375
transcript.pyannote[1854].speaker SPEAKER_34
transcript.pyannote[1854].start 12763.77471875
transcript.pyannote[1854].end 12767.08221875
transcript.pyannote[1855].speaker SPEAKER_34
transcript.pyannote[1855].start 12767.31846875
transcript.pyannote[1855].end 12771.14909375
transcript.pyannote[1856].speaker SPEAKER_34
transcript.pyannote[1856].start 12772.07721875
transcript.pyannote[1856].end 12773.30909375
transcript.pyannote[1857].speaker SPEAKER_34
transcript.pyannote[1857].start 12773.93346875
transcript.pyannote[1857].end 12777.10596875
transcript.pyannote[1858].speaker SPEAKER_34
transcript.pyannote[1858].start 12777.32534375
transcript.pyannote[1858].end 12782.35409375
transcript.pyannote[1859].speaker SPEAKER_09
transcript.pyannote[1859].start 12782.35409375
transcript.pyannote[1859].end 12782.60721875
transcript.pyannote[1860].speaker SPEAKER_34
transcript.pyannote[1860].start 12782.60721875
transcript.pyannote[1860].end 12784.39596875
transcript.pyannote[1861].speaker SPEAKER_09
transcript.pyannote[1861].start 12782.62409375
transcript.pyannote[1861].end 12782.67471875
transcript.pyannote[1862].speaker SPEAKER_09
transcript.pyannote[1862].start 12784.39596875
transcript.pyannote[1862].end 12784.88534375
transcript.pyannote[1863].speaker SPEAKER_34
transcript.pyannote[1863].start 12784.88534375
transcript.pyannote[1863].end 12789.74534375
transcript.pyannote[1864].speaker SPEAKER_08
transcript.pyannote[1864].start 12787.46721875
transcript.pyannote[1864].end 12788.00721875
transcript.pyannote[1865].speaker SPEAKER_08
transcript.pyannote[1865].start 12789.57659375
transcript.pyannote[1865].end 12797.89596875
transcript.pyannote[1866].speaker SPEAKER_34
transcript.pyannote[1866].start 12797.00159375
transcript.pyannote[1866].end 12798.50346875
transcript.pyannote[1867].speaker SPEAKER_08
transcript.pyannote[1867].start 12798.70596875
transcript.pyannote[1867].end 12813.16784375
transcript.pyannote[1868].speaker SPEAKER_34
transcript.pyannote[1868].start 12813.16784375
transcript.pyannote[1868].end 12813.97784375
transcript.pyannote[1869].speaker SPEAKER_08
transcript.pyannote[1869].start 12813.97784375
transcript.pyannote[1869].end 12814.02846875
transcript.pyannote[1870].speaker SPEAKER_34
transcript.pyannote[1870].start 12814.02846875
transcript.pyannote[1870].end 12814.46721875
transcript.pyannote[1871].speaker SPEAKER_08
transcript.pyannote[1871].start 12814.46721875
transcript.pyannote[1871].end 12814.56846875
transcript.pyannote[1872].speaker SPEAKER_34
transcript.pyannote[1872].start 12814.56846875
transcript.pyannote[1872].end 12816.77909375
transcript.pyannote[1873].speaker SPEAKER_09
transcript.pyannote[1873].start 12816.77909375
transcript.pyannote[1873].end 12817.03221875
transcript.pyannote[1874].speaker SPEAKER_34
transcript.pyannote[1874].start 12817.03221875
transcript.pyannote[1874].end 12820.82909375
transcript.pyannote[1875].speaker SPEAKER_09
transcript.pyannote[1875].start 12820.82909375
transcript.pyannote[1875].end 12822.04409375
transcript.pyannote[1876].speaker SPEAKER_34
transcript.pyannote[1876].start 12821.43659375
transcript.pyannote[1876].end 12827.27534375
transcript.pyannote[1877].speaker SPEAKER_09
transcript.pyannote[1877].start 12826.80284375
transcript.pyannote[1877].end 12827.81534375
transcript.pyannote[1878].speaker SPEAKER_34
transcript.pyannote[1878].start 12827.68034375
transcript.pyannote[1878].end 12834.31221875
transcript.pyannote[1879].speaker SPEAKER_08
transcript.pyannote[1879].start 12834.31221875
transcript.pyannote[1879].end 12834.70034375
transcript.pyannote[1880].speaker SPEAKER_34
transcript.pyannote[1880].start 12834.70034375
transcript.pyannote[1880].end 12835.61159375
transcript.pyannote[1881].speaker SPEAKER_08
transcript.pyannote[1881].start 12834.71721875
transcript.pyannote[1881].end 12835.02096875
transcript.pyannote[1882].speaker SPEAKER_08
transcript.pyannote[1882].start 12835.78034375
transcript.pyannote[1882].end 12864.18096875
transcript.pyannote[1883].speaker SPEAKER_34
transcript.pyannote[1883].start 12863.67471875
transcript.pyannote[1883].end 12873.42846875
transcript.pyannote[1884].speaker SPEAKER_08
transcript.pyannote[1884].start 12867.31971875
transcript.pyannote[1884].end 12868.01159375
transcript.pyannote[1885].speaker SPEAKER_08
transcript.pyannote[1885].start 12873.04034375
transcript.pyannote[1885].end 12875.95971875
transcript.pyannote[1886].speaker SPEAKER_34
transcript.pyannote[1886].start 12873.79971875
transcript.pyannote[1886].end 12875.21721875
transcript.pyannote[1887].speaker SPEAKER_34
transcript.pyannote[1887].start 12875.95971875
transcript.pyannote[1887].end 12881.10659375
transcript.pyannote[1888].speaker SPEAKER_34
transcript.pyannote[1888].start 12881.46096875
transcript.pyannote[1888].end 12886.75971875
transcript.pyannote[1889].speaker SPEAKER_38
transcript.pyannote[1889].start 12883.85721875
transcript.pyannote[1889].end 12884.36346875
transcript.pyannote[1890].speaker SPEAKER_38
transcript.pyannote[1890].start 12886.75971875
transcript.pyannote[1890].end 12887.65409375
transcript.pyannote[1891].speaker SPEAKER_34
transcript.pyannote[1891].start 12887.02971875
transcript.pyannote[1891].end 12909.52409375
transcript.pyannote[1892].speaker SPEAKER_38
transcript.pyannote[1892].start 12891.46784375
transcript.pyannote[1892].end 12891.78846875
transcript.pyannote[1893].speaker SPEAKER_09
transcript.pyannote[1893].start 12891.78846875
transcript.pyannote[1893].end 12891.80534375
transcript.pyannote[1894].speaker SPEAKER_09
transcript.pyannote[1894].start 12892.93596875
transcript.pyannote[1894].end 12893.05409375
transcript.pyannote[1895].speaker SPEAKER_38
transcript.pyannote[1895].start 12893.05409375
transcript.pyannote[1895].end 12894.33659375
transcript.pyannote[1896].speaker SPEAKER_09
transcript.pyannote[1896].start 12894.33659375
transcript.pyannote[1896].end 12894.38721875
transcript.pyannote[1897].speaker SPEAKER_09
transcript.pyannote[1897].start 12894.74159375
transcript.pyannote[1897].end 12894.75846875
transcript.pyannote[1898].speaker SPEAKER_38
transcript.pyannote[1898].start 12894.75846875
transcript.pyannote[1898].end 12895.34909375
transcript.pyannote[1899].speaker SPEAKER_09
transcript.pyannote[1899].start 12895.34909375
transcript.pyannote[1899].end 12895.39971875
transcript.pyannote[1900].speaker SPEAKER_38
transcript.pyannote[1900].start 12902.18346875
transcript.pyannote[1900].end 12902.25096875
transcript.pyannote[1901].speaker SPEAKER_38
transcript.pyannote[1901].start 12902.28471875
transcript.pyannote[1901].end 12902.43659375
transcript.pyannote[1902].speaker SPEAKER_09
transcript.pyannote[1902].start 12902.43659375
transcript.pyannote[1902].end 12903.06096875
transcript.pyannote[1903].speaker SPEAKER_38
transcript.pyannote[1903].start 12904.36034375
transcript.pyannote[1903].end 12904.44471875
transcript.pyannote[1904].speaker SPEAKER_09
transcript.pyannote[1904].start 12904.47846875
transcript.pyannote[1904].end 12905.72721875
transcript.pyannote[1905].speaker SPEAKER_34
transcript.pyannote[1905].start 12911.05971875
transcript.pyannote[1905].end 12913.79346875
transcript.pyannote[1906].speaker SPEAKER_34
transcript.pyannote[1906].start 12914.06346875
transcript.pyannote[1906].end 12921.79221875
transcript.pyannote[1907].speaker SPEAKER_34
transcript.pyannote[1907].start 12922.07909375
transcript.pyannote[1907].end 12934.11096875
transcript.pyannote[1908].speaker SPEAKER_38
transcript.pyannote[1908].start 12934.11096875
transcript.pyannote[1908].end 12934.51596875
transcript.pyannote[1909].speaker SPEAKER_34
transcript.pyannote[1909].start 12934.36409375
transcript.pyannote[1909].end 12935.17409375
transcript.pyannote[1910].speaker SPEAKER_34
transcript.pyannote[1910].start 12935.46096875
transcript.pyannote[1910].end 12967.32096875
transcript.pyannote[1911].speaker SPEAKER_34
transcript.pyannote[1911].start 12967.50659375
transcript.pyannote[1911].end 12978.64409375
transcript.pyannote[1912].speaker SPEAKER_07
transcript.pyannote[1912].start 12978.64409375
transcript.pyannote[1912].end 12985.57971875
transcript.pyannote[1913].speaker SPEAKER_07
transcript.pyannote[1913].start 12985.76534375
transcript.pyannote[1913].end 12998.47221875
transcript.pyannote[1914].speaker SPEAKER_07
transcript.pyannote[1914].start 12999.13034375
transcript.pyannote[1914].end 13002.70784375
transcript.pyannote[1915].speaker SPEAKER_07
transcript.pyannote[1915].start 13002.77534375
transcript.pyannote[1915].end 13014.63846875
transcript.pyannote[1916].speaker SPEAKER_34
transcript.pyannote[1916].start 13014.63846875
transcript.pyannote[1916].end 13018.57034375
transcript.pyannote[1917].speaker SPEAKER_07
transcript.pyannote[1917].start 13018.57034375
transcript.pyannote[1917].end 13020.19034375
transcript.pyannote[1918].speaker SPEAKER_34
transcript.pyannote[1918].start 13018.78971875
transcript.pyannote[1918].end 13019.07659375
transcript.pyannote[1919].speaker SPEAKER_34
transcript.pyannote[1919].start 13019.12721875
transcript.pyannote[1919].end 13019.24534375
transcript.pyannote[1920].speaker SPEAKER_34
transcript.pyannote[1920].start 13019.85284375
transcript.pyannote[1920].end 13023.46409375
transcript.pyannote[1921].speaker SPEAKER_34
transcript.pyannote[1921].start 13023.59909375
transcript.pyannote[1921].end 13023.88596875
transcript.pyannote[1922].speaker SPEAKER_07
transcript.pyannote[1922].start 13023.88596875
transcript.pyannote[1922].end 13023.91971875
transcript.pyannote[1923].speaker SPEAKER_34
transcript.pyannote[1923].start 13024.08846875
transcript.pyannote[1923].end 13026.56909375
transcript.pyannote[1924].speaker SPEAKER_34
transcript.pyannote[1924].start 13026.65346875
transcript.pyannote[1924].end 13027.58159375
transcript.pyannote[1925].speaker SPEAKER_34
transcript.pyannote[1925].start 13027.75034375
transcript.pyannote[1925].end 13027.76721875
transcript.pyannote[1926].speaker SPEAKER_34
transcript.pyannote[1926].start 13027.81784375
transcript.pyannote[1926].end 13034.43284375
transcript.pyannote[1927].speaker SPEAKER_07
transcript.pyannote[1927].start 13033.65659375
transcript.pyannote[1927].end 13036.55909375
transcript.pyannote[1928].speaker SPEAKER_34
transcript.pyannote[1928].start 13035.61409375
transcript.pyannote[1928].end 13078.98284375
transcript.pyannote[1929].speaker SPEAKER_07
transcript.pyannote[1929].start 13039.17471875
transcript.pyannote[1929].end 13039.79909375
transcript.pyannote[1930].speaker SPEAKER_00
transcript.pyannote[1930].start 13056.82596875
transcript.pyannote[1930].end 13058.66534375
transcript.pyannote[1931].speaker SPEAKER_00
transcript.pyannote[1931].start 13059.23909375
transcript.pyannote[1931].end 13059.37409375
transcript.pyannote[1932].speaker SPEAKER_38
transcript.pyannote[1932].start 13059.37409375
transcript.pyannote[1932].end 13059.55971875
transcript.pyannote[1933].speaker SPEAKER_38
transcript.pyannote[1933].start 13072.55346875
transcript.pyannote[1933].end 13073.27909375
transcript.pyannote[1934].speaker SPEAKER_38
transcript.pyannote[1934].start 13076.85659375
transcript.pyannote[1934].end 13077.17721875
transcript.pyannote[1935].speaker SPEAKER_38
transcript.pyannote[1935].start 13077.86909375
transcript.pyannote[1935].end 13078.72971875
transcript.pyannote[1936].speaker SPEAKER_13
transcript.pyannote[1936].start 13082.44221875
transcript.pyannote[1936].end 13083.38721875
transcript.pyannote[1937].speaker SPEAKER_13
transcript.pyannote[1937].start 13083.82596875
transcript.pyannote[1937].end 13086.22221875
transcript.pyannote[1938].speaker SPEAKER_30
transcript.pyannote[1938].start 13101.67971875
transcript.pyannote[1938].end 13115.01096875
transcript.pyannote[1939].speaker SPEAKER_16
transcript.pyannote[1939].start 13113.34034375
transcript.pyannote[1939].end 13113.64409375
transcript.pyannote[1940].speaker SPEAKER_16
transcript.pyannote[1940].start 13115.12909375
transcript.pyannote[1940].end 13115.38221875
transcript.pyannote[1941].speaker SPEAKER_16
transcript.pyannote[1941].start 13116.36096875
transcript.pyannote[1941].end 13117.62659375
transcript.pyannote[1942].speaker SPEAKER_30
transcript.pyannote[1942].start 13119.41534375
transcript.pyannote[1942].end 13121.00159375
transcript.pyannote[1943].speaker SPEAKER_30
transcript.pyannote[1943].start 13121.65971875
transcript.pyannote[1943].end 13125.62534375
transcript.pyannote[1944].speaker SPEAKER_38
transcript.pyannote[1944].start 13126.77284375
transcript.pyannote[1944].end 13127.19471875
transcript.pyannote[1945].speaker SPEAKER_30
transcript.pyannote[1945].start 13127.19471875
transcript.pyannote[1945].end 13128.89909375
transcript.pyannote[1946].speaker SPEAKER_38
transcript.pyannote[1946].start 13127.22846875
transcript.pyannote[1946].end 13127.80221875
transcript.pyannote[1947].speaker SPEAKER_30
transcript.pyannote[1947].start 13136.69534375
transcript.pyannote[1947].end 13143.69846875
transcript.pyannote[1948].speaker SPEAKER_30
transcript.pyannote[1948].start 13143.96846875
transcript.pyannote[1948].end 13148.57534375
transcript.pyannote[1949].speaker SPEAKER_38
transcript.pyannote[1949].start 13148.71034375
transcript.pyannote[1949].end 13148.92971875
transcript.pyannote[1950].speaker SPEAKER_30
transcript.pyannote[1950].start 13149.58784375
transcript.pyannote[1950].end 13150.11096875
transcript.pyannote[1951].speaker SPEAKER_30
transcript.pyannote[1951].start 13151.39346875
transcript.pyannote[1951].end 13165.87221875
transcript.pyannote[1952].speaker SPEAKER_30
transcript.pyannote[1952].start 13166.74971875
transcript.pyannote[1952].end 13167.62721875
transcript.pyannote[1953].speaker SPEAKER_30
transcript.pyannote[1953].start 13168.63971875
transcript.pyannote[1953].end 13200.26346875
transcript.pyannote[1954].speaker SPEAKER_30
transcript.pyannote[1954].start 13200.63471875
transcript.pyannote[1954].end 13233.82784375
transcript.pyannote[1955].speaker SPEAKER_30
transcript.pyannote[1955].start 13234.21596875
transcript.pyannote[1955].end 13243.58159375
transcript.pyannote[1956].speaker SPEAKER_30
transcript.pyannote[1956].start 13244.07096875
transcript.pyannote[1956].end 13245.28596875
transcript.pyannote[1957].speaker SPEAKER_30
transcript.pyannote[1957].start 13245.37034375
transcript.pyannote[1957].end 13247.37846875
transcript.pyannote[1958].speaker SPEAKER_30
transcript.pyannote[1958].start 13248.20534375
transcript.pyannote[1958].end 13248.55971875
transcript.pyannote[1959].speaker SPEAKER_30
transcript.pyannote[1959].start 13249.50471875
transcript.pyannote[1959].end 13250.53409375
transcript.pyannote[1960].speaker SPEAKER_30
transcript.pyannote[1960].start 13250.70284375
transcript.pyannote[1960].end 13251.20909375
transcript.pyannote[1961].speaker SPEAKER_30
transcript.pyannote[1961].start 13251.34409375
transcript.pyannote[1961].end 13253.40284375
transcript.pyannote[1962].speaker SPEAKER_30
transcript.pyannote[1962].start 13253.65596875
transcript.pyannote[1962].end 13259.17409375
transcript.pyannote[1963].speaker SPEAKER_30
transcript.pyannote[1963].start 13259.22471875
transcript.pyannote[1963].end 13261.40159375
transcript.pyannote[1964].speaker SPEAKER_30
transcript.pyannote[1964].start 13262.00909375
transcript.pyannote[1964].end 13274.49659375
transcript.pyannote[1965].speaker SPEAKER_30
transcript.pyannote[1965].start 13275.66096875
transcript.pyannote[1965].end 13276.36971875
transcript.pyannote[1966].speaker SPEAKER_30
transcript.pyannote[1966].start 13276.79159375
transcript.pyannote[1966].end 13280.55471875
transcript.pyannote[1967].speaker SPEAKER_30
transcript.pyannote[1967].start 13280.72346875
transcript.pyannote[1967].end 13284.53721875
transcript.pyannote[1968].speaker SPEAKER_30
transcript.pyannote[1968].start 13284.77346875
transcript.pyannote[1968].end 13297.68284375
transcript.pyannote[1969].speaker SPEAKER_38
transcript.pyannote[1969].start 13291.45596875
transcript.pyannote[1969].end 13291.52346875
transcript.pyannote[1970].speaker SPEAKER_09
transcript.pyannote[1970].start 13291.52346875
transcript.pyannote[1970].end 13291.57409375
transcript.pyannote[1971].speaker SPEAKER_09
transcript.pyannote[1971].start 13297.68284375
transcript.pyannote[1971].end 13297.86846875
transcript.pyannote[1972].speaker SPEAKER_30
transcript.pyannote[1972].start 13297.86846875
transcript.pyannote[1972].end 13298.23971875
transcript.pyannote[1973].speaker SPEAKER_30
transcript.pyannote[1973].start 13298.67846875
transcript.pyannote[1973].end 13307.72346875
transcript.pyannote[1974].speaker SPEAKER_30
transcript.pyannote[1974].start 13308.43221875
transcript.pyannote[1974].end 13326.58971875
transcript.pyannote[1975].speaker SPEAKER_08
transcript.pyannote[1975].start 13327.19721875
transcript.pyannote[1975].end 13363.71471875
transcript.pyannote[1976].speaker SPEAKER_30
transcript.pyannote[1976].start 13328.68221875
transcript.pyannote[1976].end 13328.73284375
transcript.pyannote[1977].speaker SPEAKER_30
transcript.pyannote[1977].start 13363.74846875
transcript.pyannote[1977].end 13380.38721875
transcript.pyannote[1978].speaker SPEAKER_30
transcript.pyannote[1978].start 13380.99471875
transcript.pyannote[1978].end 13383.88034375
transcript.pyannote[1979].speaker SPEAKER_38
transcript.pyannote[1979].start 13381.97346875
transcript.pyannote[1979].end 13383.71159375
transcript.pyannote[1980].speaker SPEAKER_09
transcript.pyannote[1980].start 13383.71159375
transcript.pyannote[1980].end 13383.76221875
transcript.pyannote[1981].speaker SPEAKER_38
transcript.pyannote[1981].start 13383.98159375
transcript.pyannote[1981].end 13384.03221875
transcript.pyannote[1982].speaker SPEAKER_08
transcript.pyannote[1982].start 13384.03221875
transcript.pyannote[1982].end 13384.06596875
transcript.pyannote[1983].speaker SPEAKER_38
transcript.pyannote[1983].start 13384.06596875
transcript.pyannote[1983].end 13384.48784375
transcript.pyannote[1984].speaker SPEAKER_30
transcript.pyannote[1984].start 13384.08284375
transcript.pyannote[1984].end 13384.62284375
transcript.pyannote[1985].speaker SPEAKER_08
transcript.pyannote[1985].start 13384.48784375
transcript.pyannote[1985].end 13384.52159375
transcript.pyannote[1986].speaker SPEAKER_30
transcript.pyannote[1986].start 13384.67346875
transcript.pyannote[1986].end 13390.42784375
transcript.pyannote[1987].speaker SPEAKER_08
transcript.pyannote[1987].start 13387.45784375
transcript.pyannote[1987].end 13388.30159375
transcript.pyannote[1988].speaker SPEAKER_08
transcript.pyannote[1988].start 13389.83721875
transcript.pyannote[1988].end 13398.25784375
transcript.pyannote[1989].speaker SPEAKER_30
transcript.pyannote[1989].start 13398.20721875
transcript.pyannote[1989].end 13404.58596875
transcript.pyannote[1990].speaker SPEAKER_08
transcript.pyannote[1990].start 13399.33784375
transcript.pyannote[1990].end 13400.46846875
transcript.pyannote[1991].speaker SPEAKER_38
transcript.pyannote[1991].start 13400.46846875
transcript.pyannote[1991].end 13400.48534375
transcript.pyannote[1992].speaker SPEAKER_08
transcript.pyannote[1992].start 13403.94471875
transcript.pyannote[1992].end 13404.01221875
transcript.pyannote[1993].speaker SPEAKER_38
transcript.pyannote[1993].start 13404.01221875
transcript.pyannote[1993].end 13404.70409375
transcript.pyannote[1994].speaker SPEAKER_30
transcript.pyannote[1994].start 13404.61971875
transcript.pyannote[1994].end 13407.26909375
transcript.pyannote[1995].speaker SPEAKER_38
transcript.pyannote[1995].start 13407.25221875
transcript.pyannote[1995].end 13407.53909375
transcript.pyannote[1996].speaker SPEAKER_30
transcript.pyannote[1996].start 13407.84284375
transcript.pyannote[1996].end 13409.47971875
transcript.pyannote[1997].speaker SPEAKER_30
transcript.pyannote[1997].start 13409.73284375
transcript.pyannote[1997].end 13410.89721875
transcript.pyannote[1998].speaker SPEAKER_30
transcript.pyannote[1998].start 13410.91409375
transcript.pyannote[1998].end 13415.85846875
transcript.pyannote[1999].speaker SPEAKER_30
transcript.pyannote[1999].start 13416.49971875
transcript.pyannote[1999].end 13428.86909375
transcript.pyannote[2000].speaker SPEAKER_38
transcript.pyannote[2000].start 13428.86909375
transcript.pyannote[2000].end 13429.32471875
transcript.pyannote[2001].speaker SPEAKER_30
transcript.pyannote[2001].start 13429.32471875
transcript.pyannote[2001].end 13441.64346875
transcript.pyannote[2002].speaker SPEAKER_30
transcript.pyannote[2002].start 13442.23409375
transcript.pyannote[2002].end 13452.76409375
transcript.pyannote[2003].speaker SPEAKER_30
transcript.pyannote[2003].start 13453.06784375
transcript.pyannote[2003].end 13462.66971875
transcript.pyannote[2004].speaker SPEAKER_09
transcript.pyannote[2004].start 13462.66971875
transcript.pyannote[2004].end 13462.70346875
transcript.pyannote[2005].speaker SPEAKER_30
transcript.pyannote[2005].start 13462.70346875
transcript.pyannote[2005].end 13463.64846875
transcript.pyannote[2006].speaker SPEAKER_24
transcript.pyannote[2006].start 13462.97346875
transcript.pyannote[2006].end 13462.99034375
transcript.pyannote[2007].speaker SPEAKER_38
transcript.pyannote[2007].start 13462.99034375
transcript.pyannote[2007].end 13463.88471875
transcript.pyannote[2008].speaker SPEAKER_30
transcript.pyannote[2008].start 13463.88471875
transcript.pyannote[2008].end 13468.23846875
transcript.pyannote[2009].speaker SPEAKER_38
transcript.pyannote[2009].start 13463.90159375
transcript.pyannote[2009].end 13463.93534375
transcript.pyannote[2010].speaker SPEAKER_30
transcript.pyannote[2010].start 13468.82909375
transcript.pyannote[2010].end 13473.09846875
transcript.pyannote[2011].speaker SPEAKER_30
transcript.pyannote[2011].start 13473.52034375
transcript.pyannote[2011].end 13479.42659375
transcript.pyannote[2012].speaker SPEAKER_30
transcript.pyannote[2012].start 13480.25346875
transcript.pyannote[2012].end 13485.11346875
transcript.pyannote[2013].speaker SPEAKER_30
transcript.pyannote[2013].start 13485.75471875
transcript.pyannote[2013].end 13489.97346875
transcript.pyannote[2014].speaker SPEAKER_26
transcript.pyannote[2014].start 13489.97346875
transcript.pyannote[2014].end 13491.49221875
transcript.pyannote[2015].speaker SPEAKER_26
transcript.pyannote[2015].start 13491.91409375
transcript.pyannote[2015].end 13495.55909375
transcript.pyannote[2016].speaker SPEAKER_30
transcript.pyannote[2016].start 13495.55909375
transcript.pyannote[2016].end 13502.00534375
transcript.pyannote[2017].speaker SPEAKER_30
transcript.pyannote[2017].start 13502.37659375
transcript.pyannote[2017].end 13504.80659375
transcript.pyannote[2018].speaker SPEAKER_38
transcript.pyannote[2018].start 13502.51159375
transcript.pyannote[2018].end 13502.57909375
transcript.pyannote[2019].speaker SPEAKER_23
transcript.pyannote[2019].start 13502.57909375
transcript.pyannote[2019].end 13502.61284375
transcript.pyannote[2020].speaker SPEAKER_26
transcript.pyannote[2020].start 13502.61284375
transcript.pyannote[2020].end 13502.96721875
transcript.pyannote[2021].speaker SPEAKER_23
transcript.pyannote[2021].start 13502.96721875
transcript.pyannote[2021].end 13504.03034375
transcript.pyannote[2022].speaker SPEAKER_38
transcript.pyannote[2022].start 13504.03034375
transcript.pyannote[2022].end 13504.68846875
transcript.pyannote[2023].speaker SPEAKER_30
transcript.pyannote[2023].start 13505.34659375
transcript.pyannote[2023].end 13505.80221875
transcript.pyannote[2024].speaker SPEAKER_30
transcript.pyannote[2024].start 13506.17346875
transcript.pyannote[2024].end 13508.82284375
transcript.pyannote[2025].speaker SPEAKER_30
transcript.pyannote[2025].start 13508.97471875
transcript.pyannote[2025].end 13510.51034375
transcript.pyannote[2026].speaker SPEAKER_30
transcript.pyannote[2026].start 13511.08409375
transcript.pyannote[2026].end 13512.85596875
transcript.pyannote[2027].speaker SPEAKER_30
transcript.pyannote[2027].start 13513.27784375
transcript.pyannote[2027].end 13513.88534375
transcript.pyannote[2028].speaker SPEAKER_30
transcript.pyannote[2028].start 13514.20596875
transcript.pyannote[2028].end 13517.58096875
transcript.pyannote[2029].speaker SPEAKER_30
transcript.pyannote[2029].start 13518.10409375
transcript.pyannote[2029].end 13519.70721875
transcript.pyannote[2030].speaker SPEAKER_30
transcript.pyannote[2030].start 13519.89284375
transcript.pyannote[2030].end 13527.35159375
transcript.pyannote[2031].speaker SPEAKER_30
transcript.pyannote[2031].start 13527.72284375
transcript.pyannote[2031].end 13542.30284375
transcript.pyannote[2032].speaker SPEAKER_30
transcript.pyannote[2032].start 13542.92721875
transcript.pyannote[2032].end 13551.04409375
transcript.pyannote[2033].speaker SPEAKER_30
transcript.pyannote[2033].start 13551.68534375
transcript.pyannote[2033].end 13552.93409375
transcript.pyannote[2034].speaker SPEAKER_30
transcript.pyannote[2034].start 13553.06909375
transcript.pyannote[2034].end 13553.57534375
transcript.pyannote[2035].speaker SPEAKER_30
transcript.pyannote[2035].start 13553.94659375
transcript.pyannote[2035].end 13556.24159375
transcript.pyannote[2036].speaker SPEAKER_30
transcript.pyannote[2036].start 13556.95034375
transcript.pyannote[2036].end 13560.61221875
transcript.pyannote[2037].speaker SPEAKER_30
transcript.pyannote[2037].start 13560.81471875
transcript.pyannote[2037].end 13561.37159375
transcript.pyannote[2038].speaker SPEAKER_30
transcript.pyannote[2038].start 13561.70909375
transcript.pyannote[2038].end 13562.28284375
transcript.pyannote[2039].speaker SPEAKER_30
transcript.pyannote[2039].start 13562.80596875
transcript.pyannote[2039].end 13586.49846875
transcript.pyannote[2040].speaker SPEAKER_30
transcript.pyannote[2040].start 13587.17346875
transcript.pyannote[2040].end 13590.64971875
transcript.pyannote[2041].speaker SPEAKER_30
transcript.pyannote[2041].start 13590.83534375
transcript.pyannote[2041].end 13595.35784375
transcript.pyannote[2042].speaker SPEAKER_30
transcript.pyannote[2042].start 13595.49284375
transcript.pyannote[2042].end 13607.60909375
transcript.pyannote[2043].speaker SPEAKER_30
transcript.pyannote[2043].start 13608.16596875
transcript.pyannote[2043].end 13623.23534375
transcript.pyannote[2044].speaker SPEAKER_08
transcript.pyannote[2044].start 13623.48846875
transcript.pyannote[2044].end 13623.91034375
transcript.pyannote[2045].speaker SPEAKER_08
transcript.pyannote[2045].start 13624.04534375
transcript.pyannote[2045].end 13628.46659375
transcript.pyannote[2046].speaker SPEAKER_08
transcript.pyannote[2046].start 13628.78721875
transcript.pyannote[2046].end 13654.16721875
transcript.pyannote[2047].speaker SPEAKER_05
transcript.pyannote[2047].start 13652.46284375
transcript.pyannote[2047].end 13652.96909375
transcript.pyannote[2048].speaker SPEAKER_38
transcript.pyannote[2048].start 13652.96909375
transcript.pyannote[2048].end 13653.08721875
transcript.pyannote[2049].speaker SPEAKER_08
transcript.pyannote[2049].start 13654.62284375
transcript.pyannote[2049].end 13663.97159375
transcript.pyannote[2050].speaker SPEAKER_05
transcript.pyannote[2050].start 13656.44534375
transcript.pyannote[2050].end 13656.46221875
transcript.pyannote[2051].speaker SPEAKER_38
transcript.pyannote[2051].start 13656.46221875
transcript.pyannote[2051].end 13656.90096875
transcript.pyannote[2052].speaker SPEAKER_30
transcript.pyannote[2052].start 13664.12346875
transcript.pyannote[2052].end 13670.62034375
transcript.pyannote[2053].speaker SPEAKER_38
transcript.pyannote[2053].start 13670.62034375
transcript.pyannote[2053].end 13671.04221875
transcript.pyannote[2054].speaker SPEAKER_30
transcript.pyannote[2054].start 13670.90721875
transcript.pyannote[2054].end 13676.07096875
transcript.pyannote[2055].speaker SPEAKER_30
transcript.pyannote[2055].start 13676.56034375
transcript.pyannote[2055].end 13678.87221875
transcript.pyannote[2056].speaker SPEAKER_30
transcript.pyannote[2056].start 13679.39534375
transcript.pyannote[2056].end 13687.02284375
transcript.pyannote[2057].speaker SPEAKER_09
transcript.pyannote[2057].start 13686.71909375
transcript.pyannote[2057].end 13687.00596875
transcript.pyannote[2058].speaker SPEAKER_09
transcript.pyannote[2058].start 13687.02284375
transcript.pyannote[2058].end 13687.27596875
transcript.pyannote[2059].speaker SPEAKER_30
transcript.pyannote[2059].start 13687.73159375
transcript.pyannote[2059].end 13693.82346875
transcript.pyannote[2060].speaker SPEAKER_09
transcript.pyannote[2060].start 13693.75596875
transcript.pyannote[2060].end 13694.43096875
transcript.pyannote[2061].speaker SPEAKER_30
transcript.pyannote[2061].start 13694.32971875
transcript.pyannote[2061].end 13698.80159375
transcript.pyannote[2062].speaker SPEAKER_30
transcript.pyannote[2062].start 13699.13909375
transcript.pyannote[2062].end 13708.18409375
transcript.pyannote[2063].speaker SPEAKER_09
transcript.pyannote[2063].start 13708.18409375
transcript.pyannote[2063].end 13708.97721875
transcript.pyannote[2064].speaker SPEAKER_30
transcript.pyannote[2064].start 13708.97721875
transcript.pyannote[2064].end 13716.38534375
transcript.pyannote[2065].speaker SPEAKER_09
transcript.pyannote[2065].start 13716.38534375
transcript.pyannote[2065].end 13716.87471875
transcript.pyannote[2066].speaker SPEAKER_30
transcript.pyannote[2066].start 13717.16159375
transcript.pyannote[2066].end 13729.71659375
transcript.pyannote[2067].speaker SPEAKER_38
transcript.pyannote[2067].start 13729.71659375
transcript.pyannote[2067].end 13730.20596875
transcript.pyannote[2068].speaker SPEAKER_38
transcript.pyannote[2068].start 13730.22284375
transcript.pyannote[2068].end 13730.23971875
transcript.pyannote[2069].speaker SPEAKER_30
transcript.pyannote[2069].start 13730.25659375
transcript.pyannote[2069].end 13737.29346875
transcript.pyannote[2070].speaker SPEAKER_30
transcript.pyannote[2070].start 13737.69846875
transcript.pyannote[2070].end 13741.95096875
transcript.pyannote[2071].speaker SPEAKER_30
transcript.pyannote[2071].start 13741.96784375
transcript.pyannote[2071].end 13741.98471875
transcript.pyannote[2072].speaker SPEAKER_08
transcript.pyannote[2072].start 13741.98471875
transcript.pyannote[2072].end 13762.67346875
transcript.pyannote[2073].speaker SPEAKER_33
transcript.pyannote[2073].start 13755.53534375
transcript.pyannote[2073].end 13755.97409375
transcript.pyannote[2074].speaker SPEAKER_30
transcript.pyannote[2074].start 13755.97409375
transcript.pyannote[2074].end 13756.04159375
transcript.pyannote[2075].speaker SPEAKER_03
transcript.pyannote[2075].start 13756.04159375
transcript.pyannote[2075].end 13756.07534375
transcript.pyannote[2076].speaker SPEAKER_30
transcript.pyannote[2076].start 13761.81284375
transcript.pyannote[2076].end 13764.81659375
transcript.pyannote[2077].speaker SPEAKER_08
transcript.pyannote[2077].start 13764.95159375
transcript.pyannote[2077].end 13777.21971875
transcript.pyannote[2078].speaker SPEAKER_30
transcript.pyannote[2078].start 13777.35471875
transcript.pyannote[2078].end 13780.02096875
transcript.pyannote[2079].speaker SPEAKER_08
transcript.pyannote[2079].start 13780.02096875
transcript.pyannote[2079].end 13786.65284375
transcript.pyannote[2080].speaker SPEAKER_30
transcript.pyannote[2080].start 13784.27346875
transcript.pyannote[2080].end 13788.61034375
transcript.pyannote[2081].speaker SPEAKER_30
transcript.pyannote[2081].start 13789.38659375
transcript.pyannote[2081].end 13800.79409375
transcript.pyannote[2082].speaker SPEAKER_08
transcript.pyannote[2082].start 13800.32159375
transcript.pyannote[2082].end 13800.37221875
transcript.pyannote[2083].speaker SPEAKER_38
transcript.pyannote[2083].start 13800.37221875
transcript.pyannote[2083].end 13800.38909375
transcript.pyannote[2084].speaker SPEAKER_08
transcript.pyannote[2084].start 13800.38909375
transcript.pyannote[2084].end 13800.60846875
transcript.pyannote[2085].speaker SPEAKER_38
transcript.pyannote[2085].start 13800.60846875
transcript.pyannote[2085].end 13800.70971875
transcript.pyannote[2086].speaker SPEAKER_08
transcript.pyannote[2086].start 13800.70971875
transcript.pyannote[2086].end 13800.77721875
transcript.pyannote[2087].speaker SPEAKER_08
transcript.pyannote[2087].start 13800.79409375
transcript.pyannote[2087].end 13801.03034375
transcript.pyannote[2088].speaker SPEAKER_30
transcript.pyannote[2088].start 13801.16534375
transcript.pyannote[2088].end 13801.51971875
transcript.pyannote[2089].speaker SPEAKER_08
transcript.pyannote[2089].start 13803.64596875
transcript.pyannote[2089].end 13806.17721875
transcript.pyannote[2090].speaker SPEAKER_30
transcript.pyannote[2090].start 13805.11409375
transcript.pyannote[2090].end 13816.25159375
transcript.pyannote[2091].speaker SPEAKER_30
transcript.pyannote[2091].start 13817.97284375
transcript.pyannote[2091].end 13819.52534375
transcript.pyannote[2092].speaker SPEAKER_30
transcript.pyannote[2092].start 13819.77846875
transcript.pyannote[2092].end 13822.37721875
transcript.pyannote[2093].speaker SPEAKER_30
transcript.pyannote[2093].start 13822.76534375
transcript.pyannote[2093].end 13826.35971875
transcript.pyannote[2094].speaker SPEAKER_08
transcript.pyannote[2094].start 13825.95471875
transcript.pyannote[2094].end 13834.86471875
transcript.pyannote[2095].speaker SPEAKER_08
transcript.pyannote[2095].start 13835.18534375
transcript.pyannote[2095].end 13848.01034375
transcript.pyannote[2096].speaker SPEAKER_30
transcript.pyannote[2096].start 13847.09909375
transcript.pyannote[2096].end 13850.98034375
transcript.pyannote[2097].speaker SPEAKER_08
transcript.pyannote[2097].start 13850.81159375
transcript.pyannote[2097].end 13851.25034375
transcript.pyannote[2098].speaker SPEAKER_30
transcript.pyannote[2098].start 13851.14909375
transcript.pyannote[2098].end 13852.83659375
transcript.pyannote[2099].speaker SPEAKER_08
transcript.pyannote[2099].start 13851.73971875
transcript.pyannote[2099].end 13851.77346875
transcript.pyannote[2100].speaker SPEAKER_38
transcript.pyannote[2100].start 13851.77346875
transcript.pyannote[2100].end 13853.00534375
transcript.pyannote[2101].speaker SPEAKER_30
transcript.pyannote[2101].start 13852.97159375
transcript.pyannote[2101].end 13881.47346875
transcript.pyannote[2102].speaker SPEAKER_30
transcript.pyannote[2102].start 13881.57471875
transcript.pyannote[2102].end 13882.84034375
transcript.pyannote[2103].speaker SPEAKER_30
transcript.pyannote[2103].start 13883.48159375
transcript.pyannote[2103].end 13889.52284375
transcript.pyannote[2104].speaker SPEAKER_13
transcript.pyannote[2104].start 13889.48909375
transcript.pyannote[2104].end 13893.06659375
transcript.pyannote[2105].speaker SPEAKER_13
transcript.pyannote[2105].start 13893.69096875
transcript.pyannote[2105].end 13898.07846875
transcript.pyannote[2106].speaker SPEAKER_38
transcript.pyannote[2106].start 13899.68159375
transcript.pyannote[2106].end 13900.00221875
transcript.pyannote[2107].speaker SPEAKER_12
transcript.pyannote[2107].start 13905.26721875
transcript.pyannote[2107].end 13908.20346875
transcript.pyannote[2108].speaker SPEAKER_12
transcript.pyannote[2108].start 13908.64221875
transcript.pyannote[2108].end 13909.19909375
transcript.pyannote[2109].speaker SPEAKER_12
transcript.pyannote[2109].start 13910.11034375
transcript.pyannote[2109].end 13910.68409375
transcript.pyannote[2110].speaker SPEAKER_12
transcript.pyannote[2110].start 13914.88596875
transcript.pyannote[2110].end 13950.07034375
transcript.pyannote[2111].speaker SPEAKER_00
transcript.pyannote[2111].start 13920.62346875
transcript.pyannote[2111].end 13920.74159375
transcript.pyannote[2112].speaker SPEAKER_12
transcript.pyannote[2112].start 13950.23909375
transcript.pyannote[2112].end 13954.35659375
transcript.pyannote[2113].speaker SPEAKER_12
transcript.pyannote[2113].start 13954.93034375
transcript.pyannote[2113].end 13955.68971875
transcript.pyannote[2114].speaker SPEAKER_12
transcript.pyannote[2114].start 13955.97659375
transcript.pyannote[2114].end 13956.01034375
transcript.pyannote[2115].speaker SPEAKER_11
transcript.pyannote[2115].start 13956.01034375
transcript.pyannote[2115].end 13956.14534375
transcript.pyannote[2116].speaker SPEAKER_12
transcript.pyannote[2116].start 13956.44909375
transcript.pyannote[2116].end 13959.97596875
transcript.pyannote[2117].speaker SPEAKER_11
transcript.pyannote[2117].start 13959.97596875
transcript.pyannote[2117].end 13960.24596875
transcript.pyannote[2118].speaker SPEAKER_11
transcript.pyannote[2118].start 13961.46096875
transcript.pyannote[2118].end 13967.08034375
transcript.pyannote[2119].speaker SPEAKER_12
transcript.pyannote[2119].start 13964.95409375
transcript.pyannote[2119].end 13968.26159375
transcript.pyannote[2120].speaker SPEAKER_11
transcript.pyannote[2120].start 13967.90721875
transcript.pyannote[2120].end 13972.19346875
transcript.pyannote[2121].speaker SPEAKER_11
transcript.pyannote[2121].start 13972.68284375
transcript.pyannote[2121].end 13976.34471875
transcript.pyannote[2122].speaker SPEAKER_11
transcript.pyannote[2122].start 13976.49659375
transcript.pyannote[2122].end 13978.38659375
transcript.pyannote[2123].speaker SPEAKER_11
transcript.pyannote[2123].start 13978.74096875
transcript.pyannote[2123].end 13981.98096875
transcript.pyannote[2124].speaker SPEAKER_11
transcript.pyannote[2124].start 13982.33534375
transcript.pyannote[2124].end 13984.90034375
transcript.pyannote[2125].speaker SPEAKER_11
transcript.pyannote[2125].start 13985.23784375
transcript.pyannote[2125].end 13992.96659375
transcript.pyannote[2126].speaker SPEAKER_12
transcript.pyannote[2126].start 13991.83596875
transcript.pyannote[2126].end 14016.18659375
transcript.pyannote[2127].speaker SPEAKER_12
transcript.pyannote[2127].start 14017.36784375
transcript.pyannote[2127].end 14017.84034375
transcript.pyannote[2128].speaker SPEAKER_11
transcript.pyannote[2128].start 14018.05971875
transcript.pyannote[2128].end 14018.11034375
transcript.pyannote[2129].speaker SPEAKER_11
transcript.pyannote[2129].start 14018.41409375
transcript.pyannote[2129].end 14020.40534375
transcript.pyannote[2130].speaker SPEAKER_12
transcript.pyannote[2130].start 14020.40534375
transcript.pyannote[2130].end 14035.00221875
transcript.pyannote[2131].speaker SPEAKER_11
transcript.pyannote[2131].start 14034.58034375
transcript.pyannote[2131].end 14040.41909375
transcript.pyannote[2132].speaker SPEAKER_12
transcript.pyannote[2132].start 14037.02721875
transcript.pyannote[2132].end 14037.46596875
transcript.pyannote[2133].speaker SPEAKER_11
transcript.pyannote[2133].start 14040.90846875
transcript.pyannote[2133].end 14045.56596875
transcript.pyannote[2134].speaker SPEAKER_11
transcript.pyannote[2134].start 14045.90346875
transcript.pyannote[2134].end 14046.91596875
transcript.pyannote[2135].speaker SPEAKER_11
transcript.pyannote[2135].start 14047.54034375
transcript.pyannote[2135].end 14050.52721875
transcript.pyannote[2136].speaker SPEAKER_11
transcript.pyannote[2136].start 14050.81409375
transcript.pyannote[2136].end 14051.65784375
transcript.pyannote[2137].speaker SPEAKER_11
transcript.pyannote[2137].start 14051.82659375
transcript.pyannote[2137].end 14056.83846875
transcript.pyannote[2138].speaker SPEAKER_11
transcript.pyannote[2138].start 14057.39534375
transcript.pyannote[2138].end 14059.08284375
transcript.pyannote[2139].speaker SPEAKER_11
transcript.pyannote[2139].start 14059.38659375
transcript.pyannote[2139].end 14060.48346875
transcript.pyannote[2140].speaker SPEAKER_11
transcript.pyannote[2140].start 14060.58471875
transcript.pyannote[2140].end 14065.68096875
transcript.pyannote[2141].speaker SPEAKER_11
transcript.pyannote[2141].start 14066.40659375
transcript.pyannote[2141].end 14067.63846875
transcript.pyannote[2142].speaker SPEAKER_11
transcript.pyannote[2142].start 14068.22909375
transcript.pyannote[2142].end 14077.00409375
transcript.pyannote[2143].speaker SPEAKER_11
transcript.pyannote[2143].start 14077.42596875
transcript.pyannote[2143].end 14078.69159375
transcript.pyannote[2144].speaker SPEAKER_11
transcript.pyannote[2144].start 14079.18096875
transcript.pyannote[2144].end 14081.12159375
transcript.pyannote[2145].speaker SPEAKER_11
transcript.pyannote[2145].start 14081.32409375
transcript.pyannote[2145].end 14083.97346875
transcript.pyannote[2146].speaker SPEAKER_11
transcript.pyannote[2146].start 14084.15909375
transcript.pyannote[2146].end 14085.22221875
transcript.pyannote[2147].speaker SPEAKER_11
transcript.pyannote[2147].start 14085.54284375
transcript.pyannote[2147].end 14091.55034375
transcript.pyannote[2148].speaker SPEAKER_11
transcript.pyannote[2148].start 14091.70221875
transcript.pyannote[2148].end 14093.47409375
transcript.pyannote[2149].speaker SPEAKER_12
transcript.pyannote[2149].start 14093.47409375
transcript.pyannote[2149].end 14117.01471875
transcript.pyannote[2150].speaker SPEAKER_11
transcript.pyannote[2150].start 14096.00534375
transcript.pyannote[2150].end 14096.41034375
transcript.pyannote[2151].speaker SPEAKER_11
transcript.pyannote[2151].start 14097.08534375
transcript.pyannote[2151].end 14097.38909375
transcript.pyannote[2152].speaker SPEAKER_12
transcript.pyannote[2152].start 14117.33534375
transcript.pyannote[2152].end 14139.54284375
transcript.pyannote[2153].speaker SPEAKER_12
transcript.pyannote[2153].start 14140.72409375
transcript.pyannote[2153].end 14143.79534375
transcript.pyannote[2154].speaker SPEAKER_12
transcript.pyannote[2154].start 14144.20034375
transcript.pyannote[2154].end 14144.84159375
transcript.pyannote[2155].speaker SPEAKER_12
transcript.pyannote[2155].start 14144.89221875
transcript.pyannote[2155].end 14146.96784375
transcript.pyannote[2156].speaker SPEAKER_11
transcript.pyannote[2156].start 14148.70596875
transcript.pyannote[2156].end 14151.37221875
transcript.pyannote[2157].speaker SPEAKER_12
transcript.pyannote[2157].start 14150.24159375
transcript.pyannote[2157].end 14150.95034375
transcript.pyannote[2158].speaker SPEAKER_12
transcript.pyannote[2158].start 14151.37221875
transcript.pyannote[2158].end 14151.42284375
transcript.pyannote[2159].speaker SPEAKER_11
transcript.pyannote[2159].start 14151.42284375
transcript.pyannote[2159].end 14155.03409375
transcript.pyannote[2160].speaker SPEAKER_12
transcript.pyannote[2160].start 14151.45659375
transcript.pyannote[2160].end 14152.68846875
transcript.pyannote[2161].speaker SPEAKER_12
transcript.pyannote[2161].start 14155.03409375
transcript.pyannote[2161].end 14155.96221875
transcript.pyannote[2162].speaker SPEAKER_11
transcript.pyannote[2162].start 14155.96221875
transcript.pyannote[2162].end 14156.02971875
transcript.pyannote[2163].speaker SPEAKER_12
transcript.pyannote[2163].start 14156.02971875
transcript.pyannote[2163].end 14187.55221875
transcript.pyannote[2164].speaker SPEAKER_26
transcript.pyannote[2164].start 14192.10846875
transcript.pyannote[2164].end 14192.14221875
transcript.pyannote[2165].speaker SPEAKER_12
transcript.pyannote[2165].start 14192.14221875
transcript.pyannote[2165].end 14212.78034375
transcript.pyannote[2166].speaker SPEAKER_26
transcript.pyannote[2166].start 14213.75909375
transcript.pyannote[2166].end 14224.03596875
transcript.pyannote[2167].speaker SPEAKER_12
transcript.pyannote[2167].start 14223.25971875
transcript.pyannote[2167].end 14225.68971875
transcript.pyannote[2168].speaker SPEAKER_26
transcript.pyannote[2168].start 14224.71096875
transcript.pyannote[2168].end 14228.72721875
transcript.pyannote[2169].speaker SPEAKER_12
transcript.pyannote[2169].start 14227.24221875
transcript.pyannote[2169].end 14227.30971875
transcript.pyannote[2170].speaker SPEAKER_12
transcript.pyannote[2170].start 14228.54159375
transcript.pyannote[2170].end 14236.69221875
transcript.pyannote[2171].speaker SPEAKER_26
transcript.pyannote[2171].start 14236.57409375
transcript.pyannote[2171].end 14238.02534375
transcript.pyannote[2172].speaker SPEAKER_12
transcript.pyannote[2172].start 14238.02534375
transcript.pyannote[2172].end 14250.96846875
transcript.pyannote[2173].speaker SPEAKER_26
transcript.pyannote[2173].start 14240.87721875
transcript.pyannote[2173].end 14240.91096875
transcript.pyannote[2174].speaker SPEAKER_04
transcript.pyannote[2174].start 14245.82159375
transcript.pyannote[2174].end 14246.29409375
transcript.pyannote[2175].speaker SPEAKER_26
transcript.pyannote[2175].start 14246.29409375
transcript.pyannote[2175].end 14246.31096875
transcript.pyannote[2176].speaker SPEAKER_26
transcript.pyannote[2176].start 14250.96846875
transcript.pyannote[2176].end 14306.53784375
transcript.pyannote[2177].speaker SPEAKER_38
transcript.pyannote[2177].start 14298.45471875
transcript.pyannote[2177].end 14299.45034375
transcript.pyannote[2178].speaker SPEAKER_26
transcript.pyannote[2178].start 14306.95971875
transcript.pyannote[2178].end 14318.90721875
transcript.pyannote[2179].speaker SPEAKER_12
transcript.pyannote[2179].start 14318.33346875
transcript.pyannote[2179].end 14343.96659375
transcript.pyannote[2180].speaker SPEAKER_38
transcript.pyannote[2180].start 14331.98534375
transcript.pyannote[2180].end 14332.08659375
transcript.pyannote[2181].speaker SPEAKER_26
transcript.pyannote[2181].start 14332.08659375
transcript.pyannote[2181].end 14333.16659375
transcript.pyannote[2182].speaker SPEAKER_26
transcript.pyannote[2182].start 14339.73096875
transcript.pyannote[2182].end 14342.86971875
transcript.pyannote[2183].speaker SPEAKER_13
transcript.pyannote[2183].start 14342.86971875
transcript.pyannote[2183].end 14342.88659375
transcript.pyannote[2184].speaker SPEAKER_13
transcript.pyannote[2184].start 14343.96659375
transcript.pyannote[2184].end 14346.64971875
transcript.pyannote[2185].speaker SPEAKER_13
transcript.pyannote[2185].start 14347.42596875
transcript.pyannote[2185].end 14350.04159375
transcript.pyannote[2186].speaker SPEAKER_28
transcript.pyannote[2186].start 14355.89721875
transcript.pyannote[2186].end 14359.05284375
transcript.pyannote[2187].speaker SPEAKER_28
transcript.pyannote[2187].start 14360.08221875
transcript.pyannote[2187].end 14362.34346875
transcript.pyannote[2188].speaker SPEAKER_28
transcript.pyannote[2188].start 14362.95096875
transcript.pyannote[2188].end 14365.02659375
transcript.pyannote[2189].speaker SPEAKER_28
transcript.pyannote[2189].start 14365.71846875
transcript.pyannote[2189].end 14366.32596875
transcript.pyannote[2190].speaker SPEAKER_28
transcript.pyannote[2190].start 14366.76471875
transcript.pyannote[2190].end 14368.26659375
transcript.pyannote[2191].speaker SPEAKER_28
transcript.pyannote[2191].start 14375.18534375
transcript.pyannote[2191].end 14377.48034375
transcript.pyannote[2192].speaker SPEAKER_28
transcript.pyannote[2192].start 14378.66159375
transcript.pyannote[2192].end 14378.69534375
transcript.pyannote[2193].speaker SPEAKER_28
transcript.pyannote[2193].start 14379.45471875
transcript.pyannote[2193].end 14387.21721875
transcript.pyannote[2194].speaker SPEAKER_28
transcript.pyannote[2194].start 14387.31846875
transcript.pyannote[2194].end 14388.90471875
transcript.pyannote[2195].speaker SPEAKER_28
transcript.pyannote[2195].start 14389.34346875
transcript.pyannote[2195].end 14409.01971875
transcript.pyannote[2196].speaker SPEAKER_28
transcript.pyannote[2196].start 14409.77909375
transcript.pyannote[2196].end 14412.81659375
transcript.pyannote[2197].speaker SPEAKER_28
transcript.pyannote[2197].start 14413.27221875
transcript.pyannote[2197].end 14498.99721875
transcript.pyannote[2198].speaker SPEAKER_28
transcript.pyannote[2198].start 14499.65534375
transcript.pyannote[2198].end 14502.99659375
transcript.pyannote[2199].speaker SPEAKER_28
transcript.pyannote[2199].start 14503.40159375
transcript.pyannote[2199].end 14506.00034375
transcript.pyannote[2200].speaker SPEAKER_28
transcript.pyannote[2200].start 14507.02971875
transcript.pyannote[2200].end 14508.71721875
transcript.pyannote[2201].speaker SPEAKER_28
transcript.pyannote[2201].start 14508.95346875
transcript.pyannote[2201].end 14530.92471875
transcript.pyannote[2202].speaker SPEAKER_28
transcript.pyannote[2202].start 14531.75159375
transcript.pyannote[2202].end 14537.53971875
transcript.pyannote[2203].speaker SPEAKER_28
transcript.pyannote[2203].start 14537.94471875
transcript.pyannote[2203].end 14550.63471875
transcript.pyannote[2204].speaker SPEAKER_28
transcript.pyannote[2204].start 14550.85409375
transcript.pyannote[2204].end 14564.96159375
transcript.pyannote[2205].speaker SPEAKER_28
transcript.pyannote[2205].start 14565.85596875
transcript.pyannote[2205].end 14566.88534375
transcript.pyannote[2206].speaker SPEAKER_28
transcript.pyannote[2206].start 14567.27346875
transcript.pyannote[2206].end 14567.86409375
transcript.pyannote[2207].speaker SPEAKER_28
transcript.pyannote[2207].start 14568.67409375
transcript.pyannote[2207].end 14571.37409375
transcript.pyannote[2208].speaker SPEAKER_28
transcript.pyannote[2208].start 14572.03221875
transcript.pyannote[2208].end 14578.93409375
transcript.pyannote[2209].speaker SPEAKER_14
transcript.pyannote[2209].start 14579.49096875
transcript.pyannote[2209].end 14581.24596875
transcript.pyannote[2210].speaker SPEAKER_14
transcript.pyannote[2210].start 14581.36409375
transcript.pyannote[2210].end 14614.81034375
transcript.pyannote[2211].speaker SPEAKER_28
transcript.pyannote[2211].start 14612.93721875
transcript.pyannote[2211].end 14613.30846875
transcript.pyannote[2212].speaker SPEAKER_28
transcript.pyannote[2212].start 14614.45596875
transcript.pyannote[2212].end 14638.70534375
transcript.pyannote[2213].speaker SPEAKER_38
transcript.pyannote[2213].start 14638.16534375
transcript.pyannote[2213].end 14638.43534375
transcript.pyannote[2214].speaker SPEAKER_00
transcript.pyannote[2214].start 14638.43534375
transcript.pyannote[2214].end 14638.45221875
transcript.pyannote[2215].speaker SPEAKER_28
transcript.pyannote[2215].start 14638.97534375
transcript.pyannote[2215].end 14651.69909375
transcript.pyannote[2216].speaker SPEAKER_38
transcript.pyannote[2216].start 14640.10596875
transcript.pyannote[2216].end 14640.46034375
transcript.pyannote[2217].speaker SPEAKER_14
transcript.pyannote[2217].start 14652.05346875
transcript.pyannote[2217].end 14657.75721875
transcript.pyannote[2218].speaker SPEAKER_28
transcript.pyannote[2218].start 14652.42471875
transcript.pyannote[2218].end 14652.82971875
transcript.pyannote[2219].speaker SPEAKER_14
transcript.pyannote[2219].start 14657.92596875
transcript.pyannote[2219].end 14662.34721875
transcript.pyannote[2220].speaker SPEAKER_14
transcript.pyannote[2220].start 14662.51596875
transcript.pyannote[2220].end 14665.23284375
transcript.pyannote[2221].speaker SPEAKER_14
transcript.pyannote[2221].start 14665.24971875
transcript.pyannote[2221].end 14681.02784375
transcript.pyannote[2222].speaker SPEAKER_28
transcript.pyannote[2222].start 14680.16721875
transcript.pyannote[2222].end 14705.58096875
transcript.pyannote[2223].speaker SPEAKER_14
transcript.pyannote[2223].start 14682.32721875
transcript.pyannote[2223].end 14682.69846875
transcript.pyannote[2224].speaker SPEAKER_14
transcript.pyannote[2224].start 14684.57159375
transcript.pyannote[2224].end 14684.95971875
transcript.pyannote[2225].speaker SPEAKER_38
transcript.pyannote[2225].start 14684.95971875
transcript.pyannote[2225].end 14684.97659375
transcript.pyannote[2226].speaker SPEAKER_00
transcript.pyannote[2226].start 14696.14784375
transcript.pyannote[2226].end 14696.55284375
transcript.pyannote[2227].speaker SPEAKER_38
transcript.pyannote[2227].start 14705.58096875
transcript.pyannote[2227].end 14705.74971875
transcript.pyannote[2228].speaker SPEAKER_28
transcript.pyannote[2228].start 14705.74971875
transcript.pyannote[2228].end 14711.38596875
transcript.pyannote[2229].speaker SPEAKER_28
transcript.pyannote[2229].start 14711.90909375
transcript.pyannote[2229].end 14714.32221875
transcript.pyannote[2230].speaker SPEAKER_28
transcript.pyannote[2230].start 14714.50784375
transcript.pyannote[2230].end 14715.57096875
transcript.pyannote[2231].speaker SPEAKER_28
transcript.pyannote[2231].start 14715.89159375
transcript.pyannote[2231].end 14729.98221875
transcript.pyannote[2232].speaker SPEAKER_28
transcript.pyannote[2232].start 14730.62346875
transcript.pyannote[2232].end 14733.13784375
transcript.pyannote[2233].speaker SPEAKER_28
transcript.pyannote[2233].start 14733.82971875
transcript.pyannote[2233].end 14739.36471875
transcript.pyannote[2234].speaker SPEAKER_28
transcript.pyannote[2234].start 14739.92159375
transcript.pyannote[2234].end 14750.55284375
transcript.pyannote[2235].speaker SPEAKER_28
transcript.pyannote[2235].start 14750.87346875
transcript.pyannote[2235].end 14753.32034375
transcript.pyannote[2236].speaker SPEAKER_14
transcript.pyannote[2236].start 14754.58596875
transcript.pyannote[2236].end 14769.13221875
transcript.pyannote[2237].speaker SPEAKER_28
transcript.pyannote[2237].start 14768.25471875
transcript.pyannote[2237].end 14775.10596875
transcript.pyannote[2238].speaker SPEAKER_14
transcript.pyannote[2238].start 14770.54971875
transcript.pyannote[2238].end 14770.85346875
transcript.pyannote[2239].speaker SPEAKER_28
transcript.pyannote[2239].start 14775.59534375
transcript.pyannote[2239].end 14779.71284375
transcript.pyannote[2240].speaker SPEAKER_14
transcript.pyannote[2240].start 14778.58221875
transcript.pyannote[2240].end 14780.33721875
transcript.pyannote[2241].speaker SPEAKER_28
transcript.pyannote[2241].start 14780.59034375
transcript.pyannote[2241].end 14785.55159375
transcript.pyannote[2242].speaker SPEAKER_14
transcript.pyannote[2242].start 14780.62409375
transcript.pyannote[2242].end 14780.67471875
transcript.pyannote[2243].speaker SPEAKER_28
transcript.pyannote[2243].start 14786.27721875
transcript.pyannote[2243].end 14798.89971875
transcript.pyannote[2244].speaker SPEAKER_42
transcript.pyannote[2244].start 14786.80034375
transcript.pyannote[2244].end 14787.50909375
transcript.pyannote[2245].speaker SPEAKER_14
transcript.pyannote[2245].start 14787.50909375
transcript.pyannote[2245].end 14787.54284375
transcript.pyannote[2246].speaker SPEAKER_00
transcript.pyannote[2246].start 14794.68096875
transcript.pyannote[2246].end 14794.93409375
transcript.pyannote[2247].speaker SPEAKER_28
transcript.pyannote[2247].start 14799.18659375
transcript.pyannote[2247].end 14817.36096875
transcript.pyannote[2248].speaker SPEAKER_38
transcript.pyannote[2248].start 14799.23721875
transcript.pyannote[2248].end 14799.25409375
transcript.pyannote[2249].speaker SPEAKER_25
transcript.pyannote[2249].start 14799.25409375
transcript.pyannote[2249].end 14799.64221875
transcript.pyannote[2250].speaker SPEAKER_38
transcript.pyannote[2250].start 14811.69096875
transcript.pyannote[2250].end 14811.99471875
transcript.pyannote[2251].speaker SPEAKER_00
transcript.pyannote[2251].start 14811.99471875
transcript.pyannote[2251].end 14812.01159375
transcript.pyannote[2252].speaker SPEAKER_28
transcript.pyannote[2252].start 14817.90096875
transcript.pyannote[2252].end 14823.06471875
transcript.pyannote[2253].speaker SPEAKER_38
transcript.pyannote[2253].start 14822.99721875
transcript.pyannote[2253].end 14823.31784375
transcript.pyannote[2254].speaker SPEAKER_28
transcript.pyannote[2254].start 14823.26721875
transcript.pyannote[2254].end 14833.02096875
transcript.pyannote[2255].speaker SPEAKER_13
transcript.pyannote[2255].start 14832.02534375
transcript.pyannote[2255].end 14835.53534375
transcript.pyannote[2256].speaker SPEAKER_13
transcript.pyannote[2256].start 14836.19346875
transcript.pyannote[2256].end 14837.39159375
transcript.pyannote[2257].speaker SPEAKER_13
transcript.pyannote[2257].start 14838.69096875
transcript.pyannote[2257].end 14839.38284375
transcript.pyannote[2258].speaker SPEAKER_13
transcript.pyannote[2258].start 14840.15909375
transcript.pyannote[2258].end 14840.61471875
transcript.pyannote[2259].speaker SPEAKER_13
transcript.pyannote[2259].start 14841.01971875
transcript.pyannote[2259].end 14842.77471875
transcript.pyannote[2260].speaker SPEAKER_13
transcript.pyannote[2260].start 14843.38221875
transcript.pyannote[2260].end 14848.81596875
transcript.pyannote[2261].speaker SPEAKER_13
transcript.pyannote[2261].start 14848.96784375
transcript.pyannote[2261].end 14849.03534375
transcript.pyannote[2262].speaker SPEAKER_13
transcript.pyannote[2262].start 14849.54159375
transcript.pyannote[2262].end 14852.34284375
transcript.pyannote[2263].speaker SPEAKER_40
transcript.pyannote[2263].start 14856.89909375
transcript.pyannote[2263].end 14857.97909375
transcript.pyannote[2264].speaker SPEAKER_40
transcript.pyannote[2264].start 14859.31221875
transcript.pyannote[2264].end 14861.55659375
transcript.pyannote[2265].speaker SPEAKER_40
transcript.pyannote[2265].start 14862.82221875
transcript.pyannote[2265].end 14863.32846875
transcript.pyannote[2266].speaker SPEAKER_40
transcript.pyannote[2266].start 14864.39159375
transcript.pyannote[2266].end 14867.19284375
transcript.pyannote[2267].speaker SPEAKER_40
transcript.pyannote[2267].start 14867.64846875
transcript.pyannote[2267].end 14869.69034375
transcript.pyannote[2268].speaker SPEAKER_40
transcript.pyannote[2268].start 14870.17971875
transcript.pyannote[2268].end 14871.39471875
transcript.pyannote[2269].speaker SPEAKER_40
transcript.pyannote[2269].start 14871.93471875
transcript.pyannote[2269].end 14872.62659375
transcript.pyannote[2270].speaker SPEAKER_40
transcript.pyannote[2270].start 14875.71471875
transcript.pyannote[2270].end 14879.44409375
transcript.pyannote[2271].speaker SPEAKER_40
transcript.pyannote[2271].start 14879.51159375
transcript.pyannote[2271].end 14882.31284375
transcript.pyannote[2272].speaker SPEAKER_40
transcript.pyannote[2272].start 14885.51909375
transcript.pyannote[2272].end 14885.73846875
transcript.pyannote[2273].speaker SPEAKER_40
transcript.pyannote[2273].start 14894.00721875
transcript.pyannote[2273].end 14895.18846875
transcript.pyannote[2274].speaker SPEAKER_40
transcript.pyannote[2274].start 14895.74534375
transcript.pyannote[2274].end 14896.01534375
transcript.pyannote[2275].speaker SPEAKER_40
transcript.pyannote[2275].start 14896.53846875
transcript.pyannote[2275].end 14897.97284375
transcript.pyannote[2276].speaker SPEAKER_40
transcript.pyannote[2276].start 14898.34409375
transcript.pyannote[2276].end 14902.42784375
transcript.pyannote[2277].speaker SPEAKER_40
transcript.pyannote[2277].start 14903.47409375
transcript.pyannote[2277].end 14903.99721875
transcript.pyannote[2278].speaker SPEAKER_40
transcript.pyannote[2278].start 14906.66346875
transcript.pyannote[2278].end 14907.52409375
transcript.pyannote[2279].speaker SPEAKER_40
transcript.pyannote[2279].start 14910.79784375
transcript.pyannote[2279].end 14911.37159375
transcript.pyannote[2280].speaker SPEAKER_26
transcript.pyannote[2280].start 14912.75534375
transcript.pyannote[2280].end 14916.53534375
transcript.pyannote[2281].speaker SPEAKER_40
transcript.pyannote[2281].start 14915.16846875
transcript.pyannote[2281].end 14916.88971875
transcript.pyannote[2282].speaker SPEAKER_40
transcript.pyannote[2282].start 14917.58159375
transcript.pyannote[2282].end 14922.99846875
transcript.pyannote[2283].speaker SPEAKER_40
transcript.pyannote[2283].start 14923.23471875
transcript.pyannote[2283].end 14923.94346875
transcript.pyannote[2284].speaker SPEAKER_40
transcript.pyannote[2284].start 14924.48346875
transcript.pyannote[2284].end 14924.75346875
transcript.pyannote[2285].speaker SPEAKER_40
transcript.pyannote[2285].start 14924.98971875
transcript.pyannote[2285].end 14928.49971875
transcript.pyannote[2286].speaker SPEAKER_40
transcript.pyannote[2286].start 14929.05659375
transcript.pyannote[2286].end 14930.86221875
transcript.pyannote[2287].speaker SPEAKER_26
transcript.pyannote[2287].start 14931.75659375
transcript.pyannote[2287].end 14932.90409375
transcript.pyannote[2288].speaker SPEAKER_26
transcript.pyannote[2288].start 14932.97159375
transcript.pyannote[2288].end 14933.03909375
transcript.pyannote[2289].speaker SPEAKER_40
transcript.pyannote[2289].start 14933.81534375
transcript.pyannote[2289].end 14934.20346875
transcript.pyannote[2290].speaker SPEAKER_26
transcript.pyannote[2290].start 14934.45659375
transcript.pyannote[2290].end 14935.75596875
transcript.pyannote[2291].speaker SPEAKER_26
transcript.pyannote[2291].start 14936.00909375
transcript.pyannote[2291].end 14936.61659375
transcript.pyannote[2292].speaker SPEAKER_26
transcript.pyannote[2292].start 14937.07221875
transcript.pyannote[2292].end 14937.24096875
transcript.pyannote[2293].speaker SPEAKER_40
transcript.pyannote[2293].start 14938.96221875
transcript.pyannote[2293].end 14939.87346875
transcript.pyannote[2294].speaker SPEAKER_26
transcript.pyannote[2294].start 14940.59909375
transcript.pyannote[2294].end 14941.86471875
transcript.pyannote[2295].speaker SPEAKER_40
transcript.pyannote[2295].start 14942.25284375
transcript.pyannote[2295].end 14942.79284375
transcript.pyannote[2296].speaker SPEAKER_40
transcript.pyannote[2296].start 14943.45096875
transcript.pyannote[2296].end 14946.15096875
transcript.pyannote[2297].speaker SPEAKER_40
transcript.pyannote[2297].start 14946.48846875
transcript.pyannote[2297].end 14948.96909375
transcript.pyannote[2298].speaker SPEAKER_38
transcript.pyannote[2298].start 14947.11284375
transcript.pyannote[2298].end 14947.24784375
transcript.pyannote[2299].speaker SPEAKER_38
transcript.pyannote[2299].start 14949.12096875
transcript.pyannote[2299].end 14949.35721875
transcript.pyannote[2300].speaker SPEAKER_38
transcript.pyannote[2300].start 14949.37409375
transcript.pyannote[2300].end 14950.23471875
transcript.pyannote[2301].speaker SPEAKER_40
transcript.pyannote[2301].start 14952.44534375
transcript.pyannote[2301].end 14953.74471875
transcript.pyannote[2302].speaker SPEAKER_40
transcript.pyannote[2302].start 14954.25096875
transcript.pyannote[2302].end 14955.09471875
transcript.pyannote[2303].speaker SPEAKER_40
transcript.pyannote[2303].start 14956.05659375
transcript.pyannote[2303].end 14957.71034375
transcript.pyannote[2304].speaker SPEAKER_40
transcript.pyannote[2304].start 14958.06471875
transcript.pyannote[2304].end 14960.91659375
transcript.pyannote[2305].speaker SPEAKER_40
transcript.pyannote[2305].start 14961.60846875
transcript.pyannote[2305].end 14963.19471875
transcript.pyannote[2306].speaker SPEAKER_40
transcript.pyannote[2306].start 14963.61659375
transcript.pyannote[2306].end 14969.57346875
transcript.pyannote[2307].speaker SPEAKER_40
transcript.pyannote[2307].start 14969.89409375
transcript.pyannote[2307].end 14977.08284375
transcript.pyannote[2308].speaker SPEAKER_38
transcript.pyannote[2308].start 14977.63971875
transcript.pyannote[2308].end 14977.80846875
transcript.pyannote[2309].speaker SPEAKER_40
transcript.pyannote[2309].start 14977.80846875
transcript.pyannote[2309].end 14979.58034375
transcript.pyannote[2310].speaker SPEAKER_38
transcript.pyannote[2310].start 14977.82534375
transcript.pyannote[2310].end 14977.85909375
transcript.pyannote[2311].speaker SPEAKER_40
transcript.pyannote[2311].start 14980.20471875
transcript.pyannote[2311].end 14989.65471875
transcript.pyannote[2312].speaker SPEAKER_40
transcript.pyannote[2312].start 14990.22846875
transcript.pyannote[2312].end 14990.93721875
transcript.pyannote[2313].speaker SPEAKER_40
transcript.pyannote[2313].start 14991.44346875
transcript.pyannote[2313].end 14995.17284375
transcript.pyannote[2314].speaker SPEAKER_26
transcript.pyannote[2314].start 14996.18534375
transcript.pyannote[2314].end 14997.78846875
transcript.pyannote[2315].speaker SPEAKER_40
transcript.pyannote[2315].start 14997.83909375
transcript.pyannote[2315].end 14998.14284375
transcript.pyannote[2316].speaker SPEAKER_26
transcript.pyannote[2316].start 14998.90221875
transcript.pyannote[2316].end 15004.67346875
transcript.pyannote[2317].speaker SPEAKER_40
transcript.pyannote[2317].start 15004.60596875
transcript.pyannote[2317].end 15008.38596875
transcript.pyannote[2318].speaker SPEAKER_26
transcript.pyannote[2318].start 15007.32284375
transcript.pyannote[2318].end 15012.01409375
transcript.pyannote[2319].speaker SPEAKER_40
transcript.pyannote[2319].start 15008.67284375
transcript.pyannote[2319].end 15008.70659375
transcript.pyannote[2320].speaker SPEAKER_40
transcript.pyannote[2320].start 15008.77409375
transcript.pyannote[2320].end 15008.79096875
transcript.pyannote[2321].speaker SPEAKER_40
transcript.pyannote[2321].start 15010.37721875
transcript.pyannote[2321].end 15012.03096875
transcript.pyannote[2322].speaker SPEAKER_40
transcript.pyannote[2322].start 15013.97159375
transcript.pyannote[2322].end 15015.45659375
transcript.pyannote[2323].speaker SPEAKER_40
transcript.pyannote[2323].start 15017.17784375
transcript.pyannote[2323].end 15029.00721875
transcript.pyannote[2324].speaker SPEAKER_40
transcript.pyannote[2324].start 15029.73284375
transcript.pyannote[2324].end 15037.96784375
transcript.pyannote[2325].speaker SPEAKER_40
transcript.pyannote[2325].start 15038.40659375
transcript.pyannote[2325].end 15041.12346875
transcript.pyannote[2326].speaker SPEAKER_40
transcript.pyannote[2326].start 15041.57909375
transcript.pyannote[2326].end 15058.70721875
transcript.pyannote[2327].speaker SPEAKER_40
transcript.pyannote[2327].start 15059.36534375
transcript.pyannote[2327].end 15060.32721875
transcript.pyannote[2328].speaker SPEAKER_40
transcript.pyannote[2328].start 15060.69846875
transcript.pyannote[2328].end 15061.54221875
transcript.pyannote[2329].speaker SPEAKER_40
transcript.pyannote[2329].start 15061.81221875
transcript.pyannote[2329].end 15064.98471875
transcript.pyannote[2330].speaker SPEAKER_40
transcript.pyannote[2330].start 15066.62159375
transcript.pyannote[2330].end 15066.99284375
transcript.pyannote[2331].speaker SPEAKER_40
transcript.pyannote[2331].start 15067.16159375
transcript.pyannote[2331].end 15068.07284375
transcript.pyannote[2332].speaker SPEAKER_26
transcript.pyannote[2332].start 15070.35096875
transcript.pyannote[2332].end 15076.10534375
transcript.pyannote[2333].speaker SPEAKER_40
transcript.pyannote[2333].start 15071.41409375
transcript.pyannote[2333].end 15072.37596875
transcript.pyannote[2334].speaker SPEAKER_40
transcript.pyannote[2334].start 15076.10534375
transcript.pyannote[2334].end 15077.69159375
transcript.pyannote[2335].speaker SPEAKER_26
transcript.pyannote[2335].start 15076.84784375
transcript.pyannote[2335].end 15080.40846875
transcript.pyannote[2336].speaker SPEAKER_40
transcript.pyannote[2336].start 15078.70409375
transcript.pyannote[2336].end 15079.07534375
transcript.pyannote[2337].speaker SPEAKER_40
transcript.pyannote[2337].start 15079.61534375
transcript.pyannote[2337].end 15082.80471875
transcript.pyannote[2338].speaker SPEAKER_26
transcript.pyannote[2338].start 15082.80471875
transcript.pyannote[2338].end 15083.39534375
transcript.pyannote[2339].speaker SPEAKER_40
transcript.pyannote[2339].start 15083.47971875
transcript.pyannote[2339].end 15083.74971875
transcript.pyannote[2340].speaker SPEAKER_26
transcript.pyannote[2340].start 15083.68221875
transcript.pyannote[2340].end 15084.96471875
transcript.pyannote[2341].speaker SPEAKER_40
transcript.pyannote[2341].start 15085.16721875
transcript.pyannote[2341].end 15089.36909375
transcript.pyannote[2342].speaker SPEAKER_26
transcript.pyannote[2342].start 15086.11221875
transcript.pyannote[2342].end 15087.78284375
transcript.pyannote[2343].speaker SPEAKER_26
transcript.pyannote[2343].start 15088.12034375
transcript.pyannote[2343].end 15091.09034375
transcript.pyannote[2344].speaker SPEAKER_26
transcript.pyannote[2344].start 15091.49534375
transcript.pyannote[2344].end 15097.67159375
transcript.pyannote[2345].speaker SPEAKER_26
transcript.pyannote[2345].start 15098.02596875
transcript.pyannote[2345].end 15101.60346875
transcript.pyannote[2346].speaker SPEAKER_26
transcript.pyannote[2346].start 15102.04221875
transcript.pyannote[2346].end 15104.55659375
transcript.pyannote[2347].speaker SPEAKER_40
transcript.pyannote[2347].start 15102.16034375
transcript.pyannote[2347].end 15102.97034375
transcript.pyannote[2348].speaker SPEAKER_40
transcript.pyannote[2348].start 15104.50596875
transcript.pyannote[2348].end 15140.82096875
transcript.pyannote[2349].speaker SPEAKER_26
transcript.pyannote[2349].start 15106.46346875
transcript.pyannote[2349].end 15106.53096875
transcript.pyannote[2350].speaker SPEAKER_38
transcript.pyannote[2350].start 15115.12034375
transcript.pyannote[2350].end 15115.76159375
transcript.pyannote[2351].speaker SPEAKER_00
transcript.pyannote[2351].start 15115.76159375
transcript.pyannote[2351].end 15115.79534375
transcript.pyannote[2352].speaker SPEAKER_38
transcript.pyannote[2352].start 15118.64721875
transcript.pyannote[2352].end 15119.03534375
transcript.pyannote[2353].speaker SPEAKER_00
transcript.pyannote[2353].start 15119.03534375
transcript.pyannote[2353].end 15119.08596875
transcript.pyannote[2354].speaker SPEAKER_38
transcript.pyannote[2354].start 15119.81159375
transcript.pyannote[2354].end 15119.96346875
transcript.pyannote[2355].speaker SPEAKER_00
transcript.pyannote[2355].start 15119.96346875
transcript.pyannote[2355].end 15120.21659375
transcript.pyannote[2356].speaker SPEAKER_00
transcript.pyannote[2356].start 15121.19534375
transcript.pyannote[2356].end 15121.65096875
transcript.pyannote[2357].speaker SPEAKER_00
transcript.pyannote[2357].start 15124.38471875
transcript.pyannote[2357].end 15124.53659375
transcript.pyannote[2358].speaker SPEAKER_38
transcript.pyannote[2358].start 15137.96909375
transcript.pyannote[2358].end 15138.03659375
transcript.pyannote[2359].speaker SPEAKER_40
transcript.pyannote[2359].start 15141.49596875
transcript.pyannote[2359].end 15142.40721875
transcript.pyannote[2360].speaker SPEAKER_40
transcript.pyannote[2360].start 15142.74471875
transcript.pyannote[2360].end 15143.48721875
transcript.pyannote[2361].speaker SPEAKER_26
transcript.pyannote[2361].start 15142.87971875
transcript.pyannote[2361].end 15144.92159375
transcript.pyannote[2362].speaker SPEAKER_26
transcript.pyannote[2362].start 15145.02284375
transcript.pyannote[2362].end 15149.19096875
transcript.pyannote[2363].speaker SPEAKER_26
transcript.pyannote[2363].start 15149.86596875
transcript.pyannote[2363].end 15152.43096875
transcript.pyannote[2364].speaker SPEAKER_26
transcript.pyannote[2364].start 15152.90346875
transcript.pyannote[2364].end 15155.94096875
transcript.pyannote[2365].speaker SPEAKER_26
transcript.pyannote[2365].start 15156.32909375
transcript.pyannote[2365].end 15163.53471875
transcript.pyannote[2366].speaker SPEAKER_40
transcript.pyannote[2366].start 15164.10846875
transcript.pyannote[2366].end 15165.17159375
transcript.pyannote[2367].speaker SPEAKER_26
transcript.pyannote[2367].start 15166.30221875
transcript.pyannote[2367].end 15170.57159375
transcript.pyannote[2368].speaker SPEAKER_26
transcript.pyannote[2368].start 15170.63909375
transcript.pyannote[2368].end 15177.32159375
transcript.pyannote[2369].speaker SPEAKER_21
transcript.pyannote[2369].start 15173.86221875
transcript.pyannote[2369].end 15174.08159375
transcript.pyannote[2370].speaker SPEAKER_26
transcript.pyannote[2370].start 15177.65909375
transcript.pyannote[2370].end 15193.63971875
transcript.pyannote[2371].speaker SPEAKER_40
transcript.pyannote[2371].start 15193.63971875
transcript.pyannote[2371].end 15201.92534375
transcript.pyannote[2372].speaker SPEAKER_26
transcript.pyannote[2372].start 15197.58846875
transcript.pyannote[2372].end 15198.55034375
transcript.pyannote[2373].speaker SPEAKER_38
transcript.pyannote[2373].start 15198.55034375
transcript.pyannote[2373].end 15198.65159375
transcript.pyannote[2374].speaker SPEAKER_40
transcript.pyannote[2374].start 15202.24596875
transcript.pyannote[2374].end 15224.57159375
transcript.pyannote[2375].speaker SPEAKER_38
transcript.pyannote[2375].start 15203.93346875
transcript.pyannote[2375].end 15204.38909375
transcript.pyannote[2376].speaker SPEAKER_00
transcript.pyannote[2376].start 15204.38909375
transcript.pyannote[2376].end 15204.55784375
transcript.pyannote[2377].speaker SPEAKER_38
transcript.pyannote[2377].start 15204.55784375
transcript.pyannote[2377].end 15204.82784375
transcript.pyannote[2378].speaker SPEAKER_00
transcript.pyannote[2378].start 15204.82784375
transcript.pyannote[2378].end 15204.84471875
transcript.pyannote[2379].speaker SPEAKER_00
transcript.pyannote[2379].start 15206.05971875
transcript.pyannote[2379].end 15206.09346875
transcript.pyannote[2380].speaker SPEAKER_38
transcript.pyannote[2380].start 15206.09346875
transcript.pyannote[2380].end 15207.15659375
transcript.pyannote[2381].speaker SPEAKER_40
transcript.pyannote[2381].start 15225.82034375
transcript.pyannote[2381].end 15228.23346875
transcript.pyannote[2382].speaker SPEAKER_40
transcript.pyannote[2382].start 15228.36846875
transcript.pyannote[2382].end 15229.16159375
transcript.pyannote[2383].speaker SPEAKER_40
transcript.pyannote[2383].start 15229.98846875
transcript.pyannote[2383].end 15230.47784375
transcript.pyannote[2384].speaker SPEAKER_40
transcript.pyannote[2384].start 15231.57471875
transcript.pyannote[2384].end 15232.70534375
transcript.pyannote[2385].speaker SPEAKER_26
transcript.pyannote[2385].start 15233.80221875
transcript.pyannote[2385].end 15234.57846875
transcript.pyannote[2386].speaker SPEAKER_40
transcript.pyannote[2386].start 15234.07221875
transcript.pyannote[2386].end 15234.98346875
transcript.pyannote[2387].speaker SPEAKER_26
transcript.pyannote[2387].start 15235.27034375
transcript.pyannote[2387].end 15238.61159375
transcript.pyannote[2388].speaker SPEAKER_40
transcript.pyannote[2388].start 15238.78034375
transcript.pyannote[2388].end 15244.83846875
transcript.pyannote[2389].speaker SPEAKER_26
transcript.pyannote[2389].start 15239.21909375
transcript.pyannote[2389].end 15240.28221875
transcript.pyannote[2390].speaker SPEAKER_26
transcript.pyannote[2390].start 15241.54784375
transcript.pyannote[2390].end 15241.59846875
transcript.pyannote[2391].speaker SPEAKER_26
transcript.pyannote[2391].start 15241.63221875
transcript.pyannote[2391].end 15241.86846875
transcript.pyannote[2392].speaker SPEAKER_40
transcript.pyannote[2392].start 15245.41221875
transcript.pyannote[2392].end 15249.51284375
transcript.pyannote[2393].speaker SPEAKER_40
transcript.pyannote[2393].start 15250.28909375
transcript.pyannote[2393].end 15251.90909375
transcript.pyannote[2394].speaker SPEAKER_26
transcript.pyannote[2394].start 15252.29721875
transcript.pyannote[2394].end 15252.70221875
transcript.pyannote[2395].speaker SPEAKER_40
transcript.pyannote[2395].start 15252.98909375
transcript.pyannote[2395].end 15265.91534375
transcript.pyannote[2396].speaker SPEAKER_40
transcript.pyannote[2396].start 15266.13471875
transcript.pyannote[2396].end 15267.06284375
transcript.pyannote[2397].speaker SPEAKER_38
transcript.pyannote[2397].start 15268.34534375
transcript.pyannote[2397].end 15268.83471875
transcript.pyannote[2398].speaker SPEAKER_40
transcript.pyannote[2398].start 15268.48034375
transcript.pyannote[2398].end 15274.82534375
transcript.pyannote[2399].speaker SPEAKER_40
transcript.pyannote[2399].start 15275.39909375
transcript.pyannote[2399].end 15279.21284375
transcript.pyannote[2400].speaker SPEAKER_40
transcript.pyannote[2400].start 15279.87096875
transcript.pyannote[2400].end 15281.28846875
transcript.pyannote[2401].speaker SPEAKER_40
transcript.pyannote[2401].start 15281.60909375
transcript.pyannote[2401].end 15282.41909375
transcript.pyannote[2402].speaker SPEAKER_40
transcript.pyannote[2402].start 15282.84096875
transcript.pyannote[2402].end 15284.03909375
transcript.pyannote[2403].speaker SPEAKER_40
transcript.pyannote[2403].start 15284.14034375
transcript.pyannote[2403].end 15285.60846875
transcript.pyannote[2404].speaker SPEAKER_40
transcript.pyannote[2404].start 15287.22846875
transcript.pyannote[2404].end 15288.46034375
transcript.pyannote[2405].speaker SPEAKER_40
transcript.pyannote[2405].start 15289.05096875
transcript.pyannote[2405].end 15292.08846875
transcript.pyannote[2406].speaker SPEAKER_40
transcript.pyannote[2406].start 15292.39221875
transcript.pyannote[2406].end 15308.54159375
transcript.pyannote[2407].speaker SPEAKER_33
transcript.pyannote[2407].start 15297.30284375
transcript.pyannote[2407].end 15297.97784375
transcript.pyannote[2408].speaker SPEAKER_00
transcript.pyannote[2408].start 15297.97784375
transcript.pyannote[2408].end 15298.31534375
transcript.pyannote[2409].speaker SPEAKER_38
transcript.pyannote[2409].start 15301.04909375
transcript.pyannote[2409].end 15301.47096875
transcript.pyannote[2410].speaker SPEAKER_00
transcript.pyannote[2410].start 15301.47096875
transcript.pyannote[2410].end 15301.60596875
transcript.pyannote[2411].speaker SPEAKER_40
transcript.pyannote[2411].start 15308.89596875
transcript.pyannote[2411].end 15309.82409375
transcript.pyannote[2412].speaker SPEAKER_40
transcript.pyannote[2412].start 15310.90409375
transcript.pyannote[2412].end 15311.59596875
transcript.pyannote[2413].speaker SPEAKER_40
transcript.pyannote[2413].start 15312.16971875
transcript.pyannote[2413].end 15312.67596875
transcript.pyannote[2414].speaker SPEAKER_40
transcript.pyannote[2414].start 15313.26659375
transcript.pyannote[2414].end 15315.52784375
transcript.pyannote[2415].speaker SPEAKER_40
transcript.pyannote[2415].start 15316.47284375
transcript.pyannote[2415].end 15318.54846875
transcript.pyannote[2416].speaker SPEAKER_40
transcript.pyannote[2416].start 15318.86909375
transcript.pyannote[2416].end 15319.45971875
transcript.pyannote[2417].speaker SPEAKER_40
transcript.pyannote[2417].start 15320.32034375
transcript.pyannote[2417].end 15321.75471875
transcript.pyannote[2418].speaker SPEAKER_40
transcript.pyannote[2418].start 15321.90659375
transcript.pyannote[2418].end 15323.44221875
transcript.pyannote[2419].speaker SPEAKER_40
transcript.pyannote[2419].start 15323.94846875
transcript.pyannote[2419].end 15327.34034375
transcript.pyannote[2420].speaker SPEAKER_40
transcript.pyannote[2420].start 15328.48784375
transcript.pyannote[2420].end 15328.80846875
transcript.pyannote[2421].speaker SPEAKER_40
transcript.pyannote[2421].start 15328.99409375
transcript.pyannote[2421].end 15332.38596875
transcript.pyannote[2422].speaker SPEAKER_40
transcript.pyannote[2422].start 15332.50409375
transcript.pyannote[2422].end 15336.57096875
transcript.pyannote[2423].speaker SPEAKER_40
transcript.pyannote[2423].start 15337.46534375
transcript.pyannote[2423].end 15338.42721875
transcript.pyannote[2424].speaker SPEAKER_40
transcript.pyannote[2424].start 15339.60846875
transcript.pyannote[2424].end 15342.24096875
transcript.pyannote[2425].speaker SPEAKER_40
transcript.pyannote[2425].start 15342.91596875
transcript.pyannote[2425].end 15343.67534375
transcript.pyannote[2426].speaker SPEAKER_40
transcript.pyannote[2426].start 15346.51034375
transcript.pyannote[2426].end 15347.80971875
transcript.pyannote[2427].speaker SPEAKER_40
transcript.pyannote[2427].start 15349.51409375
transcript.pyannote[2427].end 15349.93596875
transcript.pyannote[2428].speaker SPEAKER_40
transcript.pyannote[2428].start 15351.77534375
transcript.pyannote[2428].end 15352.80471875
transcript.pyannote[2429].speaker SPEAKER_40
transcript.pyannote[2429].start 15353.29409375
transcript.pyannote[2429].end 15353.63159375
transcript.pyannote[2430].speaker SPEAKER_40
transcript.pyannote[2430].start 15355.09971875
transcript.pyannote[2430].end 15355.96034375
transcript.pyannote[2431].speaker SPEAKER_40
transcript.pyannote[2431].start 15357.31034375
transcript.pyannote[2431].end 15358.13721875
transcript.pyannote[2432].speaker SPEAKER_40
transcript.pyannote[2432].start 15358.22159375
transcript.pyannote[2432].end 15358.60971875
transcript.pyannote[2433].speaker SPEAKER_05
transcript.pyannote[2433].start 15358.91346875
transcript.pyannote[2433].end 15375.95721875
transcript.pyannote[2434].speaker SPEAKER_40
transcript.pyannote[2434].start 15358.93034375
transcript.pyannote[2434].end 15359.84159375
transcript.pyannote[2435].speaker SPEAKER_40
transcript.pyannote[2435].start 15368.14409375
transcript.pyannote[2435].end 15368.48159375
transcript.pyannote[2436].speaker SPEAKER_40
transcript.pyannote[2436].start 15371.85659375
transcript.pyannote[2436].end 15372.80159375
transcript.pyannote[2437].speaker SPEAKER_40
transcript.pyannote[2437].start 15375.14721875
transcript.pyannote[2437].end 15380.80034375
transcript.pyannote[2438].speaker SPEAKER_40
transcript.pyannote[2438].start 15381.34034375
transcript.pyannote[2438].end 15382.65659375
transcript.pyannote[2439].speaker SPEAKER_40
transcript.pyannote[2439].start 15383.33159375
transcript.pyannote[2439].end 15384.68159375
transcript.pyannote[2440].speaker SPEAKER_40
transcript.pyannote[2440].start 15385.30596875
transcript.pyannote[2440].end 15387.78659375
transcript.pyannote[2441].speaker SPEAKER_40
transcript.pyannote[2441].start 15388.17471875
transcript.pyannote[2441].end 15392.86596875
transcript.pyannote[2442].speaker SPEAKER_40
transcript.pyannote[2442].start 15393.86159375
transcript.pyannote[2442].end 15401.03346875
transcript.pyannote[2443].speaker SPEAKER_40
transcript.pyannote[2443].start 15401.50596875
transcript.pyannote[2443].end 15402.04596875
transcript.pyannote[2444].speaker SPEAKER_40
transcript.pyannote[2444].start 15402.80534375
transcript.pyannote[2444].end 15404.00346875
transcript.pyannote[2445].speaker SPEAKER_40
transcript.pyannote[2445].start 15404.32409375
transcript.pyannote[2445].end 15405.77534375
transcript.pyannote[2446].speaker SPEAKER_40
transcript.pyannote[2446].start 15406.19721875
transcript.pyannote[2446].end 15407.44596875
transcript.pyannote[2447].speaker SPEAKER_40
transcript.pyannote[2447].start 15407.86784375
transcript.pyannote[2447].end 15409.16721875
transcript.pyannote[2448].speaker SPEAKER_40
transcript.pyannote[2448].start 15409.62284375
transcript.pyannote[2448].end 15411.05721875
transcript.pyannote[2449].speaker SPEAKER_40
transcript.pyannote[2449].start 15412.27221875
transcript.pyannote[2449].end 15413.74034375
transcript.pyannote[2450].speaker SPEAKER_40
transcript.pyannote[2450].start 15416.27159375
transcript.pyannote[2450].end 15418.49909375
transcript.pyannote[2451].speaker SPEAKER_40
transcript.pyannote[2451].start 15419.02221875
transcript.pyannote[2451].end 15421.72221875
transcript.pyannote[2452].speaker SPEAKER_40
transcript.pyannote[2452].start 15422.14409375
transcript.pyannote[2452].end 15422.95409375
transcript.pyannote[2453].speaker SPEAKER_40
transcript.pyannote[2453].start 15424.87784375
transcript.pyannote[2453].end 15432.33659375
transcript.pyannote[2454].speaker SPEAKER_40
transcript.pyannote[2454].start 15432.60659375
transcript.pyannote[2454].end 15433.60221875
transcript.pyannote[2455].speaker SPEAKER_40
transcript.pyannote[2455].start 15434.04096875
transcript.pyannote[2455].end 15437.43284375
transcript.pyannote[2456].speaker SPEAKER_40
transcript.pyannote[2456].start 15438.20909375
transcript.pyannote[2456].end 15439.84596875
transcript.pyannote[2457].speaker SPEAKER_40
transcript.pyannote[2457].start 15440.21721875
transcript.pyannote[2457].end 15440.85846875
transcript.pyannote[2458].speaker SPEAKER_40
transcript.pyannote[2458].start 15441.60096875
transcript.pyannote[2458].end 15442.84971875
transcript.pyannote[2459].speaker SPEAKER_40
transcript.pyannote[2459].start 15442.96784375
transcript.pyannote[2459].end 15443.74409375
transcript.pyannote[2460].speaker SPEAKER_40
transcript.pyannote[2460].start 15443.91284375
transcript.pyannote[2460].end 15444.85784375
transcript.pyannote[2461].speaker SPEAKER_40
transcript.pyannote[2461].start 15445.73534375
transcript.pyannote[2461].end 15447.38909375
transcript.pyannote[2462].speaker SPEAKER_40
transcript.pyannote[2462].start 15447.79409375
transcript.pyannote[2462].end 15448.97534375
transcript.pyannote[2463].speaker SPEAKER_40
transcript.pyannote[2463].start 15450.08909375
transcript.pyannote[2463].end 15451.05096875
transcript.pyannote[2464].speaker SPEAKER_40
transcript.pyannote[2464].start 15451.48971875
transcript.pyannote[2464].end 15452.24909375
transcript.pyannote[2465].speaker SPEAKER_40
transcript.pyannote[2465].start 15452.48534375
transcript.pyannote[2465].end 15453.97034375
transcript.pyannote[2466].speaker SPEAKER_40
transcript.pyannote[2466].start 15454.20659375
transcript.pyannote[2466].end 15454.94909375
transcript.pyannote[2467].speaker SPEAKER_40
transcript.pyannote[2467].start 15456.67034375
transcript.pyannote[2467].end 15459.06659375
transcript.pyannote[2468].speaker SPEAKER_40
transcript.pyannote[2468].start 15459.79221875
transcript.pyannote[2468].end 15460.61909375
transcript.pyannote[2469].speaker SPEAKER_40
transcript.pyannote[2469].start 15461.10846875
transcript.pyannote[2469].end 15470.33909375
transcript.pyannote[2470].speaker SPEAKER_40
transcript.pyannote[2470].start 15470.98034375
transcript.pyannote[2470].end 15471.77346875
transcript.pyannote[2471].speaker SPEAKER_05
transcript.pyannote[2471].start 15474.35534375
transcript.pyannote[2471].end 15474.67596875
transcript.pyannote[2472].speaker SPEAKER_05
transcript.pyannote[2472].start 15475.06409375
transcript.pyannote[2472].end 15476.32971875
transcript.pyannote[2473].speaker SPEAKER_05
transcript.pyannote[2473].start 15477.47721875
transcript.pyannote[2473].end 15477.49409375
transcript.pyannote[2474].speaker SPEAKER_05
transcript.pyannote[2474].start 15478.15221875
transcript.pyannote[2474].end 15490.04909375
transcript.pyannote[2475].speaker SPEAKER_40
transcript.pyannote[2475].start 15479.08034375
transcript.pyannote[2475].end 15481.02096875
transcript.pyannote[2476].speaker SPEAKER_40
transcript.pyannote[2476].start 15481.69596875
transcript.pyannote[2476].end 15482.03346875
transcript.pyannote[2477].speaker SPEAKER_40
transcript.pyannote[2477].start 15489.67784375
transcript.pyannote[2477].end 15499.85346875
transcript.pyannote[2478].speaker SPEAKER_05
transcript.pyannote[2478].start 15491.38221875
transcript.pyannote[2478].end 15492.14159375
transcript.pyannote[2479].speaker SPEAKER_05
transcript.pyannote[2479].start 15493.91346875
transcript.pyannote[2479].end 15495.49971875
transcript.pyannote[2480].speaker SPEAKER_05
transcript.pyannote[2480].start 15496.14096875
transcript.pyannote[2480].end 15496.59659375
transcript.pyannote[2481].speaker SPEAKER_05
transcript.pyannote[2481].start 15499.85346875
transcript.pyannote[2481].end 15511.90221875
transcript.pyannote[2482].speaker SPEAKER_40
transcript.pyannote[2482].start 15510.75471875
transcript.pyannote[2482].end 15515.34471875
transcript.pyannote[2483].speaker SPEAKER_40
transcript.pyannote[2483].start 15515.64846875
transcript.pyannote[2483].end 15519.09096875
transcript.pyannote[2484].speaker SPEAKER_40
transcript.pyannote[2484].start 15519.88409375
transcript.pyannote[2484].end 15520.74471875
transcript.pyannote[2485].speaker SPEAKER_40
transcript.pyannote[2485].start 15522.36471875
transcript.pyannote[2485].end 15526.14471875
transcript.pyannote[2486].speaker SPEAKER_40
transcript.pyannote[2486].start 15526.88721875
transcript.pyannote[2486].end 15528.05159375
transcript.pyannote[2487].speaker SPEAKER_40
transcript.pyannote[2487].start 15528.97971875
transcript.pyannote[2487].end 15530.19471875
transcript.pyannote[2488].speaker SPEAKER_40
transcript.pyannote[2488].start 15530.58284375
transcript.pyannote[2488].end 15531.59534375
transcript.pyannote[2489].speaker SPEAKER_40
transcript.pyannote[2489].start 15532.75971875
transcript.pyannote[2489].end 15535.34159375
transcript.pyannote[2490].speaker SPEAKER_40
transcript.pyannote[2490].start 15536.62409375
transcript.pyannote[2490].end 15537.11346875
transcript.pyannote[2491].speaker SPEAKER_40
transcript.pyannote[2491].start 15537.90659375
transcript.pyannote[2491].end 15538.51409375
transcript.pyannote[2492].speaker SPEAKER_42
transcript.pyannote[2492].start 15541.01159375
transcript.pyannote[2492].end 15550.83284375
transcript.pyannote[2493].speaker SPEAKER_42
transcript.pyannote[2493].start 15551.15346875
transcript.pyannote[2493].end 15552.50346875
transcript.pyannote[2494].speaker SPEAKER_42
transcript.pyannote[2494].start 15552.87471875
transcript.pyannote[2494].end 15563.33721875
transcript.pyannote[2495].speaker SPEAKER_42
transcript.pyannote[2495].start 15563.59034375
transcript.pyannote[2495].end 15564.16409375
transcript.pyannote[2496].speaker SPEAKER_40
transcript.pyannote[2496].start 15564.16409375
transcript.pyannote[2496].end 15566.99909375
transcript.pyannote[2497].speaker SPEAKER_42
transcript.pyannote[2497].start 15566.79659375
transcript.pyannote[2497].end 15566.94846875
transcript.pyannote[2498].speaker SPEAKER_42
transcript.pyannote[2498].start 15566.96534375
transcript.pyannote[2498].end 15568.18034375
transcript.pyannote[2499].speaker SPEAKER_40
transcript.pyannote[2499].start 15567.42096875
transcript.pyannote[2499].end 15571.55534375
transcript.pyannote[2500].speaker SPEAKER_40
transcript.pyannote[2500].start 15572.21346875
transcript.pyannote[2500].end 15574.81221875
transcript.pyannote[2501].speaker SPEAKER_40
transcript.pyannote[2501].start 15575.95971875
transcript.pyannote[2501].end 15577.83284375
transcript.pyannote[2502].speaker SPEAKER_40
transcript.pyannote[2502].start 15577.96784375
transcript.pyannote[2502].end 15578.84534375
transcript.pyannote[2503].speaker SPEAKER_40
transcript.pyannote[2503].start 15580.60034375
transcript.pyannote[2503].end 15582.55784375
transcript.pyannote[2504].speaker SPEAKER_42
transcript.pyannote[2504].start 15580.87034375
transcript.pyannote[2504].end 15581.96721875
transcript.pyannote[2505].speaker SPEAKER_42
transcript.pyannote[2505].start 15582.50721875
transcript.pyannote[2505].end 15585.89909375
transcript.pyannote[2506].speaker SPEAKER_42
transcript.pyannote[2506].start 15586.03409375
transcript.pyannote[2506].end 15587.83971875
transcript.pyannote[2507].speaker SPEAKER_42
transcript.pyannote[2507].start 15588.14346875
transcript.pyannote[2507].end 15588.93659375
transcript.pyannote[2508].speaker SPEAKER_42
transcript.pyannote[2508].start 15589.32471875
transcript.pyannote[2508].end 15592.71659375
transcript.pyannote[2509].speaker SPEAKER_40
transcript.pyannote[2509].start 15591.01221875
transcript.pyannote[2509].end 15591.02909375
transcript.pyannote[2510].speaker SPEAKER_05
transcript.pyannote[2510].start 15591.02909375
transcript.pyannote[2510].end 15592.98659375
transcript.pyannote[2511].speaker SPEAKER_42
transcript.pyannote[2511].start 15593.32409375
transcript.pyannote[2511].end 15594.74159375
transcript.pyannote[2512].speaker SPEAKER_42
transcript.pyannote[2512].start 15594.94409375
transcript.pyannote[2512].end 15601.59284375
transcript.pyannote[2513].speaker SPEAKER_40
transcript.pyannote[2513].start 15600.96846875
transcript.pyannote[2513].end 15603.63471875
transcript.pyannote[2514].speaker SPEAKER_42
transcript.pyannote[2514].start 15602.31846875
transcript.pyannote[2514].end 15602.89221875
transcript.pyannote[2515].speaker SPEAKER_42
transcript.pyannote[2515].start 15604.30971875
transcript.pyannote[2515].end 15609.50721875
transcript.pyannote[2516].speaker SPEAKER_40
transcript.pyannote[2516].start 15608.91659375
transcript.pyannote[2516].end 15610.16534375
transcript.pyannote[2517].speaker SPEAKER_42
transcript.pyannote[2517].start 15611.04284375
transcript.pyannote[2517].end 15612.13971875
transcript.pyannote[2518].speaker SPEAKER_40
transcript.pyannote[2518].start 15611.97096875
transcript.pyannote[2518].end 15624.94784375
transcript.pyannote[2519].speaker SPEAKER_40
transcript.pyannote[2519].start 15625.57221875
transcript.pyannote[2519].end 15628.60971875
transcript.pyannote[2520].speaker SPEAKER_42
transcript.pyannote[2520].start 15628.05284375
transcript.pyannote[2520].end 15630.38159375
transcript.pyannote[2521].speaker SPEAKER_40
transcript.pyannote[2521].start 15630.43221875
transcript.pyannote[2521].end 15631.74846875
transcript.pyannote[2522].speaker SPEAKER_40
transcript.pyannote[2522].start 15632.13659375
transcript.pyannote[2522].end 15634.11096875
transcript.pyannote[2523].speaker SPEAKER_40
transcript.pyannote[2523].start 15634.97159375
transcript.pyannote[2523].end 15635.41034375
transcript.pyannote[2524].speaker SPEAKER_40
transcript.pyannote[2524].start 15636.35534375
transcript.pyannote[2524].end 15637.19909375
transcript.pyannote[2525].speaker SPEAKER_40
transcript.pyannote[2525].start 15637.30034375
transcript.pyannote[2525].end 15637.77284375
transcript.pyannote[2526].speaker SPEAKER_42
transcript.pyannote[2526].start 15638.19471875
transcript.pyannote[2526].end 15640.03409375
transcript.pyannote[2527].speaker SPEAKER_42
transcript.pyannote[2527].start 15640.21971875
transcript.pyannote[2527].end 15641.08034375
transcript.pyannote[2528].speaker SPEAKER_40
transcript.pyannote[2528].start 15641.24909375
transcript.pyannote[2528].end 15641.48534375
transcript.pyannote[2529].speaker SPEAKER_26
transcript.pyannote[2529].start 15641.48534375
transcript.pyannote[2529].end 15641.53596875
transcript.pyannote[2530].speaker SPEAKER_40
transcript.pyannote[2530].start 15641.53596875
transcript.pyannote[2530].end 15641.55284375
transcript.pyannote[2531].speaker SPEAKER_26
transcript.pyannote[2531].start 15641.55284375
transcript.pyannote[2531].end 15641.60346875
transcript.pyannote[2532].speaker SPEAKER_26
transcript.pyannote[2532].start 15641.72159375
transcript.pyannote[2532].end 15652.55534375
transcript.pyannote[2533].speaker SPEAKER_40
transcript.pyannote[2533].start 15651.66096875
transcript.pyannote[2533].end 15654.10784375
transcript.pyannote[2534].speaker SPEAKER_26
transcript.pyannote[2534].start 15654.10784375
transcript.pyannote[2534].end 15657.07784375
transcript.pyannote[2535].speaker SPEAKER_40
transcript.pyannote[2535].start 15654.49596875
transcript.pyannote[2535].end 15665.48159375
transcript.pyannote[2536].speaker SPEAKER_26
transcript.pyannote[2536].start 15657.66846875
transcript.pyannote[2536].end 15657.92159375
transcript.pyannote[2537].speaker SPEAKER_26
transcript.pyannote[2537].start 15658.83284375
transcript.pyannote[2537].end 15659.81159375
transcript.pyannote[2538].speaker SPEAKER_26
transcript.pyannote[2538].start 15661.92096875
transcript.pyannote[2538].end 15661.97159375
transcript.pyannote[2539].speaker SPEAKER_26
transcript.pyannote[2539].start 15661.98846875
transcript.pyannote[2539].end 15662.08971875
transcript.pyannote[2540].speaker SPEAKER_26
transcript.pyannote[2540].start 15665.88659375
transcript.pyannote[2540].end 15669.34596875
transcript.pyannote[2541].speaker SPEAKER_26
transcript.pyannote[2541].start 15670.12221875
transcript.pyannote[2541].end 15678.61034375
transcript.pyannote[2542].speaker SPEAKER_40
transcript.pyannote[2542].start 15678.08721875
transcript.pyannote[2542].end 15681.27659375
transcript.pyannote[2543].speaker SPEAKER_26
transcript.pyannote[2543].start 15682.33971875
transcript.pyannote[2543].end 15682.57596875
transcript.pyannote[2544].speaker SPEAKER_40
transcript.pyannote[2544].start 15683.25096875
transcript.pyannote[2544].end 15684.58409375
transcript.pyannote[2545].speaker SPEAKER_26
transcript.pyannote[2545].start 15685.52909375
transcript.pyannote[2545].end 15686.59221875
transcript.pyannote[2546].speaker SPEAKER_26
transcript.pyannote[2546].start 15687.14909375
transcript.pyannote[2546].end 15688.58346875
transcript.pyannote[2547].speaker SPEAKER_26
transcript.pyannote[2547].start 15690.37221875
transcript.pyannote[2547].end 15693.93284375
transcript.pyannote[2548].speaker SPEAKER_26
transcript.pyannote[2548].start 15694.43909375
transcript.pyannote[2548].end 15697.84784375
transcript.pyannote[2549].speaker SPEAKER_26
transcript.pyannote[2549].start 15698.50596875
transcript.pyannote[2549].end 15700.09221875
transcript.pyannote[2550].speaker SPEAKER_26
transcript.pyannote[2550].start 15700.31159375
transcript.pyannote[2550].end 15700.91909375
transcript.pyannote[2551].speaker SPEAKER_40
transcript.pyannote[2551].start 15701.91471875
transcript.pyannote[2551].end 15716.39346875
transcript.pyannote[2552].speaker SPEAKER_38
transcript.pyannote[2552].start 15710.43659375
transcript.pyannote[2552].end 15710.97659375
transcript.pyannote[2553].speaker SPEAKER_20
transcript.pyannote[2553].start 15710.97659375
transcript.pyannote[2553].end 15711.28034375
transcript.pyannote[2554].speaker SPEAKER_04
transcript.pyannote[2554].start 15711.28034375
transcript.pyannote[2554].end 15712.29284375
transcript.pyannote[2555].speaker SPEAKER_40
transcript.pyannote[2555].start 15717.01784375
transcript.pyannote[2555].end 15723.05909375
transcript.pyannote[2556].speaker SPEAKER_40
transcript.pyannote[2556].start 15723.44721875
transcript.pyannote[2556].end 15726.16409375
transcript.pyannote[2557].speaker SPEAKER_26
transcript.pyannote[2557].start 15727.39596875
transcript.pyannote[2557].end 15728.69534375
transcript.pyannote[2558].speaker SPEAKER_26
transcript.pyannote[2558].start 15728.77971875
transcript.pyannote[2558].end 15728.79659375
transcript.pyannote[2559].speaker SPEAKER_40
transcript.pyannote[2559].start 15728.79659375
transcript.pyannote[2559].end 15729.82596875
transcript.pyannote[2560].speaker SPEAKER_26
transcript.pyannote[2560].start 15729.11721875
transcript.pyannote[2560].end 15733.99409375
transcript.pyannote[2561].speaker SPEAKER_40
transcript.pyannote[2561].start 15733.62284375
transcript.pyannote[2561].end 15745.03034375
transcript.pyannote[2562].speaker SPEAKER_26
transcript.pyannote[2562].start 15735.68159375
transcript.pyannote[2562].end 15735.69846875
transcript.pyannote[2563].speaker SPEAKER_26
transcript.pyannote[2563].start 15735.73221875
transcript.pyannote[2563].end 15735.86721875
transcript.pyannote[2564].speaker SPEAKER_26
transcript.pyannote[2564].start 15736.30596875
transcript.pyannote[2564].end 15736.69409375
transcript.pyannote[2565].speaker SPEAKER_26
transcript.pyannote[2565].start 15737.79096875
transcript.pyannote[2565].end 15738.21284375
transcript.pyannote[2566].speaker SPEAKER_26
transcript.pyannote[2566].start 15739.17471875
transcript.pyannote[2566].end 15739.78221875
transcript.pyannote[2567].speaker SPEAKER_38
transcript.pyannote[2567].start 15739.78221875
transcript.pyannote[2567].end 15739.79909375
transcript.pyannote[2568].speaker SPEAKER_38
transcript.pyannote[2568].start 15744.03471875
transcript.pyannote[2568].end 15745.23284375
transcript.pyannote[2569].speaker SPEAKER_40
transcript.pyannote[2569].start 15745.11471875
transcript.pyannote[2569].end 15752.18534375
transcript.pyannote[2570].speaker SPEAKER_40
transcript.pyannote[2570].start 15752.26971875
transcript.pyannote[2570].end 15761.17971875
transcript.pyannote[2571].speaker SPEAKER_38
transcript.pyannote[2571].start 15759.62721875
transcript.pyannote[2571].end 15760.60596875
transcript.pyannote[2572].speaker SPEAKER_40
transcript.pyannote[2572].start 15761.58471875
transcript.pyannote[2572].end 15762.74909375
transcript.pyannote[2573].speaker SPEAKER_38
transcript.pyannote[2573].start 15762.68159375
transcript.pyannote[2573].end 15763.71096875
transcript.pyannote[2574].speaker SPEAKER_40
transcript.pyannote[2574].start 15762.98534375
transcript.pyannote[2574].end 15763.99784375
transcript.pyannote[2575].speaker SPEAKER_40
transcript.pyannote[2575].start 15764.72346875
transcript.pyannote[2575].end 15766.37721875
transcript.pyannote[2576].speaker SPEAKER_40
transcript.pyannote[2576].start 15766.71471875
transcript.pyannote[2576].end 15770.96721875
transcript.pyannote[2577].speaker SPEAKER_40
transcript.pyannote[2577].start 15771.43971875
transcript.pyannote[2577].end 15773.92034375
transcript.pyannote[2578].speaker SPEAKER_40
transcript.pyannote[2578].start 15774.56159375
transcript.pyannote[2578].end 15775.96221875
transcript.pyannote[2579].speaker SPEAKER_38
transcript.pyannote[2579].start 15776.11409375
transcript.pyannote[2579].end 15777.00846875
transcript.pyannote[2580].speaker SPEAKER_40
transcript.pyannote[2580].start 15776.58659375
transcript.pyannote[2580].end 15777.02534375
transcript.pyannote[2581].speaker SPEAKER_38
transcript.pyannote[2581].start 15777.02534375
transcript.pyannote[2581].end 15777.04221875
transcript.pyannote[2582].speaker SPEAKER_40
transcript.pyannote[2582].start 15777.04221875
transcript.pyannote[2582].end 15780.40034375
transcript.pyannote[2583].speaker SPEAKER_40
transcript.pyannote[2583].start 15780.67034375
transcript.pyannote[2583].end 15781.12596875
transcript.pyannote[2584].speaker SPEAKER_38
transcript.pyannote[2584].start 15781.12596875
transcript.pyannote[2584].end 15781.49721875
transcript.pyannote[2585].speaker SPEAKER_40
transcript.pyannote[2585].start 15781.15971875
transcript.pyannote[2585].end 15781.19346875
transcript.pyannote[2586].speaker SPEAKER_40
transcript.pyannote[2586].start 15781.53096875
transcript.pyannote[2586].end 15783.97784375
transcript.pyannote[2587].speaker SPEAKER_38
transcript.pyannote[2587].start 15782.57721875
transcript.pyannote[2587].end 15784.23096875
transcript.pyannote[2588].speaker SPEAKER_13
transcript.pyannote[2588].start 15783.97784375
transcript.pyannote[2588].end 15785.00721875
transcript.pyannote[2589].speaker SPEAKER_13
transcript.pyannote[2589].start 15785.36159375
transcript.pyannote[2589].end 15786.07034375
transcript.pyannote[2590].speaker SPEAKER_13
transcript.pyannote[2590].start 15786.89721875
transcript.pyannote[2590].end 15789.49596875
transcript.pyannote[2591].speaker SPEAKER_06
transcript.pyannote[2591].start 15797.03909375
transcript.pyannote[2591].end 15799.13159375
transcript.pyannote[2592].speaker SPEAKER_38
transcript.pyannote[2592].start 15800.97096875
transcript.pyannote[2592].end 15801.19034375
transcript.pyannote[2593].speaker SPEAKER_06
transcript.pyannote[2593].start 15802.89471875
transcript.pyannote[2593].end 15803.28284375
transcript.pyannote[2594].speaker SPEAKER_38
transcript.pyannote[2594].start 15803.68784375
transcript.pyannote[2594].end 15803.70471875
transcript.pyannote[2595].speaker SPEAKER_06
transcript.pyannote[2595].start 15803.70471875
transcript.pyannote[2595].end 15805.98284375
transcript.pyannote[2596].speaker SPEAKER_38
transcript.pyannote[2596].start 15804.02534375
transcript.pyannote[2596].end 15804.43034375
transcript.pyannote[2597].speaker SPEAKER_06
transcript.pyannote[2597].start 15807.24846875
transcript.pyannote[2597].end 15810.20159375
transcript.pyannote[2598].speaker SPEAKER_06
transcript.pyannote[2598].start 15810.64034375
transcript.pyannote[2598].end 15814.96034375
transcript.pyannote[2599].speaker SPEAKER_06
transcript.pyannote[2599].start 15815.38221875
transcript.pyannote[2599].end 15819.36471875
transcript.pyannote[2600].speaker SPEAKER_06
transcript.pyannote[2600].start 15819.92159375
transcript.pyannote[2600].end 15826.57034375
transcript.pyannote[2601].speaker SPEAKER_06
transcript.pyannote[2601].start 15826.94159375
transcript.pyannote[2601].end 15829.91159375
transcript.pyannote[2602].speaker SPEAKER_06
transcript.pyannote[2602].start 15830.04659375
transcript.pyannote[2602].end 15833.79284375
transcript.pyannote[2603].speaker SPEAKER_26
transcript.pyannote[2603].start 15834.29909375
transcript.pyannote[2603].end 15843.31034375
transcript.pyannote[2604].speaker SPEAKER_26
transcript.pyannote[2604].start 15843.56346875
transcript.pyannote[2604].end 15848.00159375
transcript.pyannote[2605].speaker SPEAKER_26
transcript.pyannote[2605].start 15848.13659375
transcript.pyannote[2605].end 15849.68909375
transcript.pyannote[2606].speaker SPEAKER_06
transcript.pyannote[2606].start 15848.74409375
transcript.pyannote[2606].end 15863.69534375
transcript.pyannote[2607].speaker SPEAKER_06
transcript.pyannote[2607].start 15864.04971875
transcript.pyannote[2607].end 15887.23596875
transcript.pyannote[2608].speaker SPEAKER_06
transcript.pyannote[2608].start 15887.53971875
transcript.pyannote[2608].end 15896.50034375
transcript.pyannote[2609].speaker SPEAKER_06
transcript.pyannote[2609].start 15896.65221875
transcript.pyannote[2609].end 15897.83346875
transcript.pyannote[2610].speaker SPEAKER_06
transcript.pyannote[2610].start 15897.98534375
transcript.pyannote[2610].end 15898.57596875
transcript.pyannote[2611].speaker SPEAKER_06
transcript.pyannote[2611].start 15898.84596875
transcript.pyannote[2611].end 15899.35221875
transcript.pyannote[2612].speaker SPEAKER_06
transcript.pyannote[2612].start 15899.70659375
transcript.pyannote[2612].end 15903.55409375
transcript.pyannote[2613].speaker SPEAKER_06
transcript.pyannote[2613].start 15904.14471875
transcript.pyannote[2613].end 15906.52409375
transcript.pyannote[2614].speaker SPEAKER_06
transcript.pyannote[2614].start 15906.55784375
transcript.pyannote[2614].end 15908.07659375
transcript.pyannote[2615].speaker SPEAKER_06
transcript.pyannote[2615].start 15908.59971875
transcript.pyannote[2615].end 15909.66284375
transcript.pyannote[2616].speaker SPEAKER_06
transcript.pyannote[2616].start 15909.88221875
transcript.pyannote[2616].end 15913.05471875
transcript.pyannote[2617].speaker SPEAKER_06
transcript.pyannote[2617].start 15913.30784375
transcript.pyannote[2617].end 15918.04971875
transcript.pyannote[2618].speaker SPEAKER_06
transcript.pyannote[2618].start 15918.60659375
transcript.pyannote[2618].end 15923.02784375
transcript.pyannote[2619].speaker SPEAKER_06
transcript.pyannote[2619].start 15923.60159375
transcript.pyannote[2619].end 15925.52534375
transcript.pyannote[2620].speaker SPEAKER_06
transcript.pyannote[2620].start 15925.99784375
transcript.pyannote[2620].end 15930.04784375
transcript.pyannote[2621].speaker SPEAKER_06
transcript.pyannote[2621].start 15930.09846875
transcript.pyannote[2621].end 15935.63346875
transcript.pyannote[2622].speaker SPEAKER_06
transcript.pyannote[2622].start 15936.00471875
transcript.pyannote[2622].end 15937.15221875
transcript.pyannote[2623].speaker SPEAKER_06
transcript.pyannote[2623].start 15937.62471875
transcript.pyannote[2623].end 15958.73534375
transcript.pyannote[2624].speaker SPEAKER_06
transcript.pyannote[2624].start 15959.17409375
transcript.pyannote[2624].end 15972.84284375
transcript.pyannote[2625].speaker SPEAKER_06
transcript.pyannote[2625].start 15973.43346875
transcript.pyannote[2625].end 15973.80471875
transcript.pyannote[2626].speaker SPEAKER_26
transcript.pyannote[2626].start 15974.20971875
transcript.pyannote[2626].end 15976.48784375
transcript.pyannote[2627].speaker SPEAKER_06
transcript.pyannote[2627].start 15976.67346875
transcript.pyannote[2627].end 15979.59284375
transcript.pyannote[2628].speaker SPEAKER_06
transcript.pyannote[2628].start 15980.41971875
transcript.pyannote[2628].end 15986.59596875
transcript.pyannote[2629].speaker SPEAKER_06
transcript.pyannote[2629].start 15987.08534375
transcript.pyannote[2629].end 15988.55346875
transcript.pyannote[2630].speaker SPEAKER_06
transcript.pyannote[2630].start 15988.97534375
transcript.pyannote[2630].end 15990.22409375
transcript.pyannote[2631].speaker SPEAKER_06
transcript.pyannote[2631].start 15990.30846875
transcript.pyannote[2631].end 16000.33221875
transcript.pyannote[2632].speaker SPEAKER_06
transcript.pyannote[2632].start 16001.19284375
transcript.pyannote[2632].end 16005.68159375
transcript.pyannote[2633].speaker SPEAKER_06
transcript.pyannote[2633].start 16005.96846875
transcript.pyannote[2633].end 16010.32221875
transcript.pyannote[2634].speaker SPEAKER_06
transcript.pyannote[2634].start 16010.79471875
transcript.pyannote[2634].end 16011.30096875
transcript.pyannote[2635].speaker SPEAKER_06
transcript.pyannote[2635].start 16011.75659375
transcript.pyannote[2635].end 16013.66346875
transcript.pyannote[2636].speaker SPEAKER_06
transcript.pyannote[2636].start 16013.69721875
transcript.pyannote[2636].end 16015.84034375
transcript.pyannote[2637].speaker SPEAKER_38
transcript.pyannote[2637].start 16013.76471875
transcript.pyannote[2637].end 16013.96721875
transcript.pyannote[2638].speaker SPEAKER_00
transcript.pyannote[2638].start 16013.96721875
transcript.pyannote[2638].end 16014.28784375
transcript.pyannote[2639].speaker SPEAKER_06
transcript.pyannote[2639].start 16016.29596875
transcript.pyannote[2639].end 16020.63284375
transcript.pyannote[2640].speaker SPEAKER_06
transcript.pyannote[2640].start 16021.03784375
transcript.pyannote[2640].end 16025.00346875
transcript.pyannote[2641].speaker SPEAKER_06
transcript.pyannote[2641].start 16025.35784375
transcript.pyannote[2641].end 16032.02346875
transcript.pyannote[2642].speaker SPEAKER_06
transcript.pyannote[2642].start 16032.44534375
transcript.pyannote[2642].end 16047.78471875
transcript.pyannote[2643].speaker SPEAKER_06
transcript.pyannote[2643].start 16048.37534375
transcript.pyannote[2643].end 16073.63721875
transcript.pyannote[2644].speaker SPEAKER_06
transcript.pyannote[2644].start 16074.75096875
transcript.pyannote[2644].end 16078.86846875
transcript.pyannote[2645].speaker SPEAKER_06
transcript.pyannote[2645].start 16079.39159375
transcript.pyannote[2645].end 16088.74034375
transcript.pyannote[2646].speaker SPEAKER_06
transcript.pyannote[2646].start 16089.09471875
transcript.pyannote[2646].end 16096.18221875
transcript.pyannote[2647].speaker SPEAKER_06
transcript.pyannote[2647].start 16096.45221875
transcript.pyannote[2647].end 16109.58096875
transcript.pyannote[2648].speaker SPEAKER_06
transcript.pyannote[2648].start 16109.76659375
transcript.pyannote[2648].end 16114.76159375
transcript.pyannote[2649].speaker SPEAKER_06
transcript.pyannote[2649].start 16115.20034375
transcript.pyannote[2649].end 16116.90471875
transcript.pyannote[2650].speaker SPEAKER_06
transcript.pyannote[2650].start 16117.05659375
transcript.pyannote[2650].end 16119.11534375
transcript.pyannote[2651].speaker SPEAKER_06
transcript.pyannote[2651].start 16119.28409375
transcript.pyannote[2651].end 16120.51596875
transcript.pyannote[2652].speaker SPEAKER_06
transcript.pyannote[2652].start 16121.32596875
transcript.pyannote[2652].end 16121.62971875
transcript.pyannote[2653].speaker SPEAKER_26
transcript.pyannote[2653].start 16121.62971875
transcript.pyannote[2653].end 16121.91659375
transcript.pyannote[2654].speaker SPEAKER_06
transcript.pyannote[2654].start 16121.91659375
transcript.pyannote[2654].end 16121.96721875
transcript.pyannote[2655].speaker SPEAKER_26
transcript.pyannote[2655].start 16121.96721875
transcript.pyannote[2655].end 16122.01784375
transcript.pyannote[2656].speaker SPEAKER_06
transcript.pyannote[2656].start 16122.01784375
transcript.pyannote[2656].end 16122.10221875
transcript.pyannote[2657].speaker SPEAKER_26
transcript.pyannote[2657].start 16122.10221875
transcript.pyannote[2657].end 16122.27096875
transcript.pyannote[2658].speaker SPEAKER_26
transcript.pyannote[2658].start 16122.81096875
transcript.pyannote[2658].end 16137.79596875
transcript.pyannote[2659].speaker SPEAKER_26
transcript.pyannote[2659].start 16138.16721875
transcript.pyannote[2659].end 16138.28534375
transcript.pyannote[2660].speaker SPEAKER_06
transcript.pyannote[2660].start 16138.28534375
transcript.pyannote[2660].end 16139.63534375
transcript.pyannote[2661].speaker SPEAKER_26
transcript.pyannote[2661].start 16138.30221875
transcript.pyannote[2661].end 16140.22596875
transcript.pyannote[2662].speaker SPEAKER_06
transcript.pyannote[2662].start 16140.05721875
transcript.pyannote[2662].end 16150.03034375
transcript.pyannote[2663].speaker SPEAKER_26
transcript.pyannote[2663].start 16149.89534375
transcript.pyannote[2663].end 16150.01346875
transcript.pyannote[2664].speaker SPEAKER_26
transcript.pyannote[2664].start 16150.03034375
transcript.pyannote[2664].end 16150.23284375
transcript.pyannote[2665].speaker SPEAKER_06
transcript.pyannote[2665].start 16150.23284375
transcript.pyannote[2665].end 16153.75971875
transcript.pyannote[2666].speaker SPEAKER_26
transcript.pyannote[2666].start 16150.24971875
transcript.pyannote[2666].end 16150.36784375
transcript.pyannote[2667].speaker SPEAKER_26
transcript.pyannote[2667].start 16152.32534375
transcript.pyannote[2667].end 16152.71346875
transcript.pyannote[2668].speaker SPEAKER_26
transcript.pyannote[2668].start 16153.37159375
transcript.pyannote[2668].end 16153.70909375
transcript.pyannote[2669].speaker SPEAKER_06
transcript.pyannote[2669].start 16153.96221875
transcript.pyannote[2669].end 16157.52284375
transcript.pyannote[2670].speaker SPEAKER_06
transcript.pyannote[2670].start 16157.89409375
transcript.pyannote[2670].end 16163.66534375
transcript.pyannote[2671].speaker SPEAKER_05
transcript.pyannote[2671].start 16162.48409375
transcript.pyannote[2671].end 16162.53471875
transcript.pyannote[2672].speaker SPEAKER_38
transcript.pyannote[2672].start 16162.53471875
transcript.pyannote[2672].end 16163.42909375
transcript.pyannote[2673].speaker SPEAKER_13
transcript.pyannote[2673].start 16165.21784375
transcript.pyannote[2673].end 16166.60159375
transcript.pyannote[2674].speaker SPEAKER_13
transcript.pyannote[2674].start 16167.27659375
transcript.pyannote[2674].end 16169.72346875
transcript.pyannote[2675].speaker SPEAKER_36
transcript.pyannote[2675].start 16178.19471875
transcript.pyannote[2675].end 16181.28284375
transcript.pyannote[2676].speaker SPEAKER_36
transcript.pyannote[2676].start 16184.67471875
transcript.pyannote[2676].end 16189.58534375
transcript.pyannote[2677].speaker SPEAKER_36
transcript.pyannote[2677].start 16190.32784375
transcript.pyannote[2677].end 16190.58096875
transcript.pyannote[2678].speaker SPEAKER_36
transcript.pyannote[2678].start 16191.15471875
transcript.pyannote[2678].end 16197.02721875
transcript.pyannote[2679].speaker SPEAKER_38
transcript.pyannote[2679].start 16191.88034375
transcript.pyannote[2679].end 16192.55534375
transcript.pyannote[2680].speaker SPEAKER_36
transcript.pyannote[2680].start 16197.46596875
transcript.pyannote[2680].end 16198.47846875
transcript.pyannote[2681].speaker SPEAKER_36
transcript.pyannote[2681].start 16198.83284375
transcript.pyannote[2681].end 16200.52034375
transcript.pyannote[2682].speaker SPEAKER_36
transcript.pyannote[2682].start 16201.36409375
transcript.pyannote[2682].end 16207.69221875
transcript.pyannote[2683].speaker SPEAKER_36
transcript.pyannote[2683].start 16207.96221875
transcript.pyannote[2683].end 16210.10534375
transcript.pyannote[2684].speaker SPEAKER_36
transcript.pyannote[2684].start 16210.22346875
transcript.pyannote[2684].end 16212.68721875
transcript.pyannote[2685].speaker SPEAKER_36
transcript.pyannote[2685].start 16213.24409375
transcript.pyannote[2685].end 16214.88096875
transcript.pyannote[2686].speaker SPEAKER_26
transcript.pyannote[2686].start 16216.19721875
transcript.pyannote[2686].end 16219.40346875
transcript.pyannote[2687].speaker SPEAKER_26
transcript.pyannote[2687].start 16220.01096875
transcript.pyannote[2687].end 16226.67659375
transcript.pyannote[2688].speaker SPEAKER_36
transcript.pyannote[2688].start 16223.50409375
transcript.pyannote[2688].end 16224.29721875
transcript.pyannote[2689].speaker SPEAKER_36
transcript.pyannote[2689].start 16225.36034375
transcript.pyannote[2689].end 16226.25471875
transcript.pyannote[2690].speaker SPEAKER_36
transcript.pyannote[2690].start 16226.77784375
transcript.pyannote[2690].end 16234.57409375
transcript.pyannote[2691].speaker SPEAKER_26
transcript.pyannote[2691].start 16235.67096875
transcript.pyannote[2691].end 16235.99159375
transcript.pyannote[2692].speaker SPEAKER_36
transcript.pyannote[2692].start 16235.99159375
transcript.pyannote[2692].end 16249.82909375
transcript.pyannote[2693].speaker SPEAKER_26
transcript.pyannote[2693].start 16236.02534375
transcript.pyannote[2693].end 16236.63284375
transcript.pyannote[2694].speaker SPEAKER_36
transcript.pyannote[2694].start 16250.53784375
transcript.pyannote[2694].end 16251.02721875
transcript.pyannote[2695].speaker SPEAKER_36
transcript.pyannote[2695].start 16251.58409375
transcript.pyannote[2695].end 16269.10034375
transcript.pyannote[2696].speaker SPEAKER_36
transcript.pyannote[2696].start 16270.01159375
transcript.pyannote[2696].end 16274.87159375
transcript.pyannote[2697].speaker SPEAKER_26
transcript.pyannote[2697].start 16274.87159375
transcript.pyannote[2697].end 16288.05096875
transcript.pyannote[2698].speaker SPEAKER_36
transcript.pyannote[2698].start 16278.24659375
transcript.pyannote[2698].end 16279.56284375
transcript.pyannote[2699].speaker SPEAKER_36
transcript.pyannote[2699].start 16280.82846875
transcript.pyannote[2699].end 16280.96346875
transcript.pyannote[2700].speaker SPEAKER_00
transcript.pyannote[2700].start 16280.96346875
transcript.pyannote[2700].end 16281.23346875
transcript.pyannote[2701].speaker SPEAKER_36
transcript.pyannote[2701].start 16283.44409375
transcript.pyannote[2701].end 16284.59159375
transcript.pyannote[2702].speaker SPEAKER_36
transcript.pyannote[2702].start 16287.39284375
transcript.pyannote[2702].end 16288.55721875
transcript.pyannote[2703].speaker SPEAKER_26
transcript.pyannote[2703].start 16288.55721875
transcript.pyannote[2703].end 16289.63721875
transcript.pyannote[2704].speaker SPEAKER_36
transcript.pyannote[2704].start 16288.89471875
transcript.pyannote[2704].end 16289.33346875
transcript.pyannote[2705].speaker SPEAKER_36
transcript.pyannote[2705].start 16289.67096875
transcript.pyannote[2705].end 16304.82471875
transcript.pyannote[2706].speaker SPEAKER_36
transcript.pyannote[2706].start 16305.49971875
transcript.pyannote[2706].end 16311.06846875
transcript.pyannote[2707].speaker SPEAKER_26
transcript.pyannote[2707].start 16311.86159375
transcript.pyannote[2707].end 16333.12409375
transcript.pyannote[2708].speaker SPEAKER_36
transcript.pyannote[2708].start 16312.72221875
transcript.pyannote[2708].end 16312.94159375
transcript.pyannote[2709].speaker SPEAKER_36
transcript.pyannote[2709].start 16314.35909375
transcript.pyannote[2709].end 16314.74721875
transcript.pyannote[2710].speaker SPEAKER_36
transcript.pyannote[2710].start 16316.63721875
transcript.pyannote[2710].end 16316.94096875
transcript.pyannote[2711].speaker SPEAKER_36
transcript.pyannote[2711].start 16318.40909375
transcript.pyannote[2711].end 16318.79721875
transcript.pyannote[2712].speaker SPEAKER_38
transcript.pyannote[2712].start 16318.79721875
transcript.pyannote[2712].end 16318.88159375
transcript.pyannote[2713].speaker SPEAKER_38
transcript.pyannote[2713].start 16333.12409375
transcript.pyannote[2713].end 16333.51221875
transcript.pyannote[2714].speaker SPEAKER_26
transcript.pyannote[2714].start 16333.32659375
transcript.pyannote[2714].end 16345.51034375
transcript.pyannote[2715].speaker SPEAKER_36
transcript.pyannote[2715].start 16344.76784375
transcript.pyannote[2715].end 16357.30596875
transcript.pyannote[2716].speaker SPEAKER_26
transcript.pyannote[2716].start 16346.82659375
transcript.pyannote[2716].end 16347.06284375
transcript.pyannote[2717].speaker SPEAKER_26
transcript.pyannote[2717].start 16357.22159375
transcript.pyannote[2717].end 16360.93409375
transcript.pyannote[2718].speaker SPEAKER_36
transcript.pyannote[2718].start 16357.84596875
transcript.pyannote[2718].end 16358.67284375
transcript.pyannote[2719].speaker SPEAKER_36
transcript.pyannote[2719].start 16360.73159375
transcript.pyannote[2719].end 16389.95909375
transcript.pyannote[2720].speaker SPEAKER_36
transcript.pyannote[2720].start 16390.44846875
transcript.pyannote[2720].end 16398.29534375
transcript.pyannote[2721].speaker SPEAKER_36
transcript.pyannote[2721].start 16398.98721875
transcript.pyannote[2721].end 16399.66221875
transcript.pyannote[2722].speaker SPEAKER_36
transcript.pyannote[2722].start 16400.40471875
transcript.pyannote[2722].end 16408.11659375
transcript.pyannote[2723].speaker SPEAKER_36
transcript.pyannote[2723].start 16408.33596875
transcript.pyannote[2723].end 16415.91284375
transcript.pyannote[2724].speaker SPEAKER_36
transcript.pyannote[2724].start 16416.16596875
transcript.pyannote[2724].end 16423.47284375
transcript.pyannote[2725].speaker SPEAKER_38
transcript.pyannote[2725].start 16423.69221875
transcript.pyannote[2725].end 16424.45159375
transcript.pyannote[2726].speaker SPEAKER_36
transcript.pyannote[2726].start 16424.01284375
transcript.pyannote[2726].end 16425.12659375
transcript.pyannote[2727].speaker SPEAKER_36
transcript.pyannote[2727].start 16425.46409375
transcript.pyannote[2727].end 16429.58159375
transcript.pyannote[2728].speaker SPEAKER_36
transcript.pyannote[2728].start 16430.07096875
transcript.pyannote[2728].end 16435.82534375
transcript.pyannote[2729].speaker SPEAKER_36
transcript.pyannote[2729].start 16436.14596875
transcript.pyannote[2729].end 16441.78221875
transcript.pyannote[2730].speaker SPEAKER_36
transcript.pyannote[2730].start 16442.92971875
transcript.pyannote[2730].end 16444.36409375
transcript.pyannote[2731].speaker SPEAKER_36
transcript.pyannote[2731].start 16445.52846875
transcript.pyannote[2731].end 16450.54034375
transcript.pyannote[2732].speaker SPEAKER_36
transcript.pyannote[2732].start 16451.08034375
transcript.pyannote[2732].end 16454.42159375
transcript.pyannote[2733].speaker SPEAKER_36
transcript.pyannote[2733].start 16454.60721875
transcript.pyannote[2733].end 16458.74159375
transcript.pyannote[2734].speaker SPEAKER_36
transcript.pyannote[2734].start 16458.75846875
transcript.pyannote[2734].end 16467.12846875
transcript.pyannote[2735].speaker SPEAKER_36
transcript.pyannote[2735].start 16467.24659375
transcript.pyannote[2735].end 16467.26346875
transcript.pyannote[2736].speaker SPEAKER_26
transcript.pyannote[2736].start 16467.26346875
transcript.pyannote[2736].end 16467.76971875
transcript.pyannote[2737].speaker SPEAKER_36
transcript.pyannote[2737].start 16467.80346875
transcript.pyannote[2737].end 16475.70096875
transcript.pyannote[2738].speaker SPEAKER_36
transcript.pyannote[2738].start 16475.85284375
transcript.pyannote[2738].end 16476.25784375
transcript.pyannote[2739].speaker SPEAKER_36
transcript.pyannote[2739].start 16477.21971875
transcript.pyannote[2739].end 16480.54409375
transcript.pyannote[2740].speaker SPEAKER_36
transcript.pyannote[2740].start 16481.25284375
transcript.pyannote[2740].end 16482.50159375
transcript.pyannote[2741].speaker SPEAKER_36
transcript.pyannote[2741].start 16482.65346875
transcript.pyannote[2741].end 16488.30659375
transcript.pyannote[2742].speaker SPEAKER_11
transcript.pyannote[2742].start 16488.30659375
transcript.pyannote[2742].end 16491.66471875
transcript.pyannote[2743].speaker SPEAKER_11
transcript.pyannote[2743].start 16491.79971875
transcript.pyannote[2743].end 16494.33096875
transcript.pyannote[2744].speaker SPEAKER_11
transcript.pyannote[2744].start 16494.61784375
transcript.pyannote[2744].end 16496.47409375
transcript.pyannote[2745].speaker SPEAKER_36
transcript.pyannote[2745].start 16496.50784375
transcript.pyannote[2745].end 16496.91284375
transcript.pyannote[2746].speaker SPEAKER_36
transcript.pyannote[2746].start 16497.92534375
transcript.pyannote[2746].end 16500.84471875
transcript.pyannote[2747].speaker SPEAKER_11
transcript.pyannote[2747].start 16501.01346875
transcript.pyannote[2747].end 16501.03034375
transcript.pyannote[2748].speaker SPEAKER_36
transcript.pyannote[2748].start 16501.03034375
transcript.pyannote[2748].end 16502.07659375
transcript.pyannote[2749].speaker SPEAKER_36
transcript.pyannote[2749].start 16502.26221875
transcript.pyannote[2749].end 16511.56034375
transcript.pyannote[2750].speaker SPEAKER_11
transcript.pyannote[2750].start 16509.72096875
transcript.pyannote[2750].end 16511.47596875
transcript.pyannote[2751].speaker SPEAKER_11
transcript.pyannote[2751].start 16511.56034375
transcript.pyannote[2751].end 16539.75846875
transcript.pyannote[2752].speaker SPEAKER_36
transcript.pyannote[2752].start 16515.91409375
transcript.pyannote[2752].end 16516.28534375
transcript.pyannote[2753].speaker SPEAKER_00
transcript.pyannote[2753].start 16516.28534375
transcript.pyannote[2753].end 16516.33596875
transcript.pyannote[2754].speaker SPEAKER_00
transcript.pyannote[2754].start 16519.35659375
transcript.pyannote[2754].end 16519.47471875
transcript.pyannote[2755].speaker SPEAKER_09
transcript.pyannote[2755].start 16531.92846875
transcript.pyannote[2755].end 16532.51909375
transcript.pyannote[2756].speaker SPEAKER_36
transcript.pyannote[2756].start 16532.51909375
transcript.pyannote[2756].end 16532.56971875
transcript.pyannote[2757].speaker SPEAKER_36
transcript.pyannote[2757].start 16539.13409375
transcript.pyannote[2757].end 16552.73534375
transcript.pyannote[2758].speaker SPEAKER_11
transcript.pyannote[2758].start 16552.34721875
transcript.pyannote[2758].end 16568.05784375
transcript.pyannote[2759].speaker SPEAKER_38
transcript.pyannote[2759].start 16557.56159375
transcript.pyannote[2759].end 16557.94971875
transcript.pyannote[2760].speaker SPEAKER_11
transcript.pyannote[2760].start 16568.53034375
transcript.pyannote[2760].end 16575.34784375
transcript.pyannote[2761].speaker SPEAKER_36
transcript.pyannote[2761].start 16574.41971875
transcript.pyannote[2761].end 16574.47034375
transcript.pyannote[2762].speaker SPEAKER_36
transcript.pyannote[2762].start 16574.67284375
transcript.pyannote[2762].end 16575.29721875
transcript.pyannote[2763].speaker SPEAKER_36
transcript.pyannote[2763].start 16575.34784375
transcript.pyannote[2763].end 16588.54409375
transcript.pyannote[2764].speaker SPEAKER_36
transcript.pyannote[2764].start 16589.38784375
transcript.pyannote[2764].end 16589.92784375
transcript.pyannote[2765].speaker SPEAKER_36
transcript.pyannote[2765].start 16590.61971875
transcript.pyannote[2765].end 16594.65284375
transcript.pyannote[2766].speaker SPEAKER_36
transcript.pyannote[2766].start 16595.02409375
transcript.pyannote[2766].end 16598.43284375
transcript.pyannote[2767].speaker SPEAKER_36
transcript.pyannote[2767].start 16598.70284375
transcript.pyannote[2767].end 16609.43534375
transcript.pyannote[2768].speaker SPEAKER_36
transcript.pyannote[2768].start 16609.77284375
transcript.pyannote[2768].end 16638.64596875
transcript.pyannote[2769].speaker SPEAKER_36
transcript.pyannote[2769].start 16639.52346875
transcript.pyannote[2769].end 16641.34596875
transcript.pyannote[2770].speaker SPEAKER_36
transcript.pyannote[2770].start 16642.18971875
transcript.pyannote[2770].end 16643.45534375
transcript.pyannote[2771].speaker SPEAKER_36
transcript.pyannote[2771].start 16643.99534375
transcript.pyannote[2771].end 16645.81784375
transcript.pyannote[2772].speaker SPEAKER_36
transcript.pyannote[2772].start 16646.07096875
transcript.pyannote[2772].end 16649.41221875
transcript.pyannote[2773].speaker SPEAKER_36
transcript.pyannote[2773].start 16649.69909375
transcript.pyannote[2773].end 16651.87596875
transcript.pyannote[2774].speaker SPEAKER_36
transcript.pyannote[2774].start 16653.00659375
transcript.pyannote[2774].end 16663.06409375
transcript.pyannote[2775].speaker SPEAKER_00
transcript.pyannote[2775].start 16658.11971875
transcript.pyannote[2775].end 16658.44034375
transcript.pyannote[2776].speaker SPEAKER_36
transcript.pyannote[2776].start 16663.84034375
transcript.pyannote[2776].end 16667.01284375
transcript.pyannote[2777].speaker SPEAKER_36
transcript.pyannote[2777].start 16667.53596875
transcript.pyannote[2777].end 16670.06721875
transcript.pyannote[2778].speaker SPEAKER_36
transcript.pyannote[2778].start 16670.20221875
transcript.pyannote[2778].end 16672.44659375
transcript.pyannote[2779].speaker SPEAKER_36
transcript.pyannote[2779].start 16673.07096875
transcript.pyannote[2779].end 16678.94346875
transcript.pyannote[2780].speaker SPEAKER_36
transcript.pyannote[2780].start 16679.39909375
transcript.pyannote[2780].end 16679.87159375
transcript.pyannote[2781].speaker SPEAKER_36
transcript.pyannote[2781].start 16681.37346875
transcript.pyannote[2781].end 16695.16034375
transcript.pyannote[2782].speaker SPEAKER_36
transcript.pyannote[2782].start 16697.74221875
transcript.pyannote[2782].end 16697.75909375
transcript.pyannote[2783].speaker SPEAKER_13
transcript.pyannote[2783].start 16697.75909375
transcript.pyannote[2783].end 16700.35784375
transcript.pyannote[2784].speaker SPEAKER_13
transcript.pyannote[2784].start 16700.98221875
transcript.pyannote[2784].end 16703.90159375
transcript.pyannote[2785].speaker SPEAKER_15
transcript.pyannote[2785].start 16713.25034375
transcript.pyannote[2785].end 16716.27096875
transcript.pyannote[2786].speaker SPEAKER_15
transcript.pyannote[2786].start 16716.64221875
transcript.pyannote[2786].end 16717.89096875
transcript.pyannote[2787].speaker SPEAKER_15
transcript.pyannote[2787].start 16719.03846875
transcript.pyannote[2787].end 16719.24096875
transcript.pyannote[2788].speaker SPEAKER_16
transcript.pyannote[2788].start 16723.42596875
transcript.pyannote[2788].end 16739.05221875
transcript.pyannote[2789].speaker SPEAKER_16
transcript.pyannote[2789].start 16739.64284375
transcript.pyannote[2789].end 16742.62971875
transcript.pyannote[2790].speaker SPEAKER_16
transcript.pyannote[2790].start 16743.03471875
transcript.pyannote[2790].end 16744.11471875
transcript.pyannote[2791].speaker SPEAKER_16
transcript.pyannote[2791].start 16744.57034375
transcript.pyannote[2791].end 16759.58909375
transcript.pyannote[2792].speaker SPEAKER_16
transcript.pyannote[2792].start 16759.87596875
transcript.pyannote[2792].end 16763.47034375
transcript.pyannote[2793].speaker SPEAKER_16
transcript.pyannote[2793].start 16763.72346875
transcript.pyannote[2793].end 16765.64721875
transcript.pyannote[2794].speaker SPEAKER_16
transcript.pyannote[2794].start 16766.00159375
transcript.pyannote[2794].end 16770.87846875
transcript.pyannote[2795].speaker SPEAKER_16
transcript.pyannote[2795].start 16771.28346875
transcript.pyannote[2795].end 16774.16909375
transcript.pyannote[2796].speaker SPEAKER_16
transcript.pyannote[2796].start 16774.75971875
transcript.pyannote[2796].end 16780.90221875
transcript.pyannote[2797].speaker SPEAKER_16
transcript.pyannote[2797].start 16781.00346875
transcript.pyannote[2797].end 16797.64221875
transcript.pyannote[2798].speaker SPEAKER_16
transcript.pyannote[2798].start 16798.41846875
transcript.pyannote[2798].end 16799.24534375
transcript.pyannote[2799].speaker SPEAKER_16
transcript.pyannote[2799].start 16799.48159375
transcript.pyannote[2799].end 16800.59534375
transcript.pyannote[2800].speaker SPEAKER_16
transcript.pyannote[2800].start 16800.94971875
transcript.pyannote[2800].end 16801.55721875
transcript.pyannote[2801].speaker SPEAKER_16
transcript.pyannote[2801].start 16801.64159375
transcript.pyannote[2801].end 16803.17721875
transcript.pyannote[2802].speaker SPEAKER_16
transcript.pyannote[2802].start 16804.03784375
transcript.pyannote[2802].end 16829.26596875
transcript.pyannote[2803].speaker SPEAKER_16
transcript.pyannote[2803].start 16829.33346875
transcript.pyannote[2803].end 16842.10784375
transcript.pyannote[2804].speaker SPEAKER_16
transcript.pyannote[2804].start 16842.58034375
transcript.pyannote[2804].end 16843.39034375
transcript.pyannote[2805].speaker SPEAKER_16
transcript.pyannote[2805].start 16843.79534375
transcript.pyannote[2805].end 16887.11346875
transcript.pyannote[2806].speaker SPEAKER_00
transcript.pyannote[2806].start 16871.92596875
transcript.pyannote[2806].end 16872.39846875
transcript.pyannote[2807].speaker SPEAKER_16
transcript.pyannote[2807].start 16887.51846875
transcript.pyannote[2807].end 16902.52034375
transcript.pyannote[2808].speaker SPEAKER_16
transcript.pyannote[2808].start 16903.34721875
transcript.pyannote[2808].end 16943.71221875
transcript.pyannote[2809].speaker SPEAKER_00
transcript.pyannote[2809].start 16918.92284375
transcript.pyannote[2809].end 16919.29409375
transcript.pyannote[2810].speaker SPEAKER_26
transcript.pyannote[2810].start 16942.78409375
transcript.pyannote[2810].end 16943.69534375
transcript.pyannote[2811].speaker SPEAKER_26
transcript.pyannote[2811].start 16943.71221875
transcript.pyannote[2811].end 16943.72909375
transcript.pyannote[2812].speaker SPEAKER_26
transcript.pyannote[2812].start 16944.23534375
transcript.pyannote[2812].end 16951.79534375
transcript.pyannote[2813].speaker SPEAKER_26
transcript.pyannote[2813].start 16951.81221875
transcript.pyannote[2813].end 16952.03159375
transcript.pyannote[2814].speaker SPEAKER_26
transcript.pyannote[2814].start 16952.14971875
transcript.pyannote[2814].end 16956.04784375
transcript.pyannote[2815].speaker SPEAKER_26
transcript.pyannote[2815].start 16956.89159375
transcript.pyannote[2815].end 16958.03909375
transcript.pyannote[2816].speaker SPEAKER_26
transcript.pyannote[2816].start 16958.46096875
transcript.pyannote[2816].end 16963.01721875
transcript.pyannote[2817].speaker SPEAKER_26
transcript.pyannote[2817].start 16963.62471875
transcript.pyannote[2817].end 16965.34596875
transcript.pyannote[2818].speaker SPEAKER_26
transcript.pyannote[2818].start 16966.07159375
transcript.pyannote[2818].end 16974.47534375
transcript.pyannote[2819].speaker SPEAKER_26
transcript.pyannote[2819].start 16974.82971875
transcript.pyannote[2819].end 16979.35221875
transcript.pyannote[2820].speaker SPEAKER_26
transcript.pyannote[2820].start 16979.72346875
transcript.pyannote[2820].end 16980.11159375
transcript.pyannote[2821].speaker SPEAKER_26
transcript.pyannote[2821].start 16980.14534375
transcript.pyannote[2821].end 16984.34721875
transcript.pyannote[2822].speaker SPEAKER_16
transcript.pyannote[2822].start 16984.27971875
transcript.pyannote[2822].end 16996.12596875
transcript.pyannote[2823].speaker SPEAKER_26
transcript.pyannote[2823].start 16987.01346875
transcript.pyannote[2823].end 16987.75596875
transcript.pyannote[2824].speaker SPEAKER_26
transcript.pyannote[2824].start 16995.24846875
transcript.pyannote[2824].end 16998.64034375
transcript.pyannote[2825].speaker SPEAKER_00
transcript.pyannote[2825].start 16996.12596875
transcript.pyannote[2825].end 16996.17659375
transcript.pyannote[2826].speaker SPEAKER_16
transcript.pyannote[2826].start 16997.89784375
transcript.pyannote[2826].end 17021.37096875
transcript.pyannote[2827].speaker SPEAKER_38
transcript.pyannote[2827].start 17010.68909375
transcript.pyannote[2827].end 17010.97596875
transcript.pyannote[2828].speaker SPEAKER_00
transcript.pyannote[2828].start 17010.97596875
transcript.pyannote[2828].end 17011.38096875
transcript.pyannote[2829].speaker SPEAKER_16
transcript.pyannote[2829].start 17021.48909375
transcript.pyannote[2829].end 17055.15471875
transcript.pyannote[2830].speaker SPEAKER_16
transcript.pyannote[2830].start 17055.72846875
transcript.pyannote[2830].end 17074.51034375
transcript.pyannote[2831].speaker SPEAKER_26
transcript.pyannote[2831].start 17074.81409375
transcript.pyannote[2831].end 17082.07034375
transcript.pyannote[2832].speaker SPEAKER_26
transcript.pyannote[2832].start 17082.17159375
transcript.pyannote[2832].end 17091.63846875
transcript.pyannote[2833].speaker SPEAKER_26
transcript.pyannote[2833].start 17091.85784375
transcript.pyannote[2833].end 17094.27096875
transcript.pyannote[2834].speaker SPEAKER_38
transcript.pyannote[2834].start 17094.54096875
transcript.pyannote[2834].end 17094.89534375
transcript.pyannote[2835].speaker SPEAKER_26
transcript.pyannote[2835].start 17094.62534375
transcript.pyannote[2835].end 17106.74159375
transcript.pyannote[2836].speaker SPEAKER_16
transcript.pyannote[2836].start 17107.21409375
transcript.pyannote[2836].end 17107.55159375
transcript.pyannote[2837].speaker SPEAKER_16
transcript.pyannote[2837].start 17107.56846875
transcript.pyannote[2837].end 17129.65784375
transcript.pyannote[2838].speaker SPEAKER_16
transcript.pyannote[2838].start 17129.97846875
transcript.pyannote[2838].end 17138.33159375
transcript.pyannote[2839].speaker SPEAKER_16
transcript.pyannote[2839].start 17138.68596875
transcript.pyannote[2839].end 17141.50409375
transcript.pyannote[2840].speaker SPEAKER_16
transcript.pyannote[2840].start 17141.89221875
transcript.pyannote[2840].end 17162.95221875
transcript.pyannote[2841].speaker SPEAKER_16
transcript.pyannote[2841].start 17163.82971875
transcript.pyannote[2841].end 17176.73909375
transcript.pyannote[2842].speaker SPEAKER_16
transcript.pyannote[2842].start 17177.68409375
transcript.pyannote[2842].end 17179.86096875
transcript.pyannote[2843].speaker SPEAKER_16
transcript.pyannote[2843].start 17180.23221875
transcript.pyannote[2843].end 17180.55284375
transcript.pyannote[2844].speaker SPEAKER_16
transcript.pyannote[2844].start 17181.16034375
transcript.pyannote[2844].end 17183.11784375
transcript.pyannote[2845].speaker SPEAKER_16
transcript.pyannote[2845].start 17183.20221875
transcript.pyannote[2845].end 17185.07534375
transcript.pyannote[2846].speaker SPEAKER_16
transcript.pyannote[2846].start 17185.31159375
transcript.pyannote[2846].end 17186.17221875
transcript.pyannote[2847].speaker SPEAKER_16
transcript.pyannote[2847].start 17186.59409375
transcript.pyannote[2847].end 17187.31971875
transcript.pyannote[2848].speaker SPEAKER_16
transcript.pyannote[2848].start 17187.70784375
transcript.pyannote[2848].end 17207.48534375
transcript.pyannote[2849].speaker SPEAKER_16
transcript.pyannote[2849].start 17207.97471875
transcript.pyannote[2849].end 17209.03784375
transcript.pyannote[2850].speaker SPEAKER_16
transcript.pyannote[2850].start 17209.56096875
transcript.pyannote[2850].end 17220.02346875
transcript.pyannote[2851].speaker SPEAKER_26
transcript.pyannote[2851].start 17219.46659375
transcript.pyannote[2851].end 17221.10346875
transcript.pyannote[2852].speaker SPEAKER_13
transcript.pyannote[2852].start 17222.52096875
transcript.pyannote[2852].end 17224.83284375
transcript.pyannote[2853].speaker SPEAKER_13
transcript.pyannote[2853].start 17224.95096875
transcript.pyannote[2853].end 17228.39346875
transcript.pyannote[2854].speaker SPEAKER_13
transcript.pyannote[2854].start 18146.42721875
transcript.pyannote[2854].end 18148.01346875
transcript.pyannote[2855].speaker SPEAKER_13
transcript.pyannote[2855].start 18150.66284375
transcript.pyannote[2855].end 18151.99596875
transcript.pyannote[2856].speaker SPEAKER_13
transcript.pyannote[2856].start 18154.51034375
transcript.pyannote[2856].end 18158.15534375
transcript.pyannote[2857].speaker SPEAKER_13
transcript.pyannote[2857].start 18159.38721875
transcript.pyannote[2857].end 18161.58096875
transcript.pyannote[2858].speaker SPEAKER_27
transcript.pyannote[2858].start 18170.62596875
transcript.pyannote[2858].end 18174.91221875
transcript.pyannote[2859].speaker SPEAKER_27
transcript.pyannote[2859].start 18182.40471875
transcript.pyannote[2859].end 18183.29909375
transcript.pyannote[2860].speaker SPEAKER_13
transcript.pyannote[2860].start 18184.61534375
transcript.pyannote[2860].end 18186.35346875
transcript.pyannote[2861].speaker SPEAKER_27
transcript.pyannote[2861].start 18188.42909375
transcript.pyannote[2861].end 18189.72846875
transcript.pyannote[2862].speaker SPEAKER_27
transcript.pyannote[2862].start 18190.21784375
transcript.pyannote[2862].end 18190.62284375
transcript.pyannote[2863].speaker SPEAKER_27
transcript.pyannote[2863].start 18192.22596875
transcript.pyannote[2863].end 18192.64784375
transcript.pyannote[2864].speaker SPEAKER_27
transcript.pyannote[2864].start 18192.79971875
transcript.pyannote[2864].end 18194.30159375
transcript.pyannote[2865].speaker SPEAKER_27
transcript.pyannote[2865].start 18195.14534375
transcript.pyannote[2865].end 18196.68096875
transcript.pyannote[2866].speaker SPEAKER_27
transcript.pyannote[2866].start 18196.96784375
transcript.pyannote[2866].end 18197.55846875
transcript.pyannote[2867].speaker SPEAKER_27
transcript.pyannote[2867].start 18199.56659375
transcript.pyannote[2867].end 18200.17409375
transcript.pyannote[2868].speaker SPEAKER_27
transcript.pyannote[2868].start 18200.42721875
transcript.pyannote[2868].end 18201.47346875
transcript.pyannote[2869].speaker SPEAKER_08
transcript.pyannote[2869].start 18200.64659375
transcript.pyannote[2869].end 18200.69721875
transcript.pyannote[2870].speaker SPEAKER_08
transcript.pyannote[2870].start 18201.92909375
transcript.pyannote[2870].end 18201.94596875
transcript.pyannote[2871].speaker SPEAKER_09
transcript.pyannote[2871].start 18201.94596875
transcript.pyannote[2871].end 18202.03034375
transcript.pyannote[2872].speaker SPEAKER_27
transcript.pyannote[2872].start 18202.03034375
transcript.pyannote[2872].end 18202.06409375
transcript.pyannote[2873].speaker SPEAKER_08
transcript.pyannote[2873].start 18202.06409375
transcript.pyannote[2873].end 18202.30034375
transcript.pyannote[2874].speaker SPEAKER_27
transcript.pyannote[2874].start 18202.30034375
transcript.pyannote[2874].end 18202.43534375
transcript.pyannote[2875].speaker SPEAKER_27
transcript.pyannote[2875].start 18203.59971875
transcript.pyannote[2875].end 18208.20659375
transcript.pyannote[2876].speaker SPEAKER_27
transcript.pyannote[2876].start 18208.47659375
transcript.pyannote[2876].end 18212.05409375
transcript.pyannote[2877].speaker SPEAKER_38
transcript.pyannote[2877].start 18212.00346875
transcript.pyannote[2877].end 18212.02034375
transcript.pyannote[2878].speaker SPEAKER_38
transcript.pyannote[2878].start 18212.03721875
transcript.pyannote[2878].end 18212.32409375
transcript.pyannote[2879].speaker SPEAKER_27
transcript.pyannote[2879].start 18212.32409375
transcript.pyannote[2879].end 18219.19221875
transcript.pyannote[2880].speaker SPEAKER_27
transcript.pyannote[2880].start 18219.34409375
transcript.pyannote[2880].end 18223.03971875
transcript.pyannote[2881].speaker SPEAKER_38
transcript.pyannote[2881].start 18223.03971875
transcript.pyannote[2881].end 18223.46159375
transcript.pyannote[2882].speaker SPEAKER_27
transcript.pyannote[2882].start 18223.24221875
transcript.pyannote[2882].end 18226.56659375
transcript.pyannote[2883].speaker SPEAKER_27
transcript.pyannote[2883].start 18226.63409375
transcript.pyannote[2883].end 18232.86096875
transcript.pyannote[2884].speaker SPEAKER_08
transcript.pyannote[2884].start 18232.86096875
transcript.pyannote[2884].end 18233.31659375
transcript.pyannote[2885].speaker SPEAKER_27
transcript.pyannote[2885].start 18233.14784375
transcript.pyannote[2885].end 18235.34159375
transcript.pyannote[2886].speaker SPEAKER_27
transcript.pyannote[2886].start 18235.37534375
transcript.pyannote[2886].end 18235.42596875
transcript.pyannote[2887].speaker SPEAKER_38
transcript.pyannote[2887].start 18235.42596875
transcript.pyannote[2887].end 18235.78034375
transcript.pyannote[2888].speaker SPEAKER_27
transcript.pyannote[2888].start 18235.67909375
transcript.pyannote[2888].end 18237.43409375
transcript.pyannote[2889].speaker SPEAKER_38
transcript.pyannote[2889].start 18237.33284375
transcript.pyannote[2889].end 18237.90659375
transcript.pyannote[2890].speaker SPEAKER_27
transcript.pyannote[2890].start 18237.75471875
transcript.pyannote[2890].end 18251.71034375
transcript.pyannote[2891].speaker SPEAKER_27
transcript.pyannote[2891].start 18251.96346875
transcript.pyannote[2891].end 18252.35159375
transcript.pyannote[2892].speaker SPEAKER_27
transcript.pyannote[2892].start 18252.75659375
transcript.pyannote[2892].end 18253.66784375
transcript.pyannote[2893].speaker SPEAKER_27
transcript.pyannote[2893].start 18254.49471875
transcript.pyannote[2893].end 18256.28346875
transcript.pyannote[2894].speaker SPEAKER_27
transcript.pyannote[2894].start 18257.58284375
transcript.pyannote[2894].end 18258.08909375
transcript.pyannote[2895].speaker SPEAKER_27
transcript.pyannote[2895].start 18259.00034375
transcript.pyannote[2895].end 18263.18534375
transcript.pyannote[2896].speaker SPEAKER_27
transcript.pyannote[2896].start 18263.40471875
transcript.pyannote[2896].end 18267.21846875
transcript.pyannote[2897].speaker SPEAKER_27
transcript.pyannote[2897].start 18267.50534375
transcript.pyannote[2897].end 18268.38284375
transcript.pyannote[2898].speaker SPEAKER_38
transcript.pyannote[2898].start 18268.38284375
transcript.pyannote[2898].end 18268.82159375
transcript.pyannote[2899].speaker SPEAKER_27
transcript.pyannote[2899].start 18268.73721875
transcript.pyannote[2899].end 18276.22971875
transcript.pyannote[2900].speaker SPEAKER_38
transcript.pyannote[2900].start 18274.82909375
transcript.pyannote[2900].end 18275.26784375
transcript.pyannote[2901].speaker SPEAKER_38
transcript.pyannote[2901].start 18276.11159375
transcript.pyannote[2901].end 18276.71909375
transcript.pyannote[2902].speaker SPEAKER_27
transcript.pyannote[2902].start 18276.48284375
transcript.pyannote[2902].end 18284.29596875
transcript.pyannote[2903].speaker SPEAKER_27
transcript.pyannote[2903].start 18284.63346875
transcript.pyannote[2903].end 18291.90659375
transcript.pyannote[2904].speaker SPEAKER_27
transcript.pyannote[2904].start 18292.58159375
transcript.pyannote[2904].end 18297.96471875
transcript.pyannote[2905].speaker SPEAKER_27
transcript.pyannote[2905].start 18298.09971875
transcript.pyannote[2905].end 18303.78659375
transcript.pyannote[2906].speaker SPEAKER_27
transcript.pyannote[2906].start 18304.86659375
transcript.pyannote[2906].end 18309.22034375
transcript.pyannote[2907].speaker SPEAKER_27
transcript.pyannote[2907].start 18309.47346875
transcript.pyannote[2907].end 18313.96221875
transcript.pyannote[2908].speaker SPEAKER_26
transcript.pyannote[2908].start 18314.73846875
transcript.pyannote[2908].end 18325.28534375
transcript.pyannote[2909].speaker SPEAKER_27
transcript.pyannote[2909].start 18319.04159375
transcript.pyannote[2909].end 18319.34534375
transcript.pyannote[2910].speaker SPEAKER_27
transcript.pyannote[2910].start 18322.09596875
transcript.pyannote[2910].end 18324.96471875
transcript.pyannote[2911].speaker SPEAKER_26
transcript.pyannote[2911].start 18325.62284375
transcript.pyannote[2911].end 18327.42846875
transcript.pyannote[2912].speaker SPEAKER_27
transcript.pyannote[2912].start 18326.24721875
transcript.pyannote[2912].end 18326.46659375
transcript.pyannote[2913].speaker SPEAKER_27
transcript.pyannote[2913].start 18326.60159375
transcript.pyannote[2913].end 18336.96284375
transcript.pyannote[2914].speaker SPEAKER_26
transcript.pyannote[2914].start 18336.96284375
transcript.pyannote[2914].end 18348.10034375
transcript.pyannote[2915].speaker SPEAKER_27
transcript.pyannote[2915].start 18346.09221875
transcript.pyannote[2915].end 18350.41221875
transcript.pyannote[2916].speaker SPEAKER_26
transcript.pyannote[2916].start 18348.35346875
transcript.pyannote[2916].end 18349.95659375
transcript.pyannote[2917].speaker SPEAKER_27
transcript.pyannote[2917].start 18351.12096875
transcript.pyannote[2917].end 18359.49096875
transcript.pyannote[2918].speaker SPEAKER_27
transcript.pyannote[2918].start 18359.94659375
transcript.pyannote[2918].end 18362.95034375
transcript.pyannote[2919].speaker SPEAKER_27
transcript.pyannote[2919].start 18362.96721875
transcript.pyannote[2919].end 18363.00096875
transcript.pyannote[2920].speaker SPEAKER_27
transcript.pyannote[2920].start 18363.10221875
transcript.pyannote[2920].end 18380.50034375
transcript.pyannote[2921].speaker SPEAKER_38
transcript.pyannote[2921].start 18365.27909375
transcript.pyannote[2921].end 18366.03846875
transcript.pyannote[2922].speaker SPEAKER_38
transcript.pyannote[2922].start 18379.60596875
transcript.pyannote[2922].end 18379.92659375
transcript.pyannote[2923].speaker SPEAKER_27
transcript.pyannote[2923].start 18380.97284375
transcript.pyannote[2923].end 18384.65159375
transcript.pyannote[2924].speaker SPEAKER_38
transcript.pyannote[2924].start 18384.65159375
transcript.pyannote[2924].end 18385.05659375
transcript.pyannote[2925].speaker SPEAKER_27
transcript.pyannote[2925].start 18384.66846875
transcript.pyannote[2925].end 18384.68534375
transcript.pyannote[2926].speaker SPEAKER_27
transcript.pyannote[2926].start 18384.98909375
transcript.pyannote[2926].end 18398.57346875
transcript.pyannote[2927].speaker SPEAKER_08
transcript.pyannote[2927].start 18394.97909375
transcript.pyannote[2927].end 18394.99596875
transcript.pyannote[2928].speaker SPEAKER_09
transcript.pyannote[2928].start 18394.99596875
transcript.pyannote[2928].end 18395.02971875
transcript.pyannote[2929].speaker SPEAKER_38
transcript.pyannote[2929].start 18395.02971875
transcript.pyannote[2929].end 18395.55284375
transcript.pyannote[2930].speaker SPEAKER_27
transcript.pyannote[2930].start 18399.13034375
transcript.pyannote[2930].end 18399.72096875
transcript.pyannote[2931].speaker SPEAKER_38
transcript.pyannote[2931].start 18399.72096875
transcript.pyannote[2931].end 18400.10909375
transcript.pyannote[2932].speaker SPEAKER_27
transcript.pyannote[2932].start 18400.00784375
transcript.pyannote[2932].end 18410.60534375
transcript.pyannote[2933].speaker SPEAKER_38
transcript.pyannote[2933].start 18403.26471875
transcript.pyannote[2933].end 18403.72034375
transcript.pyannote[2934].speaker SPEAKER_08
transcript.pyannote[2934].start 18403.72034375
transcript.pyannote[2934].end 18403.75409375
transcript.pyannote[2935].speaker SPEAKER_08
transcript.pyannote[2935].start 18409.42409375
transcript.pyannote[2935].end 18409.86284375
transcript.pyannote[2936].speaker SPEAKER_08
transcript.pyannote[2936].start 18410.60534375
transcript.pyannote[2936].end 18415.98846875
transcript.pyannote[2937].speaker SPEAKER_27
transcript.pyannote[2937].start 18415.48221875
transcript.pyannote[2937].end 18426.07971875
transcript.pyannote[2938].speaker SPEAKER_27
transcript.pyannote[2938].start 18426.56909375
transcript.pyannote[2938].end 18430.02846875
transcript.pyannote[2939].speaker SPEAKER_08
transcript.pyannote[2939].start 18426.75471875
transcript.pyannote[2939].end 18426.87284375
transcript.pyannote[2940].speaker SPEAKER_08
transcript.pyannote[2940].start 18429.74159375
transcript.pyannote[2940].end 18454.81784375
transcript.pyannote[2941].speaker SPEAKER_20
transcript.pyannote[2941].start 18443.93346875
transcript.pyannote[2941].end 18445.28346875
transcript.pyannote[2942].speaker SPEAKER_27
transcript.pyannote[2942].start 18451.49346875
transcript.pyannote[2942].end 18451.93221875
transcript.pyannote[2943].speaker SPEAKER_27
transcript.pyannote[2943].start 18454.32846875
transcript.pyannote[2943].end 18473.16096875
transcript.pyannote[2944].speaker SPEAKER_08
transcript.pyannote[2944].start 18457.61909375
transcript.pyannote[2944].end 18458.12534375
transcript.pyannote[2945].speaker SPEAKER_38
transcript.pyannote[2945].start 18458.19284375
transcript.pyannote[2945].end 18458.24346875
transcript.pyannote[2946].speaker SPEAKER_08
transcript.pyannote[2946].start 18460.99409375
transcript.pyannote[2946].end 18461.06159375
transcript.pyannote[2947].speaker SPEAKER_38
transcript.pyannote[2947].start 18461.06159375
transcript.pyannote[2947].end 18461.53409375
transcript.pyannote[2948].speaker SPEAKER_38
transcript.pyannote[2948].start 18464.47034375
transcript.pyannote[2948].end 18465.19596875
transcript.pyannote[2949].speaker SPEAKER_38
transcript.pyannote[2949].start 18466.49534375
transcript.pyannote[2949].end 18466.63034375
transcript.pyannote[2950].speaker SPEAKER_38
transcript.pyannote[2950].start 18466.64721875
transcript.pyannote[2950].end 18466.66409375
transcript.pyannote[2951].speaker SPEAKER_38
transcript.pyannote[2951].start 18466.68096875
transcript.pyannote[2951].end 18466.91721875
transcript.pyannote[2952].speaker SPEAKER_38
transcript.pyannote[2952].start 18473.16096875
transcript.pyannote[2952].end 18473.95409375
transcript.pyannote[2953].speaker SPEAKER_27
transcript.pyannote[2953].start 18473.49846875
transcript.pyannote[2953].end 18499.21596875
transcript.pyannote[2954].speaker SPEAKER_00
transcript.pyannote[2954].start 18487.75784375
transcript.pyannote[2954].end 18489.64784375
transcript.pyannote[2955].speaker SPEAKER_38
transcript.pyannote[2955].start 18493.34346875
transcript.pyannote[2955].end 18493.69784375
transcript.pyannote[2956].speaker SPEAKER_38
transcript.pyannote[2956].start 18499.21596875
transcript.pyannote[2956].end 18499.63784375
transcript.pyannote[2957].speaker SPEAKER_27
transcript.pyannote[2957].start 18499.55346875
transcript.pyannote[2957].end 18506.30346875
transcript.pyannote[2958].speaker SPEAKER_09
transcript.pyannote[2958].start 18499.63784375
transcript.pyannote[2958].end 18499.67159375
transcript.pyannote[2959].speaker SPEAKER_27
transcript.pyannote[2959].start 18506.38784375
transcript.pyannote[2959].end 18506.40471875
transcript.pyannote[2960].speaker SPEAKER_08
transcript.pyannote[2960].start 18506.40471875
transcript.pyannote[2960].end 18507.60284375
transcript.pyannote[2961].speaker SPEAKER_27
transcript.pyannote[2961].start 18506.86034375
transcript.pyannote[2961].end 18507.87284375
transcript.pyannote[2962].speaker SPEAKER_13
transcript.pyannote[2962].start 18510.25221875
transcript.pyannote[2962].end 18512.61471875
transcript.pyannote[2963].speaker SPEAKER_13
transcript.pyannote[2963].start 18514.53846875
transcript.pyannote[2963].end 18516.74909375
transcript.pyannote[2964].speaker SPEAKER_20
transcript.pyannote[2964].start 18524.15721875
transcript.pyannote[2964].end 18543.36096875
transcript.pyannote[2965].speaker SPEAKER_20
transcript.pyannote[2965].start 18543.86721875
transcript.pyannote[2965].end 18572.53784375
transcript.pyannote[2966].speaker SPEAKER_20
transcript.pyannote[2966].start 18572.77409375
transcript.pyannote[2966].end 18615.56909375
transcript.pyannote[2967].speaker SPEAKER_20
transcript.pyannote[2967].start 18615.87284375
transcript.pyannote[2967].end 18652.84596875
transcript.pyannote[2968].speaker SPEAKER_20
transcript.pyannote[2968].start 18653.21721875
transcript.pyannote[2968].end 18667.27409375
transcript.pyannote[2969].speaker SPEAKER_20
transcript.pyannote[2969].start 18668.45534375
transcript.pyannote[2969].end 18678.27659375
transcript.pyannote[2970].speaker SPEAKER_20
transcript.pyannote[2970].start 18678.56346875
transcript.pyannote[2970].end 18680.26784375
transcript.pyannote[2971].speaker SPEAKER_20
transcript.pyannote[2971].start 18680.62221875
transcript.pyannote[2971].end 18690.24096875
transcript.pyannote[2972].speaker SPEAKER_20
transcript.pyannote[2972].start 18690.69659375
transcript.pyannote[2972].end 18697.44659375
transcript.pyannote[2973].speaker SPEAKER_20
transcript.pyannote[2973].start 18697.76721875
transcript.pyannote[2973].end 18700.36596875
transcript.pyannote[2974].speaker SPEAKER_20
transcript.pyannote[2974].start 18701.05784375
transcript.pyannote[2974].end 18705.41159375
transcript.pyannote[2975].speaker SPEAKER_20
transcript.pyannote[2975].start 18705.83346875
transcript.pyannote[2975].end 18707.41971875
transcript.pyannote[2976].speaker SPEAKER_20
transcript.pyannote[2976].start 18707.75721875
transcript.pyannote[2976].end 18713.15721875
transcript.pyannote[2977].speaker SPEAKER_20
transcript.pyannote[2977].start 18713.86596875
transcript.pyannote[2977].end 18724.71659375
transcript.pyannote[2978].speaker SPEAKER_20
transcript.pyannote[2978].start 18725.39159375
transcript.pyannote[2978].end 18731.04471875
transcript.pyannote[2979].speaker SPEAKER_38
transcript.pyannote[2979].start 18731.09534375
transcript.pyannote[2979].end 18731.50034375
transcript.pyannote[2980].speaker SPEAKER_20
transcript.pyannote[2980].start 18731.50034375
transcript.pyannote[2980].end 18739.88721875
transcript.pyannote[2981].speaker SPEAKER_20
transcript.pyannote[2981].start 18740.19096875
transcript.pyannote[2981].end 18744.76409375
transcript.pyannote[2982].speaker SPEAKER_20
transcript.pyannote[2982].start 18745.05096875
transcript.pyannote[2982].end 18748.02096875
transcript.pyannote[2983].speaker SPEAKER_38
transcript.pyannote[2983].start 18748.17284375
transcript.pyannote[2983].end 18748.52721875
transcript.pyannote[2984].speaker SPEAKER_20
transcript.pyannote[2984].start 18748.56096875
transcript.pyannote[2984].end 18751.21034375
transcript.pyannote[2985].speaker SPEAKER_20
transcript.pyannote[2985].start 18751.83471875
transcript.pyannote[2985].end 18753.43784375
transcript.pyannote[2986].speaker SPEAKER_20
transcript.pyannote[2986].start 18753.75846875
transcript.pyannote[2986].end 18761.28471875
transcript.pyannote[2987].speaker SPEAKER_38
transcript.pyannote[2987].start 18761.28471875
transcript.pyannote[2987].end 18761.57159375
transcript.pyannote[2988].speaker SPEAKER_20
transcript.pyannote[2988].start 18761.41971875
transcript.pyannote[2988].end 18764.28846875
transcript.pyannote[2989].speaker SPEAKER_20
transcript.pyannote[2989].start 18764.87909375
transcript.pyannote[2989].end 18766.83659375
transcript.pyannote[2990].speaker SPEAKER_20
transcript.pyannote[2990].start 18767.20784375
transcript.pyannote[2990].end 18771.39284375
transcript.pyannote[2991].speaker SPEAKER_20
transcript.pyannote[2991].start 18771.76409375
transcript.pyannote[2991].end 18772.45596875
transcript.pyannote[2992].speaker SPEAKER_20
transcript.pyannote[2992].start 18773.19846875
transcript.pyannote[2992].end 18775.20659375
transcript.pyannote[2993].speaker SPEAKER_20
transcript.pyannote[2993].start 18775.66221875
transcript.pyannote[2993].end 18778.76721875
transcript.pyannote[2994].speaker SPEAKER_20
transcript.pyannote[2994].start 18779.17221875
transcript.pyannote[2994].end 18781.26471875
transcript.pyannote[2995].speaker SPEAKER_20
transcript.pyannote[2995].start 18781.92284375
transcript.pyannote[2995].end 18783.54284375
transcript.pyannote[2996].speaker SPEAKER_20
transcript.pyannote[2996].start 18784.06596875
transcript.pyannote[2996].end 18794.46096875
transcript.pyannote[2997].speaker SPEAKER_20
transcript.pyannote[2997].start 18794.89971875
transcript.pyannote[2997].end 18804.07971875
transcript.pyannote[2998].speaker SPEAKER_20
transcript.pyannote[2998].start 18804.26534375
transcript.pyannote[2998].end 18804.94034375
transcript.pyannote[2999].speaker SPEAKER_20
transcript.pyannote[2999].start 18805.29471875
transcript.pyannote[2999].end 18805.90221875
transcript.pyannote[3000].speaker SPEAKER_20
transcript.pyannote[3000].start 18806.08784375
transcript.pyannote[3000].end 18809.46284375
transcript.pyannote[3001].speaker SPEAKER_38
transcript.pyannote[3001].start 18809.80034375
transcript.pyannote[3001].end 18810.08721875
transcript.pyannote[3002].speaker SPEAKER_20
transcript.pyannote[3002].start 18810.74534375
transcript.pyannote[3002].end 18826.45596875
transcript.pyannote[3003].speaker SPEAKER_20
transcript.pyannote[3003].start 18827.23221875
transcript.pyannote[3003].end 18829.45971875
transcript.pyannote[3004].speaker SPEAKER_20
transcript.pyannote[3004].start 18829.72971875
transcript.pyannote[3004].end 18834.03284375
transcript.pyannote[3005].speaker SPEAKER_20
transcript.pyannote[3005].start 18834.58971875
transcript.pyannote[3005].end 18835.16346875
transcript.pyannote[3006].speaker SPEAKER_20
transcript.pyannote[3006].start 18836.07471875
transcript.pyannote[3006].end 18842.11596875
transcript.pyannote[3007].speaker SPEAKER_20
transcript.pyannote[3007].start 18842.52096875
transcript.pyannote[3007].end 18844.49534375
transcript.pyannote[3008].speaker SPEAKER_20
transcript.pyannote[3008].start 18844.56284375
transcript.pyannote[3008].end 18860.52659375
transcript.pyannote[3009].speaker SPEAKER_20
transcript.pyannote[3009].start 18860.96534375
transcript.pyannote[3009].end 18867.56346875
transcript.pyannote[3010].speaker SPEAKER_20
transcript.pyannote[3010].start 18867.96846875
transcript.pyannote[3010].end 18868.35659375
transcript.pyannote[3011].speaker SPEAKER_13
transcript.pyannote[3011].start 18871.32659375
transcript.pyannote[3011].end 18875.00534375
transcript.pyannote[3012].speaker SPEAKER_32
transcript.pyannote[3012].start 18880.94534375
transcript.pyannote[3012].end 18881.16471875
transcript.pyannote[3013].speaker SPEAKER_32
transcript.pyannote[3013].start 18882.00846875
transcript.pyannote[3013].end 18884.15159375
transcript.pyannote[3014].speaker SPEAKER_32
transcript.pyannote[3014].start 18884.53971875
transcript.pyannote[3014].end 18886.12596875
transcript.pyannote[3015].speaker SPEAKER_38
transcript.pyannote[3015].start 18886.36221875
transcript.pyannote[3015].end 18886.93596875
transcript.pyannote[3016].speaker SPEAKER_32
transcript.pyannote[3016].start 18887.03721875
transcript.pyannote[3016].end 18888.99471875
transcript.pyannote[3017].speaker SPEAKER_32
transcript.pyannote[3017].start 18890.32784375
transcript.pyannote[3017].end 18891.35721875
transcript.pyannote[3018].speaker SPEAKER_32
transcript.pyannote[3018].start 18892.40346875
transcript.pyannote[3018].end 18893.23034375
transcript.pyannote[3019].speaker SPEAKER_32
transcript.pyannote[3019].start 18895.50846875
transcript.pyannote[3019].end 18897.88784375
transcript.pyannote[3020].speaker SPEAKER_32
transcript.pyannote[3020].start 18898.39409375
transcript.pyannote[3020].end 18899.03534375
transcript.pyannote[3021].speaker SPEAKER_32
transcript.pyannote[3021].start 18899.82846875
transcript.pyannote[3021].end 18903.18659375
transcript.pyannote[3022].speaker SPEAKER_32
transcript.pyannote[3022].start 18903.40596875
transcript.pyannote[3022].end 18909.53159375
transcript.pyannote[3023].speaker SPEAKER_32
transcript.pyannote[3023].start 18909.95346875
transcript.pyannote[3023].end 18914.12159375
transcript.pyannote[3024].speaker SPEAKER_32
transcript.pyannote[3024].start 18915.15096875
transcript.pyannote[3024].end 18915.53909375
transcript.pyannote[3025].speaker SPEAKER_26
transcript.pyannote[3025].start 18915.69096875
transcript.pyannote[3025].end 18916.39971875
transcript.pyannote[3026].speaker SPEAKER_32
transcript.pyannote[3026].start 18916.43346875
transcript.pyannote[3026].end 18917.36159375
transcript.pyannote[3027].speaker SPEAKER_32
transcript.pyannote[3027].start 18917.64846875
transcript.pyannote[3027].end 18921.79971875
transcript.pyannote[3028].speaker SPEAKER_32
transcript.pyannote[3028].start 18922.06971875
transcript.pyannote[3028].end 18922.47471875
transcript.pyannote[3029].speaker SPEAKER_32
transcript.pyannote[3029].start 18923.04846875
transcript.pyannote[3029].end 18923.65596875
transcript.pyannote[3030].speaker SPEAKER_32
transcript.pyannote[3030].start 18924.26346875
transcript.pyannote[3030].end 18925.03971875
transcript.pyannote[3031].speaker SPEAKER_32
transcript.pyannote[3031].start 18925.81596875
transcript.pyannote[3031].end 18927.55409375
transcript.pyannote[3032].speaker SPEAKER_32
transcript.pyannote[3032].start 18928.38096875
transcript.pyannote[3032].end 18934.74284375
transcript.pyannote[3033].speaker SPEAKER_32
transcript.pyannote[3033].start 18935.43471875
transcript.pyannote[3033].end 18936.95346875
transcript.pyannote[3034].speaker SPEAKER_32
transcript.pyannote[3034].start 18937.44284375
transcript.pyannote[3034].end 18938.80971875
transcript.pyannote[3035].speaker SPEAKER_32
transcript.pyannote[3035].start 18939.72096875
transcript.pyannote[3035].end 18941.00346875
transcript.pyannote[3036].speaker SPEAKER_32
transcript.pyannote[3036].start 18941.44221875
transcript.pyannote[3036].end 18942.50534375
transcript.pyannote[3037].speaker SPEAKER_32
transcript.pyannote[3037].start 18942.67409375
transcript.pyannote[3037].end 18944.20971875
transcript.pyannote[3038].speaker SPEAKER_32
transcript.pyannote[3038].start 18944.26034375
transcript.pyannote[3038].end 18945.07034375
transcript.pyannote[3039].speaker SPEAKER_32
transcript.pyannote[3039].start 18946.04909375
transcript.pyannote[3039].end 18946.79159375
transcript.pyannote[3040].speaker SPEAKER_32
transcript.pyannote[3040].start 18947.75346875
transcript.pyannote[3040].end 18952.17471875
transcript.pyannote[3041].speaker SPEAKER_32
transcript.pyannote[3041].start 18952.29284375
transcript.pyannote[3041].end 18953.74409375
transcript.pyannote[3042].speaker SPEAKER_32
transcript.pyannote[3042].start 18953.98034375
transcript.pyannote[3042].end 18954.62159375
transcript.pyannote[3043].speaker SPEAKER_32
transcript.pyannote[3043].start 18955.36409375
transcript.pyannote[3043].end 18958.01346875
transcript.pyannote[3044].speaker SPEAKER_32
transcript.pyannote[3044].start 18958.14846875
transcript.pyannote[3044].end 18960.42659375
transcript.pyannote[3045].speaker SPEAKER_32
transcript.pyannote[3045].start 18960.71346875
transcript.pyannote[3045].end 18963.00846875
transcript.pyannote[3046].speaker SPEAKER_32
transcript.pyannote[3046].start 18963.49784375
transcript.pyannote[3046].end 18965.33721875
transcript.pyannote[3047].speaker SPEAKER_32
transcript.pyannote[3047].start 18965.43846875
transcript.pyannote[3047].end 18970.66971875
transcript.pyannote[3048].speaker SPEAKER_32
transcript.pyannote[3048].start 18971.29409375
transcript.pyannote[3048].end 18977.04846875
transcript.pyannote[3049].speaker SPEAKER_32
transcript.pyannote[3049].start 18977.33534375
transcript.pyannote[3049].end 18979.32659375
transcript.pyannote[3050].speaker SPEAKER_32
transcript.pyannote[3050].start 18979.66409375
transcript.pyannote[3050].end 18983.93346875
transcript.pyannote[3051].speaker SPEAKER_32
transcript.pyannote[3051].start 18984.45659375
transcript.pyannote[3051].end 18991.84784375
transcript.pyannote[3052].speaker SPEAKER_32
transcript.pyannote[3052].start 18992.45534375
transcript.pyannote[3052].end 18993.09659375
transcript.pyannote[3053].speaker SPEAKER_32
transcript.pyannote[3053].start 18993.77159375
transcript.pyannote[3053].end 19003.67721875
transcript.pyannote[3054].speaker SPEAKER_32
transcript.pyannote[3054].start 19003.79534375
transcript.pyannote[3054].end 19005.31409375
transcript.pyannote[3055].speaker SPEAKER_32
transcript.pyannote[3055].start 19005.71909375
transcript.pyannote[3055].end 19006.84971875
transcript.pyannote[3056].speaker SPEAKER_32
transcript.pyannote[3056].start 19007.28846875
transcript.pyannote[3056].end 19008.95909375
transcript.pyannote[3057].speaker SPEAKER_32
transcript.pyannote[3057].start 19009.41471875
transcript.pyannote[3057].end 19011.06846875
transcript.pyannote[3058].speaker SPEAKER_32
transcript.pyannote[3058].start 19011.69284375
transcript.pyannote[3058].end 19013.93721875
transcript.pyannote[3059].speaker SPEAKER_32
transcript.pyannote[3059].start 19014.37596875
transcript.pyannote[3059].end 19015.08471875
transcript.pyannote[3060].speaker SPEAKER_32
transcript.pyannote[3060].start 19015.33784375
transcript.pyannote[3060].end 19015.89471875
transcript.pyannote[3061].speaker SPEAKER_32
transcript.pyannote[3061].start 19016.58659375
transcript.pyannote[3061].end 19017.24471875
transcript.pyannote[3062].speaker SPEAKER_32
transcript.pyannote[3062].start 19017.63284375
transcript.pyannote[3062].end 19023.35346875
transcript.pyannote[3063].speaker SPEAKER_32
transcript.pyannote[3063].start 19023.70784375
transcript.pyannote[3063].end 19030.62659375
transcript.pyannote[3064].speaker SPEAKER_32
transcript.pyannote[3064].start 19031.20034375
transcript.pyannote[3064].end 19039.50284375
transcript.pyannote[3065].speaker SPEAKER_32
transcript.pyannote[3065].start 19039.90784375
transcript.pyannote[3065].end 19051.56846875
transcript.pyannote[3066].speaker SPEAKER_32
transcript.pyannote[3066].start 19052.17596875
transcript.pyannote[3066].end 19057.76159375
transcript.pyannote[3067].speaker SPEAKER_32
transcript.pyannote[3067].start 19058.28471875
transcript.pyannote[3067].end 19061.11971875
transcript.pyannote[3068].speaker SPEAKER_32
transcript.pyannote[3068].start 19061.62596875
transcript.pyannote[3068].end 19091.14034375
transcript.pyannote[3069].speaker SPEAKER_32
transcript.pyannote[3069].start 19091.41034375
transcript.pyannote[3069].end 19099.51034375
transcript.pyannote[3070].speaker SPEAKER_32
transcript.pyannote[3070].start 19099.84784375
transcript.pyannote[3070].end 19134.99846875
transcript.pyannote[3071].speaker SPEAKER_32
transcript.pyannote[3071].start 19135.36971875
transcript.pyannote[3071].end 19165.45784375
transcript.pyannote[3072].speaker SPEAKER_32
transcript.pyannote[3072].start 19165.96409375
transcript.pyannote[3072].end 19188.08721875
transcript.pyannote[3073].speaker SPEAKER_32
transcript.pyannote[3073].start 19188.23909375
transcript.pyannote[3073].end 19189.15034375
transcript.pyannote[3074].speaker SPEAKER_32
transcript.pyannote[3074].start 19189.55534375
transcript.pyannote[3074].end 19225.24596875
transcript.pyannote[3075].speaker SPEAKER_26
transcript.pyannote[3075].start 19225.46534375
transcript.pyannote[3075].end 19251.60471875
transcript.pyannote[3076].speaker SPEAKER_38
transcript.pyannote[3076].start 19235.10096875
transcript.pyannote[3076].end 19237.59846875
transcript.pyannote[3077].speaker SPEAKER_32
transcript.pyannote[3077].start 19249.66409375
transcript.pyannote[3077].end 19258.60784375
transcript.pyannote[3078].speaker SPEAKER_26
transcript.pyannote[3078].start 19258.60784375
transcript.pyannote[3078].end 19259.63721875
transcript.pyannote[3079].speaker SPEAKER_32
transcript.pyannote[3079].start 19259.63721875
transcript.pyannote[3079].end 19262.03346875
transcript.pyannote[3080].speaker SPEAKER_26
transcript.pyannote[3080].start 19259.65409375
transcript.pyannote[3080].end 19263.02909375
transcript.pyannote[3081].speaker SPEAKER_08
transcript.pyannote[3081].start 19262.03346875
transcript.pyannote[3081].end 19264.00784375
transcript.pyannote[3082].speaker SPEAKER_32
transcript.pyannote[3082].start 19263.02909375
transcript.pyannote[3082].end 19263.95721875
transcript.pyannote[3083].speaker SPEAKER_26
transcript.pyannote[3083].start 19263.95721875
transcript.pyannote[3083].end 19264.10909375
transcript.pyannote[3084].speaker SPEAKER_35
transcript.pyannote[3084].start 19264.10909375
transcript.pyannote[3084].end 19264.12596875
transcript.pyannote[3085].speaker SPEAKER_08
transcript.pyannote[3085].start 19265.79659375
transcript.pyannote[3085].end 19273.79534375
transcript.pyannote[3086].speaker SPEAKER_08
transcript.pyannote[3086].start 19274.01471875
transcript.pyannote[3086].end 19275.01034375
transcript.pyannote[3087].speaker SPEAKER_11
transcript.pyannote[3087].start 19275.34784375
transcript.pyannote[3087].end 19276.52909375
transcript.pyannote[3088].speaker SPEAKER_08
transcript.pyannote[3088].start 19276.64721875
transcript.pyannote[3088].end 19276.66409375
transcript.pyannote[3089].speaker SPEAKER_13
transcript.pyannote[3089].start 19276.66409375
transcript.pyannote[3089].end 19276.83284375
transcript.pyannote[3090].speaker SPEAKER_08
transcript.pyannote[3090].start 19276.83284375
transcript.pyannote[3090].end 19276.91721875
transcript.pyannote[3091].speaker SPEAKER_08
transcript.pyannote[3091].start 19277.17034375
transcript.pyannote[3091].end 19277.91284375
transcript.pyannote[3092].speaker SPEAKER_13
transcript.pyannote[3092].start 19277.91284375
transcript.pyannote[3092].end 19277.92971875
transcript.pyannote[3093].speaker SPEAKER_08
transcript.pyannote[3093].start 19277.92971875
transcript.pyannote[3093].end 19277.94659375
transcript.pyannote[3094].speaker SPEAKER_13
transcript.pyannote[3094].start 19280.10659375
transcript.pyannote[3094].end 19283.02596875
transcript.pyannote[3095].speaker SPEAKER_13
transcript.pyannote[3095].start 19283.44784375
transcript.pyannote[3095].end 19286.35034375
transcript.pyannote[3096].speaker SPEAKER_38
transcript.pyannote[3096].start 19295.96909375
transcript.pyannote[3096].end 19296.00284375
transcript.pyannote[3097].speaker SPEAKER_35
transcript.pyannote[3097].start 19300.13721875
transcript.pyannote[3097].end 19301.31846875
transcript.pyannote[3098].speaker SPEAKER_35
transcript.pyannote[3098].start 19301.62221875
transcript.pyannote[3098].end 19308.55784375
transcript.pyannote[3099].speaker SPEAKER_35
transcript.pyannote[3099].start 19309.01346875
transcript.pyannote[3099].end 19310.83596875
transcript.pyannote[3100].speaker SPEAKER_35
transcript.pyannote[3100].start 19321.51784375
transcript.pyannote[3100].end 19328.94284375
transcript.pyannote[3101].speaker SPEAKER_35
transcript.pyannote[3101].start 19329.34784375
transcript.pyannote[3101].end 19332.58784375
transcript.pyannote[3102].speaker SPEAKER_35
transcript.pyannote[3102].start 19333.00971875
transcript.pyannote[3102].end 19334.24159375
transcript.pyannote[3103].speaker SPEAKER_35
transcript.pyannote[3103].start 19334.69721875
transcript.pyannote[3103].end 19335.43971875
transcript.pyannote[3104].speaker SPEAKER_35
transcript.pyannote[3104].start 19335.97971875
transcript.pyannote[3104].end 19337.75159375
transcript.pyannote[3105].speaker SPEAKER_10
transcript.pyannote[3105].start 19337.83596875
transcript.pyannote[3105].end 19338.46034375
transcript.pyannote[3106].speaker SPEAKER_35
transcript.pyannote[3106].start 19339.00034375
transcript.pyannote[3106].end 19340.04659375
transcript.pyannote[3107].speaker SPEAKER_10
transcript.pyannote[3107].start 19340.14784375
transcript.pyannote[3107].end 19347.60659375
transcript.pyannote[3108].speaker SPEAKER_10
transcript.pyannote[3108].start 19347.75846875
transcript.pyannote[3108].end 19350.01971875
transcript.pyannote[3109].speaker SPEAKER_10
transcript.pyannote[3109].start 19350.17159375
transcript.pyannote[3109].end 19351.53846875
transcript.pyannote[3110].speaker SPEAKER_10
transcript.pyannote[3110].start 19351.70721875
transcript.pyannote[3110].end 19353.76596875
transcript.pyannote[3111].speaker SPEAKER_10
transcript.pyannote[3111].start 19353.91784375
transcript.pyannote[3111].end 19365.12284375
transcript.pyannote[3112].speaker SPEAKER_35
transcript.pyannote[3112].start 19365.69659375
transcript.pyannote[3112].end 19377.23909375
transcript.pyannote[3113].speaker SPEAKER_35
transcript.pyannote[3113].start 19377.44159375
transcript.pyannote[3113].end 19387.63409375
transcript.pyannote[3114].speaker SPEAKER_10
transcript.pyannote[3114].start 19389.82784375
transcript.pyannote[3114].end 19404.54284375
transcript.pyannote[3115].speaker SPEAKER_35
transcript.pyannote[3115].start 19396.69596875
transcript.pyannote[3115].end 19397.13471875
transcript.pyannote[3116].speaker SPEAKER_35
transcript.pyannote[3116].start 19402.39971875
transcript.pyannote[3116].end 19403.96909375
transcript.pyannote[3117].speaker SPEAKER_35
transcript.pyannote[3117].start 19404.59346875
transcript.pyannote[3117].end 19416.49034375
transcript.pyannote[3118].speaker SPEAKER_35
transcript.pyannote[3118].start 19417.92471875
transcript.pyannote[3118].end 19419.22409375
transcript.pyannote[3119].speaker SPEAKER_35
transcript.pyannote[3119].start 19419.54471875
transcript.pyannote[3119].end 19420.97909375
transcript.pyannote[3120].speaker SPEAKER_10
transcript.pyannote[3120].start 19420.97909375
transcript.pyannote[3120].end 19424.30346875
transcript.pyannote[3121].speaker SPEAKER_35
transcript.pyannote[3121].start 19424.30346875
transcript.pyannote[3121].end 19430.22659375
transcript.pyannote[3122].speaker SPEAKER_35
transcript.pyannote[3122].start 19430.96909375
transcript.pyannote[3122].end 19431.64409375
transcript.pyannote[3123].speaker SPEAKER_35
transcript.pyannote[3123].start 19432.42034375
transcript.pyannote[3123].end 19442.22471875
transcript.pyannote[3124].speaker SPEAKER_35
transcript.pyannote[3124].start 19442.71409375
transcript.pyannote[3124].end 19444.38471875
transcript.pyannote[3125].speaker SPEAKER_35
transcript.pyannote[3125].start 19445.92034375
transcript.pyannote[3125].end 19447.37159375
transcript.pyannote[3126].speaker SPEAKER_35
transcript.pyannote[3126].start 19447.67534375
transcript.pyannote[3126].end 19452.28221875
transcript.pyannote[3127].speaker SPEAKER_35
transcript.pyannote[3127].start 19452.34971875
transcript.pyannote[3127].end 19455.79221875
transcript.pyannote[3128].speaker SPEAKER_35
transcript.pyannote[3128].start 19455.96096875
transcript.pyannote[3128].end 19456.70346875
transcript.pyannote[3129].speaker SPEAKER_35
transcript.pyannote[3129].start 19457.04096875
transcript.pyannote[3129].end 19458.15471875
transcript.pyannote[3130].speaker SPEAKER_02
transcript.pyannote[3130].start 19458.25596875
transcript.pyannote[3130].end 19460.82096875
transcript.pyannote[3131].speaker SPEAKER_35
transcript.pyannote[3131].start 19461.09096875
transcript.pyannote[3131].end 19482.52221875
transcript.pyannote[3132].speaker SPEAKER_35
transcript.pyannote[3132].start 19483.24784375
transcript.pyannote[3132].end 19503.02534375
transcript.pyannote[3133].speaker SPEAKER_35
transcript.pyannote[3133].start 19503.09284375
transcript.pyannote[3133].end 19506.61971875
transcript.pyannote[3134].speaker SPEAKER_35
transcript.pyannote[3134].start 19506.95721875
transcript.pyannote[3134].end 19508.74596875
transcript.pyannote[3135].speaker SPEAKER_35
transcript.pyannote[3135].start 19509.65721875
transcript.pyannote[3135].end 19510.26471875
transcript.pyannote[3136].speaker SPEAKER_35
transcript.pyannote[3136].start 19510.65284375
transcript.pyannote[3136].end 19512.67784375
transcript.pyannote[3137].speaker SPEAKER_35
transcript.pyannote[3137].start 19512.94784375
transcript.pyannote[3137].end 19521.95909375
transcript.pyannote[3138].speaker SPEAKER_35
transcript.pyannote[3138].start 19522.56659375
transcript.pyannote[3138].end 19524.43971875
transcript.pyannote[3139].speaker SPEAKER_35
transcript.pyannote[3139].start 19524.64221875
transcript.pyannote[3139].end 19564.39971875
transcript.pyannote[3140].speaker SPEAKER_35
transcript.pyannote[3140].start 19564.97346875
transcript.pyannote[3140].end 19602.35159375
transcript.pyannote[3141].speaker SPEAKER_35
transcript.pyannote[3141].start 19602.50346875
transcript.pyannote[3141].end 19605.00096875
transcript.pyannote[3142].speaker SPEAKER_02
transcript.pyannote[3142].start 19605.50721875
transcript.pyannote[3142].end 19613.94471875
transcript.pyannote[3143].speaker SPEAKER_02
transcript.pyannote[3143].start 19614.18096875
transcript.pyannote[3143].end 19621.09971875
transcript.pyannote[3144].speaker SPEAKER_35
transcript.pyannote[3144].start 19620.20534375
transcript.pyannote[3144].end 19638.41346875
transcript.pyannote[3145].speaker SPEAKER_38
transcript.pyannote[3145].start 19625.48721875
transcript.pyannote[3145].end 19625.53784375
transcript.pyannote[3146].speaker SPEAKER_02
transcript.pyannote[3146].start 19625.53784375
transcript.pyannote[3146].end 19625.67284375
transcript.pyannote[3147].speaker SPEAKER_38
transcript.pyannote[3147].start 19625.67284375
transcript.pyannote[3147].end 19625.70659375
transcript.pyannote[3148].speaker SPEAKER_02
transcript.pyannote[3148].start 19625.70659375
transcript.pyannote[3148].end 19625.89221875
transcript.pyannote[3149].speaker SPEAKER_38
transcript.pyannote[3149].start 19625.89221875
transcript.pyannote[3149].end 19625.90909375
transcript.pyannote[3150].speaker SPEAKER_02
transcript.pyannote[3150].start 19625.90909375
transcript.pyannote[3150].end 19625.97659375
transcript.pyannote[3151].speaker SPEAKER_38
transcript.pyannote[3151].start 19625.97659375
transcript.pyannote[3151].end 19626.21284375
transcript.pyannote[3152].speaker SPEAKER_38
transcript.pyannote[3152].start 19632.18659375
transcript.pyannote[3152].end 19632.23721875
transcript.pyannote[3153].speaker SPEAKER_02
transcript.pyannote[3153].start 19632.23721875
transcript.pyannote[3153].end 19632.40596875
transcript.pyannote[3154].speaker SPEAKER_38
transcript.pyannote[3154].start 19632.40596875
transcript.pyannote[3154].end 19632.54096875
transcript.pyannote[3155].speaker SPEAKER_02
transcript.pyannote[3155].start 19632.54096875
transcript.pyannote[3155].end 19632.59159375
transcript.pyannote[3156].speaker SPEAKER_38
transcript.pyannote[3156].start 19632.59159375
transcript.pyannote[3156].end 19632.60846875
transcript.pyannote[3157].speaker SPEAKER_02
transcript.pyannote[3157].start 19637.87346875
transcript.pyannote[3157].end 19653.12846875
transcript.pyannote[3158].speaker SPEAKER_35
transcript.pyannote[3158].start 19650.78284375
transcript.pyannote[3158].end 19653.01034375
transcript.pyannote[3159].speaker SPEAKER_35
transcript.pyannote[3159].start 19653.12846875
transcript.pyannote[3159].end 19657.48221875
transcript.pyannote[3160].speaker SPEAKER_02
transcript.pyannote[3160].start 19657.61721875
transcript.pyannote[3160].end 19659.62534375
transcript.pyannote[3161].speaker SPEAKER_02
transcript.pyannote[3161].start 19659.87846875
transcript.pyannote[3161].end 19665.31221875
transcript.pyannote[3162].speaker SPEAKER_35
transcript.pyannote[3162].start 19663.84409375
transcript.pyannote[3162].end 19677.68159375
transcript.pyannote[3163].speaker SPEAKER_35
transcript.pyannote[3163].start 19677.91784375
transcript.pyannote[3163].end 19681.57971875
transcript.pyannote[3164].speaker SPEAKER_35
transcript.pyannote[3164].start 19681.81596875
transcript.pyannote[3164].end 19691.04659375
transcript.pyannote[3165].speaker SPEAKER_35
transcript.pyannote[3165].start 19691.58659375
transcript.pyannote[3165].end 19695.95721875
transcript.pyannote[3166].speaker SPEAKER_02
transcript.pyannote[3166].start 19696.10909375
transcript.pyannote[3166].end 19701.22221875
transcript.pyannote[3167].speaker SPEAKER_35
transcript.pyannote[3167].start 19700.17596875
transcript.pyannote[3167].end 19707.83721875
transcript.pyannote[3168].speaker SPEAKER_02
transcript.pyannote[3168].start 19704.56346875
transcript.pyannote[3168].end 19706.14971875
transcript.pyannote[3169].speaker SPEAKER_38
transcript.pyannote[3169].start 19706.14971875
transcript.pyannote[3169].end 19706.21721875
transcript.pyannote[3170].speaker SPEAKER_35
transcript.pyannote[3170].start 19713.67596875
transcript.pyannote[3170].end 19728.45846875
transcript.pyannote[3171].speaker SPEAKER_35
transcript.pyannote[3171].start 19729.43721875
transcript.pyannote[3171].end 19729.55534375
transcript.pyannote[3172].speaker SPEAKER_26
transcript.pyannote[3172].start 19729.55534375
transcript.pyannote[3172].end 19730.36534375
transcript.pyannote[3173].speaker SPEAKER_35
transcript.pyannote[3173].start 19730.36534375
transcript.pyannote[3173].end 19730.39909375
transcript.pyannote[3174].speaker SPEAKER_35
transcript.pyannote[3174].start 19730.48346875
transcript.pyannote[3174].end 19730.53409375
transcript.pyannote[3175].speaker SPEAKER_26
transcript.pyannote[3175].start 19730.53409375
transcript.pyannote[3175].end 19748.03346875
transcript.pyannote[3176].speaker SPEAKER_00
transcript.pyannote[3176].start 19739.54534375
transcript.pyannote[3176].end 19739.83221875
transcript.pyannote[3177].speaker SPEAKER_26
transcript.pyannote[3177].start 19748.16846875
transcript.pyannote[3177].end 19749.67034375
transcript.pyannote[3178].speaker SPEAKER_26
transcript.pyannote[3178].start 19749.99096875
transcript.pyannote[3178].end 19755.03659375
transcript.pyannote[3179].speaker SPEAKER_35
transcript.pyannote[3179].start 19755.03659375
transcript.pyannote[3179].end 19756.36971875
transcript.pyannote[3180].speaker SPEAKER_35
transcript.pyannote[3180].start 19757.11221875
transcript.pyannote[3180].end 19780.70346875
transcript.pyannote[3181].speaker SPEAKER_26
transcript.pyannote[3181].start 19781.14221875
transcript.pyannote[3181].end 19782.59346875
transcript.pyannote[3182].speaker SPEAKER_26
transcript.pyannote[3182].start 19783.33596875
transcript.pyannote[3182].end 19785.64784375
transcript.pyannote[3183].speaker SPEAKER_35
transcript.pyannote[3183].start 19783.35284375
transcript.pyannote[3183].end 19787.35221875
transcript.pyannote[3184].speaker SPEAKER_26
transcript.pyannote[3184].start 19785.66471875
transcript.pyannote[3184].end 19785.68159375
transcript.pyannote[3185].speaker SPEAKER_26
transcript.pyannote[3185].start 19786.03596875
transcript.pyannote[3185].end 19788.70221875
transcript.pyannote[3186].speaker SPEAKER_26
transcript.pyannote[3186].start 19789.34346875
transcript.pyannote[3186].end 19801.56096875
transcript.pyannote[3187].speaker SPEAKER_11
transcript.pyannote[3187].start 19789.41096875
transcript.pyannote[3187].end 19789.42784375
transcript.pyannote[3188].speaker SPEAKER_35
transcript.pyannote[3188].start 19789.42784375
transcript.pyannote[3188].end 19789.78221875
transcript.pyannote[3189].speaker SPEAKER_38
transcript.pyannote[3189].start 19789.78221875
transcript.pyannote[3189].end 19789.79909375
transcript.pyannote[3190].speaker SPEAKER_42
transcript.pyannote[3190].start 19793.10659375
transcript.pyannote[3190].end 19793.12346875
transcript.pyannote[3191].speaker SPEAKER_35
transcript.pyannote[3191].start 19793.12346875
transcript.pyannote[3191].end 19793.96721875
transcript.pyannote[3192].speaker SPEAKER_38
transcript.pyannote[3192].start 19793.96721875
transcript.pyannote[3192].end 19795.06409375
transcript.pyannote[3193].speaker SPEAKER_42
transcript.pyannote[3193].start 19795.06409375
transcript.pyannote[3193].end 19795.80659375
transcript.pyannote[3194].speaker SPEAKER_38
transcript.pyannote[3194].start 19795.80659375
transcript.pyannote[3194].end 19795.97534375
transcript.pyannote[3195].speaker SPEAKER_42
transcript.pyannote[3195].start 19795.97534375
transcript.pyannote[3195].end 19796.02596875
transcript.pyannote[3196].speaker SPEAKER_35
transcript.pyannote[3196].start 19796.02596875
transcript.pyannote[3196].end 19796.36346875
transcript.pyannote[3197].speaker SPEAKER_35
transcript.pyannote[3197].start 19800.61596875
transcript.pyannote[3197].end 19801.47659375
transcript.pyannote[3198].speaker SPEAKER_35
transcript.pyannote[3198].start 19801.56096875
transcript.pyannote[3198].end 19815.97221875
transcript.pyannote[3199].speaker SPEAKER_38
transcript.pyannote[3199].start 19810.57221875
transcript.pyannote[3199].end 19810.58909375
transcript.pyannote[3200].speaker SPEAKER_26
transcript.pyannote[3200].start 19810.58909375
transcript.pyannote[3200].end 19811.60159375
transcript.pyannote[3201].speaker SPEAKER_26
transcript.pyannote[3201].start 19813.01909375
transcript.pyannote[3201].end 19814.41971875
transcript.pyannote[3202].speaker SPEAKER_26
transcript.pyannote[3202].start 19815.97221875
transcript.pyannote[3202].end 19816.73159375
transcript.pyannote[3203].speaker SPEAKER_35
transcript.pyannote[3203].start 19816.73159375
transcript.pyannote[3203].end 19819.71846875
transcript.pyannote[3204].speaker SPEAKER_26
transcript.pyannote[3204].start 19816.74846875
transcript.pyannote[3204].end 19817.00159375
transcript.pyannote[3205].speaker SPEAKER_26
transcript.pyannote[3205].start 19818.23346875
transcript.pyannote[3205].end 19824.61221875
transcript.pyannote[3206].speaker SPEAKER_26
transcript.pyannote[3206].start 19824.83159375
transcript.pyannote[3206].end 19834.04534375
transcript.pyannote[3207].speaker SPEAKER_35
transcript.pyannote[3207].start 19824.88221875
transcript.pyannote[3207].end 19827.97034375
transcript.pyannote[3208].speaker SPEAKER_29
transcript.pyannote[3208].start 19827.97034375
transcript.pyannote[3208].end 19828.37534375
transcript.pyannote[3209].speaker SPEAKER_38
transcript.pyannote[3209].start 19828.37534375
transcript.pyannote[3209].end 19829.08409375
transcript.pyannote[3210].speaker SPEAKER_29
transcript.pyannote[3210].start 19829.08409375
transcript.pyannote[3210].end 19829.52284375
transcript.pyannote[3211].speaker SPEAKER_26
transcript.pyannote[3211].start 19834.48409375
transcript.pyannote[3211].end 19838.21346875
transcript.pyannote[3212].speaker SPEAKER_35
transcript.pyannote[3212].start 19838.31471875
transcript.pyannote[3212].end 19843.20846875
transcript.pyannote[3213].speaker SPEAKER_26
transcript.pyannote[3213].start 19839.42846875
transcript.pyannote[3213].end 19852.13534375
transcript.pyannote[3214].speaker SPEAKER_35
transcript.pyannote[3214].start 19847.68034375
transcript.pyannote[3214].end 19848.60846875
transcript.pyannote[3215].speaker SPEAKER_35
transcript.pyannote[3215].start 19850.34659375
transcript.pyannote[3215].end 19893.02346875
transcript.pyannote[3216].speaker SPEAKER_26
transcript.pyannote[3216].start 19856.32034375
transcript.pyannote[3216].end 19856.37096875
transcript.pyannote[3217].speaker SPEAKER_26
transcript.pyannote[3217].start 19856.38784375
transcript.pyannote[3217].end 19856.97846875
transcript.pyannote[3218].speaker SPEAKER_38
transcript.pyannote[3218].start 19875.32159375
transcript.pyannote[3218].end 19876.97534375
transcript.pyannote[3219].speaker SPEAKER_06
transcript.pyannote[3219].start 19876.97534375
transcript.pyannote[3219].end 19877.49846875
transcript.pyannote[3220].speaker SPEAKER_26
transcript.pyannote[3220].start 19893.02346875
transcript.pyannote[3220].end 19908.26159375
transcript.pyannote[3221].speaker SPEAKER_26
transcript.pyannote[3221].start 19908.91971875
transcript.pyannote[3221].end 19924.02284375
transcript.pyannote[3222].speaker SPEAKER_19
transcript.pyannote[3222].start 19915.33221875
transcript.pyannote[3222].end 19916.20971875
transcript.pyannote[3223].speaker SPEAKER_35
transcript.pyannote[3223].start 19922.03159375
transcript.pyannote[3223].end 19924.42784375
transcript.pyannote[3224].speaker SPEAKER_38
transcript.pyannote[3224].start 19924.02284375
transcript.pyannote[3224].end 19924.61346875
transcript.pyannote[3225].speaker SPEAKER_26
transcript.pyannote[3225].start 19924.61346875
transcript.pyannote[3225].end 19924.63034375
transcript.pyannote[3226].speaker SPEAKER_35
transcript.pyannote[3226].start 19924.61346875
transcript.pyannote[3226].end 19951.96784375
transcript.pyannote[3227].speaker SPEAKER_26
transcript.pyannote[3227].start 19947.27659375
transcript.pyannote[3227].end 19947.29346875
transcript.pyannote[3228].speaker SPEAKER_06
transcript.pyannote[3228].start 19947.29346875
transcript.pyannote[3228].end 19947.64784375
transcript.pyannote[3229].speaker SPEAKER_38
transcript.pyannote[3229].start 19947.64784375
transcript.pyannote[3229].end 19947.96846875
transcript.pyannote[3230].speaker SPEAKER_06
transcript.pyannote[3230].start 19947.96846875
transcript.pyannote[3230].end 19948.03596875
transcript.pyannote[3231].speaker SPEAKER_26
transcript.pyannote[3231].start 19948.03596875
transcript.pyannote[3231].end 19950.87096875
transcript.pyannote[3232].speaker SPEAKER_26
transcript.pyannote[3232].start 19951.96784375
transcript.pyannote[3232].end 19954.02659375
transcript.pyannote[3233].speaker SPEAKER_26
transcript.pyannote[3233].start 19954.24596875
transcript.pyannote[3233].end 19966.12596875
transcript.pyannote[3234].speaker SPEAKER_35
transcript.pyannote[3234].start 19963.81409375
transcript.pyannote[3234].end 19988.45159375
transcript.pyannote[3235].speaker SPEAKER_26
transcript.pyannote[3235].start 19966.90221875
transcript.pyannote[3235].end 19969.50096875
transcript.pyannote[3236].speaker SPEAKER_26
transcript.pyannote[3236].start 19984.53659375
transcript.pyannote[3236].end 19986.07221875
transcript.pyannote[3237].speaker SPEAKER_26
transcript.pyannote[3237].start 19988.11409375
transcript.pyannote[3237].end 19993.10909375
transcript.pyannote[3238].speaker SPEAKER_26
transcript.pyannote[3238].start 19993.29471875
transcript.pyannote[3238].end 19993.66596875
transcript.pyannote[3239].speaker SPEAKER_35
transcript.pyannote[3239].start 19994.17221875
transcript.pyannote[3239].end 20006.98034375
transcript.pyannote[3240].speaker SPEAKER_38
transcript.pyannote[3240].start 20002.12034375
transcript.pyannote[3240].end 20003.03159375
transcript.pyannote[3241].speaker SPEAKER_26
transcript.pyannote[3241].start 20006.98034375
transcript.pyannote[3241].end 20007.04784375
transcript.pyannote[3242].speaker SPEAKER_35
transcript.pyannote[3242].start 20007.04784375
transcript.pyannote[3242].end 20007.40221875
transcript.pyannote[3243].speaker SPEAKER_26
transcript.pyannote[3243].start 20007.40221875
transcript.pyannote[3243].end 20015.26596875
transcript.pyannote[3244].speaker SPEAKER_35
transcript.pyannote[3244].start 20010.47346875
transcript.pyannote[3244].end 20016.09284375
transcript.pyannote[3245].speaker SPEAKER_26
transcript.pyannote[3245].start 20015.85659375
transcript.pyannote[3245].end 20026.45409375
transcript.pyannote[3246].speaker SPEAKER_35
transcript.pyannote[3246].start 20024.02409375
transcript.pyannote[3246].end 20038.16534375
transcript.pyannote[3247].speaker SPEAKER_11
transcript.pyannote[3247].start 20032.57971875
transcript.pyannote[3247].end 20032.59659375
transcript.pyannote[3248].speaker SPEAKER_38
transcript.pyannote[3248].start 20032.59659375
transcript.pyannote[3248].end 20032.95096875
transcript.pyannote[3249].speaker SPEAKER_26
transcript.pyannote[3249].start 20032.95096875
transcript.pyannote[3249].end 20032.96784375
transcript.pyannote[3250].speaker SPEAKER_38
transcript.pyannote[3250].start 20032.96784375
transcript.pyannote[3250].end 20033.01846875
transcript.pyannote[3251].speaker SPEAKER_11
transcript.pyannote[3251].start 20033.01846875
transcript.pyannote[3251].end 20033.05221875
transcript.pyannote[3252].speaker SPEAKER_35
transcript.pyannote[3252].start 20039.56596875
transcript.pyannote[3252].end 20042.35034375
transcript.pyannote[3253].speaker SPEAKER_35
transcript.pyannote[3253].start 20042.65409375
transcript.pyannote[3253].end 20043.86909375
transcript.pyannote[3254].speaker SPEAKER_35
transcript.pyannote[3254].start 20045.70846875
transcript.pyannote[3254].end 20047.49721875
transcript.pyannote[3255].speaker SPEAKER_26
transcript.pyannote[3255].start 20047.24409375
transcript.pyannote[3255].end 20052.66096875
transcript.pyannote[3256].speaker SPEAKER_35
transcript.pyannote[3256].start 20049.52221875
transcript.pyannote[3256].end 20052.74534375
transcript.pyannote[3257].speaker SPEAKER_02
transcript.pyannote[3257].start 20055.29346875
transcript.pyannote[3257].end 20059.49534375
transcript.pyannote[3258].speaker SPEAKER_35
transcript.pyannote[3258].start 20056.05284375
transcript.pyannote[3258].end 20060.71034375
transcript.pyannote[3259].speaker SPEAKER_02
transcript.pyannote[3259].start 20061.03096875
transcript.pyannote[3259].end 20067.39284375
transcript.pyannote[3260].speaker SPEAKER_35
transcript.pyannote[3260].start 20066.39721875
transcript.pyannote[3260].end 20070.16034375
transcript.pyannote[3261].speaker SPEAKER_02
transcript.pyannote[3261].start 20070.07596875
transcript.pyannote[3261].end 20072.25284375
transcript.pyannote[3262].speaker SPEAKER_35
transcript.pyannote[3262].start 20071.02096875
transcript.pyannote[3262].end 20071.57784375
transcript.pyannote[3263].speaker SPEAKER_35
transcript.pyannote[3263].start 20071.66221875
transcript.pyannote[3263].end 20086.42784375
transcript.pyannote[3264].speaker SPEAKER_02
transcript.pyannote[3264].start 20085.68534375
transcript.pyannote[3264].end 20092.89096875
transcript.pyannote[3265].speaker SPEAKER_35
transcript.pyannote[3265].start 20092.89096875
transcript.pyannote[3265].end 20146.55346875
transcript.pyannote[3266].speaker SPEAKER_26
transcript.pyannote[3266].start 20149.08471875
transcript.pyannote[3266].end 20153.08409375
transcript.pyannote[3267].speaker SPEAKER_26
transcript.pyannote[3267].start 20153.45534375
transcript.pyannote[3267].end 20155.49721875
transcript.pyannote[3268].speaker SPEAKER_35
transcript.pyannote[3268].start 20154.97409375
transcript.pyannote[3268].end 20161.89284375
transcript.pyannote[3269].speaker SPEAKER_26
transcript.pyannote[3269].start 20161.03221875
transcript.pyannote[3269].end 20163.14159375
transcript.pyannote[3270].speaker SPEAKER_13
transcript.pyannote[3270].start 20164.01909375
transcript.pyannote[3270].end 20165.33534375
transcript.pyannote[3271].speaker SPEAKER_13
transcript.pyannote[3271].start 20166.34784375
transcript.pyannote[3271].end 20168.30534375
transcript.pyannote[3272].speaker SPEAKER_13
transcript.pyannote[3272].start 20168.99721875
transcript.pyannote[3272].end 20171.51159375
transcript.pyannote[3273].speaker SPEAKER_13
transcript.pyannote[3273].start 20172.16971875
transcript.pyannote[3273].end 20175.17346875
transcript.pyannote[3274].speaker SPEAKER_13
transcript.pyannote[3274].start 20175.51096875
transcript.pyannote[3274].end 20175.79784375
transcript.pyannote[3275].speaker SPEAKER_13
transcript.pyannote[3275].start 20175.89909375
transcript.pyannote[3275].end 20177.31659375
transcript.pyannote[3276].speaker SPEAKER_13
transcript.pyannote[3276].start 20178.17721875
transcript.pyannote[3276].end 20183.59409375
transcript.pyannote[3277].speaker SPEAKER_33
transcript.pyannote[3277].start 20199.70971875
transcript.pyannote[3277].end 20203.10159375
transcript.pyannote[3278].speaker SPEAKER_33
transcript.pyannote[3278].start 20203.18596875
transcript.pyannote[3278].end 20209.95284375
transcript.pyannote[3279].speaker SPEAKER_33
transcript.pyannote[3279].start 20210.72909375
transcript.pyannote[3279].end 20212.26471875
transcript.pyannote[3280].speaker SPEAKER_33
transcript.pyannote[3280].start 20222.15346875
transcript.pyannote[3280].end 20223.01409375
transcript.pyannote[3281].speaker SPEAKER_33
transcript.pyannote[3281].start 20223.57096875
transcript.pyannote[3281].end 20226.55784375
transcript.pyannote[3282].speaker SPEAKER_33
transcript.pyannote[3282].start 20226.74346875
transcript.pyannote[3282].end 20227.30034375
transcript.pyannote[3283].speaker SPEAKER_33
transcript.pyannote[3283].start 20227.51971875
transcript.pyannote[3283].end 20228.22846875
transcript.pyannote[3284].speaker SPEAKER_33
transcript.pyannote[3284].start 20228.38034375
transcript.pyannote[3284].end 20229.67971875
transcript.pyannote[3285].speaker SPEAKER_33
transcript.pyannote[3285].start 20230.43909375
transcript.pyannote[3285].end 20232.54846875
transcript.pyannote[3286].speaker SPEAKER_33
transcript.pyannote[3286].start 20232.70034375
transcript.pyannote[3286].end 20237.94846875
transcript.pyannote[3287].speaker SPEAKER_33
transcript.pyannote[3287].start 20239.16346875
transcript.pyannote[3287].end 20242.60596875
transcript.pyannote[3288].speaker SPEAKER_33
transcript.pyannote[3288].start 20243.87159375
transcript.pyannote[3288].end 20245.54221875
transcript.pyannote[3289].speaker SPEAKER_33
transcript.pyannote[3289].start 20246.80784375
transcript.pyannote[3289].end 20247.11159375
transcript.pyannote[3290].speaker SPEAKER_33
transcript.pyannote[3290].start 20248.27596875
transcript.pyannote[3290].end 20252.24159375
transcript.pyannote[3291].speaker SPEAKER_33
transcript.pyannote[3291].start 20252.88284375
transcript.pyannote[3291].end 20260.25721875
transcript.pyannote[3292].speaker SPEAKER_33
transcript.pyannote[3292].start 20262.75471875
transcript.pyannote[3292].end 20264.15534375
transcript.pyannote[3293].speaker SPEAKER_33
transcript.pyannote[3293].start 20265.84284375
transcript.pyannote[3293].end 20266.95659375
transcript.pyannote[3294].speaker SPEAKER_33
transcript.pyannote[3294].start 20267.10846875
transcript.pyannote[3294].end 20267.74971875
transcript.pyannote[3295].speaker SPEAKER_33
transcript.pyannote[3295].start 20268.23909375
transcript.pyannote[3295].end 20270.14596875
transcript.pyannote[3296].speaker SPEAKER_33
transcript.pyannote[3296].start 20270.58471875
transcript.pyannote[3296].end 20275.90034375
transcript.pyannote[3297].speaker SPEAKER_33
transcript.pyannote[3297].start 20276.15346875
transcript.pyannote[3297].end 20284.16909375
transcript.pyannote[3298].speaker SPEAKER_33
transcript.pyannote[3298].start 20284.91159375
transcript.pyannote[3298].end 20287.47659375
transcript.pyannote[3299].speaker SPEAKER_33
transcript.pyannote[3299].start 20288.33721875
transcript.pyannote[3299].end 20292.48846875
transcript.pyannote[3300].speaker SPEAKER_33
transcript.pyannote[3300].start 20292.89346875
transcript.pyannote[3300].end 20295.22221875
transcript.pyannote[3301].speaker SPEAKER_33
transcript.pyannote[3301].start 20295.23909375
transcript.pyannote[3301].end 20300.23409375
transcript.pyannote[3302].speaker SPEAKER_07
transcript.pyannote[3302].start 20300.03159375
transcript.pyannote[3302].end 20306.19096875
transcript.pyannote[3303].speaker SPEAKER_33
transcript.pyannote[3303].start 20306.41034375
transcript.pyannote[3303].end 20307.32159375
transcript.pyannote[3304].speaker SPEAKER_07
transcript.pyannote[3304].start 20307.32159375
transcript.pyannote[3304].end 20307.72659375
transcript.pyannote[3305].speaker SPEAKER_33
transcript.pyannote[3305].start 20307.72659375
transcript.pyannote[3305].end 20307.76034375
transcript.pyannote[3306].speaker SPEAKER_07
transcript.pyannote[3306].start 20307.76034375
transcript.pyannote[3306].end 20307.94596875
transcript.pyannote[3307].speaker SPEAKER_33
transcript.pyannote[3307].start 20307.94596875
transcript.pyannote[3307].end 20307.96284375
transcript.pyannote[3308].speaker SPEAKER_07
transcript.pyannote[3308].start 20307.96284375
transcript.pyannote[3308].end 20308.06409375
transcript.pyannote[3309].speaker SPEAKER_07
transcript.pyannote[3309].start 20308.57034375
transcript.pyannote[3309].end 20309.71784375
transcript.pyannote[3310].speaker SPEAKER_33
transcript.pyannote[3310].start 20309.31284375
transcript.pyannote[3310].end 20311.77659375
transcript.pyannote[3311].speaker SPEAKER_33
transcript.pyannote[3311].start 20312.24909375
transcript.pyannote[3311].end 20315.94471875
transcript.pyannote[3312].speaker SPEAKER_33
transcript.pyannote[3312].start 20317.46346875
transcript.pyannote[3312].end 20319.28596875
transcript.pyannote[3313].speaker SPEAKER_38
transcript.pyannote[3313].start 20319.64034375
transcript.pyannote[3313].end 20320.31534375
transcript.pyannote[3314].speaker SPEAKER_33
transcript.pyannote[3314].start 20320.01159375
transcript.pyannote[3314].end 20331.70596875
transcript.pyannote[3315].speaker SPEAKER_38
transcript.pyannote[3315].start 20322.17159375
transcript.pyannote[3315].end 20322.96471875
transcript.pyannote[3316].speaker SPEAKER_33
transcript.pyannote[3316].start 20332.22909375
transcript.pyannote[3316].end 20332.49909375
transcript.pyannote[3317].speaker SPEAKER_05
transcript.pyannote[3317].start 20332.24596875
transcript.pyannote[3317].end 20332.26284375
transcript.pyannote[3318].speaker SPEAKER_38
transcript.pyannote[3318].start 20332.26284375
transcript.pyannote[3318].end 20332.68471875
transcript.pyannote[3319].speaker SPEAKER_33
transcript.pyannote[3319].start 20332.65096875
transcript.pyannote[3319].end 20334.01784375
transcript.pyannote[3320].speaker SPEAKER_05
transcript.pyannote[3320].start 20332.68471875
transcript.pyannote[3320].end 20332.70159375
transcript.pyannote[3321].speaker SPEAKER_38
transcript.pyannote[3321].start 20334.18659375
transcript.pyannote[3321].end 20334.50721875
transcript.pyannote[3322].speaker SPEAKER_33
transcript.pyannote[3322].start 20334.33846875
transcript.pyannote[3322].end 20335.90784375
transcript.pyannote[3323].speaker SPEAKER_33
transcript.pyannote[3323].start 20336.05971875
transcript.pyannote[3323].end 20345.05409375
transcript.pyannote[3324].speaker SPEAKER_33
transcript.pyannote[3324].start 20345.07096875
transcript.pyannote[3324].end 20370.19784375
transcript.pyannote[3325].speaker SPEAKER_00
transcript.pyannote[3325].start 20359.36409375
transcript.pyannote[3325].end 20359.39784375
transcript.pyannote[3326].speaker SPEAKER_04
transcript.pyannote[3326].start 20359.39784375
transcript.pyannote[3326].end 20359.85346875
transcript.pyannote[3327].speaker SPEAKER_00
transcript.pyannote[3327].start 20359.85346875
transcript.pyannote[3327].end 20359.90409375
transcript.pyannote[3328].speaker SPEAKER_33
transcript.pyannote[3328].start 20370.95721875
transcript.pyannote[3328].end 20387.17409375
transcript.pyannote[3329].speaker SPEAKER_33
transcript.pyannote[3329].start 20387.27534375
transcript.pyannote[3329].end 20389.41846875
transcript.pyannote[3330].speaker SPEAKER_33
transcript.pyannote[3330].start 20389.78971875
transcript.pyannote[3330].end 20391.94971875
transcript.pyannote[3331].speaker SPEAKER_33
transcript.pyannote[3331].start 20392.69221875
transcript.pyannote[3331].end 20395.45971875
transcript.pyannote[3332].speaker SPEAKER_33
transcript.pyannote[3332].start 20396.05034375
transcript.pyannote[3332].end 20398.42971875
transcript.pyannote[3333].speaker SPEAKER_33
transcript.pyannote[3333].start 20398.75034375
transcript.pyannote[3333].end 20401.58534375
transcript.pyannote[3334].speaker SPEAKER_33
transcript.pyannote[3334].start 20402.31096875
transcript.pyannote[3334].end 20402.83409375
transcript.pyannote[3335].speaker SPEAKER_33
transcript.pyannote[3335].start 20403.13784375
transcript.pyannote[3335].end 20404.84221875
transcript.pyannote[3336].speaker SPEAKER_33
transcript.pyannote[3336].start 20406.66471875
transcript.pyannote[3336].end 20408.60534375
transcript.pyannote[3337].speaker SPEAKER_33
transcript.pyannote[3337].start 20408.92596875
transcript.pyannote[3337].end 20411.18721875
transcript.pyannote[3338].speaker SPEAKER_33
transcript.pyannote[3338].start 20411.76096875
transcript.pyannote[3338].end 20412.11534375
transcript.pyannote[3339].speaker SPEAKER_33
transcript.pyannote[3339].start 20412.45284375
transcript.pyannote[3339].end 20414.14034375
transcript.pyannote[3340].speaker SPEAKER_33
transcript.pyannote[3340].start 20414.83221875
transcript.pyannote[3340].end 20417.86971875
transcript.pyannote[3341].speaker SPEAKER_33
transcript.pyannote[3341].start 20417.97096875
transcript.pyannote[3341].end 20417.98784375
transcript.pyannote[3342].speaker SPEAKER_33
transcript.pyannote[3342].start 20418.44346875
transcript.pyannote[3342].end 20426.13846875
transcript.pyannote[3343].speaker SPEAKER_33
transcript.pyannote[3343].start 20427.38721875
transcript.pyannote[3343].end 20429.53034375
transcript.pyannote[3344].speaker SPEAKER_33
transcript.pyannote[3344].start 20429.83409375
transcript.pyannote[3344].end 20437.61346875
transcript.pyannote[3345].speaker SPEAKER_33
transcript.pyannote[3345].start 20437.95096875
transcript.pyannote[3345].end 20443.38471875
transcript.pyannote[3346].speaker SPEAKER_33
transcript.pyannote[3346].start 20443.78971875
transcript.pyannote[3346].end 20449.10534375
transcript.pyannote[3347].speaker SPEAKER_33
transcript.pyannote[3347].start 20449.61159375
transcript.pyannote[3347].end 20474.29971875
transcript.pyannote[3348].speaker SPEAKER_33
transcript.pyannote[3348].start 20474.77221875
transcript.pyannote[3348].end 20481.67409375
transcript.pyannote[3349].speaker SPEAKER_33
transcript.pyannote[3349].start 20482.11284375
transcript.pyannote[3349].end 20484.15471875
transcript.pyannote[3350].speaker SPEAKER_33
transcript.pyannote[3350].start 20484.61034375
transcript.pyannote[3350].end 20487.07409375
transcript.pyannote[3351].speaker SPEAKER_33
transcript.pyannote[3351].start 20487.71534375
transcript.pyannote[3351].end 20491.46159375
transcript.pyannote[3352].speaker SPEAKER_33
transcript.pyannote[3352].start 20491.88346875
transcript.pyannote[3352].end 20496.05159375
transcript.pyannote[3353].speaker SPEAKER_26
transcript.pyannote[3353].start 20497.62096875
transcript.pyannote[3353].end 20498.22846875
transcript.pyannote[3354].speaker SPEAKER_26
transcript.pyannote[3354].start 20498.90346875
transcript.pyannote[3354].end 20501.09721875
transcript.pyannote[3355].speaker SPEAKER_33
transcript.pyannote[3355].start 20500.11846875
transcript.pyannote[3355].end 20500.30409375
transcript.pyannote[3356].speaker SPEAKER_05
transcript.pyannote[3356].start 20500.30409375
transcript.pyannote[3356].end 20500.55721875
transcript.pyannote[3357].speaker SPEAKER_33
transcript.pyannote[3357].start 20500.55721875
transcript.pyannote[3357].end 20500.62471875
transcript.pyannote[3358].speaker SPEAKER_05
transcript.pyannote[3358].start 20500.62471875
transcript.pyannote[3358].end 20500.64159375
transcript.pyannote[3359].speaker SPEAKER_33
transcript.pyannote[3359].start 20501.09721875
transcript.pyannote[3359].end 20502.27846875
transcript.pyannote[3360].speaker SPEAKER_05
transcript.pyannote[3360].start 20502.27846875
transcript.pyannote[3360].end 20515.12034375
transcript.pyannote[3361].speaker SPEAKER_33
transcript.pyannote[3361].start 20515.12034375
transcript.pyannote[3361].end 20518.17471875
transcript.pyannote[3362].speaker SPEAKER_05
transcript.pyannote[3362].start 20516.47034375
transcript.pyannote[3362].end 20516.99346875
transcript.pyannote[3363].speaker SPEAKER_05
transcript.pyannote[3363].start 20517.16221875
transcript.pyannote[3363].end 20527.27034375
transcript.pyannote[3364].speaker SPEAKER_33
transcript.pyannote[3364].start 20526.78096875
transcript.pyannote[3364].end 20528.13096875
transcript.pyannote[3365].speaker SPEAKER_05
transcript.pyannote[3365].start 20528.13096875
transcript.pyannote[3365].end 20533.44659375
transcript.pyannote[3366].speaker SPEAKER_33
transcript.pyannote[3366].start 20531.60721875
transcript.pyannote[3366].end 20531.94471875
transcript.pyannote[3367].speaker SPEAKER_33
transcript.pyannote[3367].start 20533.41284375
transcript.pyannote[3367].end 20550.23721875
transcript.pyannote[3368].speaker SPEAKER_05
transcript.pyannote[3368].start 20537.49659375
transcript.pyannote[3368].end 20538.20534375
transcript.pyannote[3369].speaker SPEAKER_05
transcript.pyannote[3369].start 20541.36096875
transcript.pyannote[3369].end 20541.79971875
transcript.pyannote[3370].speaker SPEAKER_05
transcript.pyannote[3370].start 20543.13284375
transcript.pyannote[3370].end 20546.74409375
transcript.pyannote[3371].speaker SPEAKER_05
transcript.pyannote[3371].start 20548.85346875
transcript.pyannote[3371].end 20552.43096875
transcript.pyannote[3372].speaker SPEAKER_05
transcript.pyannote[3372].start 20552.92034375
transcript.pyannote[3372].end 20562.99471875
transcript.pyannote[3373].speaker SPEAKER_33
transcript.pyannote[3373].start 20559.61971875
transcript.pyannote[3373].end 20567.92221875
transcript.pyannote[3374].speaker SPEAKER_05
transcript.pyannote[3374].start 20563.38284375
transcript.pyannote[3374].end 20563.55159375
transcript.pyannote[3375].speaker SPEAKER_33
transcript.pyannote[3375].start 20568.32721875
transcript.pyannote[3375].end 20572.56284375
transcript.pyannote[3376].speaker SPEAKER_33
transcript.pyannote[3376].start 20572.66409375
transcript.pyannote[3376].end 20575.24596875
transcript.pyannote[3377].speaker SPEAKER_33
transcript.pyannote[3377].start 20575.56659375
transcript.pyannote[3377].end 20577.42284375
transcript.pyannote[3378].speaker SPEAKER_33
transcript.pyannote[3378].start 20577.67596875
transcript.pyannote[3378].end 20579.39721875
transcript.pyannote[3379].speaker SPEAKER_33
transcript.pyannote[3379].start 20580.13971875
transcript.pyannote[3379].end 20592.67784375
transcript.pyannote[3380].speaker SPEAKER_05
transcript.pyannote[3380].start 20584.91534375
transcript.pyannote[3380].end 20585.03346875
transcript.pyannote[3381].speaker SPEAKER_38
transcript.pyannote[3381].start 20585.03346875
transcript.pyannote[3381].end 20585.84346875
transcript.pyannote[3382].speaker SPEAKER_05
transcript.pyannote[3382].start 20585.84346875
transcript.pyannote[3382].end 20585.89409375
transcript.pyannote[3383].speaker SPEAKER_38
transcript.pyannote[3383].start 20590.85534375
transcript.pyannote[3383].end 20591.07471875
transcript.pyannote[3384].speaker SPEAKER_09
transcript.pyannote[3384].start 20591.07471875
transcript.pyannote[3384].end 20591.12534375
transcript.pyannote[3385].speaker SPEAKER_38
transcript.pyannote[3385].start 20592.67784375
transcript.pyannote[3385].end 20593.09971875
transcript.pyannote[3386].speaker SPEAKER_33
transcript.pyannote[3386].start 20593.47096875
transcript.pyannote[3386].end 20595.56346875
transcript.pyannote[3387].speaker SPEAKER_33
transcript.pyannote[3387].start 20595.66471875
transcript.pyannote[3387].end 20598.90471875
transcript.pyannote[3388].speaker SPEAKER_33
transcript.pyannote[3388].start 20599.59659375
transcript.pyannote[3388].end 20601.68909375
transcript.pyannote[3389].speaker SPEAKER_33
transcript.pyannote[3389].start 20601.97596875
transcript.pyannote[3389].end 20604.00096875
transcript.pyannote[3390].speaker SPEAKER_33
transcript.pyannote[3390].start 20604.10221875
transcript.pyannote[3390].end 20606.95409375
transcript.pyannote[3391].speaker SPEAKER_33
transcript.pyannote[3391].start 20607.12284375
transcript.pyannote[3391].end 20609.67096875
transcript.pyannote[3392].speaker SPEAKER_33
transcript.pyannote[3392].start 20610.00846875
transcript.pyannote[3392].end 20613.02909375
transcript.pyannote[3393].speaker SPEAKER_33
transcript.pyannote[3393].start 20613.11346875
transcript.pyannote[3393].end 20615.44221875
transcript.pyannote[3394].speaker SPEAKER_33
transcript.pyannote[3394].start 20616.06659375
transcript.pyannote[3394].end 20616.75846875
transcript.pyannote[3395].speaker SPEAKER_33
transcript.pyannote[3395].start 20617.01159375
transcript.pyannote[3395].end 20617.88909375
transcript.pyannote[3396].speaker SPEAKER_33
transcript.pyannote[3396].start 20618.31096875
transcript.pyannote[3396].end 20619.74534375
transcript.pyannote[3397].speaker SPEAKER_33
transcript.pyannote[3397].start 20620.20096875
transcript.pyannote[3397].end 20623.08659375
transcript.pyannote[3398].speaker SPEAKER_26
transcript.pyannote[3398].start 20623.18784375
transcript.pyannote[3398].end 20653.78221875
transcript.pyannote[3399].speaker SPEAKER_00
transcript.pyannote[3399].start 20633.32971875
transcript.pyannote[3399].end 20633.68409375
transcript.pyannote[3400].speaker SPEAKER_00
transcript.pyannote[3400].start 20636.14784375
transcript.pyannote[3400].end 20636.58659375
transcript.pyannote[3401].speaker SPEAKER_00
transcript.pyannote[3401].start 20640.61971875
transcript.pyannote[3401].end 20640.63659375
transcript.pyannote[3402].speaker SPEAKER_38
transcript.pyannote[3402].start 20640.63659375
transcript.pyannote[3402].end 20640.67034375
transcript.pyannote[3403].speaker SPEAKER_00
transcript.pyannote[3403].start 20640.67034375
transcript.pyannote[3403].end 20640.68721875
transcript.pyannote[3404].speaker SPEAKER_38
transcript.pyannote[3404].start 20640.68721875
transcript.pyannote[3404].end 20640.75471875
transcript.pyannote[3405].speaker SPEAKER_00
transcript.pyannote[3405].start 20640.75471875
transcript.pyannote[3405].end 20640.83909375
transcript.pyannote[3406].speaker SPEAKER_38
transcript.pyannote[3406].start 20653.20846875
transcript.pyannote[3406].end 20653.88346875
transcript.pyannote[3407].speaker SPEAKER_26
transcript.pyannote[3407].start 20653.88346875
transcript.pyannote[3407].end 20657.64659375
transcript.pyannote[3408].speaker SPEAKER_26
transcript.pyannote[3408].start 20657.81534375
transcript.pyannote[3408].end 20662.77659375
transcript.pyannote[3409].speaker SPEAKER_38
transcript.pyannote[3409].start 20661.96659375
transcript.pyannote[3409].end 20662.35471875
transcript.pyannote[3410].speaker SPEAKER_26
transcript.pyannote[3410].start 20663.14784375
transcript.pyannote[3410].end 20671.82159375
transcript.pyannote[3411].speaker SPEAKER_26
transcript.pyannote[3411].start 20671.92284375
transcript.pyannote[3411].end 20683.48221875
transcript.pyannote[3412].speaker SPEAKER_33
transcript.pyannote[3412].start 20680.44471875
transcript.pyannote[3412].end 20684.78159375
transcript.pyannote[3413].speaker SPEAKER_26
transcript.pyannote[3413].start 20684.30909375
transcript.pyannote[3413].end 20694.29909375
transcript.pyannote[3414].speaker SPEAKER_33
transcript.pyannote[3414].start 20685.28784375
transcript.pyannote[3414].end 20685.74346875
transcript.pyannote[3415].speaker SPEAKER_26
transcript.pyannote[3415].start 20695.21034375
transcript.pyannote[3415].end 20696.99909375
transcript.pyannote[3416].speaker SPEAKER_26
transcript.pyannote[3416].start 20697.16784375
transcript.pyannote[3416].end 20707.64721875
transcript.pyannote[3417].speaker SPEAKER_33
transcript.pyannote[3417].start 20707.07346875
transcript.pyannote[3417].end 20707.49534375
transcript.pyannote[3418].speaker SPEAKER_33
transcript.pyannote[3418].start 20707.64721875
transcript.pyannote[3418].end 20716.62471875
transcript.pyannote[3419].speaker SPEAKER_26
transcript.pyannote[3419].start 20711.05596875
transcript.pyannote[3419].end 20711.57909375
transcript.pyannote[3420].speaker SPEAKER_26
transcript.pyannote[3420].start 20716.50659375
transcript.pyannote[3420].end 20716.99596875
transcript.pyannote[3421].speaker SPEAKER_26
transcript.pyannote[3421].start 20718.56534375
transcript.pyannote[3421].end 20721.28221875
transcript.pyannote[3422].speaker SPEAKER_33
transcript.pyannote[3422].start 20718.73409375
transcript.pyannote[3422].end 20719.05471875
transcript.pyannote[3423].speaker SPEAKER_33
transcript.pyannote[3423].start 20720.65784375
transcript.pyannote[3423].end 20722.17659375
transcript.pyannote[3424].speaker SPEAKER_13
transcript.pyannote[3424].start 20726.26034375
transcript.pyannote[3424].end 20729.28096875
transcript.pyannote[3425].speaker SPEAKER_13
transcript.pyannote[3425].start 20729.46659375
transcript.pyannote[3425].end 20732.26784375
transcript.pyannote[3426].speaker SPEAKER_13
transcript.pyannote[3426].start 20736.82409375
transcript.pyannote[3426].end 20736.84096875
transcript.pyannote[3427].speaker SPEAKER_37
transcript.pyannote[3427].start 20736.84096875
transcript.pyannote[3427].end 20739.87846875
transcript.pyannote[3428].speaker SPEAKER_00
transcript.pyannote[3428].start 20739.96284375
transcript.pyannote[3428].end 20740.60409375
transcript.pyannote[3429].speaker SPEAKER_37
transcript.pyannote[3429].start 20740.28346875
transcript.pyannote[3429].end 20743.72596875
transcript.pyannote[3430].speaker SPEAKER_13
transcript.pyannote[3430].start 20743.20284375
transcript.pyannote[3430].end 20743.33784375
transcript.pyannote[3431].speaker SPEAKER_37
transcript.pyannote[3431].start 20743.97909375
transcript.pyannote[3431].end 20744.18159375
transcript.pyannote[3432].speaker SPEAKER_37
transcript.pyannote[3432].start 20745.56534375
transcript.pyannote[3432].end 20745.93659375
transcript.pyannote[3433].speaker SPEAKER_37
transcript.pyannote[3433].start 20746.15596875
transcript.pyannote[3433].end 20746.61159375
transcript.pyannote[3434].speaker SPEAKER_37
transcript.pyannote[3434].start 20747.13471875
transcript.pyannote[3434].end 20770.70909375
transcript.pyannote[3435].speaker SPEAKER_00
transcript.pyannote[3435].start 20749.02471875
transcript.pyannote[3435].end 20749.05846875
transcript.pyannote[3436].speaker SPEAKER_00
transcript.pyannote[3436].start 20750.00346875
transcript.pyannote[3436].end 20750.66159375
transcript.pyannote[3437].speaker SPEAKER_00
transcript.pyannote[3437].start 20752.68659375
transcript.pyannote[3437].end 20753.10846875
transcript.pyannote[3438].speaker SPEAKER_00
transcript.pyannote[3438].start 20757.25971875
transcript.pyannote[3438].end 20757.27659375
transcript.pyannote[3439].speaker SPEAKER_17
transcript.pyannote[3439].start 20757.27659375
transcript.pyannote[3439].end 20757.31034375
transcript.pyannote[3440].speaker SPEAKER_39
transcript.pyannote[3440].start 20757.31034375
transcript.pyannote[3440].end 20757.69846875
transcript.pyannote[3441].speaker SPEAKER_26
transcript.pyannote[3441].start 20771.11409375
transcript.pyannote[3441].end 20792.20784375
transcript.pyannote[3442].speaker SPEAKER_38
transcript.pyannote[3442].start 20777.56034375
transcript.pyannote[3442].end 20777.81346875
transcript.pyannote[3443].speaker SPEAKER_37
transcript.pyannote[3443].start 20790.19971875
transcript.pyannote[3443].end 20818.31346875
transcript.pyannote[3444].speaker SPEAKER_00
transcript.pyannote[3444].start 20806.66971875
transcript.pyannote[3444].end 20806.68659375
transcript.pyannote[3445].speaker SPEAKER_26
transcript.pyannote[3445].start 20806.68659375
transcript.pyannote[3445].end 20806.70346875
transcript.pyannote[3446].speaker SPEAKER_00
transcript.pyannote[3446].start 20806.70346875
transcript.pyannote[3446].end 20806.72034375
transcript.pyannote[3447].speaker SPEAKER_26
transcript.pyannote[3447].start 20806.72034375
transcript.pyannote[3447].end 20806.95659375
transcript.pyannote[3448].speaker SPEAKER_00
transcript.pyannote[3448].start 20806.95659375
transcript.pyannote[3448].end 20807.47971875
transcript.pyannote[3449].speaker SPEAKER_26
transcript.pyannote[3449].start 20817.80721875
transcript.pyannote[3449].end 20825.02971875
transcript.pyannote[3450].speaker SPEAKER_37
transcript.pyannote[3450].start 20819.02221875
transcript.pyannote[3450].end 20822.19471875
transcript.pyannote[3451].speaker SPEAKER_26
transcript.pyannote[3451].start 20825.23221875
transcript.pyannote[3451].end 20834.32784375
transcript.pyannote[3452].speaker SPEAKER_37
transcript.pyannote[3452].start 20832.79221875
transcript.pyannote[3452].end 20848.03034375
transcript.pyannote[3453].speaker SPEAKER_26
transcript.pyannote[3453].start 20835.59346875
transcript.pyannote[3453].end 20835.96471875
transcript.pyannote[3454].speaker SPEAKER_26
transcript.pyannote[3454].start 20839.30596875
transcript.pyannote[3454].end 20839.76159375
transcript.pyannote[3455].speaker SPEAKER_38
transcript.pyannote[3455].start 20841.26346875
transcript.pyannote[3455].end 20841.87096875
transcript.pyannote[3456].speaker SPEAKER_08
transcript.pyannote[3456].start 20843.06909375
transcript.pyannote[3456].end 20846.03909375
transcript.pyannote[3457].speaker SPEAKER_37
transcript.pyannote[3457].start 20848.46909375
transcript.pyannote[3457].end 20848.95846875
transcript.pyannote[3458].speaker SPEAKER_08
transcript.pyannote[3458].start 20848.95846875
transcript.pyannote[3458].end 20849.66721875
transcript.pyannote[3459].speaker SPEAKER_37
transcript.pyannote[3459].start 20849.41409375
transcript.pyannote[3459].end 20850.24096875
transcript.pyannote[3460].speaker SPEAKER_08
transcript.pyannote[3460].start 20850.10596875
transcript.pyannote[3460].end 20851.37159375
transcript.pyannote[3461].speaker SPEAKER_37
transcript.pyannote[3461].start 20850.94971875
transcript.pyannote[3461].end 20869.76534375
transcript.pyannote[3462].speaker SPEAKER_08
transcript.pyannote[3462].start 20856.72096875
transcript.pyannote[3462].end 20857.07534375
transcript.pyannote[3463].speaker SPEAKER_00
transcript.pyannote[3463].start 20857.07534375
transcript.pyannote[3463].end 20857.10909375
transcript.pyannote[3464].speaker SPEAKER_08
transcript.pyannote[3464].start 20859.72471875
transcript.pyannote[3464].end 20859.97784375
transcript.pyannote[3465].speaker SPEAKER_00
transcript.pyannote[3465].start 20859.97784375
transcript.pyannote[3465].end 20860.45034375
transcript.pyannote[3466].speaker SPEAKER_08
transcript.pyannote[3466].start 20869.76534375
transcript.pyannote[3466].end 20870.05221875
transcript.pyannote[3467].speaker SPEAKER_37
transcript.pyannote[3467].start 20870.05221875
transcript.pyannote[3467].end 20871.50346875
transcript.pyannote[3468].speaker SPEAKER_38
transcript.pyannote[3468].start 20870.06909375
transcript.pyannote[3468].end 20870.08596875
transcript.pyannote[3469].speaker SPEAKER_08
transcript.pyannote[3469].start 20872.85346875
transcript.pyannote[3469].end 20873.76471875
transcript.pyannote[3470].speaker SPEAKER_08
transcript.pyannote[3470].start 20873.91659375
transcript.pyannote[3470].end 20873.98409375
transcript.pyannote[3471].speaker SPEAKER_37
transcript.pyannote[3471].start 20873.98409375
transcript.pyannote[3471].end 20874.49034375
transcript.pyannote[3472].speaker SPEAKER_08
transcript.pyannote[3472].start 20874.49034375
transcript.pyannote[3472].end 20874.52409375
transcript.pyannote[3473].speaker SPEAKER_08
transcript.pyannote[3473].start 20874.64221875
transcript.pyannote[3473].end 20880.51471875
transcript.pyannote[3474].speaker SPEAKER_37
transcript.pyannote[3474].start 20874.69284375
transcript.pyannote[3474].end 20875.18221875
transcript.pyannote[3475].speaker SPEAKER_08
transcript.pyannote[3475].start 20882.08409375
transcript.pyannote[3475].end 20882.97846875
transcript.pyannote[3476].speaker SPEAKER_37
transcript.pyannote[3476].start 20882.97846875
transcript.pyannote[3476].end 20890.08284375
transcript.pyannote[3477].speaker SPEAKER_37
transcript.pyannote[3477].start 20890.69034375
transcript.pyannote[3477].end 20893.86284375
transcript.pyannote[3478].speaker SPEAKER_37
transcript.pyannote[3478].start 20895.19596875
transcript.pyannote[3478].end 20895.82034375
transcript.pyannote[3479].speaker SPEAKER_08
transcript.pyannote[3479].start 20895.90471875
transcript.pyannote[3479].end 20906.24909375
transcript.pyannote[3480].speaker SPEAKER_37
transcript.pyannote[3480].start 20900.59596875
transcript.pyannote[3480].end 20900.81534375
transcript.pyannote[3481].speaker SPEAKER_37
transcript.pyannote[3481].start 20905.99596875
transcript.pyannote[3481].end 20916.15471875
transcript.pyannote[3482].speaker SPEAKER_08
transcript.pyannote[3482].start 20906.58659375
transcript.pyannote[3482].end 20906.97471875
transcript.pyannote[3483].speaker SPEAKER_38
transcript.pyannote[3483].start 20916.15471875
transcript.pyannote[3483].end 20916.49221875
transcript.pyannote[3484].speaker SPEAKER_37
transcript.pyannote[3484].start 20916.34034375
transcript.pyannote[3484].end 20921.60534375
transcript.pyannote[3485].speaker SPEAKER_38
transcript.pyannote[3485].start 20921.45346875
transcript.pyannote[3485].end 20921.57159375
transcript.pyannote[3486].speaker SPEAKER_38
transcript.pyannote[3486].start 20921.58846875
transcript.pyannote[3486].end 20921.77409375
transcript.pyannote[3487].speaker SPEAKER_37
transcript.pyannote[3487].start 20921.62221875
transcript.pyannote[3487].end 20928.37221875
transcript.pyannote[3488].speaker SPEAKER_38
transcript.pyannote[3488].start 20928.28784375
transcript.pyannote[3488].end 20928.74346875
transcript.pyannote[3489].speaker SPEAKER_37
transcript.pyannote[3489].start 20928.64221875
transcript.pyannote[3489].end 20932.54034375
transcript.pyannote[3490].speaker SPEAKER_38
transcript.pyannote[3490].start 20932.40534375
transcript.pyannote[3490].end 20932.81034375
transcript.pyannote[3491].speaker SPEAKER_37
transcript.pyannote[3491].start 20932.60784375
transcript.pyannote[3491].end 20971.20096875
transcript.pyannote[3492].speaker SPEAKER_21
transcript.pyannote[3492].start 20947.59284375
transcript.pyannote[3492].end 20948.03159375
transcript.pyannote[3493].speaker SPEAKER_37
transcript.pyannote[3493].start 20971.63971875
transcript.pyannote[3493].end 20992.59846875
transcript.pyannote[3494].speaker SPEAKER_08
transcript.pyannote[3494].start 20993.45909375
transcript.pyannote[3494].end 20999.44971875
transcript.pyannote[3495].speaker SPEAKER_08
transcript.pyannote[3495].start 20999.97284375
transcript.pyannote[3495].end 21001.57596875
transcript.pyannote[3496].speaker SPEAKER_37
transcript.pyannote[3496].start 21001.57596875
transcript.pyannote[3496].end 21001.66034375
transcript.pyannote[3497].speaker SPEAKER_08
transcript.pyannote[3497].start 21001.66034375
transcript.pyannote[3497].end 21001.96409375
transcript.pyannote[3498].speaker SPEAKER_37
transcript.pyannote[3498].start 21001.96409375
transcript.pyannote[3498].end 21019.09221875
transcript.pyannote[3499].speaker SPEAKER_08
transcript.pyannote[3499].start 21003.95534375
transcript.pyannote[3499].end 21004.39409375
transcript.pyannote[3500].speaker SPEAKER_08
transcript.pyannote[3500].start 21019.09221875
transcript.pyannote[3500].end 21026.26409375
transcript.pyannote[3501].speaker SPEAKER_37
transcript.pyannote[3501].start 21019.78409375
transcript.pyannote[3501].end 21020.67846875
transcript.pyannote[3502].speaker SPEAKER_37
transcript.pyannote[3502].start 21025.53846875
transcript.pyannote[3502].end 21026.60159375
transcript.pyannote[3503].speaker SPEAKER_08
transcript.pyannote[3503].start 21026.60159375
transcript.pyannote[3503].end 21027.49596875
transcript.pyannote[3504].speaker SPEAKER_13
transcript.pyannote[3504].start 21031.79909375
transcript.pyannote[3504].end 21033.63846875
transcript.pyannote[3505].speaker SPEAKER_13
transcript.pyannote[3505].start 21034.09409375
transcript.pyannote[3505].end 21034.53284375
transcript.pyannote[3506].speaker SPEAKER_13
transcript.pyannote[3506].start 21035.12346875
transcript.pyannote[3506].end 21040.28721875
transcript.pyannote[3507].speaker SPEAKER_13
transcript.pyannote[3507].start 21040.81034375
transcript.pyannote[3507].end 21043.25721875
transcript.pyannote[3508].speaker SPEAKER_22
transcript.pyannote[3508].start 21054.14159375
transcript.pyannote[3508].end 21056.55471875
transcript.pyannote[3509].speaker SPEAKER_13
transcript.pyannote[3509].start 21056.84159375
transcript.pyannote[3509].end 21057.36471875
transcript.pyannote[3510].speaker SPEAKER_22
transcript.pyannote[3510].start 21062.41034375
transcript.pyannote[3510].end 21063.38909375
transcript.pyannote[3511].speaker SPEAKER_22
transcript.pyannote[3511].start 21063.67596875
transcript.pyannote[3511].end 21069.54846875
transcript.pyannote[3512].speaker SPEAKER_22
transcript.pyannote[3512].start 21070.49346875
transcript.pyannote[3512].end 21072.31596875
transcript.pyannote[3513].speaker SPEAKER_22
transcript.pyannote[3513].start 21072.97409375
transcript.pyannote[3513].end 21073.51409375
transcript.pyannote[3514].speaker SPEAKER_22
transcript.pyannote[3514].start 21073.59846875
transcript.pyannote[3514].end 21081.39471875
transcript.pyannote[3515].speaker SPEAKER_22
transcript.pyannote[3515].start 21082.20471875
transcript.pyannote[3515].end 21100.00784375
transcript.pyannote[3516].speaker SPEAKER_22
transcript.pyannote[3516].start 21100.48034375
transcript.pyannote[3516].end 21106.04909375
transcript.pyannote[3517].speaker SPEAKER_22
transcript.pyannote[3517].start 21106.21784375
transcript.pyannote[3517].end 21110.57159375
transcript.pyannote[3518].speaker SPEAKER_22
transcript.pyannote[3518].start 21110.92596875
transcript.pyannote[3518].end 21117.54096875
transcript.pyannote[3519].speaker SPEAKER_22
transcript.pyannote[3519].start 21117.94596875
transcript.pyannote[3519].end 21122.21534375
transcript.pyannote[3520].speaker SPEAKER_22
transcript.pyannote[3520].start 21122.45159375
transcript.pyannote[3520].end 21123.48096875
transcript.pyannote[3521].speaker SPEAKER_22
transcript.pyannote[3521].start 21123.71721875
transcript.pyannote[3521].end 21126.21471875
transcript.pyannote[3522].speaker SPEAKER_22
transcript.pyannote[3522].start 21127.12596875
transcript.pyannote[3522].end 21127.96971875
transcript.pyannote[3523].speaker SPEAKER_26
transcript.pyannote[3523].start 21127.96971875
transcript.pyannote[3523].end 21136.84596875
transcript.pyannote[3524].speaker SPEAKER_22
transcript.pyannote[3524].start 21136.03596875
transcript.pyannote[3524].end 21153.88971875
transcript.pyannote[3525].speaker SPEAKER_26
transcript.pyannote[3525].start 21138.56721875
transcript.pyannote[3525].end 21139.79909375
transcript.pyannote[3526].speaker SPEAKER_38
transcript.pyannote[3526].start 21144.89534375
transcript.pyannote[3526].end 21145.63784375
transcript.pyannote[3527].speaker SPEAKER_26
transcript.pyannote[3527].start 21151.74659375
transcript.pyannote[3527].end 21161.02784375
transcript.pyannote[3528].speaker SPEAKER_22
transcript.pyannote[3528].start 21160.01534375
transcript.pyannote[3528].end 21160.60596875
transcript.pyannote[3529].speaker SPEAKER_22
transcript.pyannote[3529].start 21161.02784375
transcript.pyannote[3529].end 21165.02721875
transcript.pyannote[3530].speaker SPEAKER_26
transcript.pyannote[3530].start 21161.41596875
transcript.pyannote[3530].end 21161.77034375
transcript.pyannote[3531].speaker SPEAKER_22
transcript.pyannote[3531].start 21165.22971875
transcript.pyannote[3531].end 21167.81159375
transcript.pyannote[3532].speaker SPEAKER_22
transcript.pyannote[3532].start 21168.60471875
transcript.pyannote[3532].end 21177.80159375
transcript.pyannote[3533].speaker SPEAKER_22
transcript.pyannote[3533].start 21178.49346875
transcript.pyannote[3533].end 21179.01659375
transcript.pyannote[3534].speaker SPEAKER_26
transcript.pyannote[3534].start 21179.01659375
transcript.pyannote[3534].end 21179.03346875
transcript.pyannote[3535].speaker SPEAKER_22
transcript.pyannote[3535].start 21179.03346875
transcript.pyannote[3535].end 21179.05034375
transcript.pyannote[3536].speaker SPEAKER_22
transcript.pyannote[3536].start 21179.21909375
transcript.pyannote[3536].end 21179.97846875
transcript.pyannote[3537].speaker SPEAKER_26
transcript.pyannote[3537].start 21179.97846875
transcript.pyannote[3537].end 21181.49721875
transcript.pyannote[3538].speaker SPEAKER_22
transcript.pyannote[3538].start 21180.04596875
transcript.pyannote[3538].end 21180.11346875
transcript.pyannote[3539].speaker SPEAKER_38
transcript.pyannote[3539].start 21180.11346875
transcript.pyannote[3539].end 21181.71659375
transcript.pyannote[3540].speaker SPEAKER_26
transcript.pyannote[3540].start 21182.22284375
transcript.pyannote[3540].end 21186.10409375
transcript.pyannote[3541].speaker SPEAKER_26
transcript.pyannote[3541].start 21186.72846875
transcript.pyannote[3541].end 21187.03221875
transcript.pyannote[3542].speaker SPEAKER_22
transcript.pyannote[3542].start 21187.03221875
transcript.pyannote[3542].end 21200.41409375
transcript.pyannote[3543].speaker SPEAKER_22
transcript.pyannote[3543].start 21200.61659375
transcript.pyannote[3543].end 21201.25784375
transcript.pyannote[3544].speaker SPEAKER_22
transcript.pyannote[3544].start 21201.47721875
transcript.pyannote[3544].end 21203.87346875
transcript.pyannote[3545].speaker SPEAKER_22
transcript.pyannote[3545].start 21204.21096875
transcript.pyannote[3545].end 21208.02471875
transcript.pyannote[3546].speaker SPEAKER_26
transcript.pyannote[3546].start 21208.53096875
transcript.pyannote[3546].end 21211.36596875
transcript.pyannote[3547].speaker SPEAKER_22
transcript.pyannote[3547].start 21209.47596875
transcript.pyannote[3547].end 21213.03659375
transcript.pyannote[3548].speaker SPEAKER_26
transcript.pyannote[3548].start 21214.13346875
transcript.pyannote[3548].end 21216.31034375
transcript.pyannote[3549].speaker SPEAKER_26
transcript.pyannote[3549].start 21216.44534375
transcript.pyannote[3549].end 21218.74034375
transcript.pyannote[3550].speaker SPEAKER_22
transcript.pyannote[3550].start 21216.52971875
transcript.pyannote[3550].end 21222.95909375
transcript.pyannote[3551].speaker SPEAKER_26
transcript.pyannote[3551].start 21219.22971875
transcript.pyannote[3551].end 21219.97221875
transcript.pyannote[3552].speaker SPEAKER_26
transcript.pyannote[3552].start 21220.02284375
transcript.pyannote[3552].end 21220.34346875
transcript.pyannote[3553].speaker SPEAKER_22
transcript.pyannote[3553].start 21223.56659375
transcript.pyannote[3553].end 21224.47784375
transcript.pyannote[3554].speaker SPEAKER_22
transcript.pyannote[3554].start 21225.06846875
transcript.pyannote[3554].end 21225.97971875
transcript.pyannote[3555].speaker SPEAKER_26
transcript.pyannote[3555].start 21225.97971875
transcript.pyannote[3555].end 21225.99659375
transcript.pyannote[3556].speaker SPEAKER_38
transcript.pyannote[3556].start 21227.07659375
transcript.pyannote[3556].end 21227.22846875
transcript.pyannote[3557].speaker SPEAKER_26
transcript.pyannote[3557].start 21227.22846875
transcript.pyannote[3557].end 21238.36596875
transcript.pyannote[3558].speaker SPEAKER_38
transcript.pyannote[3558].start 21227.32971875
transcript.pyannote[3558].end 21227.39721875
transcript.pyannote[3559].speaker SPEAKER_22
transcript.pyannote[3559].start 21227.39721875
transcript.pyannote[3559].end 21229.70909375
transcript.pyannote[3560].speaker SPEAKER_38
transcript.pyannote[3560].start 21229.70909375
transcript.pyannote[3560].end 21229.72596875
transcript.pyannote[3561].speaker SPEAKER_22
transcript.pyannote[3561].start 21234.02909375
transcript.pyannote[3561].end 21234.04596875
transcript.pyannote[3562].speaker SPEAKER_22
transcript.pyannote[3562].start 21234.14721875
transcript.pyannote[3562].end 21257.45159375
transcript.pyannote[3563].speaker SPEAKER_22
transcript.pyannote[3563].start 21257.83971875
transcript.pyannote[3563].end 21291.45471875
transcript.pyannote[3564].speaker SPEAKER_22
transcript.pyannote[3564].start 21291.82596875
transcript.pyannote[3564].end 21295.35284375
transcript.pyannote[3565].speaker SPEAKER_26
transcript.pyannote[3565].start 21295.35284375
transcript.pyannote[3565].end 21295.43721875
transcript.pyannote[3566].speaker SPEAKER_26
transcript.pyannote[3566].start 21295.67346875
transcript.pyannote[3566].end 21295.74096875
transcript.pyannote[3567].speaker SPEAKER_22
transcript.pyannote[3567].start 21295.74096875
transcript.pyannote[3567].end 21295.97721875
transcript.pyannote[3568].speaker SPEAKER_26
transcript.pyannote[3568].start 21295.97721875
transcript.pyannote[3568].end 21300.51659375
transcript.pyannote[3569].speaker SPEAKER_22
transcript.pyannote[3569].start 21300.51659375
transcript.pyannote[3569].end 21362.02596875
transcript.pyannote[3570].speaker SPEAKER_26
transcript.pyannote[3570].start 21300.53346875
transcript.pyannote[3570].end 21301.90034375
transcript.pyannote[3571].speaker SPEAKER_22
transcript.pyannote[3571].start 21362.81909375
transcript.pyannote[3571].end 21365.19846875
transcript.pyannote[3572].speaker SPEAKER_22
transcript.pyannote[3572].start 21366.44721875
transcript.pyannote[3572].end 21368.75909375
transcript.pyannote[3573].speaker SPEAKER_22
transcript.pyannote[3573].start 21369.38346875
transcript.pyannote[3573].end 21372.91034375
transcript.pyannote[3574].speaker SPEAKER_22
transcript.pyannote[3574].start 21373.39971875
transcript.pyannote[3574].end 21373.85534375
transcript.pyannote[3575].speaker SPEAKER_22
transcript.pyannote[3575].start 21374.42909375
transcript.pyannote[3575].end 21374.80034375
transcript.pyannote[3576].speaker SPEAKER_22
transcript.pyannote[3576].start 21375.61034375
transcript.pyannote[3576].end 21380.04846875
transcript.pyannote[3577].speaker SPEAKER_22
transcript.pyannote[3577].start 21380.58846875
transcript.pyannote[3577].end 21387.97971875
transcript.pyannote[3578].speaker SPEAKER_22
transcript.pyannote[3578].start 21388.41846875
transcript.pyannote[3578].end 21391.03409375
transcript.pyannote[3579].speaker SPEAKER_22
transcript.pyannote[3579].start 21391.20284375
transcript.pyannote[3579].end 21448.22346875
transcript.pyannote[3580].speaker SPEAKER_13
transcript.pyannote[3580].start 21448.54409375
transcript.pyannote[3580].end 21450.97409375
transcript.pyannote[3581].speaker SPEAKER_13
transcript.pyannote[3581].start 21452.99909375
transcript.pyannote[3581].end 21457.25159375
transcript.pyannote[3582].speaker SPEAKER_13
transcript.pyannote[3582].start 21457.92659375
transcript.pyannote[3582].end 21461.97659375
transcript.pyannote[3583].speaker SPEAKER_13
transcript.pyannote[3583].start 21463.88346875
transcript.pyannote[3583].end 21467.71409375
transcript.pyannote[3584].speaker SPEAKER_13
transcript.pyannote[3584].start 21468.69284375
transcript.pyannote[3584].end 21471.69659375
transcript.pyannote[3585].speaker SPEAKER_13
transcript.pyannote[3585].start 21472.55721875
transcript.pyannote[3585].end 21472.89471875
transcript.pyannote[3586].speaker SPEAKER_13
transcript.pyannote[3586].start 21474.12659375
transcript.pyannote[3586].end 21476.97846875
transcript.pyannote[3587].speaker SPEAKER_13
transcript.pyannote[3587].start 21478.14284375
transcript.pyannote[3587].end 21483.30659375
transcript.pyannote[3588].speaker SPEAKER_13
transcript.pyannote[3588].start 21483.96471875
transcript.pyannote[3588].end 21484.35284375
transcript.pyannote[3589].speaker SPEAKER_13
transcript.pyannote[3589].start 21486.47909375
transcript.pyannote[3589].end 21490.07346875
transcript.pyannote[3590].speaker SPEAKER_13
transcript.pyannote[3590].start 21491.47409375
transcript.pyannote[3590].end 21495.03471875
transcript.pyannote[3591].speaker SPEAKER_13
transcript.pyannote[3591].start 21496.46909375
transcript.pyannote[3591].end 21499.96221875
transcript.pyannote[3592].speaker SPEAKER_13
transcript.pyannote[3592].start 21500.97471875
transcript.pyannote[3592].end 21501.27846875
transcript.pyannote[3593].speaker SPEAKER_13
transcript.pyannote[3593].start 21502.45971875
transcript.pyannote[3593].end 21506.62784375
transcript.pyannote[3594].speaker SPEAKER_13
transcript.pyannote[3594].start 21507.48846875
transcript.pyannote[3594].end 21508.99034375
transcript.pyannote[3595].speaker SPEAKER_13
transcript.pyannote[3595].start 21509.78346875
transcript.pyannote[3595].end 21514.23846875
transcript.pyannote[3596].speaker SPEAKER_13
transcript.pyannote[3596].start 21515.45346875
transcript.pyannote[3596].end 21516.56721875
transcript.pyannote[3597].speaker SPEAKER_13
transcript.pyannote[3597].start 21516.83721875
transcript.pyannote[3597].end 21519.26721875
transcript.pyannote[3598].speaker SPEAKER_13
transcript.pyannote[3598].start 21521.19096875
transcript.pyannote[3598].end 21524.29596875
transcript.pyannote[3599].speaker SPEAKER_13
transcript.pyannote[3599].start 21525.39284375
transcript.pyannote[3599].end 21526.33784375
transcript.pyannote[3600].speaker SPEAKER_13
transcript.pyannote[3600].start 21526.82721875
transcript.pyannote[3600].end 21529.49346875
transcript.pyannote[3601].speaker SPEAKER_12
transcript.pyannote[3601].start 21532.12596875
transcript.pyannote[3601].end 21534.40409375
transcript.pyannote[3602].speaker SPEAKER_39
transcript.pyannote[3602].start 21534.58971875
transcript.pyannote[3602].end 21540.05721875
transcript.pyannote[3603].speaker SPEAKER_39
transcript.pyannote[3603].start 21540.61409375
transcript.pyannote[3603].end 21541.13721875
transcript.pyannote[3604].speaker SPEAKER_26
transcript.pyannote[3604].start 21545.40659375
transcript.pyannote[3604].end 21546.04784375
transcript.pyannote[3605].speaker SPEAKER_39
transcript.pyannote[3605].start 21546.30096875
transcript.pyannote[3605].end 21574.73534375
transcript.pyannote[3606].speaker SPEAKER_38
transcript.pyannote[3606].start 21574.73534375
transcript.pyannote[3606].end 21575.25846875
transcript.pyannote[3607].speaker SPEAKER_39
transcript.pyannote[3607].start 21575.56221875
transcript.pyannote[3607].end 21589.50096875
transcript.pyannote[3608].speaker SPEAKER_39
transcript.pyannote[3608].start 21591.07034375
transcript.pyannote[3608].end 21592.67346875
transcript.pyannote[3609].speaker SPEAKER_39
transcript.pyannote[3609].start 21594.22596875
transcript.pyannote[3609].end 21606.24096875
transcript.pyannote[3610].speaker SPEAKER_39
transcript.pyannote[3610].start 21607.21971875
transcript.pyannote[3610].end 21610.40909375
transcript.pyannote[3611].speaker SPEAKER_39
transcript.pyannote[3611].start 21610.84784375
transcript.pyannote[3611].end 21611.20221875
transcript.pyannote[3612].speaker SPEAKER_39
transcript.pyannote[3612].start 21611.92784375
transcript.pyannote[3612].end 21619.06596875
transcript.pyannote[3613].speaker SPEAKER_39
transcript.pyannote[3613].start 21619.43721875
transcript.pyannote[3613].end 21631.78971875
transcript.pyannote[3614].speaker SPEAKER_39
transcript.pyannote[3614].start 21632.07659375
transcript.pyannote[3614].end 21633.57846875
transcript.pyannote[3615].speaker SPEAKER_26
transcript.pyannote[3615].start 21634.11846875
transcript.pyannote[3615].end 21635.87346875
transcript.pyannote[3616].speaker SPEAKER_26
transcript.pyannote[3616].start 21636.49784375
transcript.pyannote[3616].end 21649.64346875
transcript.pyannote[3617].speaker SPEAKER_39
transcript.pyannote[3617].start 21646.94346875
transcript.pyannote[3617].end 21674.09534375
transcript.pyannote[3618].speaker SPEAKER_26
transcript.pyannote[3618].start 21650.08221875
transcript.pyannote[3618].end 21650.43659375
transcript.pyannote[3619].speaker SPEAKER_26
transcript.pyannote[3619].start 21650.48721875
transcript.pyannote[3619].end 21650.50409375
transcript.pyannote[3620].speaker SPEAKER_26
transcript.pyannote[3620].start 21674.09534375
transcript.pyannote[3620].end 21674.38221875
transcript.pyannote[3621].speaker SPEAKER_39
transcript.pyannote[3621].start 21674.38221875
transcript.pyannote[3621].end 21675.54659375
transcript.pyannote[3622].speaker SPEAKER_26
transcript.pyannote[3622].start 21674.44971875
transcript.pyannote[3622].end 21674.50034375
transcript.pyannote[3623].speaker SPEAKER_26
transcript.pyannote[3623].start 21676.12034375
transcript.pyannote[3623].end 21687.29159375
transcript.pyannote[3624].speaker SPEAKER_26
transcript.pyannote[3624].start 21687.57846875
transcript.pyannote[3624].end 21689.31659375
transcript.pyannote[3625].speaker SPEAKER_26
transcript.pyannote[3625].start 21689.73846875
transcript.pyannote[3625].end 21699.03659375
transcript.pyannote[3626].speaker SPEAKER_39
transcript.pyannote[3626].start 21699.22221875
transcript.pyannote[3626].end 21704.84159375
transcript.pyannote[3627].speaker SPEAKER_26
transcript.pyannote[3627].start 21700.28534375
transcript.pyannote[3627].end 21701.28096875
transcript.pyannote[3628].speaker SPEAKER_26
transcript.pyannote[3628].start 21702.44534375
transcript.pyannote[3628].end 21703.30596875
transcript.pyannote[3629].speaker SPEAKER_26
transcript.pyannote[3629].start 21705.16221875
transcript.pyannote[3629].end 21710.95034375
transcript.pyannote[3630].speaker SPEAKER_26
transcript.pyannote[3630].start 21711.30471875
transcript.pyannote[3630].end 21723.87659375
transcript.pyannote[3631].speaker SPEAKER_26
transcript.pyannote[3631].start 21724.09596875
transcript.pyannote[3631].end 21732.02721875
transcript.pyannote[3632].speaker SPEAKER_39
transcript.pyannote[3632].start 21732.02721875
transcript.pyannote[3632].end 21732.78659375
transcript.pyannote[3633].speaker SPEAKER_26
transcript.pyannote[3633].start 21733.07346875
transcript.pyannote[3633].end 21750.01596875
transcript.pyannote[3634].speaker SPEAKER_26
transcript.pyannote[3634].start 21750.11721875
transcript.pyannote[3634].end 21752.54721875
transcript.pyannote[3635].speaker SPEAKER_39
transcript.pyannote[3635].start 21751.51784375
transcript.pyannote[3635].end 21759.36471875
transcript.pyannote[3636].speaker SPEAKER_38
transcript.pyannote[3636].start 21759.36471875
transcript.pyannote[3636].end 21760.09034375
transcript.pyannote[3637].speaker SPEAKER_39
transcript.pyannote[3637].start 21759.71909375
transcript.pyannote[3637].end 21760.86659375
transcript.pyannote[3638].speaker SPEAKER_39
transcript.pyannote[3638].start 21761.45721875
transcript.pyannote[3638].end 21765.60846875
transcript.pyannote[3639].speaker SPEAKER_38
transcript.pyannote[3639].start 21765.69284375
transcript.pyannote[3639].end 21765.70971875
transcript.pyannote[3640].speaker SPEAKER_26
transcript.pyannote[3640].start 21765.70971875
transcript.pyannote[3640].end 21766.48596875
transcript.pyannote[3641].speaker SPEAKER_39
transcript.pyannote[3641].start 21765.92909375
transcript.pyannote[3641].end 21769.13534375
transcript.pyannote[3642].speaker SPEAKER_26
transcript.pyannote[3642].start 21769.52346875
transcript.pyannote[3642].end 21774.14721875
transcript.pyannote[3643].speaker SPEAKER_38
transcript.pyannote[3643].start 21773.59034375
transcript.pyannote[3643].end 21774.34971875
transcript.pyannote[3644].speaker SPEAKER_26
transcript.pyannote[3644].start 21774.70409375
transcript.pyannote[3644].end 21797.62034375
transcript.pyannote[3645].speaker SPEAKER_39
transcript.pyannote[3645].start 21794.73471875
transcript.pyannote[3645].end 21794.83596875
transcript.pyannote[3646].speaker SPEAKER_20
transcript.pyannote[3646].start 21794.83596875
transcript.pyannote[3646].end 21794.93721875
transcript.pyannote[3647].speaker SPEAKER_39
transcript.pyannote[3647].start 21794.93721875
transcript.pyannote[3647].end 21794.97096875
transcript.pyannote[3648].speaker SPEAKER_26
transcript.pyannote[3648].start 21798.04221875
transcript.pyannote[3648].end 21801.82221875
transcript.pyannote[3649].speaker SPEAKER_39
transcript.pyannote[3649].start 21800.79284375
transcript.pyannote[3649].end 21803.64471875
transcript.pyannote[3650].speaker SPEAKER_39
transcript.pyannote[3650].start 21804.06659375
transcript.pyannote[3650].end 21811.03596875
transcript.pyannote[3651].speaker SPEAKER_39
transcript.pyannote[3651].start 21811.72784375
transcript.pyannote[3651].end 21816.16596875
transcript.pyannote[3652].speaker SPEAKER_39
transcript.pyannote[3652].start 21816.89159375
transcript.pyannote[3652].end 21817.88721875
transcript.pyannote[3653].speaker SPEAKER_26
transcript.pyannote[3653].start 21816.95909375
transcript.pyannote[3653].end 21819.59159375
transcript.pyannote[3654].speaker SPEAKER_39
transcript.pyannote[3654].start 21819.11909375
transcript.pyannote[3654].end 21820.99221875
transcript.pyannote[3655].speaker SPEAKER_39
transcript.pyannote[3655].start 21821.17784375
transcript.pyannote[3655].end 21823.50659375
transcript.pyannote[3656].speaker SPEAKER_39
transcript.pyannote[3656].start 21824.14784375
transcript.pyannote[3656].end 21839.87534375
transcript.pyannote[3657].speaker SPEAKER_39
transcript.pyannote[3657].start 21841.12409375
transcript.pyannote[3657].end 21841.88346875
transcript.pyannote[3658].speaker SPEAKER_26
transcript.pyannote[3658].start 21841.39409375
transcript.pyannote[3658].end 21842.99721875
transcript.pyannote[3659].speaker SPEAKER_26
transcript.pyannote[3659].start 21843.48659375
transcript.pyannote[3659].end 21843.55409375
transcript.pyannote[3660].speaker SPEAKER_39
transcript.pyannote[3660].start 21843.55409375
transcript.pyannote[3660].end 21846.52409375
transcript.pyannote[3661].speaker SPEAKER_39
transcript.pyannote[3661].start 21848.26221875
transcript.pyannote[3661].end 21849.40971875
transcript.pyannote[3662].speaker SPEAKER_26
transcript.pyannote[3662].start 21850.00034375
transcript.pyannote[3662].end 21850.47284375
transcript.pyannote[3663].speaker SPEAKER_39
transcript.pyannote[3663].start 21850.03409375
transcript.pyannote[3663].end 21851.70471875
transcript.pyannote[3664].speaker SPEAKER_26
transcript.pyannote[3664].start 21850.91159375
transcript.pyannote[3664].end 21857.02034375
transcript.pyannote[3665].speaker SPEAKER_39
transcript.pyannote[3665].start 21856.61534375
transcript.pyannote[3665].end 21861.88034375
transcript.pyannote[3666].speaker SPEAKER_26
transcript.pyannote[3666].start 21861.45846875
transcript.pyannote[3666].end 21862.94346875
transcript.pyannote[3667].speaker SPEAKER_39
transcript.pyannote[3667].start 21862.36971875
transcript.pyannote[3667].end 21885.13409375
transcript.pyannote[3668].speaker SPEAKER_39
transcript.pyannote[3668].start 21887.09159375
transcript.pyannote[3668].end 21887.64846875
transcript.pyannote[3669].speaker SPEAKER_39
transcript.pyannote[3669].start 21888.07034375
transcript.pyannote[3669].end 21891.63096875
transcript.pyannote[3670].speaker SPEAKER_39
transcript.pyannote[3670].start 21892.00221875
transcript.pyannote[3670].end 21892.57596875
transcript.pyannote[3671].speaker SPEAKER_39
transcript.pyannote[3671].start 21892.69409375
transcript.pyannote[3671].end 21893.84159375
transcript.pyannote[3672].speaker SPEAKER_26
transcript.pyannote[3672].start 21893.92596875
transcript.pyannote[3672].end 21900.91221875
transcript.pyannote[3673].speaker SPEAKER_39
transcript.pyannote[3673].start 21894.70221875
transcript.pyannote[3673].end 21895.63034375
transcript.pyannote[3674].speaker SPEAKER_39
transcript.pyannote[3674].start 21898.49909375
transcript.pyannote[3674].end 21898.97159375
transcript.pyannote[3675].speaker SPEAKER_39
transcript.pyannote[3675].start 21900.91221875
transcript.pyannote[3675].end 21902.71784375
transcript.pyannote[3676].speaker SPEAKER_26
transcript.pyannote[3676].start 21900.97971875
transcript.pyannote[3676].end 21901.21596875
transcript.pyannote[3677].speaker SPEAKER_39
transcript.pyannote[3677].start 21902.97096875
transcript.pyannote[3677].end 21914.59784375
transcript.pyannote[3678].speaker SPEAKER_26
transcript.pyannote[3678].start 21903.10596875
transcript.pyannote[3678].end 21903.35909375
transcript.pyannote[3679].speaker SPEAKER_26
transcript.pyannote[3679].start 21903.98346875
transcript.pyannote[3679].end 21904.43909375
transcript.pyannote[3680].speaker SPEAKER_26
transcript.pyannote[3680].start 21908.21909375
transcript.pyannote[3680].end 21908.65784375
transcript.pyannote[3681].speaker SPEAKER_26
transcript.pyannote[3681].start 21909.31596875
transcript.pyannote[3681].end 21910.36221875
transcript.pyannote[3682].speaker SPEAKER_26
transcript.pyannote[3682].start 21913.31534375
transcript.pyannote[3682].end 21915.23909375
transcript.pyannote[3683].speaker SPEAKER_39
transcript.pyannote[3683].start 21915.23909375
transcript.pyannote[3683].end 21923.03534375
transcript.pyannote[3684].speaker SPEAKER_26
transcript.pyannote[3684].start 21915.30659375
transcript.pyannote[3684].end 21916.08284375
transcript.pyannote[3685].speaker SPEAKER_39
transcript.pyannote[3685].start 21923.67659375
transcript.pyannote[3685].end 21926.37659375
transcript.pyannote[3686].speaker SPEAKER_39
transcript.pyannote[3686].start 21927.20346875
transcript.pyannote[3686].end 21929.38034375
transcript.pyannote[3687].speaker SPEAKER_39
transcript.pyannote[3687].start 21929.61659375
transcript.pyannote[3687].end 21930.39284375
transcript.pyannote[3688].speaker SPEAKER_39
transcript.pyannote[3688].start 21931.10159375
transcript.pyannote[3688].end 21934.45971875
transcript.pyannote[3689].speaker SPEAKER_26
transcript.pyannote[3689].start 21934.54409375
transcript.pyannote[3689].end 21935.37096875
transcript.pyannote[3690].speaker SPEAKER_26
transcript.pyannote[3690].start 21935.87721875
transcript.pyannote[3690].end 21936.99096875
transcript.pyannote[3691].speaker SPEAKER_26
transcript.pyannote[3691].start 21937.49721875
transcript.pyannote[3691].end 21939.20159375
transcript.pyannote[3692].speaker SPEAKER_26
transcript.pyannote[3692].start 21939.55596875
transcript.pyannote[3692].end 21945.64784375
transcript.pyannote[3693].speaker SPEAKER_39
transcript.pyannote[3693].start 21939.70784375
transcript.pyannote[3693].end 21940.58534375
transcript.pyannote[3694].speaker SPEAKER_39
transcript.pyannote[3694].start 21940.95659375
transcript.pyannote[3694].end 21944.38221875
transcript.pyannote[3695].speaker SPEAKER_26
transcript.pyannote[3695].start 21946.32284375
transcript.pyannote[3695].end 21948.46596875
transcript.pyannote[3696].speaker SPEAKER_26
transcript.pyannote[3696].start 21949.36034375
transcript.pyannote[3696].end 21956.48159375
transcript.pyannote[3697].speaker SPEAKER_39
transcript.pyannote[3697].start 21952.88721875
transcript.pyannote[3697].end 21956.70096875
transcript.pyannote[3698].speaker SPEAKER_39
transcript.pyannote[3698].start 21957.13971875
transcript.pyannote[3698].end 21960.14346875
transcript.pyannote[3699].speaker SPEAKER_39
transcript.pyannote[3699].start 21961.44284375
transcript.pyannote[3699].end 21962.21909375
transcript.pyannote[3700].speaker SPEAKER_39
transcript.pyannote[3700].start 21962.32034375
transcript.pyannote[3700].end 21966.57284375
transcript.pyannote[3701].speaker SPEAKER_38
transcript.pyannote[3701].start 21966.67409375
transcript.pyannote[3701].end 21967.31534375
transcript.pyannote[3702].speaker SPEAKER_39
transcript.pyannote[3702].start 21966.97784375
transcript.pyannote[3702].end 21968.88471875
transcript.pyannote[3703].speaker SPEAKER_21
transcript.pyannote[3703].start 21967.31534375
transcript.pyannote[3703].end 21967.38284375
transcript.pyannote[3704].speaker SPEAKER_21
transcript.pyannote[3704].start 21967.43346875
transcript.pyannote[3704].end 21967.45034375
transcript.pyannote[3705].speaker SPEAKER_39
transcript.pyannote[3705].start 21969.55971875
transcript.pyannote[3705].end 21976.69784375
transcript.pyannote[3706].speaker SPEAKER_26
transcript.pyannote[3706].start 21976.03971875
transcript.pyannote[3706].end 21977.15346875
transcript.pyannote[3707].speaker SPEAKER_39
transcript.pyannote[3707].start 21977.15346875
transcript.pyannote[3707].end 21981.76034375
transcript.pyannote[3708].speaker SPEAKER_26
transcript.pyannote[3708].start 21978.13221875
transcript.pyannote[3708].end 21978.77346875
transcript.pyannote[3709].speaker SPEAKER_26
transcript.pyannote[3709].start 21981.35534375
transcript.pyannote[3709].end 21981.42284375
transcript.pyannote[3710].speaker SPEAKER_38
transcript.pyannote[3710].start 21981.42284375
transcript.pyannote[3710].end 21983.02596875
transcript.pyannote[3711].speaker SPEAKER_39
transcript.pyannote[3711].start 21982.73909375
transcript.pyannote[3711].end 21994.61909375
transcript.pyannote[3712].speaker SPEAKER_39
transcript.pyannote[3712].start 21994.80471875
transcript.pyannote[3712].end 21996.00284375
transcript.pyannote[3713].speaker SPEAKER_39
transcript.pyannote[3713].start 21996.23909375
transcript.pyannote[3713].end 22002.80346875
transcript.pyannote[3714].speaker SPEAKER_26
transcript.pyannote[3714].start 22002.90471875
transcript.pyannote[3714].end 22007.05596875
transcript.pyannote[3715].speaker SPEAKER_39
transcript.pyannote[3715].start 22004.10284375
transcript.pyannote[3715].end 22005.35159375
transcript.pyannote[3716].speaker SPEAKER_39
transcript.pyannote[3716].start 22005.94221875
transcript.pyannote[3716].end 22007.95034375
transcript.pyannote[3717].speaker SPEAKER_13
transcript.pyannote[3717].start 22007.05596875
transcript.pyannote[3717].end 22007.07284375
transcript.pyannote[3718].speaker SPEAKER_13
transcript.pyannote[3718].start 22007.81534375
transcript.pyannote[3718].end 22007.83221875
transcript.pyannote[3719].speaker SPEAKER_26
transcript.pyannote[3719].start 22007.83221875
transcript.pyannote[3719].end 22008.54096875
transcript.pyannote[3720].speaker SPEAKER_13
transcript.pyannote[3720].start 22011.47721875
transcript.pyannote[3720].end 22012.48971875
transcript.pyannote[3721].speaker SPEAKER_13
transcript.pyannote[3721].start 22013.95784375
transcript.pyannote[3721].end 22017.11346875
transcript.pyannote[3722].speaker SPEAKER_13
transcript.pyannote[3722].start 22023.91409375
transcript.pyannote[3722].end 22032.23346875
transcript.pyannote[3723].speaker SPEAKER_13
transcript.pyannote[3723].start 22033.11096875
transcript.pyannote[3723].end 22038.67971875
transcript.pyannote[3724].speaker SPEAKER_13
transcript.pyannote[3724].start 22039.43909375
transcript.pyannote[3724].end 22042.03784375
transcript.pyannote[3725].speaker SPEAKER_13
transcript.pyannote[3725].start 22044.16409375
transcript.pyannote[3725].end 22046.49284375
transcript.pyannote[3726].speaker SPEAKER_13
transcript.pyannote[3726].start 22046.76284375
transcript.pyannote[3726].end 22054.50846875
transcript.pyannote[3727].speaker SPEAKER_13
transcript.pyannote[3727].start 22055.26784375
transcript.pyannote[3727].end 22062.64221875
transcript.pyannote[3728].speaker SPEAKER_13
transcript.pyannote[3728].start 22064.24534375
transcript.pyannote[3728].end 22068.78471875
transcript.pyannote[3729].speaker SPEAKER_13
transcript.pyannote[3729].start 22070.08409375
transcript.pyannote[3729].end 22074.23534375
transcript.whisperx[0].start 284.036
transcript.whisperx[0].end 286.254
transcript.whisperx[0].text 測試
transcript.whisperx[1].start 733.988
transcript.whisperx[1].end 746.41
transcript.whisperx[1].text 議員吳春城議員吳春城議員
transcript.whisperx[2].start 774.592
transcript.whisperx[2].end 775.485
transcript.whisperx[2].text 本集完
transcript.whisperx[3].start 1433.439
transcript.whisperx[3].end 1433.587
transcript.whisperx[3].text 本集完
transcript.whisperx[4].start 1512.824
transcript.whisperx[4].end 1514.377
transcript.whisperx[4].text 響鐘
transcript.whisperx[5].start 1573.131
transcript.whisperx[5].end 1590.536
transcript.whisperx[5].text 法定人數不足
transcript.whisperx[6].start 1605.128
transcript.whisperx[6].end 1605.538
transcript.whisperx[6].text
transcript.whisperx[7].start 1704.804
transcript.whisperx[7].end 1705.184
transcript.whisperx[7].text 好,我們現在開始開會
transcript.whisperx[8].start 1733.983
transcript.whisperx[8].end 1761.71
transcript.whisperx[8].text 大家不用緊張啦今天的會我跟大家報告因為這個是跨好多個部份然後我們提案人吳春城委員他提這個案事實上我看連署的人有民進黨的人有國民黨都有他們民眾黨所以在委員的部分應該是還好啦現在就看主管機關他們的態度是怎麼樣那今天昨天晚上我們柯總召也有跟我
transcript.whisperx[9].start 1762.841
transcript.whisperx[9].end 1764.782
transcript.whisperx[9].text 今天不會主條討論所以大家可以在你的時間好好的發表
transcript.whisperx[10].start 1780.421
transcript.whisperx[10].end 1795.61
transcript.whisperx[10].text 我們已經法定人數到了本日的議程為審查吳春城等42人擬具《壯世代政策與產業發展促進法草案》現在我介紹在場的委員
transcript.whisperx[11].start 1846.282
transcript.whisperx[11].end 1857.573
transcript.whisperx[11].text 來,我們登記程序花園有4位委員齁,那我們第一個請黃秀芳委員來程序花園,時間比較長啦齁兩分鐘或三分鐘就好
transcript.whisperx[12].start 1861.332
transcript.whisperx[12].end 1879.742
transcript.whisperx[12].text 謝謝主席。那我們今天吳委員所提的這個《壯世代政策與產業發展促進法草案》。那我們知道這個如果未來組織單位是行政院的話那我們今天在場就只有這個我們的勞動部然後還有衛福部
transcript.whisperx[13].start 1881.643
transcript.whisperx[13].end 1905.755
transcript.whisperx[13].text 還有國發會嘛那如果是這樣的話應該是要跨部會的不論是這個農業部也好或者是這個經濟部教育部可能要好幾個單位一起開啦那我是認為就是說就這個壯世代的這個定義其實也不是那麼明確那目前我們在勞動部也好或者是在衛福部都有針對這個中高齡
transcript.whisperx[14].start 1907.456
transcript.whisperx[14].end 1907.616
transcript.whisperx[14].text 稍後
transcript.whisperx[15].start 1935.936
transcript.whisperx[15].end 1938.682
transcript.whisperx[15].text 法定人數不足
transcript.whisperx[16].start 1942.421
transcript.whisperx[16].end 1946.824
transcript.whisperx[16].text 我們今天還是到底巡打,巡打完我們找時間來辦很正式的公聽會好不好
transcript.whisperx[17].start 1972.981
transcript.whisperx[17].end 1973.162
transcript.whisperx[17].text 秀穎委員
transcript.whisperx[18].start 2003.822
transcript.whisperx[18].end 2021.049
transcript.whisperx[18].text 謝謝主席我是要想說這個我們今天馬上就要處理要來對於吳春城委員的提案來做詢答跟處理那剛剛感謝主席說今天只詢答不處理其實對於什麼叫壯世代這件事情
transcript.whisperx[19].start 2021.809
transcript.whisperx[19].end 2049.686
transcript.whisperx[19].text 我認為還是有很多要掀起討論的地方剛剛主席也講到這個跨了很多個部會這個全世界應該也還沒有這個名詞所以吳春城委員創了這個壯世代那如果依照您的定義我很快就會變成壯世代可是這個壯世代的上限是到哪裡不知道所以就像剛剛秀芳委員在請教的比如說我到了80歲我還算不算壯世代
transcript.whisperx[20].start 2050.626
transcript.whisperx[20].end 2070.632
transcript.whisperx[20].text 那如果80歲以上還算壯世代的話那我們可能所有國家的其他的法令都必須要做一併的修改所謂的中高齡跟高齡等等所有的或者是什麼老人福利法等等相關的照顧法案這個可能都要一併去修改甚至連壯世代的定義
transcript.whisperx[21].start 2071.832
transcript.whisperx[21].end 2089.126
transcript.whisperx[21].text 都要把它做一個很明確的規範但是在這些東西都還沒有之前貿然的現在就要去做法令的推動我覺得有點太快所以其實我們是希望能夠先召開公聽會先聽一下各界專家學者的意見
transcript.whisperx[22].start 2090.247
transcript.whisperx[22].end 2114.411
transcript.whisperx[22].text ﹏﹏
transcript.whisperx[23].start 2114.491
transcript.whisperx[23].end 2114.651
transcript.whisperx[23].text 以上,謝謝
transcript.whisperx[24].start 2133.4
transcript.whisperx[24].end 2155.695
transcript.whisperx[24].text 我剛剛已經有宣誓過就是我們今天是所有委員大家把你的意見都提出來今天是大體審查今天不處理條文所以大家放心那至於要辦公聽會或辦什麼研討會等等我們都可以來辦那接續我們請林業勤委員我們那個
transcript.whisperx[25].start 2158.278
transcript.whisperx[25].end 2164.32
transcript.whisperx[25].text 陳秀岸的截止了大家談完就 林慧琴委員請中世代這個說法在臺灣我一直認為是一個倡議口號當然吳委員吳春城委員一再告訴本席說我們要改變社會對中高齡跟高齡者的看法要倡議促進長輩們消費把資源
transcript.whisperx[26].start 2187.268
transcript.whisperx[26].end 2187.388
transcript.whisperx[26].text :審查委員
transcript.whisperx[27].start 2208.033
transcript.whisperx[27].end 2208.253
transcript.whisperx[27].text 議員吳春城
transcript.whisperx[28].start 2229.97
transcript.whisperx[28].end 2230.431
transcript.whisperx[28].text 則不予審查委員
transcript.whisperx[29].start 2248.268
transcript.whisperx[29].end 2270.741
transcript.whisperx[29].text 那有一億生活寬裕的人剩下四分之一所以當下對長輩最直接的協助應該是接受WHO2002年的活力老化的倡議秉持這健康參與安全的三大原則推動活力老化而不是今天就馬上要去入法而且目前看起來有跟八部法律事實上是
transcript.whisperx[30].start 2271.221
transcript.whisperx[30].end 2271.521
transcript.whisperx[30].text 議員吳春城
transcript.whisperx[31].start 2293.061
transcript.whisperx[31].end 2293.822
transcript.whisperx[31].text 王振旭委員
transcript.whisperx[32].start 2326.958
transcript.whisperx[32].end 2344.98
transcript.whisperx[32].text 感謝主席主席還有各位同仁我是王正旭針對今天衛房委員會所排審的壯世代政策與產業發展促進法其實我也是共同提案人那時候委員說他把他的書
transcript.whisperx[33].start 2346.081
transcript.whisperx[33].end 2368.373
transcript.whisperx[33].text 有介紹給我了解然後看完以後也非常感佩吳委員真的非常用心的在推這個壯世代未來可以替國家替社會做哪一些更有貢獻的事情那其實這個理念是非常非常的讓我受到感佩那我也知道如果有壯世代
transcript.whisperx[34].start 2369.373
transcript.whisperx[34].end 2396.571
transcript.whisperx[34].text 類似這樣55歲以上的高齡、中高齡者能夠參與社會我相信這個對於年輕的下一代如果能夠有共榮、共好的效應應該是非常值得讓我們來學習的所以我在這邊有必要把對這部法案的基本立場再重新講清楚不過我相信剛剛我們很多的委員都有提議也麻煩召委今天能夠針對
transcript.whisperx[35].start 2397.756
transcript.whisperx[35].end 2423.251
transcript.whisperx[35].text ⋯⋯⋯
transcript.whisperx[36].start 2423.772
transcript.whisperx[36].end 2432.787
transcript.whisperx[36].text 謝謝王委員接下來我們請林淑芬委員發言林淑芬委員發言後就我們進入請程序啦謝謝
transcript.whisperx[37].start 2437.783
transcript.whisperx[37].end 2454.835
transcript.whisperx[37].text 各位大家好我覺得這個壯世代政策與產業發展促進法的草案我們必須要肯定吳委員的這個有心裡面每一條草案的條文的內容我想站在立委的立場我們大概都覺得這是本來就是應該這麼做的
transcript.whisperx[38].start 2456.596
transcript.whisperx[38].end 2470.488
transcript.whisperx[38].text 但唯一我們不能同意的就是說因為整個草案啊剛才已經很多人講過第一個壯世代的定義在全世界都還沒有定義出來所以壯世代指涉的是什麼我們正在講絕對不是戰後嬰兒草老化到現在壯世代從55歲開始是58年次了58年次怎麼會是戰後嬰兒草絕對不是不只是
transcript.whisperx[39].start 2484.139
transcript.whisperx[39].end 2488.321
transcript.whisperx[39].text 再來就是說定義不明以外我們知道這個裡面我很不清楚為什麼程序委員會還有院會的議讀會把它交付到衛環委員會來因為在這裡草案的第一條開宗明義就是講為了使國家政策制定跟產業發展能夠因應人口的變化和社會市場的結構然後去降低世代間的年輕世代的負擔這是第一條
transcript.whisperx[40].start 2511.853
transcript.whisperx[40].end 2512.135
transcript.whisperx[40].text 然後第3條呢開州民意也講
transcript.whisperx[41].start 2518.223
transcript.whisperx[41].end 2542.204
transcript.whisperx[41].text 這個要設辦公室以外他的組織要怎麼做以外最核心是壯世代政策辦公室每年應制定國家年度的壯世代政策跟產業發展計畫各位還是產業發展計畫而最後一項寫他那個要推動的事務包括包含但不限包含但不限就全部了但是他開宗明義就講吳委員你講了說
transcript.whisperx[42].start 2544.526
transcript.whisperx[42].end 2571.648
transcript.whisperx[42].text 包含但不限於壯世代的經濟發展、金融生態、科技發展、學術及產業研究、就業環境、健康生活、教育體制、數位落差、消費文化的形塑等等。這裡面我想最核心最重要的就預算面、政策面還有這個重點第一個就是經濟發展跟金融生態跟科技發展等等
transcript.whisperx[43].start 2572.829
transcript.whisperx[43].end 2590.563
transcript.whisperx[43].text 總的來自整部法看起來我們就覺得壯世代作為一個生產力有生產者有生產力作為一個消費者有消費力在這種狀況裡面國家要如何好好的運用可是在我們未完委員會我們談的就是只有可能中高齡就業這樣的一個議題而已在這種狀況裡面
transcript.whisperx[44].start 2594.366
transcript.whisperx[44].end 2594.406
transcript.whisperx[44].text 議員吳春城
transcript.whisperx[45].start 2610.856
transcript.whisperx[45].end 2614.359
transcript.whisperx[45].text 法案放到衛黃委員會來主審所以我們還是認為說應該不是我們聯席經濟委員會而是應該經濟委員會主審我們去聯審才是然後呢我們在這裡必須要再講
transcript.whisperx[46].start 2626.01
transcript.whisperx[46].end 2646.522
transcript.whisperx[46].text 因為定義不明所以我們看起來這裡面包含的內容包括我剛剛已經講過策略型產業的支持包括資源的分配包括補助而這樣的方向你定義不明裡面我覺得就會有不公平的這個議題會跑出來比如說比如說這裡講說比如說第
transcript.whisperx[47].start 2653.069
transcript.whisperx[47].end 2659.733
transcript.whisperx[47].text 第13條壯世代的農民你怎麼樣要對待什麼政策可是對我們來講雖然我還不在吳委員的壯世代定義裡面可是我覺得55歲以上是要有這樣的特別的照顧那我50歲了難道不應該嗎我45歲了難道不應該嗎然後呢為什麼是壯世代的農民那為什麼不是壯世代的單身要怎麼照顧他的生產力消費力更有
transcript.whisperx[48].start 2684.09
transcript.whisperx[48].end 2708.968
transcript.whisperx[48].text 綜世代的單親要怎麼樣的來給予這個策略型的支持但是壯世代的女性壯世代的弱勢如果要這樣子切割的話每一個領域每一種選項我們都可以切割出非常多所以在這種狀況裡面喔壯世代就已經很難區隔了可是為什麼壯世代農民壯世代什麼為什麼壯世代女性沒有壯世代單身沒有等等
transcript.whisperx[49].start 2709.748
transcript.whisperx[49].end 2735.954
transcript.whisperx[49].text 在這種狀況裡面你看我們還是回到我剛剛講的第4條剛剛講第一條第三條開宗明義宣誓整個法的方向是什麼要作為是什麼第4條就開始講這個輔導產業金融制度要怎麼進來新創跟產業鏈要怎麼給它輔導起來新創產業鏈經濟委員會第5條你的要鼓勵壯世代投資嗎那你的金融行動方案是什麼
transcript.whisperx[50].start 2738.575
transcript.whisperx[50].end 2754.541
transcript.whisperx[50].text 經濟金融產業也不是我們委員會第6條你要去調查他的需求這個平常就有在調查了但是呢這個跟中高齡就業服務法還有懶人福利法其實也有重疊之處第7條講說每一個壯世代都要給他一個適性就業我們對學生念書叫適性學習現在對中高齡的壯世代要叫他們
transcript.whisperx[51].start 2762.324
transcript.whisperx[51].end 2762.344
transcript.whisperx[51].text 第8條
transcript.whisperx[52].start 2785.299
transcript.whisperx[52].end 2790.124
transcript.whisperx[52].text 要給他醫療的資源進來心理衛生的資源第9條要跟學校教育合作那第10條要對數位平權要推動這個也不需要壯世代這政府本來就現在就必須要急趕直追趕快做的第11條要建立壯世代的新形象我覺得利益也是良善的但是呢第12條講發展觀光
transcript.whisperx[53].start 2810.603
transcript.whisperx[53].end 2817.447
transcript.whisperx[53].text 可是45以上或者是觀觀業者可以切割說我45歲專為否45歲以上55歲以上45歲以下就不要嗎觀觀有辦法這樣子切割或是我重點就放在這裡那為什麼55歲以上我45歲不可以這樣子所以總的來說就是我們講說其實在這裡面有重點就是
transcript.whisperx[54].start 2834.235
transcript.whisperx[54].end 2839.142
transcript.whisperx[54].text 策略型產業、策略型經濟發展的支持牽扯到經濟金融產業部門居多資源分配的議題很多所以壯世代從哪裡切下去
transcript.whisperx[55].start 2850.659
transcript.whisperx[55].end 2863.861
transcript.whisperx[55].text 這個都是一大問題那正因為是這樣子有分配的公平性的問題所以我們還是在這裡希望說一定要召開公聽會以外我個人是希望應該是要由經濟委員會主審而我們衛環委員會去聯席而不是站在這裡我們去討論生產者消費者產業應該怎麼輔導這個是捨本逐末謝謝
transcript.whisperx[56].start 2880.656
transcript.whisperx[56].end 2903.392
transcript.whisperx[56].text 謝謝林委員我在這邊跟大家報告一次昨天又跟柯總召也談過就是說我們今天是讓大家暢所欲言然後勞動部今天當主責單位然後讓只有大體行打我們不審查主條絕對不審查辦公聽會辦什麼會我們都可以來討論所以大家放心
transcript.whisperx[57].start 2910.322
transcript.whisperx[57].end 2939.085
transcript.whisperx[57].text 就照這個流程就走完我們再來說嘛我們趕快來辦啦事實上吳春城他已經辦了幾次你辦幾次公聽在立法院辦的個人怎麼可以代表立法院在立法院辦的那個個人辦那不代表立法院啦好在經濟委員會主審啦經濟委員會我們在這裡有辦法決定產業要怎麼輔導是這種這是跟勞動部管理比較親啦
transcript.whisperx[58].start 2940.646
transcript.whisperx[58].end 2943.307
transcript.whisperx[58].text 陳昭芝委員王秀芳委員林業勤委員王振旭委員吳春城委員林淑芬委員陳慶威委員
transcript.whisperx[59].start 2970.769
transcript.whisperx[59].end 2988.923
transcript.whisperx[59].text 蔡議員,現在是主席嗎?還有嗎?黃秀邦有,黃秀邦剛剛介紹了。那我們介紹在場的行政官員行政院內政衛福勞動處處長蘇永富
transcript.whisperx[60].start 2992.844
transcript.whisperx[60].end 3000.845
transcript.whisperx[60].text 我們勞動部部長何佩珊他的責任大我們勞動力發展署署長蔡孟良勞工保險局局長白立真勞動保險司司長陳美女勞動福祉退休司司長謝倩倩
transcript.whisperx[61].start 3023.584
transcript.whisperx[61].end 3026.627
transcript.whisperx[61].text 勞動條件就業平等司司長黃維琛勞動關係司副司長黃齊亞衛生福利部政事呂健德護理及健康照護司副司長蔡盈盈長期照護司專門委員王林怡
transcript.whisperx[62].start 3052.748
transcript.whisperx[62].end 3076.079
transcript.whisperx[62].text 心理健康師專門委員 洪家基口腔健康師檢證記證 陳少卿社家署副署長 詹美美國健署組長 李嘉惠健康保險局副組長 林宥鈞經濟部常務次長 連錦章
transcript.whisperx[63].start 3086.801
transcript.whisperx[63].end 3095.289
transcript.whisperx[63].text 產業發展署主任秘書林德森中小及新創企業署主任秘書謝榮峰商業發展署組長翁敬庭國際貿易署檢證秘書簡顯英
transcript.whisperx[64].start 3113.498
transcript.whisperx[64].end 3134.77
transcript.whisperx[64].text 產業技術師科長何彥慶金融監督管理委員會金管會法律事務處處長林志憲教育部終身教育師師長梁學正文化部綜合規劃師副師長陳怡靜數位發展部數位發展產業署副署長陳惠敏
transcript.whisperx[65].start 3145.399
transcript.whisperx[65].end 3151.363
transcript.whisperx[65].text 市委政府司科長陳菊穗國家發展委員會副主委彭麗佩社會發展處副處長簡盈琳
transcript.whisperx[66].start 3164.301
transcript.whisperx[66].end 3170.647
transcript.whisperx[66].text 賴銀林人力發展署副署長鄭家青國土區域離島發展署檢任計政曾詠怡
transcript.whisperx[67].start 3188.855
transcript.whisperx[67].end 3195.201
transcript.whisperx[67].text 國家科學及技術委員會生命科學研究發展處處長楊台鴻農業部文憑輔導師師長陳俊遠農村發展及水土保持署檢任政工程師王志偉
transcript.whisperx[68].start 3213.707
transcript.whisperx[68].end 3216.73
transcript.whisperx[68].text 交通部觀光署副署長 周廷章
transcript.whisperx[69].start 3237.45
transcript.whisperx[69].end 3263.968
transcript.whisperx[69].text 好謝謝主席謝謝在座各位委員各位行政部門官員和部長那謝謝大家的關注今天是一個非常重要的日子是臺灣的一個關鍵的日子我知道大家剛才提出了種種的一些問題就是因為這麼多的困難所以我們先今天需要在這裡那上個禮拜一次國發會
transcript.whisperx[70].start 3265.729
transcript.whisperx[70].end 3291.071
transcript.whisperx[70].text 公布了臺灣人口最新的推估數字在這個數字裡面看到臺灣在未來50年會減少1000萬人然後我們的少子化提早了15年各項的指標加速的惡化臺灣已經成為全世界老化跟少子化速度最快的國家
transcript.whisperx[71].start 3292.552
transcript.whisperx[71].end 3308.833
transcript.whisperx[71].text 所以也不只是說世界跟在世界後面走我們要走在世界的前面所以這是一個很關鍵的一個思維的大翻轉的關鍵時刻如果我們繼續用過去的一個思維我們是沒辦法化解這個危機的
transcript.whisperx[72].start 3309.514
transcript.whisperx[72].end 3337.325
transcript.whisperx[72].text 所以大家看到這個數字1970年代的人口是一個金字塔當時高齡者只占人口2.9%到了2040年的人口推估圖是這樣子65歲上占人口30.1%我們現在很多是停留在1970年代把老人當作少數的一個思維在規劃制度那現在已經迎向這裡了所以我們的確是腦筋要翻過來
transcript.whisperx[73].start 3339.367
transcript.whisperx[73].end 3365.248
transcript.whisperx[73].text 所以這個未來臺灣30年最重要的問題就是高齡化與少子化貫穿了整個政府所有的部會所有的行政那我知道當然最近這個這個因為總預算的問題朝野有些關係不太好不過希望大家這個跨越黨派因為臺灣是要往前走的那其實這個也不是也不是一個
transcript.whisperx[74].start 3367.414
transcript.whisperx[74].end 3391.049
transcript.whisperx[74].text 這個也不是一個什麼創意 這個只是30年前日本已經在做了 30年前1995年日本已經制定了高齡社會對策基本法 設立了基本會議 是由內閣、中壢大臣擔任召集人 跨部會的會議 我們已經延後了30年了 然後台灣現在在此時此地 我們難道還不要翻新嗎
transcript.whisperx[75].start 3392.988
transcript.whisperx[75].end 3420.687
transcript.whisperx[75].text 這個法其實很簡單一個促進法的一個基本上他是一個循環循環的模式因為對面面對未來這麼龐大的高齡化少子化我們不可能都用攝服用補助用什麼樣測試我們要產生一個循環那如何啟動這些龐大的未來佔主力的高齡人口讓他不要倒下來讓他成為生產力消費力才能夠幫助下一代
transcript.whisperx[76].start 3422.301
transcript.whisperx[76].end 3449.378
transcript.whisperx[76].text 那另外一個就是這是一個雙軌制目前我們的衛福、社福的這邊已經花了很多的經費、心力我知道大家很辛苦但是只能照顧15%的失能者但是如果我們沒有把800萬的高齡的人口扶住的話讓他這樣傾斜下來的話會造成人口的土石流未來連這些照護都沒辦法照顧好所以這是一個雙軌制壯世代是一個發展性的政策
transcript.whisperx[77].start 3452.664
transcript.whisperx[77].end 3469.782
transcript.whisperx[77].text 這是個減輕年輕世代因為就扶養比來講因為高年化所以擔任分子被扶養的就會越來越大因為少子化所以分母就會越小壯世代有辦法就是把分子壯起來拉下來當分母就成為壯台灣一個很強勁的底盤
transcript.whisperx[78].start 3474.332
transcript.whisperx[78].end 3496.943
transcript.whisperx[78].text 那非常感謝各部會都大概有10個部會都提出了書面的報告均表認同這個方向每一個部會其實現在已經經過大概半年其實都有很多深入的溝通特別感謝勞動部部長勞動部高舉這個壯世代重返職場已經推動了每天都做很多的事情我也都知道那
transcript.whisperx[79].start 3499.376
transcript.whisperx[79].end 3520.105
transcript.whisperx[79].text 其實這個行政院有跨部會小組由陳時中政委來召集有13個部會加入了壯世代的一個計畫在推動所以這個也是卓院長認同然後在13個部會都有經過了很多的討論研議的不是突然蹦出來的東西
transcript.whisperx[80].start 3521.425
transcript.whisperx[80].end 3540.672
transcript.whisperx[80].text 那我們8月12號召開了公聽會那立法院有一個撞出會有240幾位的專家學者共同研議這部分不是我個人去研發的200多位的專家學者每個月都在開會那在這一次4個小時的一個會當中有8個部會的次長全程參與
transcript.whisperx[81].start 3542.413
transcript.whisperx[81].end 3558.301
transcript.whisperx[81].text 這份的法案當中大概都是那一個會議的結論那現行的組織框架政策工具都很有限我們以現在的方法要解決未來的問題是沒有辦法所以立這個法可以協助大家可以協助行政部門推動前瞻的規劃謝謝
transcript.whisperx[82].start 3562.393
transcript.whisperx[82].end 3577.561
transcript.whisperx[82].text 另外這個法案內容基本上都沒有涉及利益的分配,事實上是一個方向性、宣示性。那為什麼大家也會覺得跌宰嫁污,但是也不是一個跌宰嫁污,是一個方向性的。
transcript.whisperx[83].start 3578.521
transcript.whisperx[83].end 3598.446
transcript.whisperx[83].text 必須去重視因為以我們現在的一個法令我們事實上是沒辦法解決未來這個正在發展的搞影化少子化的問題的我們少子化一年要1000億的一個預算投入但是我們的少子化快速的跌破快速的連續的跌破要破10萬人了
transcript.whisperx[84].start 3599.952
transcript.whisperx[84].end 3624.055
transcript.whisperx[84].text 那很重要的壯世代五十五歲上先有七百四萬人都即將被你退休人生在我們的這個定義裡面那如何翻轉這七百萬的壯世代讓他不會成為一個海嘯壓垮了我們的下一代然後能夠繼續成為國家發展的動力是整個這一步伐的核心精神那因為這樣子所以每一個
transcript.whisperx[85].start 3624.375
transcript.whisperx[85].end 3645.204
transcript.whisperx[85].text 每一個部會的確涉及的部會很多每一個部會確實要調整他把這一部分納入到壯世代的精神壯世代這樣的一個而且這不是單一部會能夠解決的問題這個是每一個部會要合作合起來共同解決台灣最艱困的一件事情所以要拜託大家齊心齊力
transcript.whisperx[86].start 3646.365
transcript.whisperx[86].end 3663.938
transcript.whisperx[86].text 那最後就是臺灣我們再經過兩個月就要進入超高齡社會65歲以上占人口的20%以上那我們現在如何對全民來做一個交代臺灣進入超高齡社會我們拿出什麼東西讓人民放心我們提出什麼樣的一個政策照目前的這樣子嗎
transcript.whisperx[87].start 3664.679
transcript.whisperx[87].end 3684.473
transcript.whisperx[87].text 目前這樣的所作的作為當中已經證明將國法案所提出來的是一個變得更嚴重的社會了所以我希望大家齊心齊力不是屬於哪一個黨不是屬於哪一個人而是屬於大家我們共同在寫歷史共同來創造這歷史拜託大家謝謝謝謝謝謝委員的詳細說明好我們接下來請勞動部何部長來說明
transcript.whisperx[88].start 3697.003
transcript.whisperx[88].end 3723.734
transcript.whisperx[88].text 主席、各位委員、理事先生、大家好很榮幸今天有機會來對吳春城委員所提的《壯世代政策與產業發展促進法》來進行勞動部的報告那跟各位委員報告其實整個行政院從2015年政府時代開始就有所謂的因應高齡社會白皮書這樣子的處理
transcript.whisperx[89].start 3726.624
transcript.whisperx[89].end 3735.433
transcript.whisperx[89].text 那麼是在行政院社會福利推動委員會由行政院院長擔任召集人那這一個白皮書呢在110年
transcript.whisperx[90].start 3738.644
transcript.whisperx[90].end 3766.245
transcript.whisperx[90].text 由蘇院長修正核定的因應高齡社會白皮書其次我們在勞動部的角色基本上只是這裡面促進中高齡就業這個部分我們在109年12月4號我們制定了中高齡就業促進專法規劃各種獎補助措施然後來支持我們的中高齡者
transcript.whisperx[91].start 3767.786
transcript.whisperx[91].end 3792.733
transcript.whisperx[91].text 以及高齡者續留職場我先大概解說一下整個行政院跟我們勞動部在這裡面的角色那麼在111年的時候我們又再度行政院他這個因應超高齡社會對策方案提出了一個因應超高齡社會對策方案這個是在112到115三個年度裡面跨15個部會345項
transcript.whisperx[92].start 3795.934
transcript.whisperx[92].end 3803.587
transcript.whisperx[92].text 高達1200億的預算所以各位要了解行政院早就在做這個因應工作了那麼
transcript.whisperx[93].start 3807.394
transcript.whisperx[93].end 3816.704
transcript.whisperx[93].text 勞動部這邊我們也在112年5月1號我們會商的10個部會推動訂定中高齡者及高齡者就業促進計畫這個是2023到2025這個是為了促進就業的那麼在113年的今年6月到8月
transcript.whisperx[94].start 3827.096
transcript.whisperx[94].end 3842.202
transcript.whisperx[94].text 我們由陳時中政委他召集了這個行政院社會福利推動委員會的這一個會議那麼他成立這個有一個高齡社會就是我們在這個因應超高齡社會對策方案65歲以上的高齡者的部分以外呢再加了一個壯世代社會參與促進方案是55歲以上就是所謂吳春城委員倡議的這個概念
transcript.whisperx[95].start 3852.746
transcript.whisperx[95].end 3879.548
transcript.whisperx[95].text 這是一個行政院裡面外加的一個因應方案所以這並不是我要坦白講行政院也沒有把壯世代的這個社會參與促進方案視為是因應高齡社會的全部對策這只是一部分而已成如剛剛大院的委員們所提示的所謂的這個壯世代基本上大概是部分概念而已那麼我要強調這個部分
transcript.whisperx[96].start 3881.229
transcript.whisperx[96].end 3884.572
transcript.whisperx[96].text 所以我也在這邊就是說當然勞動部我們責務龐大一定要全力推動我們中高齡以及高齡者的這個就業參與那麼涉及其他部會的業務我們尊重其他部會的這樣子的一個處理那我也要跟各位委員強調我非常尊敬吳春城委員那麼
transcript.whisperx[97].start 3905.43
transcript.whisperx[97].end 3919.409
transcript.whisperx[97].text 這本所提出的壯世代是一個反年齡歧視一個非常好的概念 那麼我們也支持這樣的社會倡議 那麼甚至行政院也已經在行政措施上全力來處理來推動
transcript.whisperx[98].start 3923.274
transcript.whisperx[98].end 3940.504
transcript.whisperx[98].text 那麼可是呢這樣的一個概念性的東西要上綱為基本法類的這樣子的一個法律措施我們認為有值得商榷的地方因為法律會是最後的手段那麼我們因為會法律會影響到很多社會的各個面向
transcript.whisperx[99].start 3944.986
transcript.whisperx[99].end 3952.097
transcript.whisperx[99].text 那麼我們期待在這部分委員能夠在究極更多的社會共識大家共同來討論以上謝謝
transcript.whisperx[100].start 3959.367
transcript.whisperx[100].end 3971.998
transcript.whisperx[100].text 謝謝部長的回應有關本次會議各項書面資料進列入紀錄刊登公報我們現在要開始詢答做一下先告本委員會因為有兩個委員會聯席所以時間是
transcript.whisperx[101].start 3976.704
transcript.whisperx[101].end 3998.389
transcript.whisperx[101].text 六分鐘列席委員四分鐘十點三十分截止發言登記如果委員有書面質詢請於上會前提出我們暫定十點三十分左右休息十分鐘依往例我們不處理臨時提案現在請第一位登記委員陳昭芝發言
transcript.whisperx[102].start 4002.861
transcript.whisperx[102].end 4007.008
transcript.whisperx[102].text 謝謝主席 有請俄羅姆部長還有國發會副主委 謝謝
transcript.whisperx[103].start 4012.676
transcript.whisperx[103].end 4035.389
transcript.whisperx[103].text 兩位早安剛剛有幾位人覺得說這個壯世代定義不清楚不過事實上勞動部好像已經就有一個壯世代就會促進獎勵實施要點那個名詞已經有出現了那就是2022年消費者文教基金會跟壯世代的科教文學會進行了年齡針對性的一個消費經驗的調查那超過八成的這個高齡者
transcript.whisperx[104].start 4036.229
transcript.whisperx[104].end 4062.595
transcript.whisperx[104].text 他們在消費經驗當中曾經感受到歧視、被歧視或者說他們被貼了標籤而不舒服什麼樣的標籤呢?包括他跟時尚流行是絕緣的或是覺得他應該要吃保健品、營養品他們覺得這樣不舒服那前勞動部部長許明春部長在5050計畫當中採用了壯世代這個名詞可以說是政府對年齡歧視的議題有了一個前進一步終於有所突破了
transcript.whisperx[105].start 4063.135
transcript.whisperx[105].end 4076.901
transcript.whisperx[105].text 所以民眾黨還是要敢再次對勞動部過去願意使用壯世代這個名詞先致謝那大家都很知道這個就上星期國發會發布了未來約50年的國家人口推估那預期我們的人口與年齡結構將對社會經濟帶來非常深遠的一個影響
transcript.whisperx[106].start 4081.603
transcript.whisperx[106].end 4100.239
transcript.whisperx[106].text 來提供的用詞還是使用了中高齡這詞彙那我們今天面對已經幾乎不可逆的少子化高齡化的這個事實我個人覺得中高齡或是老年這個字眼今天改成壯世代或許比較恰當為什麼呢因為壯世代這一詞比較正面
transcript.whisperx[107].start 4101.22
transcript.whisperx[107].end 4101.44
transcript.whisperx[107].text 拜託主委
transcript.whisperx[108].start 4124.153
transcript.whisperx[108].end 4141.127
transcript.whisperx[108].text 我們在10月17號我們公布了我們人口推估的報告那實際上壯世代這個名詞其實是我想在這個各部會其實有一些的討論那我們這個院長也在院會的時候有跟
transcript.whisperx[109].start 4142.007
transcript.whisperx[109].end 4163.846
transcript.whisperx[109].text 委員這邊做過希望由陳時中政委來做這個督導那我們本身也已經有一個謝謝副主那就是剛剛有報告過這些目前我是希望說未來國發會如果要召集各部門的會議來討論的時候可不可以有一些比較實質性的討論就是不要再留在一個
transcript.whisperx[110].start 4164.386
transcript.whisperx[110].end 4164.646
transcript.whisperx[110].text 謝謝委員建議
transcript.whisperx[111].start 4185.172
transcript.whisperx[111].end 4193.5
transcript.whisperx[111].text 繼續說明,那您先請回,那何部長,那個壯世代的這個求職路非常坎坷啦,可是剛剛我提到的這個歧視性的問題之外,鄉州的會長,他2023年企業永續報告中他提到百強企業壯士,壯世代他用這個名詞,那他的定義是51歲以上,他都占新進員工大概7%
transcript.whisperx[112].start 4205.691
transcript.whisperx[112].end 4225.811
transcript.whisperx[112].text ⋯⋯⋯⋯
transcript.whisperx[113].start 4225.811
transcript.whisperx[113].end 4238.439
transcript.whisperx[113].text ⋯⋯
transcript.whisperx[114].start 4239.423
transcript.whisperx[114].end 4262.085
transcript.whisperx[114].text 市委員我們當然其實中高齡就業專法就是在專門處理這個層次的問題我先請署長來回答好不好好謝謝 署長簡短好嗎 謝謝跟委員報告第一個就是我們在鼓勵跟希望僱主對於中高齡的就業禁用上面我們改變心態所以我們提供相關的獎補助的措施跟像類似在勞工端就像類似植物賽事等等
transcript.whisperx[115].start 4262.725
transcript.whisperx[115].end 4286.361
transcript.whisperx[115].text 那另外就是為了避免年齡歧視,這在法律上已經明定,那如果年齡歧視我想這個部分我們依法有來做一個處理。好,謝謝市長,因為我們是希望今天能夠有一些新的思維來,就是目前在做我們都了解,謝謝你們。那因為工作在第一線的服務業或是傳統產業他們都感覺嚴重的缺工啦,我想不只是僱主還有債職員工因為他們在承擔這些事情,那這個部分當然勞動部要能夠做一些橋樑,可是
transcript.whisperx[116].start 4288.843
transcript.whisperx[116].end 4316.759
transcript.whisperx[116].text 我想就是對於這個所謂的壯世代這個求職環境也能夠有新的一個媒合機制可能嗎就是說他們他們並還沒有進入所謂要被照顧他們甚至有經濟能力有生產能力甚至有經濟的需求也都有可能那這個媒合的求職媒合的機制可不可能成立呢就是所謂壯世代可不可能國家來幫忙成立讓這個就是銜接企業的銜接的人才比較沒有障礙這可行嗎可不可以討論一下
transcript.whisperx[117].start 4317.459
transcript.whisperx[117].end 4335.611
transcript.whisperx[117].text 委員其實現在的企業因為缺工確實他們對這一個我們說中高齡也好或中世代也好對他們的這樣的禁用率其實是提高的現在是提高很多尤其你在看到缺工的餐飲業、旅宿業其實他們這個中高齡的禁用是相當高的剛剛這個下面那張圖大家可以看到下面這張圖
transcript.whisperx[118].start 4340.674
transcript.whisperx[118].end 4358.336
transcript.whisperx[118].text ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
transcript.whisperx[119].start 4358.957
transcript.whisperx[119].end 4381.976
transcript.whisperx[119].text 這是一個現在想法就我們兩邊都做高齡化我們要照顧但是怎麼樣讓事實上還在亞健康健康的狀態的這一群人好像要過去被認為要這樣退休的這一群人事實上他還是可以貢獻社會的我想今天重點就是這樣他們需要的是活動創造跟自身價值的這個一個市場所以這個時間非常有效我只是說好所以讓我簡單的這個數字讓大家看
transcript.whisperx[120].start 4385.798
transcript.whisperx[120].end 4409.185
transcript.whisperx[120].text 主要國家未來30年的勞動人口臺灣從69.1就是有工作能力70%會降到不到一半46.6那跟韓國一樣吊車尾啦吊車尾啦那勞動力人口是一個國家一個家園臺灣這個家園裡面最重要開疆闢土或是保持我們的國土有競爭力的一個支柱群那如果這個越多對國家是越好
transcript.whisperx[121].start 4409.625
transcript.whisperx[121].end 4409.665
transcript.whisperx[121].text 謝謝主席
transcript.whisperx[122].start 4437.11
transcript.whisperx[122].end 4442.472
transcript.whisperx[122].text 謝謝陳委員、謝謝部長、還有謝謝署長。接下來我們請林業群委員質詢。主席好。我要請何部長,也就是勞動部的何佩珊部長,還有衛福部的呂健的次長,還有經濟部的連錦章次長,
transcript.whisperx[123].start 4466.533
transcript.whisperx[123].end 4467.194
transcript.whisperx[123].text 經管會臨自縣處長國家發展委員會彭麗珮副主委
transcript.whisperx[124].start 4482.108
transcript.whisperx[124].end 4484.829
transcript.whisperx[124].text 第二次世界大戰後到戰後嬰兒潮當年臺灣每年出生率
transcript.whisperx[125].start 4501.448
transcript.whisperx[125].end 4521.314
transcript.whisperx[125].text 大概事實上是人數事實上大概40萬那到2024年的確我們現在目前9月大概看起來就9萬了的確出生率是下降的那在2024年的今天我們的年齡為58到75歲被法律定義中高齡跟高齡者
transcript.whisperx[126].start 4522.282
transcript.whisperx[126].end 4541.127
transcript.whisperx[126].text 所以我們今天嬰兒潮隨著老化轉為退休潮的時候全球的政治經濟是一個政治經濟大議題所以從勞工保險的老人給付逐年的勤勉人數逐年上升所以臺灣也正面領著
transcript.whisperx[127].start 4541.647
transcript.whisperx[127].end 4556.749
transcript.whisperx[127].text 議員.
transcript.whisperx[128].start 4557.13
transcript.whisperx[128].end 4579.875
transcript.whisperx[128].text 本來我一直認為他是一個倡議工具然後突然拉到我們要來做實質審查的時候我們必須要好好的去討論這個法案有沒有具備法律的一個條件首先我先請教一下經濟部我剛剛前面提的所以大退休潮的趨勢是學界提出來的研究項目
transcript.whisperx[129].start 4580.795
transcript.whisperx[129].end 4607.962
transcript.whisperx[129].text 在產業的實務上逐年越來越多借齡退休者,這個是不是部分產業缺工的原因之一?這個也是部分,第一個少子化,第二個也是那個大退休潮,這也是其中的原因之一。好,那次長我再問你,經濟部有沒有針對緩緩退休,退休後再就業避免逼退中高齡就業主管這些事情,提出產業的輔導辦法,特別是創新的便民做法還是把這項業務全部丟給勞動部?
transcript.whisperx[130].start 4609.602
transcript.whisperx[130].end 4609.722
transcript.whisperx[130].text 謝謝次長那在衛福部這邊
transcript.whisperx[131].start 4635.109
transcript.whisperx[131].end 4659.535
transcript.whisperx[131].text 本法原來這個草案提出來的時候第二條跟第三項跟第四條推動壯世代的產業發展因為過去我聽過吳委員在講他的壯世代產業是認為我們的55歲以上的事實上非常有錢所以可以發展一些壯世代的產業來讓他們去做消費想問一下就是我們的衛福部你認為這樣子
transcript.whisperx[132].start 4661.408
transcript.whisperx[132].end 4685.86
transcript.whisperx[132].text 到底齁我先問經濟部你認為什麼是壯世代產業壯世代產業應該是我覺得不應該是我們經濟部來定義啦應該我們認為說只要第一個要有經濟的自主能力而且他要能夠有生產力那你們認為呢可行性評估結果如何有可能嗎
transcript.whisperx[133].start 4686.92
transcript.whisperx[133].end 4716.92
transcript.whisperx[133].text ⋯⋯⋯⋯
transcript.whisperx[134].start 4718.702
transcript.whisperx[134].end 4732.095
transcript.whisperx[134].text 本席非常擔心退休前後的長輩生活狀況究竟如何?因為朝世代真的像吳委員講的這麼富有嗎?所以想問一下衛福部你們的瞭解是什麼?
transcript.whisperx[135].start 4733.237
transcript.whisperx[135].end 4761.783
transcript.whisperx[135].text OK,非常感謝委員對於這部分的關心我想先引用Economist經濟學人今年6月2日造就有篇文章談到相關的問題那這個部分其實事實上戰後因果潮當然就是說他經歷了戰後的一個非常非常黃金年代所以普遍資產來說增加但是其實這裡面的這一個收入來說還是有不均的一個情況另外一個問題他裡面談到一個就是說這一個世代的這一個generation他們雖然累積了財富但是卻不消費
transcript.whisperx[136].start 4763.063
transcript.whisperx[136].end 4786.169
transcript.whisperx[136].text ⋯⋯
transcript.whisperx[137].start 4786.329
transcript.whisperx[137].end 4805.75
transcript.whisperx[137].text 所以我們從法院審理民事案件當中所得的參考資料來看的話臺灣社會每個月必要生活費用大概1萬7到2萬3那如果扶弱或者是照顧一人的話就費用會增加一倍所以長輩不會因為退休而大幅免除這些生活上必要開支甚至
transcript.whisperx[138].start 4806.59
transcript.whisperx[138].end 4824.598
transcript.whisperx[138].text 還會有老老互相照顧跟啃老族現象所以我想問的是國家發展委員會現行人口統計對於扶養比的這兩大指標為扶老比跟扶幼比至於65歲以上人口對65歲以上的家屬或64歲以下的人口扶養的統計數據我們很難取得
transcript.whisperx[139].start 4827.359
transcript.whisperx[139].end 4844.277
transcript.whisperx[139].text 所以我本期強烈質疑我們的老老互相照顧跟啃老族這個現象大概有沒有充分的在你們的國家發展委會有沒有去做過這樣子的一個研究瞭解所以至今到底有多少人是這樣有多少戶
transcript.whisperx[140].start 4855.49
transcript.whisperx[140].end 4871.634
transcript.whisperx[140].text 主席,您是要讓我們問到寶嗎?所以我就真的要佔用時間了,因為我才問到一半不好意思,就是您今天一開始就說要讓我們問到寶了所以我今天已經請他們上來了來,衛福部想問一下,就是本法的
transcript.whisperx[141].start 4872.534
transcript.whisperx[141].end 4894.462
transcript.whisperx[141].text ⋯⋯
transcript.whisperx[142].start 4894.542
transcript.whisperx[142].end 4920.112
transcript.whisperx[142].text 提了然後現在又要在這邊提所以有沒有可能會造成民眾誤會精準醫療是為長輩專屬的醫療方法的錯誤認知是的報告委員其實確實有可能會出現這樣的一個疑慮其實我們現在目前已經精準醫療部分我們已經在推動這個部分其實最重要我們也在加強其實最重要是落實的部分的問題所以這邊恐怕如果這樣的話可能也會有跌床架屋的這個疑慮謝謝好
transcript.whisperx[143].start 4921.593
transcript.whisperx[143].end 4944.098
transcript.whisperx[143].text 再回到貧富問題的話戰後嬰兒潮的真的事實上是得天獨厚比其他世代更富足嗎所以想來問因為現在這邊看到的是2023年我們的勞健保的年金加上勞退的薪資兩筆錢加起來大概每個月才23440塊那相較於必要支出的費用剛好打平了所以想來問金管會還有經濟部
transcript.whisperx[144].start 4948.495
transcript.whisperx[144].end 4976.856
transcript.whisperx[144].text 兩位都是金融專家那在社會保險年金尚未成長到讓高齡者足以普遍生活小康的階段的話那現在是推動高齡者促進消費立法的好時機嗎?謝謝委員 經管在這裡說明一下事實上整個中高齡者每個人的財務狀況真的是不一樣那當然在這種情況之下其實經管外在提供所有的保險就是金融服務跟保險商品這是我們本來就在做的這是我們本來就在做的
transcript.whisperx[145].start 4977.657
transcript.whisperx[145].end 4991.372
transcript.whisperx[145].text 對那因為條文裡面確實剛剛有提到就投資剛剛我也有提到投資兩個字啦因為事實上儘管不大適合建議你要去投資相關的標的但商品跟服務這部分是我們可以做到的所以我現在確實掌握數據也是就是40%的確經濟上事上是比較強勢
transcript.whisperx[146].start 4994.275
transcript.whisperx[146].end 5016.852
transcript.whisperx[146].text 議員.
transcript.whisperx[147].start 5017.199
transcript.whisperx[147].end 5034.137
transcript.whisperx[147].text 主席我們儘管的部分應該是在第6條的部分吧其實就是那個金融的部分的部分那那一部分的話就剛剛有聖卢剛剛跟委員報告事實上我們現在就有在做所謂的所有的商品跟服務的檢視那裡面條文剛剛有報告說投資那兩個字可能可能投資不到12啦好謝謝齁
transcript.whisperx[148].start 5036.599
transcript.whisperx[148].end 5062.579
transcript.whisperx[148].text 部長回到你這邊,壯世代那個倡議在平衡老人弱勢形象我覺得很好有正面的訴求當初吳委員講說不要用稱高齡或稱老人我覺得這個我支持可是勞動部今年的這些活動宣傳都聽到壯世代這個稱呼就可以知道但我也很肯定可是要成為一部專法的話從老人學來看的話太過
transcript.whisperx[149].start 5063.94
transcript.whisperx[149].end 5064.22
transcript.whisperx[149].text 稍後再討論
transcript.whisperx[150].start 5083.88
transcript.whisperx[150].end 5110.528
transcript.whisperx[150].text 已經就是通過已經通過中高齡跟高齡者的就業促進法的第7條的修正那其中本席所提出來的將部分工時的也列為政策推動項目公布後現在目前進度如何是委員就是指那個中高齡者的那個部分工時獎勵有我們那個獎勵已經開始在實施而且推廣那有更進度已經開始有
transcript.whisperx[151].start 5111.325
transcript.whisperx[151].end 5116.51
transcript.whisperx[151].text 所以你們有沒有發現說今天這次的草案很大部分跟中高齡跟高齡者就業包括第二條的第一項跟中高齡者就業專法的第33條是重疊的
transcript.whisperx[152].start 5133.246
transcript.whisperx[152].end 5158.34
transcript.whisperx[152].text 是都是重疊的那第7條跟專法的第二章的禁止年齡歧視第4章的促進失業者就業是不是重疊的是完全重疊那第13條跟第14條跟專法的第10條跟34條是不是重疊的那既然在這麼高度相似重疊的話你們事實上是我們勞動部主管機關你們對於這樣疊床架屋是不是會讓我們的政策事實上是
transcript.whisperx[153].start 5160.141
transcript.whisperx[153].end 5176.44
transcript.whisperx[153].text 兩邊都要去執行嗎?還是又定在另外一個法令裡邊?我剛剛已經報告過了我們對壯世代這個名詞當然他是一個反年齡期是一個非常好的概念可是他要上綱為法律這個有待商榷我剛剛已經說明過了
transcript.whisperx[154].start 5180.604
transcript.whisperx[154].end 5199.046
transcript.whisperx[154].text 我們還是維持現行的中高齡及高齡者就業促進法這樣的專法架構來進行大概就足夠了所以高齡者我們當然還是去支持他的生活智力可是所謂生活智力不論是長輩或是身心障礙者能夠尊嚴的過生活這非常的重要不靠別人照顧
transcript.whisperx[155].start 5200.227
transcript.whisperx[155].end 5225.628
transcript.whisperx[155].text 所以未來達這個目標的話我們反而需要工具的輔助能夠未來事實上有生活輔具、無障礙空間跟數位金融資訊的可進信媒介的幫助所以想問經濟部跟衛福部如果說壯世代的到底產業是什麼我覺得真的要講應該事實上是我剛剛講的生活輔具產業或無障礙的交通產業或可進信的數位金融資訊產業所以不知道
transcript.whisperx[156].start 5229.532
transcript.whisperx[156].end 5233.749
transcript.whisperx[156].text 這個未來不管事實上是衛福部或者事實上是經濟部
transcript.whisperx[157].start 5235.086
transcript.whisperx[157].end 5264.395
transcript.whisperx[157].text 那能不能夠去協力去推動這個我們可以來推動因為我現在講的我們現在目前在行政院配合的角色是這個壯世代是具有經濟還有工作能力的那這個我們當然本來就是他有消費能力我們怎麼去創造他的消費的環境還有就是他在工作的時候他畢竟是已經有一定的年紀那我們怎麼去讓他的工作科技的方法讓他工作做得更輕鬆那這一部分是我們目前已經有在執行了
transcript.whisperx[158].start 5264.775
transcript.whisperx[158].end 5289.409
transcript.whisperx[158].text 那衛福部呢?是,包括委員,我想跟剛剛經濟部一樣,在有關於生活輔具跟無障礙空間,其實很多相關的related的這個產業,我們其實都已經存在,那我們也會持續再來推動。現有的就基本上應該已經足夠,成如剛剛何部長剛剛也有說到,那這個我們會來持續來推動。好,請經濟部衛福部能夠召集相關部會共同制定
transcript.whisperx[159].start 5290.269
transcript.whisperx[159].end 5290.289
transcript.whisperx[159].text 謝謝委員
transcript.whisperx[160].start 5317.499
transcript.whisperx[160].end 5339.495
transcript.whisperx[160].text 好謝謝謝謝林委員我想因為各個什麼老人福利法、中高齡本身我們行政單位的名稱也是破碎所以吳春城委員提這個要把它統合起來我認為是一個好的idea那至於往後怎麼弄這個是大家要即時廣譽啦好謝謝那我們請陳廷輝委員歡迎
transcript.whisperx[161].start 5349.11
transcript.whisperx[161].end 5372.838
transcript.whisperx[161].text 謝謝主席我們請衛福部還有我們勞動部還有經濟部我們的部長次長謝謝我想今天對於壯世代倡議大家不反對但是今天是我們如何在一個議題當中讓
transcript.whisperx[162].start 5375.168
transcript.whisperx[162].end 5393.306
transcript.whisperx[162].text 我們所有的台灣人民能夠去接受這樣的一個名詞但是你因為要接受這個名詞然後要把我們所有的法全部已經在進行當中的所有法律重新打破然後把它抽出
transcript.whisperx[163].start 5394.471
transcript.whisperx[163].end 5418.029
transcript.whisperx[163].text 合併變成一部你們認為應該做這樣的一個壯世代政策跟產業發展的促進法然後把它匯集起來我相信這個是必須接受很大的討論因為如果今天把它全部抽出來那是不是我們所有的法都要重新檢討了
transcript.whisperx[164].start 5419.841
transcript.whisperx[164].end 5448.914
transcript.whisperx[164].text 因為我們一定拒絕跌床架屋的法令否則到底我這一部法規我要由誰來主管那我們經濟部有產業發展條例有中小企業發展條例這是經濟部那如果今天在壯世代政策與產業發展促進法草案如果這個案子通過了那如果遇到相類似的狀態那要由誰來做主導
transcript.whisperx[165].start 5450.205
transcript.whisperx[165].end 5471.801
transcript.whisperx[165].text 所以其實這是一個非常危險如果我們立法機關自己都搞不清楚然後就在這裡進行去做這樣的一個法案的討論是非常危險然後我就要問了我問部長跟次長請問我是屬於什麼世代
transcript.whisperx[166].start 5474.479
transcript.whisperx[166].end 5498.345
transcript.whisperx[166].text 我是屬於什麼世代今天壯世代大家在倡議之後我要問我屬於什麼世代我50歲50歲63年次我屬於什麼世代這個是把它做了一個切割你反而那我是不是要再推一個叫親世代是不是
transcript.whisperx[167].start 5500.851
transcript.whisperx[167].end 5510.353
transcript.whisperx[167].text 否則有壯世代政策與產業發展促進法草案那我是不是要再推一個輕世代政策與產業發展促進法草案
transcript.whisperx[168].start 5511.601
transcript.whisperx[168].end 5535.052
transcript.whisperx[168].text 否則有可能現在我們所看到的壯世代如果他是以中高齡他是目前經濟的強勢喔那青世代在50歲以下這一塊反而是我們現在要協助他如何往上提升進入到經濟強勢那請問哪一個區塊
transcript.whisperx[169].start 5540.782
transcript.whisperx[169].end 5562.366
transcript.whisperx[169].text 更為重要那是不是又變成世代的差異這是有很危險當我們在倡議壯世代的時候那我們有沒有反過來思考說那另外一個世代呢那這個壯世代我們現在所說的是以幾歲做區隔現在對壯世代的定義並沒有那麼清楚這只是一個名詞
transcript.whisperx[170].start 5570.971
transcript.whisperx[170].end 5593.949
transcript.whisperx[170].text 這是一個名詞壯世代可是我們到底要怎麼去簽所以我認為說我們如果要去推動一個法案我們都是立法委員我們是要負責任的如果說今天只是為了這個壯世代倡議我絕對第一個舉手因為本來就是
transcript.whisperx[171].start 5595.148
transcript.whisperx[171].end 5615.485
transcript.whisperx[171].text 我們要去做這樣的一個名詞的倡議讓大家去看到什麼是壯世代那其他的世代又是什麼那我們要去幫這些世代做什麼事情這本來就是不論是執政或在野每個人都要去做可是你要把它作為是法令的部分就要從長計議
transcript.whisperx[172].start 5617.846
transcript.whisperx[172].end 5641.877
transcript.whisperx[172].text 這個是我們今天其實認為不宜就因為這樣子的一個答詢然後好像是否下一個階段就要進入主條哇 這個好危險那公聽會是一場兩場三場所以我們真的要拜託一個好的議題千萬不要把它變成是一個大家對立的議題這是很可怕的
transcript.whisperx[173].start 5645.902
transcript.whisperx[173].end 5670.34
transcript.whisperx[173].text 我們現在的社會 別看這個對立啊 大家希望的是 smooth 是希望的能夠你我互相關心 你我互相往上提升 所以千萬不能用一個法令又變成是一個政治的問題 世代的問題
transcript.whisperx[174].start 5672.617
transcript.whisperx[174].end 5672.877
transcript.whisperx[174].text 長照其實﹖
transcript.whisperx[175].start 5702.611
transcript.whisperx[175].end 5728.761
transcript.whisperx[175].text 我們對於長照的議題從小英總統上任到現在賴清的總統說要往上提升到3.0我們也看到整個長照基金的預算我們從2019年開始其實我們幾乎都是300億以上這樣的一個數額甚至是越往上到了我們
transcript.whisperx[176].start 5731.362
transcript.whisperx[176].end 5755.478
transcript.whisperx[176].text 這個2023年的時候已經高達679億對不對然後我們現在在明年的部分我們所提出的是879億對不對但是非常遺憾現在預算還在空中飛還沒有進到立法院的真正審議當中
transcript.whisperx[177].start 5757.406
transcript.whisperx[177].end 5776.881
transcript.whisperx[177].text 那我另外一個要跟市長分享的是當我們從300億到600億到800億甚至要接近到900億請問你們有沒有反觀我們做了這些之後真正有keep到
transcript.whisperx[178].start 5777.628
transcript.whisperx[178].end 5807.117
transcript.whisperx[178].text 每個人長者的需求嗎有沒有你們有沒有去做通盤檢討或是隨時的檢討滾動式檢討有沒有是報告委員非常佩服委員對這一部分的一個關心那我想兩個重點第一個讓委員說我們預算增加我再增加我再補充一個數字如果再加上原民會還有其他的相關部會的話明年賴總統他給我們的預算長照部分是927這是第一個另外第二個委員非常關心的就是說對於各個部分我們特別是對於我們現在目前
transcript.whisperx[179].start 5807.977
transcript.whisperx[179].end 5808.058
transcript.whisperx[179].text 議員.審查委員
transcript.whisperx[180].start 5829.679
transcript.whisperx[180].end 5858.327
transcript.whisperx[180].text 好 這個計畫很好可是我要問的是你們有沒有回歸到基層去了解你所做的這些計畫是不是就是計畫還是真正有讓需要的人拿到他需要的幫助這很重要你要聽懂我的意思我們都來自基層沒錯你知道嗎有一個里長
transcript.whisperx[181].start 5860.114
transcript.whisperx[181].end 5884.532
transcript.whisperx[181].text 他都在幫大家做這些長照的宣導幫市政府做長照的宣導但是他有一次哭著來找我他說委員我自己的先生用到我才知道原來在關鍵需要的時候束手無策為什麼什麼叫關鍵的時候當
transcript.whisperx[182].start 5887.762
transcript.whisperx[182].end 5915.069
transcript.whisperx[182].text 他先生要去看病的時候要去排交通車,排不到可是醫生是有時間的約定那你們今天我看到你們的交通接送服務是有的還有輔具居家無障礙環境改善服務是有的照顧及專業服務是有的
transcript.whisperx[183].start 5916.718
transcript.whisperx[183].end 5942.584
transcript.whisperx[183].text 他跟我講說我當里長我就在幫政府宣導長照2.0長照可以有什麼樣的協助幫忙然後你可以跟政府怎麼申請要多多利用可是當他自己要使用的時候他用不到而且不知道要找誰去幫忙
transcript.whisperx[184].start 5945.598
transcript.whisperx[184].end 5958.071
transcript.whisperx[184].text 所以我今天會在這個時候提出因為你沒有辦法感受到他的那種心理的痛他本身里長做第一線在幫政府宣傳的
transcript.whisperx[185].start 5959.508
transcript.whisperx[185].end 5980.991
transcript.whisperx[185].text 所以我才會說你的計劃是單純就是計劃就是在消化預算的計劃還是真正有用到每個人需要的家中他真正能夠拿到我們的協助而讓這個家庭有所改善而不是因為有一個長照的病人
transcript.whisperx[186].start 5981.972
transcript.whisperx[186].end 6008.677
transcript.whisperx[186].text 而讓他整個家人跟家庭都變成必須整個一片的黑暗我們的長照不就是這樣的嗎我們現在在協助不是就是說我們要幫大家所以我今天用這個故事用這樣的一個我自己直接但你說我可以幫他嗎我也幫不了他
transcript.whisperx[187].start 6009.818
transcript.whisperx[187].end 6022.512
transcript.whisperx[187].text 最無奈的是我也幫不了他為什麼因為他是要有專車他不是隨便的車子都可以載那這個專車量夠嗎那為什麼會有人排不到那為什麼大家要搶著這就是問題
transcript.whisperx[188].start 6033.634
transcript.whisperx[188].end 6055.801
transcript.whisperx[188].text 這個是次長再麻煩你這個部分好好的思考一下問題出在哪?我只是這只是冰山一角喔我只是拿出這個交通車喔你要不要再去盤整到底我們有多少問題是沒有辦法直接複製在每個需要的家庭當中再拜託謝謝非常感謝委員謝謝謝謝陳委員謝謝部長還有次長
transcript.whisperx[189].start 6061.162
transcript.whisperx[189].end 6063.483
transcript.whisperx[189].text 來 接下來我們請鄭正前委員執行主席好 我想先請一下勞動部何部長還有我們國發會的彭副主委委員好
transcript.whisperx[190].start 6090.96
transcript.whisperx[190].end 6110.728
transcript.whisperx[190].text 謝謝主席今天特別安排了壯世代政策與產業發展促進法草案的一個備詢跟審議那我在想說坦白說我看了這個壯世代這個相關的一個草案他其實是在立法院裡面也很少數碰到提案是三黨的人都連署
transcript.whisperx[191].start 6111.468
transcript.whisperx[191].end 6136.449
transcript.whisperx[191].text 然後聯署裡面也是三黨就是跨黨派大家一起來支持的一個相關的一個法案那剛剛當然有人提到說這個主審的部會是應該在我們衛環還是應該在經濟委員會那我就想說跟壯世代有關的部分就我在理解當中說他一定跟整個人口的問題有關一定跟人口的問題有關所以我想說
transcript.whisperx[192].start 6138.01
transcript.whisperx[192].end 6167.55
transcript.whisperx[192].text 在台灣就是少子化問題大家都已經非常的理解然後在今年其實我們又通過了再生醫療法的時候我相信台灣的人均的壽命應該會越來越長所以我覺得在這個時間點的時候來審這個壯世代相關的法案我覺得是有它一定的意義的而且我發現說其實大部分的委員至少我到目前為止我聽到大家對於壯世代這個倡議都是肯定的
transcript.whisperx[193].start 6168.29
transcript.whisperx[193].end 6182.042
transcript.whisperx[193].text 高度的肯定包括剛剛何部長也提到這個部分那至於說我們是不是要有一個適當的法來把它變成一個我們後續去做follow的一個依法有據去做很多推動的時候
transcript.whisperx[194].start 6183.547
transcript.whisperx[194].end 6213.207
transcript.whisperx[194].text 我覺得它還是有它的價值性所在所以我想說今天針對這個壯世代政策與產業發展促進法這部分的時候我也有幾個問題想先就教一下何部長跟很多因為今天有10個部會都到了這是一個很難得的一個狀態那顯然在之前溝通的時候可能各部會對壯世代這個概念我覺得也應該是抱持肯定的態度居多那我第一個問題我想先問一下國發會因為我看到我們整個人口那個推估的部分
transcript.whisperx[195].start 6215.289
transcript.whisperx[195].end 6226.504
transcript.whisperx[195].text 國防部的人口推估其實很不準你知道嗎我們看到整個這個部分我以112年今年113年1到9月份的時候那比前一年99652也持續的
transcript.whisperx[196].start 6230.35
transcript.whisperx[196].end 6259.821
transcript.whisperx[196].text ⋯⋯⋯⋯⋯
transcript.whisperx[197].start 6260.541
transcript.whisperx[197].end 6281.809
transcript.whisperx[197].text 今年我們在做整個推估的時候,其實我們用了中推估。但是本來我們的推估的方式也有做一些精進。是,因為中推估的話顯然會更不準,因為我已經用低推估的部分把它整理出來。那這沒關係,我在想說因為我們今天在審壯世代相關的法案的時候,我在想說
transcript.whisperx[198].start 6283.63
transcript.whisperx[198].end 6308.62
transcript.whisperx[198].text 我這邊的時候就直接講到因為按照國發會這邊的推估的時候到2020到2070年的時候平均每5年會少100萬個那個有生產力的勞動力的人那這個部分我先跳過去因為我想接下來問題有跟勞動部有關的事情因為我就看你們國發會的數字那顯然台灣的少子化問題會非常的嚴重那在像我剛剛提到在生醫療法通過之後
transcript.whisperx[199].start 6308.88
transcript.whisperx[199].end 6336.249
transcript.whisperx[199].text 我相信台灣的醫療水平會越來越好大家的人均壽命會越來越長所以我想說在這個部分的時候我要如何讓壯世代那壯世代這邊定義說實話他是55歲我看草案當中他是提55歲那是不是我們這個年紀定義要調整我覺得是開放的因為我也覺得55歲感覺有點年輕可是我相信就是當時在提這個法案55歲一定有他的道理在因為50歲可能大家退休的年紀
transcript.whisperx[200].start 6337.029
transcript.whisperx[200].end 6362.443
transcript.whisperx[200].text 他希望退休年紀之後是不會直接就開始休息就造成了很多就是撫養人的一個負擔所以我這邊的時候我想問一下就是何部長因為我看到了一個情況就是我們希望鼓勵65歲以上55歲的人繼續壯世代人繼續在職場當中除了要減輕撫養壓力之外那麼縮小人口人力的一個缺口
transcript.whisperx[201].start 6363.183
transcript.whisperx[201].end 6393.183
transcript.whisperx[201].text ﹏﹏
transcript.whisperx[202].start 6394.664
transcript.whisperx[202].end 6414.413
transcript.whisperx[202].text 確實我們那個65歲以上的勞參率遠低於OECD國家,我們只有9%其他OECD國家人家都是20、10幾%左右所以這部分確實就是我們要致力於這一個部分提高的重點那我們有針對中高齡跟高齡者的這一個勞參那麼對他的這一個就業獎勵
transcript.whisperx[203].start 6419.515
transcript.whisperx[203].end 6434.781
transcript.whisperx[203].text 我剛剛提過就是包括55plus的這樣子的一個計畫然後還有包括植物在設計甚至還有部分工時我們獎勵就是說因應這一個高齡者他的特殊工作型態我們獎勵給僱主也獎勵給工作者
transcript.whisperx[204].start 6438.862
transcript.whisperx[204].end 6459.07
transcript.whisperx[204].text 市長理解這部分那我這邊要提到一個點就是說事實上我們對中高齡就業的一個鼓勵跟獎勵其實也不是剛開始做其實也做很長一段時間可是成績還是不是很好那我這邊我提到幾個點我覺得說跟這次在提壯世代草案當中有點相關的部分就是有關於國發會104年就提到一個
transcript.whisperx[205].start 6461.391
transcript.whisperx[205].end 6489.736
transcript.whisperx[205].text 建進式退休的一個經驗跟做法因為時間的關係國發會這邊有沒有簡單回應一下否則就之後給本席一個書面資料因為從106提到一個建進式的退休的一個經驗跟做法可是感覺上似乎也還沒有真正在做那過去9年來就很多概念提出來也都沒有正式去推動所以我覺得很多的事情我們需要政府部門很具體的去落實下來
transcript.whisperx[206].start 6490.476
transcript.whisperx[206].end 6518.894
transcript.whisperx[206].text 那壯世代這邊剛剛何部長也特別提到說他有一個很大的價值就是反年齡歧視的問題那我覺得這一點其實本席也非常的支持可是我再看到其實我們要怎麼樣去建立一個中高齡的一個友善的一個環境或壯世代一個友善的環境其實是有困難的我看到了一個整個中高齡重返職場當中的困難度調查只有7.6%他覺得有信心有92%的人覺得有困難那這個部分我想說
transcript.whisperx[207].start 6519.714
transcript.whisperx[207].end 6519.874
transcript.whisperx[207].text 議員吳春城
transcript.whisperx[208].start 6538.459
transcript.whisperx[208].end 6566.072
transcript.whisperx[208].text 怎樣讓環境更好 有一個部分是數位落差的問題數位落差 因為今天那個速發部也有來齁 針對還有教育部這邊也有來 我覺得針對就是壯世代碰到的數位落差的問題的時候 我覺得這邊如果能夠很友善的去解決的時候呢對於我們整個壯世代能夠投入職場當中 或者在生活品質當中的提升都是會非常的有幫助的 那我最後一個部分就問到一個10月15號的時候
transcript.whisperx[209].start 6567.374
transcript.whisperx[209].end 6572.451
transcript.whisperx[209].text 有很多人到立法院這邊來抗議我不知道何部長知不知道這件事情金融機構的
transcript.whisperx[210].start 6574.916
transcript.whisperx[210].end 6596.995
transcript.whisperx[210].text 民眾來抗議因為他們中高齡就業覺得被歧視、被解職我知道這個是是那我們後來來東部這邊怎麼做我有跟您報告其實這個個案喔他基本上已經都被裁罰了因為我們的這一個中高齡就業法裡面我們就是禁止年齡歧視是理解部長裁罰多少錢
transcript.whisperx[211].start 6599.878
transcript.whisperx[211].end 6615.94
transcript.whisperx[211].text 財閥多少錢?你們具體財閥多少錢?各30萬。各30萬。所以財閥總共多少?60萬。60萬。才60萬嘛對不對?他60萬他如果說把他十幾個人就把他給解雇掉的時候這60萬他很值得啊你知道嗎?因為他如果
transcript.whisperx[212].start 6616.969
transcript.whisperx[212].end 6636.456
transcript.whisperx[212].text 所以這個部分部長你之後再給本席一個詳細的說明好不好因為如果說用這樣的方式就可以解決這個中高齡被歧視的問題我覺得這個成本太低好不好所以我在想說今天我們在講壯世代的一個草案我覺得它有它的價值在謝謝主席 謝謝大家 謝謝謝謝 謝謝鄭委員 謝謝部長 市長
transcript.whisperx[213].start 6641.603
transcript.whisperx[213].end 6653.018
transcript.whisperx[213].text 接下來我們請廖維祥委員質詢我們在陳慶威委員執行完畢後休息10分鐘還有我們中午不休息趕快巡禮完畢再參會謝主席有請我們何部長
transcript.whisperx[214].start 6664.229
transcript.whisperx[214].end 6682.034
transcript.whisperx[214].text 委員好部長好是部長我今天搭高鐵上來的時候啊我左前方坐著徐乃琳碰到徐乃琳了部長知道徐乃琳是誰嗎我知道那你覺得我遇到徐乃琳呢我應該要敬老禮讓這個靠窗的位置給她嗎
transcript.whisperx[215].start 6687.112
transcript.whisperx[215].end 6689.334
transcript.whisperx[215].text 所以這就為什麼乃哥的敬老卡掉了他說讓他覺得很難堪啊
transcript.whisperx[216].start 6716.315
transcript.whisperx[216].end 6722.259
transcript.whisperx[216].text 他說其實原因很簡單喔就是我們所謂的這個近老族群喔中高齡族群的刻板印象
transcript.whisperx[217].start 6723.564
transcript.whisperx[217].end 6745.992
transcript.whisperx[217].text 你常常用這個講他總覺得自己身心都漸漸的邁向衰老好像對人生和這個社會開始失去了貢獻能力但是我想問部長我們在看乃哥主持的節目都很有活力很幽默風趣甚至我覺得他比我這30幾歲的人更有創意更顯得年輕所以部長
transcript.whisperx[218].start 6747.752
transcript.whisperx[218].end 6769.802
transcript.whisperx[218].text 這樣子的情況其實我們也可以常常看到有一些新聞報導媒體就五十幾歲的事件我都在介紹五十幾歲的人就會說半白老翁 對不對有這個狀況對不對所以部長我就說這不就是為什麼我們要訂出這個壯世代最重要的原因嗎消除年齡的歧視呢是不是
transcript.whisperx[219].start 6771.108
transcript.whisperx[219].end 6790.365
transcript.whisperx[219].text 我剛剛報告有講過壯世代是一個反年齡期是一個非常好的概念這我們是支持的可是要上綱為法律這有待商榷好部長部長還有我們在場所有的官員我想請問你知道現在的身心障礙者權益保障法之前的名稱是叫什麼嗎你知道嗎現在身心障礙權益保障法之前的名稱是什麼
transcript.whisperx[220].start 6797.351
transcript.whisperx[220].end 6817.157
transcript.whisperx[220].text 就是委員秀出來的殘障福利法對嘛 對不對所以那你難道要當初說這樣子立一個法是有問題的嗎但現在大家都知道喔殘障這兩個字是歧視嘛所以這部法在民國86年就改名為身心障礙者保護法後來連保護這兩個字也改為權益保障
transcript.whisperx[221].start 6818.493
transcript.whisperx[221].end 6829.63
transcript.whisperx[221].text 部長,我們在民國86年就知道要把這個殘障改為身心障礙為何到了民國113年我們還在法規名稱上、心態上對長者歧視呢?
transcript.whisperx[222].start 6830.787
transcript.whisperx[222].end 6855.398
transcript.whisperx[222].text 委員 這不是說不改名稱 這個法律改名稱是要很嚴謹的定義啦當然啦 但是我們在講這是一個 guideline 是一個指導原則嘛因為法律要明確性而且要可指引 所以首先我們所以壯世代的定義剛剛你也聽到爭論挺多我想 對但是我們今天在這裡也說了 來討論然後什麼公聽會未來要怎麼做 其實
transcript.whisperx[223].start 6856.098
transcript.whisperx[223].end 6882.818
transcript.whisperx[223].text 如果認為還有不夠的地方還要討論的地方我們也都予以尊重我們可以再來努力但是我覺得這個東西其實這個就是一個很重要的概念所以我這裡還是要重申為什麼這件事情重要所以我覺得首先我剛剛講的這種地方是存在在我們社會的每個角落都有這個問題你如果政府沒有一起用法令去推動去改善這個人民腦袋中的關鍵的話
transcript.whisperx[224].start 6883.979
transcript.whisperx[224].end 6899.385
transcript.whisperx[224].text 你現在搞再多其實你看到剛剛說很多委員都在說為什麼做不好很多的你說要促進中高齡就業為什麼做不好這都是有這個因素存在喔都是有的所以我也想要說一件事情就是
transcript.whisperx[225].start 6901.644
transcript.whisperx[225].end 6919.889
transcript.whisperx[225].text 其實各部會也回應均認同方向那現在突然就是覺得好像有很大的問題我覺得這可以大家也可以來好好討論一下那所以呢我想要講的事情就是部長中高齡者高齡者就業促進法這個法的名稱
transcript.whisperx[226].start 6921.289
transcript.whisperx[226].end 6944.108
transcript.whisperx[226].text 我想問當初也是用這個年齡去做定義那是不是可以用我意思是說這東西當然可以再去討論啦但是就是基本上要去去化這個歧視的概念當然對啦其實我一直也在思考喔究竟要怎麼做其實我們國人的不健康餘命是8年不健康餘命那為什麼北歐是兩個禮拜
transcript.whisperx[227].start 6946.835
transcript.whisperx[227].end 6963.164
transcript.whisperx[227].text 我覺得這真的是應該要好好的去思考你說這個東西的定義或是要不要推動這件事情其實這個非常的重要而且你說討論不夠嗎其實我看行政院的壯世代跨部會的小組有13部會參與共同推動64項計畫公聽會也有8次然後這個全程參與
transcript.whisperx[228].start 6969.268
transcript.whisperx[228].end 6986.421
transcript.whisperx[228].text 所以現在需要一個立法的來協助來推動這樣前瞻的規劃那其實我要再講回到這個其實我們上次就有討論到這件事嘛中高齡的這個中高齡者跟高齡者就業促進法那所有的勞動部就業平等概括調查
transcript.whisperx[229].start 6988.322
transcript.whisperx[229].end 7009.436
transcript.whisperx[229].text 職場歧視與年齡歧視占比最高。夜11、夜23的調查也是說中高齡就業促進法上路之後57%的人感覺到無助於改善被歧視的狀況。遠見雜誌的調查也說83%的民眾感受到年齡差別待遇。我想這就是我們實實在在存在的地方。其實今天各部會
transcript.whisperx[230].start 7011.755
transcript.whisperx[230].end 7034.794
transcript.whisperx[230].text 你們丟來的資料我去算了一下在這種有一點帶有這種年齡歧視的比如說老啦高齡或是這個銀髮等等等相關的加起來的大概加起來的詞大概就是有39次啊加起來就有39次嘛所以這也是為什麼需要推動這樣一步法去跨部會的一一的去檢討那我剛剛也提了一個就是這個所謂的
transcript.whisperx[231].start 7035.715
transcript.whisperx[231].end 7054.701
transcript.whisperx[231].text 過去的殘障福利法和身心障礙者變成這個權益保障法其實這概念也很類似啊所以我是覺得說這個部分真的是可以不一定要為了反對而反對有很多細節大家可以討論各部會要怎麼做可以討論喔但我覺得現在就是我們很急迫的事情就是
transcript.whisperx[232].start 7055.401
transcript.whisperx[232].end 7075.35
transcript.whisperx[232].text ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
transcript.whisperx[233].start 7076.711
transcript.whisperx[233].end 7101.789
transcript.whisperx[233].text 但少子化不但沒解決反而越來越嚴重剛剛我看到也有委員講很多啊說我們長照投入多少錢一千億多少錢的可是我還是回到剛剛講的我們的不健康餘命也沒改善啊沒改善多少啊所以你們到底要不要用創新的方式或是這樣的方式其實也不是說什麼各國全世界沒有其他人定義這件事情難道我們台灣這個極速
transcript.whisperx[234].start 7103.87
transcript.whisperx[234].end 7132.084
transcript.whisperx[234].text 產生這個超高齡社會這個少子化的問題難道我們不能夠創新嗎?難道我們不能夠有不同的思維來推動打破嗎?不是要讓世界看到台灣嗎?我覺得壯世代也是一個很好讓世界看到台灣的一個政策啊我覺得這講起來我出去都覺得很驕傲而且我在地方上講啊很多長輩啊就覺得這個對他們來講是很有重要意義啊其實我們去在地方上跑啊你去參加什麼關懷據點啊或者長青學院其實這些願意出來的人
transcript.whisperx[235].start 7132.824
transcript.whisperx[235].end 7153.063
transcript.whisperx[235].text ⋯⋯⋯⋯
transcript.whisperx[236].start 7153.343
transcript.whisperx[236].end 7164.608
transcript.whisperx[236].text 他們都願意出來可是我要告訴你另外一個角度現在雖然在宣稱什麼我們關懷據點長期學院越來越多其實這還是這樣子的人口這樣子年齡人口的很小一部分
transcript.whisperx[237].start 7165.393
transcript.whisperx[237].end 7190.888
transcript.whisperx[237].text 還是有很多人看不到這就是為什麼政府要帶頭去推動要讓媒體各個層面去改觀而且說真的現在的他這個他這個法的也算是一個方向原則大政策導向原則也沒有所謂利益的問題剛剛我也尊重各個委員有提到什麼叫這個產業等等的問題我覺得這未來都可以細節去討論可是這個大方向一定要確定我覺得這大方向真的是非常的好而且對我年輕人來講年輕世代來講有什麼好
transcript.whisperx[238].start 7193.369
transcript.whisperx[238].end 7212.359
transcript.whisperx[238].text 現在年輕世代在分子上面分母我們要扛很多3點多我今天看報告3點多嘛未來是要變得1比1啊那這時候怎麼辦我們當然要把分母把這些這個55歲以上年齡人口的人拉下來變成分子嘛這些人都還是有很多的這個價值可以創造的
transcript.whisperx[239].start 7213.908
transcript.whisperx[239].end 7237.214
transcript.whisperx[239].text 所以我想要說其實現在的這部分我們剛講到這一切已經在我們的各個層面浮現了而且在台灣是惡性的螺旋少子化和超高齡這問題只有不斷的擴大所以如果再不解決它一直以來就是這個國安問題所以我希望各黨派真的秉出這個旗艦這個是全台灣我們國家面對的
transcript.whisperx[240].start 7238.354
transcript.whisperx[240].end 7263.542
transcript.whisperx[240].text 而且憑良心講各部會回應也都有這個軍認同我看到那個報告裡面大家有多覺得認同這個方向啊那到底呢我們是不是要好好的我們可以去討論各個細節但是我覺得這個大方向真的大家要努力的推動不要因為政黨的問題因為目前為止所有你不管是這個我上次還問你說那你要怎麼消除這個所有的參與對於這個中高齡者的歧視問題
transcript.whisperx[241].start 7265.014
transcript.whisperx[241].end 7281.748
transcript.whisperx[241].text 其實你那個當下也並沒有辦法很好的回答我知道有很多細節有戰術、戰略、戰鬥但是我覺得戰略上這個觀念是很重要的所以這個部分我一定要再講一次這就是一個沒有整體性規劃引起所以這裡外界一直在批評我們政府
transcript.whisperx[242].start 7282.449
transcript.whisperx[242].end 7303.558
transcript.whisperx[242].text ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
transcript.whisperx[243].start 7303.891
transcript.whisperx[243].end 7321.71
transcript.whisperx[243].text 就是要有這樣的統籌機制而且這個統籌機制也必須是去掉這個歧視性的詞句去帶領我們整個社會去翻轉這樣的觀念所以其實包含著勞基法的也是工廠法的前身我覺得有很多東西是要與時俱進
transcript.whisperx[244].start 7324.437
transcript.whisperx[244].end 7338.174
transcript.whisperx[244].text 所以我希望說我想問到各部會可不可以回去盤點一下其實這個勞基法只是一個例子和剛剛這些都是一個例子我們各部會是不是可以盤點自己因應這個壯世代政策能夠修改的法律跟政策
transcript.whisperx[245].start 7339.401
transcript.whisperx[245].end 7356.681
transcript.whisperx[245].text 委員我可以補充一下嗎就是您提到好像殘障福利法競爭為身心障礙身權保護法基本上身心障礙他是有一個國際公約定義的他是非常明確的其實他背後概念一樣嗎你當然你要跟我敘述國際喔
transcript.whisperx[246].start 7359.043
transcript.whisperx[246].end 7376.036
transcript.whisperx[246].text 還沒有發展出一個這樣明確定義的這樣的一個操作型概念這是因為我覺得真的一再跟您強調法律要明確性而且要可執行否則它會對社會上現在我們當然現在的壯世代定義是55plus嘛對不對55plus嘛對不對但是它現在有很多的這是方向性原則我覺得細節這個我們都可以再深入討論每一個細節每一個法要怎麼修
transcript.whisperx[247].start 7386.283
transcript.whisperx[247].end 7408.677
transcript.whisperx[247].text 可是我現在今天感受到的就是變成未反對而反對你可以跟我找一堆理由嘛就是每一條細節可是現在的修法他也都是很方向性的東西嘛那你說有沒有定義他也有定義我們有一個壯世代社會參與促進方案是76項的工作所以需要跨部會我覺得更需要強力的跨部會去推動
transcript.whisperx[248].start 7409.717
transcript.whisperx[248].end 7409.897
transcript.whisperx[248].text 接下來請陳慶輝委員質詢
transcript.whisperx[249].start 7444.336
transcript.whisperx[249].end 7472.117
transcript.whisperx[249].text 我也請勞動部部長謝謝何部長委員好部長好部長你知道賴總統去年11月出席公辦勞動政見發表會承諾過的勞工政策有一個是性別平權一個是鼓勵女生投入就業那他說到他要打造性別友善雙就業雙照顧因為我們現在雙薪家庭非常的多嘛是
transcript.whisperx[250].start 7472.637
transcript.whisperx[250].end 7499.835
transcript.whisperx[250].text 友善育兒另外呢有一個蠻重要是今天要跟您討論的因為跟我們的壯世代也相關就是說他希望可以建立上市上櫃企業薪資透明化的制度去減少性別還有年齡所帶來的薪資不公這件事情他講很多次喔競選總統的時候也講他當行政院院長的時候也講所以我想知道針對這個企業薪資透明化的制度最近勞動部的進展如何
transcript.whisperx[251].start 7500.555
transcript.whisperx[251].end 7517.653
transcript.whisperx[251].text 委員我在業務報告其實有公開報告過就是我們現在跟金管會已經達成共識就薪資透明化列入ESG裡面的報告書有明白要揭露非主管值的薪資中位數以及男女之間的薪酬
transcript.whisperx[252].start 7518.374
transcript.whisperx[252].end 7518.414
transcript.whisperx[252].text 您會參加顧問會議嗎?
transcript.whisperx[253].start 7534.685
transcript.whisperx[253].end 7539.347
transcript.whisperx[253].text 經法會顧問會議嗎?經法會我當然是要參加的。是,下一次大概預計什麼時候?你們會討論這個進程嗎?修法的進程?行政院現在還在訂時間,是。沒有,這個是勞動部幫您做的圖,希望您當勞工的靠山。是,謝謝。謝謝,謝謝。那在這邊呢,也要請教您,因為
transcript.whisperx[254].start 7561.277
transcript.whisperx[254].end 7582.391
transcript.whisperx[254].text 就業服務法第5條是7年前修訂的我們當時訂定說薪資4萬以下才需要公開可是7年前到現在我們蔡政府的基本工資已經漲了非常多次請問你知道現在我們跟7年前比起來現在的平均薪資還有中位數大概是多少嗎我們現在大概中位數是4萬6
transcript.whisperx[255].start 7588.442
transcript.whisperx[255].end 7604.567
transcript.whisperx[255].text 平均薪資大概是4萬6那中位數是37502跟這個修舊法之前來比其實經常性薪資已經上調到5000多元了所以我們調整薪資透明化的門檻你有沒有
transcript.whisperx[256].start 7605.367
transcript.whisperx[256].end 7618.393
transcript.whisperx[256].text 有沒有什麼初步的想法?你們想要怎麼修訂它?我知道委員那個我們有在討論中就是關於薪資透明化當然救護法是規定4萬那有沒有必要再上調我們已經在討論了
transcript.whisperx[257].start 7621.894
transcript.whisperx[257].end 7647.984
transcript.whisperx[257].text 我比較想知道的是進度啦你們預計在什麼時候會定出來我們要就是因為當然我們本來舊福法就有修法的計畫啦那麼明年上半會期明年上半會期你會想提出新的是是是對很好我也是幫大家關心一下謝謝再來呢這件事情我們之後也會面臨也就是說
transcript.whisperx[258].start 7649.244
transcript.whisperx[258].end 7663.975
transcript.whisperx[258].text 公車司機現在平均喔月薪是7萬可是居然沒有人想要坐我舉臺北市好了臺北市我們這個公車司機的缺口已經超過1500人那如果交通部統計全臺灣的大客車駕駛缺工是2000到3000人
transcript.whisperx[259].start 7668.738
transcript.whisperx[259].end 7690.316
transcript.whisperx[259].text 所以大客車他在招募就算開出6萬到8萬啊他到現在才補了500多個人那為什麼我們要提到這個問題是因為2030年有一大批借旗的借鈴的公車駕駛要退休所以我們計算一下比如說台北市會有900多位在
transcript.whisperx[260].start 7690.896
transcript.whisperx[260].end 7712.654
transcript.whisperx[260].text ⋯⋯⋯
transcript.whisperx[261].start 7713.783
transcript.whisperx[261].end 7740.229
transcript.whisperx[261].text 市委員您就是這個當然公車客運司機其實我們已經開放橋外生中階人力可以來這一個用這個在上個月我們開放了對那麼當然其他重點就是說橋外生夠不夠啦或是說你的薪資橋外生願不願意來來來來來這個對那因為公車的環境他可能比較就是說比如說客宿頻繁
transcript.whisperx[262].start 7741.269
transcript.whisperx[262].end 7758.832
transcript.whisperx[262].text 所以對這個公車的勞動 公車的勞動提要加價 如果只有薪水 這個問題而已下一張我是要告訴您說 他們現在必須加班 所以一天的工時10到12個小時 如果他排到首班車他4、5點就要出門 中間雖然有給他休息時間 可是
transcript.whisperx[263].start 7759.94
transcript.whisperx[263].end 7786.374
transcript.whisperx[263].text ⋯⋯⋯⋯
transcript.whisperx[264].start 7786.374
transcript.whisperx[264].end 7801.391
transcript.whisperx[264].text ⋯⋯
transcript.whisperx[265].start 7801.471
transcript.whisperx[265].end 7804.992
transcript.whisperx[265].text 為什麼今天很需要勞動部的幫忙來改善他們的就業環境是因為這個圖告訴我們說我們現在客運量在疫情後雖然大幅的降低可是我們已經回復到疫情前的八成了
transcript.whisperx[266].start 7829.122
transcript.whisperx[266].end 7841.175
transcript.whisperx[266].text 但是我們只有回復到疫情前的八成我們的事故是疫情前超過就表示說你的人力不足超時已經影響到道路安全了
transcript.whisperx[267].start 7843.416
transcript.whisperx[267].end 7869.969
transcript.whisperx[267].text 所以我給你幾個具體的建議好了那在這邊呢我有去找你們很認真你們當然也有去看誰有違反勞動權益嘛所以在這些違反勞動法這些查詢系統你會發現說他的樣態很相似都是欠薪啊勞資糾紛啊另外他的公司也集中在某幾家
transcript.whisperx[268].start 7871.63
transcript.whisperx[268].end 7893.42
transcript.whisperx[268].text 但我們現在你必須要去輔導他我當然覺得你去我們來跟交通部合作好不好沒錯所以下一張是本席今天給你具體的建議啦第一個心理諮商其實你可以主動出擊了因為他們現在面臨的壓力太大所以他不管是勞心或是勞力都很嚴重第二個是
transcript.whisperx[269].start 7894.904
transcript.whisperx[269].end 7922.509
transcript.whisperx[269].text 我們就關乎到壯世代了因為你們必須要去盤點目前有這些駕照的人但是沒有在做有哪些人你們是不是跟交通部聯合招募他們回來再做一個再次訓練班看有哪一些門檻到達可以去補充這樣子的人力那第三個當然本期也希望您除了去查核除了去裁罰也可以去具體的輔導他們好嗎好我們來跟交通部一起來會上進行謝謝委員
transcript.whisperx[270].start 7926.963
transcript.whisperx[270].end 7928.352
transcript.whisperx[270].text 謝謝請會員謝謝部長我們現在休息10分鐘
transcript.whisperx[271].start 8234.957
transcript.whisperx[271].end 8235.079
transcript.whisperx[271].text 本集完
transcript.whisperx[272].start 8345.998
transcript.whisperx[272].end 8346.476
transcript.whisperx[272].text
transcript.whisperx[273].start 8381.698
transcript.whisperx[273].end 8382.824
transcript.whisperx[273].text ﹏﹏
transcript.whisperx[274].start 8603.083
transcript.whisperx[274].end 8608.767
transcript.whisperx[274].text 好報告委員會我們繼續開會現在請林淑芬委員質詢主席各位大家午安是不是還是請請我不知道要請誰應該加吳委員
transcript.whisperx[275].start 8631.297
transcript.whisperx[275].end 8637.722
transcript.whisperx[275].text 請務委員好吧那我們就先這個老實說我真的不想好沒關係勞動不好了
transcript.whisperx[276].start 8648.188
transcript.whisperx[276].end 8670.847
transcript.whisperx[276].text 委員好部長好我之所以說不曉得找誰上台因為這個是一個應該理論上是行政院處長有來行政院的這個層級但我想先這樣說因為委員的版本談到壯世代的這一個產業發展促進法基本上是產業發展促進法那談到生產力還有這個消費力
transcript.whisperx[277].start 8676.071
transcript.whisperx[277].end 8693.438
transcript.whisperx[277].text 作為一個消費者壯世代作為一個消費者擁有消費力這一件事情我認為我對政府部門不擔心因為大家都知道壯世代的經濟實力都會比年輕人更高大概為了台灣如果從45歲50歲這個年齡來界定也有人是從45歲來界定的大概台灣的財富的一半以上
transcript.whisperx[278].start 8702.162
transcript.whisperx[278].end 8703.823
transcript.whisperx[278].text 在百貨公司的週年慶上他們的平均消費力
transcript.whisperx[279].start 8731.206
transcript.whisperx[279].end 8731.226
transcript.whisperx[279].text 獲得獎項
transcript.whisperx[280].start 8748.78
transcript.whisperx[280].end 8748.98
transcript.whisperx[280].text 但是呢﹖
transcript.whisperx[281].start 8775.335
transcript.whisperx[281].end 8777.076
transcript.whisperx[281].text 作為他們 如果我們從他們的這個勞動力這個生產者這樣的角度來看 的確大家都非常的憂慮那為什麼這個呢 其實我們要講說等到他是壯世代再來解決中高齡就業問題已經是來不及了
transcript.whisperx[282].start 8795.925
transcript.whisperx[282].end 8796.986
transcript.whisperx[282].text 到壯世代才開始要來面對如何讓他們續留在職場讓他們可以重返職場我必須要說有一點慢那有一件事情是我經常說的就是說
transcript.whisperx[283].start 8811.818
transcript.whisperx[283].end 8814.441
transcript.whisperx[283].text 台灣的女性從55歲到64歲一旦當上了阿嬤就業的機率就像土石流一樣下滑統計上只剩下35到38%
transcript.whisperx[284].start 8828.599
transcript.whisperx[284].end 8848.327
transcript.whisperx[284].text 所以他是勞動力的土石流而這個我們都知道第一波土石流是女性生育生和育小育兒以後之後他就土石流崩滑一次然後當阿嬤還要為了幫孩子帶孫子所以他又再下滑一次
transcript.whisperx[285].start 8849.227
transcript.whisperx[285].end 8862.698
transcript.whisperx[285].text 那所以我們在講說因為要比較嘛為什麼要比較除了比較OECD以外我們在講說55到59歲的女性臺灣的女性勞參率下滑比德國低了多少%你記得嗎我還問過你我們都比這個低了多少你記得嗎約略55到59歲臺灣女性的勞參率下滑的現象比德國低了幾%你知道嗎
transcript.whisperx[286].start 8878.154
transcript.whisperx[286].end 8902.068
transcript.whisperx[286].text 至少十幾二十有不你錯了33.760到64歲的女性的勞參率比德國低了多少你知道嗎為什麼講土石流因為比德國低了33.4%所以說你的策略等到壯世代了我們再來想這個是太慢了太晚了來不及了
transcript.whisperx[287].start 8902.782
transcript.whisperx[287].end 8930.488
transcript.whisperx[287].text 我們一路要從他生兒育兒然後你要完善的生兒育兒的配套讓阿嬤不用為了孩子去購孫留住勞動力然後不離開職場這個就是你失職的地方啊不能夠等到我現在壯世代了我想要重返職場再想如何鼓勵他們重返職場這是不應該的而是應該要想你要更積極的去想你要讓他續留職場
transcript.whisperx[288].start 8932.386
transcript.whisperx[288].end 8959.204
transcript.whisperx[288].text 你一直做不到啊光是我們在講的這個育嬰留庭改成這個這個照顧假你就沒有辦法很積極的去做那我必須要再講一個數字喔青年的失業率為什麼要講青年因為要解決這個勞動力的問題啊有可能他的發生一開始就在青年了勞動力青年的這個失業率有多高你知道嗎台灣
transcript.whisperx[289].start 8961.382
transcript.whisperx[289].end 8963.364
transcript.whisperx[289].text 我請署長回答一下好不好
transcript.whisperx[290].start 8986.369
transcript.whisperx[290].end 8999.9
transcript.whisperx[290].text 來啦!青年失業率阿這個OECD的平均青年失業率是10.8%阿我國的青年失業率來到11.4%我們比OECD平均還要高你知道澳洲幾%嗎?署長
transcript.whisperx[291].start 9001.701
transcript.whisperx[291].end 9002.642
transcript.whisperx[291].text 韓國6.4 荷蘭7.8 紐西蘭9.1 連最大家都覺得美國美國是8.1而台灣
transcript.whisperx[292].start 9022.908
transcript.whisperx[292].end 9040.449
transcript.whisperx[292].text 這一路走來始終是兩位數11.4那為什麼要講這個呢如果青年的失業問題沒有解決的話也會降低人力資本跟社會資本的累積會傷害國家的經濟發展而且如果失業青年難以步入職場
transcript.whisperx[293].start 9041.93
transcript.whisperx[293].end 9062.979
transcript.whisperx[293].text 來間接形成中年失業甚至變成啃老族整體國家的青年經濟力出現下降造成社會整體消費率衰弱產生不分不生然後不分不生陷入惡性循環讓國家的人口結構競爭力也造成負面的影響好
transcript.whisperx[294].start 9064.399
transcript.whisperx[294].end 9083.51
transcript.whisperx[294].text 這還是間接的我講低薪跟低就業意願的惡性循環我國勞動部的薪資行情跟大專就業導航的數據顯示臺灣大多數的大專畢業生都從事什麼行業你知道嗎什麼行業你們勞動部自己的服務業高達幾%你知道嗎70%
transcript.whisperx[295].start 9094.605
transcript.whisperx[295].end 9097.448
transcript.whisperx[295].text 台灣的大專生畢業高達74%選擇從事服務相關行業這個是2022年的數據其中服務業裡面選擇批發零售業是16.95%是最高幾乎17%都去做批發零售那我們都知道
transcript.whisperx[296].start 9116.607
transcript.whisperx[296].end 9133.745
transcript.whisperx[296].text 批發零售服務業多數相對低階的技術低階的薪資難以被期待獲取到高薪的待遇服務業的薪資天花板通常也不高也沒有辦法帶動薪資成長對個人生涯發展並無優勢而且現在還要面臨一個衝擊
transcript.whisperx[297].start 9141.952
transcript.whisperx[297].end 9165.325
transcript.whisperx[297].text 當國家未來的棟樑投入低所得的職業對我們的經濟成長帶來非常重的影響是因為隨著全球化人工智慧的進步多數的低技術工作比較容易移到基本工資較低的新興國家或是被機器自動化取代
transcript.whisperx[298].start 9165.945
transcript.whisperx[298].end 9169.148
transcript.whisperx[298].text 而國內的低技術工作機會將會越來越少而年輕人若有17%持續從事這一類的工作將會面臨中高齡失業所以我們講壯世代的就業問題
transcript.whisperx[299].start 9185.464
transcript.whisperx[299].end 9185.784
transcript.whisperx[299].text 勞動力的問題
transcript.whisperx[300].start 9216.766
transcript.whisperx[300].end 9219.569
transcript.whisperx[300].text 所以壯世代的問題在青年時代就種下了因
transcript.whisperx[301].start 9233.784
transcript.whisperx[301].end 9253.353
transcript.whisperx[301].text 對對對所以當然我們現在也動用很多行政措施在所謂的投資青年就業方案這樣子的行政措施啊有效嗎這10年來始終都11%12%欸這10年來相對還是還是有改善啦啊哪裡改善其實青年的失業率是有降低的有啊2016年12
transcript.whisperx[302].start 9256.228
transcript.whisperx[302].end 9280.366
transcript.whisperx[302].text 2020年12只是那個幅度20212021年12.1改善你都自我感覺良好就是說當然這個也有他你有沒有覺得教育產業也需要跟你們配合啊如果你們的教育產業一直在停留在說餐飲業、觀光業對不對那些科系是不是要開始也要想想看輔導轉型
transcript.whisperx[303].start 9281.892
transcript.whisperx[303].end 9293.327
transcript.whisperx[303].text 有沒有需要那麼大量啊可是委員這部分正在缺工這是一個困難你知道嗎在缺工請問他們科系系所檢的數目有沒有很多
transcript.whisperx[304].start 9294.79
transcript.whisperx[304].end 9311.406
transcript.whisperx[304].text 而唸完的人就要去當服務生嗎?服務生需要唸餐飲業嗎?唸餐飲課的是要成為主廚的捏是委員可是其實我們在計職青年的就業方面我們是很鼓勵多元的我的意思是說你應該到行政院
transcript.whisperx[305].start 9312.387
transcript.whisperx[305].end 9316.632
transcript.whisperx[305].text 從行政院開始我們面對千年畢業就踏入職場就選擇這麼低階的服務業的工作這個零售業的工作這一方面我們是不是從頭就要開始如何讓他的學歷他的學習含金量是高的
transcript.whisperx[306].start 9329.87
transcript.whisperx[306].end 9348.428
transcript.whisperx[306].text 然後讓他可以在未來有更好的適應力的不要做到最後是中年失業的對可是委員我想應該是這樣當然餐飲啊這一些服務業相對低薪可是我覺得餐飲服務業面餐飲的人不一定是服務生喔不要這樣講喔對對對可是我的意思說應該是相對去尋求服務業的產業結構的改善啦
transcript.whisperx[307].start 9353.473
transcript.whisperx[307].end 9376.049
transcript.whisperx[307].text ⋯⋯⋯⋯⋯
transcript.whisperx[308].start 9376.738
transcript.whisperx[308].end 9403.399
transcript.whisperx[308].text 一個月、一個多月、兩個月以後台灣一半的人都超過45歲而且在明年以後65歲以上的人口五個就有一個進入超高齡社會喔然後呢在這種狀況裡面我必須要講啦勞動大家勞動力市場都喜歡年輕勞動力是不爭的事實啦大家都喜歡新鮮的肝嘛但是
transcript.whisperx[309].start 9404.5
transcript.whisperx[309].end 9408.183
transcript.whisperx[309].text 但是勞動力需求很高的產業他也不得不面對勞動力短缺的這一個問題所以我剛才就在講說只要女性的勞參率提高2%我們的這一個缺工的問題會解決很多那你有能力留住我們女性提高我們女性的勞參率嗎
transcript.whisperx[310].start 9428.221
transcript.whisperx[310].end 9454.22
transcript.whisperx[310].text 對委員所以我們現在正在推行多元陪伴服務方案我們希望能夠在多元陪伴服務方案就可以提升女性的勞參率嗎當然是一個面向啦就是一個方案我們希望能從這樣的推動來進行我們我就告訴你其實照顧上照顧政策也出現了很大的問題照顧政策女性勞動力向土石流滑落誰怕再來的孤孫都跟你講了這兩個關鍵啊
transcript.whisperx[311].start 9456.162
transcript.whisperx[311].end 9459.834
transcript.whisperx[311].text 那我想我們來跟衛福部長照體系我們也一起來共同來談好不好?
transcript.whisperx[312].start 9464.248
transcript.whisperx[312].end 9484.746
transcript.whisperx[312].text 審查與衛福部長照有什麼相關?顧孫與長照有什麼相關?你剛剛回答我說這個問題要怎麼解決你說你要跟衛福部的長照體系去討論我就不知道衛福部的長照跟顧孫跟審查有什麼相關那委員育兒也不是我的事啊是不是給假是你的事啊育兒留職停薪給假啊
transcript.whisperx[313].start 9489.531
transcript.whisperx[313].end 9504.21
transcript.whisperx[313].text 我們不生小孩除了經濟因素以外就是要陪伴因為養小孩要陪伴而沒有假可以陪伴讓很多人不願意當然在青年失業沒有工作又低薪我不就不想生這跟你有關啊怎麼會沒有關呢
transcript.whisperx[314].start 9506.773
transcript.whisperx[314].end 9520.543
transcript.whisperx[314].text 但我們講回來啦 這個週刊有一篇報導啦齁週刊有一篇報導說啊他們去訪問這個百大的這個優良的企業啦齁這個企業裡面啦是這樣子就是說週刊在永續這個他們去看
transcript.whisperx[315].start 9532.714
transcript.whisperx[315].end 9553.405
transcript.whisperx[315].text 入選世代百強的友善企業壯世代他們禁用新進員工51歲以上的壯世代的比例最好的台灣的壯世代百強的壯世代最友善的企業他們禁用新進員工的比例是幾%你知道嗎
transcript.whisperx[316].start 9555.543
transcript.whisperx[316].end 9570.381
transcript.whisperx[316].text 您有看那篇報導嗎?上週的上週的人家都...你都知道今天要報告有壯世代的這個產業促進法了你們至少要惡補一下吧人家做了一個專題你至少要看一下吧而且這個是
transcript.whisperx[317].start 9572.506
transcript.whisperx[317].end 9589.557
transcript.whisperx[317].text 而9月才出刊的專題他講說啊重視在新進員工啊占他們新進員工的比例是7%而你勞動部部長都不知道那未入選的企業幾乎都是零言下之意是企業大概都不會再聘僱51歲以上的員工啦
transcript.whisperx[318].start 9591.038
transcript.whisperx[318].end 9603.211
transcript.whisperx[318].text 五十一歲啦所以產業但是他裡面講產業的特性很大程度決定了企業要不要任用壯世代的積極性缺工海嘯第一排是哪一個業缺工海嘯第一排最嚴重的最缺工的
transcript.whisperx[319].start 9609.591
transcript.whisperx[319].end 9620.44
transcript.whisperx[319].text 最低薪的嗎那是服務業相對缺服務業他也不得不啊他妥協啊所以他必須要低頭所以他們現在是最號稱最懂得這個壯世代的優點所以也最願意用然後傳統製造業的人力啊被半導體業搶人搶走了所以他們也在討論要怎麼處理而哪一個產業是最
transcript.whisperx[320].start 9638.334
transcript.whisperx[320].end 9649.828
transcript.whisperx[320].text 用壯世代最不可能的,可能是最低的,步調最慢的,哪一個產業你知道嗎?大家趨勢若霧,年輕人都要去的,就不需要老人工啊,那哪個產業?上面有寫資訊科企業對啊
transcript.whisperx[321].start 9657.034
transcript.whisperx[321].end 9661.257
transcript.whisperx[321].text 對阿 所以就是說服務業傳產科技為什麼他們會有差別因為他們的條件不一樣嘛就是這樣子這麼簡單而大家都知道你要禁用這個中高齡的這個人力他不是說企業內部馬上禁用就可以的
transcript.whisperx[322].start 9675.046
transcript.whisperx[322].end 9697.44
transcript.whisperx[322].text 他要醞釀一個友善的措施跟氣氛這個根據104中高齡銀行總經理吳立雪的經驗講他要調適企業要調適調適起至少需要5年欸所以為什麼也是需要政府去輔導因為他需要調適從公告周知改善工作環境由下而上塑造自然而然的年齡共融文化
transcript.whisperx[323].start 9698.447
transcript.whisperx[323].end 9714.272
transcript.whisperx[323].text 都需要5年所以如果你沒有這關鍵的4、5年趕快準備真正缺工的時候企業是沒有辦法應對的所以這一件事情跟勞動力有關跟企業雇主也有關所以為什麼有人就覺得說中高齡員工通常忠誠而且可靠經驗豐富有助於服務客戶而且混零的職場對組織也帶來好處能夠共享知識和經濟
transcript.whisperx[324].start 9724.275
transcript.whisperx[324].end 9740.726
transcript.whisperx[324].text 彼此生產力得以互補然後培養出下一代人才可是呢我們來講的是說因為他們也不得不這樣子講啊也不得不這樣子中高齡還需要就業的人當然他有他的經濟需求他也當然不可能像年輕人說沒啥我不要找人來找
transcript.whisperx[325].start 9743.047
transcript.whisperx[325].end 9765.762
transcript.whisperx[325].text 所以他的留任年、他的自我要求高、留任穩定性高所以美聯社的人、人資長就說我們45歲以上的員工流動率有不到30歲以下的一半流動率低減少了重複招募的訓練成本穩定服務品質所以壯世代人力的使運用也為企業帶來好處而他們也必須要低頭去重新重視這個壯世代的人力
transcript.whisperx[326].start 9773.408
transcript.whisperx[326].end 9786.446
transcript.whisperx[326].text 所以啊 這個裡面啊 這個都是市場自由機制 那政府能做什麼 所以我一直講市場能夠自由機制 人家自行就去調整了 那政府都不用作為嗎 政府當然要作為啊
transcript.whisperx[327].start 9787.352
transcript.whisperx[327].end 9816.518
transcript.whisperx[327].text 委員我可不可以補充就是說我一上來我就說缺工不能等於低薪啦當時服務業一直要我開放移工可是我到現在我並沒有這麼做可是也因為這樣所以餐飲業這樣的服務業他們在中高齡的任用上比例是有增加的而且還這個真的是有顯而立見的效果所以你有做出防衛 他們在薪水的提升上面你有守備你有防衛但是這樣子不夠啊你除了儲備你要心力啊
transcript.whisperx[328].start 9817.398
transcript.whisperx[328].end 9825.847
transcript.whisperx[328].text 你還要新立啊當然你有中高齡產業促進的鼓勵中小企業的抵減的方案出來有沒有更積極的啊那我剛剛講的這個要讓婦女留在職場續留我們要假要有假然後青年的
transcript.whisperx[329].start 9837.782
transcript.whisperx[329].end 9839.183
transcript.whisperx[329].text 關於基礎教育我是花很多心力啦謝謝 謝謝
transcript.whisperx[330].start 9853.935
transcript.whisperx[330].end 9854.856
transcript.whisperx[330].text 謝謝林委員 謝謝部長接下來我們請黃秀安委員
transcript.whisperx[331].start 9885.598
transcript.whisperx[331].end 9886.399
transcript.whisperx[331].text 主席 請部長
transcript.whisperx[332].start 9901.135
transcript.whisperx[332].end 9923.665
transcript.whisperx[332].text 部長好,今天就我們今天要討論的這個壯世代的政策還有產業發展促進法草案其實我們也知道就是說在我如果以這個壯世代來講的話其實是應該是最有經驗的這個年齡就是說55歲那可是我們一方面我們看到就是說在
transcript.whisperx[333].start 9924.646
transcript.whisperx[333].end 9934.194
transcript.whisperx[333].text 主計總署有在112年12月有做一個統計就是55歲到59歲國人的這個勞參率差不多61.7那相較於50到54歲的這個勞參率是77.68所以差不多下降的是15.9%那另外我們又跟國際比的話我們的勞參率跟國際比我們的勞參率又更低
transcript.whisperx[334].start 9951.869
transcript.whisperx[334].end 9981.869
transcript.whisperx[334].text ⋯⋯
transcript.whisperx[335].start 9983.07
transcript.whisperx[335].end 10002.06
transcript.whisperx[335].text 女性的這個勞參率在這個時候也是整個下滑學崩式的下滑所以我想請教就是部長未來我們在這一方面怎麼樣來協助55歲以上如果他還有心想要再就業的話或者是女性就業的話我們要怎麼去協助他們
transcript.whisperx[336].start 10002.68
transcript.whisperx[336].end 10030.741
transcript.whisperx[336].text 那我也看到就是說我們在很多法案上面都有針對這個中高齡的部分都有做一些協助那我是不是請部長再針對這一部分來做一個說明是當然為了我們就有很多行政獎勵措施啦針對這一個中高齡就業以及婦女在就業包括55plus計畫婦女在就業獎勵包括對部分公司等等這些設計有給雇主然後也有給勞工這樣子這是行政措施的部分
transcript.whisperx[337].start 10031.181
transcript.whisperx[337].end 10054.751
transcript.whisperx[337].text 但是有一個問題,就是說僱主他申請完之後,他可能那個申請的期間結束之後,他可能就請這一個員工就請他離開。其實我們也有碰到類似這樣的一個狀況。了解,那我們再來針對這部分,確實就是說這可能就是這個計畫結束後,對,它就會變成只是一個階段性的這樣子,而不是一個延續性的一直僱用這樣。
transcript.whisperx[338].start 10056.792
transcript.whisperx[338].end 10080.105
transcript.whisperx[338].text 對,這我們來檢討,就是說這個如何讓它延續性的僱用,讓它獎勵又一直存在啦。這可能支援我們要再必須再多投入這樣。你們有沒有去做一個統計,就是說在你們這個計劃期間,可能這個女性的就業或者是二度就業,因為你們有給這個僱主有一些補助嘛,所以僱主他也願意來申請。
transcript.whisperx[339].start 10083.688
transcript.whisperx[339].end 10099.324
transcript.whisperx[339].text 當計劃時間結束之後,勞工就離開了嗎?那像這樣你們有沒有去做一個統計?就是說在這個計劃結束之後離開,或者是繼續留下來的這個比例是多少?我請署長回答,可以嗎?
transcript.whisperx[340].start 10100.455
transcript.whisperx[340].end 10125.134
transcript.whisperx[340].text 跟委員報告,其實我們現在對不管中高齡55歲以上或是婦女其實我們持續追蹤其實因為現在其實是因為缺工其實現在跟過去不太一樣其實我們在一年的這些想補助的措施結束後其實流動率還是很高啦,八九成都有但是確實會有少部分的業者可能他用完他就說那我就不要那這個我們來檢討我們整個計畫上所以你們有沒有做這樣的一個統計
transcript.whisperx[341].start 10125.814
transcript.whisperx[341].end 10137.498
transcript.whisperx[341].text 有這個我們在相關的資料我們統計之後是不是在會後給委員好確實有的顧主他只是想要領補助而已啦有這個狀況確實有這個狀況對所以我覺得你們會後再把這個統計的這個數字給我那另外就是說今天我們看到各部會都有交這個這個
transcript.whisperx[342].start 10150.143
transcript.whisperx[342].end 10178.181
transcript.whisperx[342].text 報告的一個資料過來那也知道說這個壯世代的政策還有產業發展促進法可能相對的會跨很多的部會那當然就是說尤其跟經濟部這邊可能會有產業的發展可能會有更密切的關係因為除了勞工勞動部這邊除了是勞工就業之外那產業的這個部分跟經濟部會有更大的一個關係所以我們也希望就是說
transcript.whisperx[343].start 10179.101
transcript.whisperx[343].end 10188.827
transcript.whisperx[343].text 未來主席在召開這個公聽會之後廣聽各界的意見之後那應該下次應該再請經濟部這一邊來主責那聽產業方面這邊要怎麼來做因應壯世代的這樣的一個產業的發展我覺得跟這個經濟部應該會有更密切的一個關係另外
transcript.whisperx[344].start 10204.836
transcript.whisperx[344].end 10221.785
transcript.whisperx[344].text 我想再請教就是說其實我們知道說企業缺工那企業很多他們還是希望用禁用年輕年輕人好如果說你可能40幾歲以上你要再找工作確實非常的困難
transcript.whisperx[345].start 10223.266
transcript.whisperx[345].end 10242.083
transcript.whisperx[345].text 我覺得勞動部應該也不會去否認就是說所有的企業或者是這個資方他希望禁用的就是禁用年輕的勞工那當然就是說我們會有一些誘因就是說可能勞動部這邊會有一些誘因來請資方這邊禁用這個中高齡的這個勞工那確實
transcript.whisperx[346].start 10246.988
transcript.whisperx[346].end 10262.073
transcript.whisperx[346].text ⋯⋯
transcript.whisperx[347].start 10262.073
transcript.whisperx[347].end 10289.753
transcript.whisperx[347].text ⋯⋯⋯⋯
transcript.whisperx[348].start 10290.033
transcript.whisperx[348].end 10290.053
transcript.whisperx[348].text 謝謝委員 會來趕進
transcript.whisperx[349].start 10316.48
transcript.whisperx[349].end 10317.66
transcript.whisperx[349].text 謝謝主席 我們順利有請部長
transcript.whisperx[350].start 10341.745
transcript.whisperx[350].end 10362.797
transcript.whisperx[350].text 市長好,市長我們今天討論這個壯世代跟產業發展的問題那在你夜館的主要就是中高齡就業促進法這個上路近4年來他是有成長但是成長得很緩慢你可以看到這個圖如果我們用壯世代的定義吳春城委員他講的55歲以上的話那他幾乎是1年1%的這個成長率
transcript.whisperx[351].start 10367.642
transcript.whisperx[351].end 10393.024
transcript.whisperx[351].text 其實是一個緩慢的成長非常的有限所以我想今天有那麼多的部會來我也覺得促進中高齡就業也不是只有勞動部的責任因為這當中涉及到很多產業的面向僱主願不願意去禁用然後也涉及到職務再設計的一個問題所以今天其實經濟部也有來我們是不是也請這個經濟部
transcript.whisperx[352].start 10395.946
transcript.whisperx[352].end 10424.162
transcript.whisperx[352].text 連次長是不是也上來這個問題我覺得是要共同來推動所以早上還有委員在說這個委員的這個法應該要由經濟委員會主審這個不是放在未還委員會所以表示兩個部會都有責任那我要問的是像經濟部我先問一下次長你比較少來未還委員會你們在中高齡就業的方面你們有沒有提供什麼樣的獎勵跟措施
transcript.whisperx[353].start 10424.742
transcript.whisperx[353].end 10438.631
transcript.whisperx[353].text 我們其實在產生條例就有一些租稅業會那再來就是在一些中高齡一些相關的輔技或是一些導入一些智慧科技這個我們在產業發展上我們都有極力在推動而且我們跟勞動部在
transcript.whisperx[354].start 10439.872
transcript.whisperx[354].end 10458.473
transcript.whisperx[354].text ⋯⋯⋯
transcript.whisperx[355].start 10459.231
transcript.whisperx[355].end 10475.902
transcript.whisperx[355].text 你們是缺人做解決,你不是引進就業機會嗎?對不對?你是把它數位化之後減少用人。你不是增加就業率啊?這個方向性是不一樣的,我們講的是促進他的就業。那我讓兩位看一下,就是說在韓國,他們有高齡者就業促進法。
transcript.whisperx[356].start 10476.843
transcript.whisperx[356].end 10499.446
transcript.whisperx[356].text 他們的主動積極的精神就是他會去篩選160種適合中高齡者就業的職類我就問兩位我們目前在臺灣我們要促進中高齡的就業我們有沒有很細膩的去篩選哪些行業別他其實是比較適合中高齡在就業的目前有沒有有沒有羅列出來
transcript.whisperx[357].start 10501.248
transcript.whisperx[357].end 10510.883
transcript.whisperx[357].text 我們這個正在討論中,就是我們也要參考韓國訂出一個質疑,然後把這一個...那我問一下經濟部你有什麼角色?你知不知道韓國這樣的做法?
transcript.whisperx[358].start 10515.871
transcript.whisperx[358].end 10534.646
transcript.whisperx[358].text 你們經濟部有沒有在做沒有我們沒有因為我們是配合勞動部如果這個職類設計出來那我們要配合比如說人才培訓對這個就是我看到的問題啦事實上經濟部在這一個角色上面是蠻消極的所以我想這是為什麼吳委員才會有提到一個產業發展的概念
transcript.whisperx[359].start 10534.986
transcript.whisperx[359].end 10555.916
transcript.whisperx[359].text 就是說經濟部也應該與時俱進啊,邁向高齡化的社會這個你們要看到我們的勞動市場會有越來越多的中高齡者就是說你現場要運用中高齡者但是在這個部分如果經濟部沒有想法沒有主動性跟勞動部一起就是來思考比如說你們對產業是最了解的啊
transcript.whisperx[360].start 10556.576
transcript.whisperx[360].end 10571.637
transcript.whisperx[360].text 那我看現在產業部分也是勞動部在負責啊沒有沒有沒有你們對於現場其實哪一些適合中高齡就業我覺得經濟部也應該提出你們的構想啊因為你們狹下管那麼多的中小企業是都你管的勞動部你管的
transcript.whisperx[361].start 10573.479
transcript.whisperx[361].end 10596.62
transcript.whisperx[361].text 對不對?勞動部是管勞工啊那企業老闆、雇主這邊他是不是他的職場環境應該怎麼做我覺得經濟部也應該要加入好不好而且職場環境尤其是中高齡這種職場環境這個我們好那我就要求就是這個部長可不可以答應我們最快什麼時間我們可以篩選出適合中高齡就業的這些職類
transcript.whisperx[362].start 10598.102
transcript.whisperx[362].end 10624.002
transcript.whisperx[362].text 明年2月就會訂出來明年2月嗎?對,我們那叫做職務在設計指引我們正在篩選職類那我要求這個部分要優先訂出來因為這才是一個很具象很具體的我們要如何把這些中高齡的他們的人力導引進適合他們的職類要不然大家其實就是不能瞎子摸象那不會成功,那個就業率也不會成功好不好?那另外一個
transcript.whisperx[363].start 10625.122
transcript.whisperx[363].end 10649.492
transcript.whisperx[363].text 韓國他們其實有義務優先禁用就是55歲以上的族群但是其實看我們現在的中高齡就業促進法我們比較重輔導但是我們沒有一個在法令上面去希望企業可以有優先僱用跟禁用的這樣的一個條款所以就會變成在實務上面你只能用獎勵啦你剛剛也講你們有很多的獎勵計畫但是獎勵一過之後
transcript.whisperx[364].start 10658.315
transcript.whisperx[364].end 10677.062
transcript.whisperx[364].text 委員其實很感謝大院委員中小企業這一次加薪抵稅有針對65以上那我們就給了加薪抵稅這樣的誘因這是非常謝謝委員那當然禁用可是禁用你要不要用一個強制性的概念在法律裡面規定齁
transcript.whisperx[365].start 10679.483
transcript.whisperx[365].end 10695.761
transcript.whisperx[365].text 我要你們思考的就是說韓國是一種模式它很積極然後它也才一種就是必須優先禁用的概念但是我們台灣我們沒有那我們其實比較是重輔導用獎對但是
transcript.whisperx[366].start 10696.081
transcript.whisperx[366].end 10706.833
transcript.whisperx[366].text 你可以看到如果過去4年它的成長是這麼的緩慢可能也遇到了瓶頸還有剛剛提到的現在實務上你有一些的獎勵的確是獎勵期過了看起來是衝著獎勵而來獎勵期過了然後就失去那個動力我覺得這一些的問題都必須要解決跟處理
transcript.whisperx[367].start 10716.024
transcript.whisperx[367].end 10734.143
transcript.whisperx[367].text 委員過去幾年每年成長1%其實有10萬人欸其實也沒有很差啦真的可是因為而且過去3年有疫情那個整個內需的就業市場其實中高零主力都會在內需就業市場所以再來的成長率應該是會蠻可觀的你預計會成長幾%
transcript.whisperx[368].start 10738.087
transcript.whisperx[368].end 10744.67
transcript.whisperx[368].text 我們希望再來還是每年至少一定要10萬以上我們有一個70%的目標我們有一個70%的目標因為現在67嘛現在大概67%對希望能夠我們希望能盡快達到70%的目標這我不敢這樣子打包票對可是希望能盡快來達到好嗎對好
transcript.whisperx[369].start 10761.577
transcript.whisperx[369].end 10788.636
transcript.whisperx[369].text 我覺得中高齡就業已經是一個趨勢也是我們不得不面對的一個問題那所以我希望這件事情勞動部要再加把勁有成長但是還不夠那經濟部今天來那麼多部會這個也不是只有勞動部的責任我希望各部會都要動起來好不好就是我們促進中高齡的就業特別是女性的部分我們讓他可以28.3%他們渴望重返職場希望他們這樣渴望
transcript.whisperx[370].start 10788.996
transcript.whisperx[370].end 10798.599
transcript.whisperx[370].text 都可以變成真正的就業好謝謝委員謝謝好謝謝王玉明委員接下來我們邀請這個蘇清泉委員謝謝主席我請行政院
transcript.whisperx[371].start 10815.633
transcript.whisperx[371].end 10834.858
transcript.whisperx[371].text 蘇勇副處長還有我們何部長來我先請處長回一下這個今天提出這個壯世代請問行政院的態度是什麼
transcript.whisperx[372].start 10837.271
transcript.whisperx[372].end 10852.164
transcript.whisperx[372].text 謝謝委員那依照10月17號國會在最新的人口推估的部分我們明年就要進入超高齡的社會然後2070年的話我們老人人口的比例是佔到46.5
transcript.whisperx[373].start 10854.125
transcript.whisperx[373].end 10880.159
transcript.whisperx[373].text 在全世界裡面我們僅次以南韓的47.5我們更比日本38.7還高所以為了這個高齡社會我們是很快速的在人口老化所以吳委員提出了有關於壯世代的話我們現在目前在高齡社會白皮書因為高齡社會對策方案之外之後再提壯世代
transcript.whisperx[374].start 10881.98
transcript.whisperx[374].end 10910.292
transcript.whisperx[374].text 院長執政委員已經開了3次專案會議那我們在10月31號的話會請勞動部會會診各部會的提了一個壯世代的現在齁來我插一下話你現在說有什麼老人福利或中高齡三十幾大堆啊骨肉骨瘦就是大堆齁啊沒有統合名稱還沒統合就剛才廖偉祥講的那老人齁你自己說叫老人他很不會送的
transcript.whisperx[375].start 10911.68
transcript.whisperx[375].end 10925.752
transcript.whisperx[375].text 所以用壯世代這個名我講不錯啊對你呢?我們台灣的輸送率全世界最低的名啊所以你現在用你現在這個保守我跟你講生的孩子也是一樣越來越少
transcript.whisperx[376].start 10927.208
transcript.whisperx[376].end 10927.949
transcript.whisperx[376].text 我也是共同提案嘛齁
transcript.whisperx[377].start 10942.926
transcript.whisperx[377].end 10959.361
transcript.whisperx[377].text 所以民進黨、國民黨、民眾黨、大家都一起去今天現在要站出來審一下而已當然啦,這樣是比較倉促但是大家要說要公聽會、要辦協調或什麼都可以我一定是照辦但是我們希望
transcript.whisperx[378].start 10960.422
transcript.whisperx[378].end 10984.275
transcript.whisperx[378].text 行政院用一個任務編輯,院長什麼交代,這樣就有多大效率,陳時中來扶植,陳時中就老婆坐那邊,就叫老婆陪我們去寵跟政委報告,就是說有關老人的定義的話是在老人福利法,這是國際上的話,我們65歲是老人,那壯世代的部分在國際上現在是沒有定義的
transcript.whisperx[379].start 10985.333
transcript.whisperx[379].end 11000.435
transcript.whisperx[379].text
transcript.whisperx[380].start 11001.09
transcript.whisperx[380].end 11025.709
transcript.whisperx[380].text 您說您是壯世代,我想這個名詞用法律定義就要考慮了。第二個,我們現在針對壯世代這個議題的部分來講,院裡面也高度重視。所以陳正偉已經開了參辭會,剛才也報告過。他組織來講已經由院長主持的社會福利推動委員會下設的一個專案小組由陳時中正委來負責。
transcript.whisperx[381].start 11026.73
transcript.whisperx[381].end 11051.807
transcript.whisperx[381].text 那我們10月31號也會把在勞動部這一個方案推在執行方面我們認為用方案計畫來推就可以了方案計畫就是臨時編組、任務編組、因人涉事那些藍波的就沒力氣了嘛還要問一件事,委員長你站起來我要再問第二個就是我們六處,柏定,柏定你要回答
transcript.whisperx[382].start 11057.03
transcript.whisperx[382].end 11073.585
transcript.whisperx[382].text 我們65歲以上的男人的在就業還在上班的才十幾趴嘛對不對然後女性更少六點多趴那比韓國比日本二三十趴三四十趴所以這一塊真的你要把那七八百萬人
transcript.whisperx[383].start 11075.868
transcript.whisperx[383].end 11082.49
transcript.whisperx[383].text 每年儲蓄率有20幾%所以我們每年的那個錢可以用的是四五兆五兆多捏所以我們的金管會啊我們的那個都都都都不知道怎麼處理這都可以做很多事情
transcript.whisperx[384].start 11104.639
transcript.whisperx[384].end 11105.2
transcript.whisperx[384].text 委員.審查委員.審查
transcript.whisperx[385].start 11119.704
transcript.whisperx[385].end 11126.907
transcript.whisperx[385].text 所以現在的醫療院所醫生65歲也沒有退啊公家醫院現在也是66到74一年一年聘啊然後到70歲以上就變成顧問醫師那像高一退下來的教授我們在東港請他們身強體壯啊80歲
transcript.whisperx[386].start 11150.017
transcript.whisperx[386].end 11171.146
transcript.whisperx[386].text 還會很公平還會打爵士所以Case by Case所以說65歲以上就沒有辦法說那是笑話但護理的更糟糕護理的幾乎35歲以上的不該上班啦過年啦一千個禮喔太可惜了啦每年進入職場的20歲到24歲的進入職場稀有情郎
transcript.whisperx[387].start 11177.369
transcript.whisperx[387].end 11201.168
transcript.whisperx[387].text 結果30幾個會退出組長:也4、5千人所以林俊宇說什麼要到2030年要給幾萬人的副理組長我才看他怎麼做所以那個不簡單所以勞動部我覺得你來主責也不錯啦因為事實上這個跟你們最有關係啦那個行政院長蘇先生我感覺他這個要繼續撒
transcript.whisperx[388].start 11203.495
transcript.whisperx[388].end 11206.021
transcript.whisperx[388].text 繼續審然後如果民進黨這邊有提一個法案我們一起來審
transcript.whisperx[389].start 11207.328
transcript.whisperx[389].end 11229.525
transcript.whisperx[389].text 看看怎麼改當然這個裏面有一些還要再改那公聽會一次不夠我們辦兩次幾次都可以我認為這是一個思維的改變也不要一直排斥任務編組我還是不放心啦所以要給我們市長想問一下你的65歲以上的健保他要自己錄你想要叫他就一定要對他怕就要讓他怕到
transcript.whisperx[390].start 11236.133
transcript.whisperx[390].end 11258.641
transcript.whisperx[390].text 這位老人,不要說老人,這位65人想說我們要自己熱鬧嘛我自己的經濟不就不錯?你叫我們熱鬧,你是造成年輕人更大的負擔而已啊這個要改,馬上改好不好這個我覺得這個,因為現在40年次50年次那一代是最苦的時代資源最匱乏,但是它也是
transcript.whisperx[391].start 11262.083
transcript.whisperx[391].end 11285.992
transcript.whisperx[391].text 現在大家都存了一些財富,也比年輕人更健康當然有孫子有三個,這當然一定有,但是這些人他自己有幫他養活自己,自己有的財富還不錯的,你都讓他自己繳嘛這個不用到什麼一定要給兒女掛在兒女身上,年輕人一定很辛苦,這個也要改好不好,不改我主動會幫你改
transcript.whisperx[392].start 11288.176
transcript.whisperx[392].end 11292.078
transcript.whisperx[392].text 好我當招偽不能浪費時間吼來感謝委員謝謝我們蘇欣欣委員好繼續我們請舊政經委員質詢
transcript.whisperx[393].start 11316.938
transcript.whisperx[393].end 11334.498
transcript.whisperx[393].text 主席還有各位各部會的代表大家午安我今天看到速發部有來何部長你可以坐著休息一下我們請速發部的副署長陳副署長好請陳副署長
transcript.whisperx[394].start 11346.996
transcript.whisperx[394].end 11358.622
transcript.whisperx[394].text 陳副長您好我想請教您一個問題業者在網路上販賣違法的東西說法部如果知道了會怎麼處理?是指販賣違法的東西然後跟打詐有關係的嗎?
transcript.whisperx[395].start 11374.42
transcript.whisperx[395].end 11385.543
transcript.whisperx[395].text 沒有?其他人你不管就對了?因為目前我們在...所以你們的業務是只放在打仗那其他一些違法的這些網路行為你們都沒有在管?
transcript.whisperx[396].start 11386.577
transcript.whisperx[396].end 11406.729
transcript.whisperx[396].text 我們根據就是說我們主管機關的部分比如說如果他是就是純電商的部分那那個部分的話我們會去查核然後會根據那個查核的結果來處理那如果說是所以不是你們在查所以你們都不會知道就對了
transcript.whisperx[397].start 11407.998
transcript.whisperx[397].end 11425.243
transcript.whisperx[397].text 那你們平常在幹嘛?是指主動查核嗎?因為我們數位產業署他很大的一部分是在協助這個數位產業經濟的一個發展所以呢你們只負責打詐跟其他的部分這個網路亂賣東西的你們都沒有顧問?你們都不知道嗎?
transcript.whisperx[398].start 11432.932
transcript.whisperx[398].end 11454.107
transcript.whisperx[398].text 因為我最近發現就是昨天的議題就是看到很多電子菸在網路上在亂賣那當然也有在賣那個依託米子的所以我想這麼嚴重的事情你們抒發部都不管嗎?我們會看說那一些業務是不是屬於我們的主管的範圍所以你們的主管範圍是什麼?
transcript.whisperx[399].start 11455.083
transcript.whisperx[399].end 11481.646
transcript.whisperx[399].text 我們主管範圍就是有關這個數位經濟的部分比如說是數位服務或者是不是我們因為每一個因為這個實體的世界是實體的世界其實比虛擬的世界就是虛擬的世界其實是比較大的所以每一個部會他都有自己主管的一個業務因為你這樣講就數法部給人的感覺就很幽靈
transcript.whisperx[400].start 11482.887
transcript.whisperx[400].end 11504.225
transcript.whisperx[400].text 好像什麼事情都跟你們有關係但是你們表現出來的就像現在這樣子什麼事都跟你們沒關係其實我們會幫助各部會來處理一些事情包含我們自己有的一些業務我覺得你們速發部真的要檢討那今天你們的報告行政院因應超高齡社會提出的對策整合了15個部會112年到115年就投入1200億的這個經費你們速發部佔多少經費
transcript.whisperx[401].start 11512.142
transcript.whisperx[401].end 11537.398
transcript.whisperx[401].text ⋯⋯⋯
transcript.whisperx[402].start 11537.93
transcript.whisperx[402].end 11542.014
transcript.whisperx[402].text 你什麼都不知道你來幹嘛?樂齡好幫手累積瀏覽次數有7萬4千多次那每天點進去的點擊次數大部分都是個位數這是什麼原因?
transcript.whisperx[403].start 11554.451
transcript.whisperx[403].end 11581.648
transcript.whisperx[403].text 因為我們是10月下旬的時候我們才上線的所以我們目前就是還在推廣你們當初設計這個網頁的時候是給誰使用的?預計是要給誰使用的?給幾歲的人使用?這個部分我們本來預計是給65歲以上但是後來就是說院裡面有協商所以我們現在是他的照顧者也是可以所以呢通常50歲以上的也是OK的也就是壯世代就對了是
transcript.whisperx[404].start 11584.704
transcript.whisperx[404].end 11588.152
transcript.whisperx[404].text 好那我們回歸到今天的主題我們請何部長謝謝
transcript.whisperx[405].start 11594.409
transcript.whisperx[405].end 11623.548
transcript.whisperx[405].text 我們審查這個《壯世代產業政策與產業發展促進法草案》我想最上位的政策綱領應該是高齡社會白筆書並制定因應超高齡社會對策方案在112年到115年共有15個部會投入1200億元營造友善的高齡社會那勞動部在108年底也公布了中高齡者及高齡者就業促進法
transcript.whisperx[406].start 11624.93
transcript.whisperx[406].end 11638.944
transcript.whisperx[406].text 今天這一部法我們渴望進一步落實這個壯世代產業創生那我看了各部會的報告幾乎都沒有回應這部法都在自己講自己的工作你覺得問題在哪裡
transcript.whisperx[407].start 11640.82
transcript.whisperx[407].end 11655.131
transcript.whisperx[407].text 委員我們事實上現在都已經在做了我有看到你們是在研議叫做壯世代社會參與促進方案對 這就是行政院的態度是要提方案而不是要提這個促進法就對了
transcript.whisperx[408].start 11656.032
transcript.whisperx[408].end 11685.097
transcript.whisperx[408].text 是的,我們對第一個我們贊成壯世代的這樣一個反年齡歧視的概念這個我們絕對支持可是要上綱為法律就值得商榷所以比較保留那我們現在是用行政院因應超高一點社會對策方案由陳時中政委主持由勞動部來統籌整理所以這個方案未來是我們促進法的這個配套還是政院版的替代方案
transcript.whisperx[409].start 11686.208
transcript.whisperx[409].end 11686.879
transcript.whisperx[409].text 就是不立法就對了
transcript.whisperx[410].start 11688.079
transcript.whisperx[410].end 11716.512
transcript.whisperx[410].text 我們比較不傾向用立法來處理我們用行政院的這樣的行政指導的因應方案來處理這樣子因為而且我們行政院本來是院長我們都提出這個提案了啦我們大家都提案了我覺得很多委員都有在連署那我覺得這兩者是相輔相成的我希望行政院以及各部會團隊應該認真的嚴肅看待這部法的制定提出可行的對策方案盡快讓大家都能夠滿意
transcript.whisperx[411].start 11719.894
transcript.whisperx[411].end 11733.745
transcript.whisperx[411].text 最近我們看到勞動及職業安全衛生研究所做的一份報告表示我國實施近鄰排碳政策將衝擊我國高耗能產業的衝擊電子業所當其衝估計明年就會有一萬人失業這是你們講的對不對
transcript.whisperx[412].start 11744.193
transcript.whisperx[412].end 11758.018
transcript.whisperx[412].text 委員這個我要澄清他有一個前提是在沒有做任何因應措施的狀況下才會產生這樣的數字那你這些數字怎麼如果說沒有提一些因應措施的話那你們這些數字怎麼來的
transcript.whisperx[413].start 11759.324
transcript.whisperx[413].end 11762.607
transcript.whisperx[413].text 對,就是說這是一模型,它的模型的參數它設計就是相當單純就是說你這一個淨零碳排的這樣的政策下來可能產生的對企業增加的成本會導致它可能會解雇人或者是裁員官場等等這些啦可是呢
transcript.whisperx[414].start 11779.426
transcript.whisperx[414].end 11780.588
transcript.whisperx[414].text 我想請問一下經濟部對於這個部分你們是怎麼看?
transcript.whisperx[415].start 11796.397
transcript.whisperx[415].end 11797.198
transcript.whisperx[415].text 所以你現在是跟勞動部是一國的嗎?
transcript.whisperx[416].start 11816.836
transcript.whisperx[416].end 11834.891
transcript.whisperx[416].text 我沒有平台因為在勞動部的報告裡面有一點很重要就是說其實89%的人力是不受到影響的對啦所以你們是經濟部是站在產業跟我們的勞工站在一起嘛對不對那現在要
transcript.whisperx[417].start 11838.114
transcript.whisperx[417].end 11854.217
transcript.whisperx[417].text 我覺得是我們那個環境部是一頭很努力的往前衝那你們的方向跟我們這個環境部有一樣嗎?有一致嗎?我們有發現這個問題但是我們有去做一些配套措施
transcript.whisperx[418].start 11854.997
transcript.whisperx[418].end 11882.052
transcript.whisperx[418].text 我當然知道我也希望你們站在各自己的立場來為你自己的部會所負責的業務來捍衛該捍衛勞工的該捍衛產業的我們當然就一定要做好你的本分那麼當然我希望你們三個部會就是勞動部還有我們經濟部還有我們環境部能夠好好的做三方的協調好不好讓這件事情能夠盡快的來把它完整好不好謝謝
transcript.whisperx[419].start 11884.383
transcript.whisperx[419].end 11887.246
transcript.whisperx[419].text 好,謝謝經理委員、謝謝部長還有署長接續我們請吳春城委員質詢好,謝謝主席我們請何部長另外也請經濟部還有金管會還有衛福部
transcript.whisperx[420].start 11910.925
transcript.whisperx[420].end 11922.218
transcript.whisperx[420].text 為什麼請四位呢?因為四位就是壯世代的四大金剛。四大金剛,為什麼說四大金剛呢?在這裡我要提了一個...
transcript.whisperx[421].start 11931.201
transcript.whisperx[421].end 11958.373
transcript.whisperx[421].text 為什麼說四大金剛呢?經濟部就是對於有錢有那個的但是他們有東西可以買我們要發展這個長壽經濟這也是符合現在經濟部大健康產業的一個國家政策的目標但是壯世代沒有起來你那個產業是做不起來的啦第二個金管會要做什麼呢?金管會是三分之二財富都在壯世代的身上
transcript.whisperx[422].start 11959.534
transcript.whisperx[422].end 11978.776
transcript.whisperx[422].text 但是大家的省吃減肉那個錢沒有釋放出來變成食水經濟食水經濟導致年輕人低薪沒辦法創業所以要把金管會就是要把財富釋放出來然後再來的話需要勞動力就是勞動部這很重要再來的話衛福部
transcript.whisperx[423].start 11979.777
transcript.whisperx[423].end 11979.998
transcript.whisperx[423].text 議員.審查委員
transcript.whisperx[424].start 12001.761
transcript.whisperx[424].end 12015.201
transcript.whisperx[424].text 幾乎大概溝通的非常狀況都非常好那也都是包括這一次到10個部會提出的報告書裡面也都是大家都所有在做了啦大家都配合朝這個方向
transcript.whisperx[425].start 12015.922
transcript.whisperx[425].end 12031.136
transcript.whisperx[425].text 那我看不出說這個法到底哪裡不可行這個法跟現在在做有什麼抵觸之處應該是我們在幫行政部門與法有據讓你做事情更方便為什麼做這個法
transcript.whisperx[426].start 12031.596
transcript.whisperx[426].end 12056.645
transcript.whisperx[426].text 那現狀的問題會什麼?現狀來我們看一下現在那個我要謝謝那個我們卓院長因為行政院成立這個壯世代的小組是他核准的所以那陳時中政委也非常的認真一開始我們只有指定6個部會後來他自行的擴張到13個部會因為越研究越深越覺得這是全面性的問題
transcript.whisperx[427].start 12057.685
transcript.whisperx[427].end 12065.105
transcript.whisperx[427].text 但是推動了3個月下來的結果也提出了64項的計畫。64項就像各位所看到的
transcript.whisperx[428].start 12066.331
transcript.whisperx[428].end 12090.697
transcript.whisperx[428].text 展現出來的一個什麼狀況呢就是只能做會編因為他只能照沒錢沒人沒有什麼都沒有沒有法律依據只能按照現有的工具現有的組織編制做一些現有的狀況拿來大會編而已這樣一個大會編如果能夠解決國家臺灣未來發展的人口問題的話早就解決了啦
transcript.whisperx[429].start 12091.577
transcript.whisperx[429].end 12109.325
transcript.whisperx[429].text 為什麼現在會講說我們情況人口更加惡化更加嚴重就是表示現行是不足的所以我們現在包括沒有預算我們看一下我問調查的各部會幾乎很多的預算都是編制是零
transcript.whisperx[430].start 12110.405
transcript.whisperx[430].end 12135.301
transcript.whisperx[430].text 那像剛才我們那個邱委員提到的速發部你知道我們現在高齡的數位落差達到60%在台北市就60%60歲以上的人是沒辦法有效的使用數位的所以呢這些東西大家都做有在做在做什麼的教育部、終身教育師現在在做的編到6億啦全部丟了今年還增加2010、2014年6億
transcript.whisperx[431].start 12137.458
transcript.whisperx[431].end 12138.119
transcript.whisperx[431].text 委員吳春城
transcript.whisperx[432].start 12152.478
transcript.whisperx[432].end 12175.374
transcript.whisperx[432].text 整個的大大小小所有的問題如果不積極地照現狀的問題能夠解決嗎到我當中我會非常肯定經濟部跟金管會其實在他們的報告書當中他們發現這是一個大好機會發展經濟包括金融釋放財富釋放勞動力大家所看到的不是現在的眼光所看到的叫做銀髮海嘯
transcript.whisperx[433].start 12176.795
transcript.whisperx[433].end 12202.744
transcript.whisperx[433].text 都只想靠政府的社福的補貼各種的補助這是要民間一起來這是要全民一起來的覺醒運動因為面臨的是天翻地覆的事情整個人口完全的倒置所以這件事情也沒有什麼創新來那個只是在日本人家30年前就有我們只是跟上腳步而已並不是什麼好像哇全世界都沒有我們在做什麼創新的事情下一頁
transcript.whisperx[434].start 12204.423
transcript.whisperx[434].end 12228.45
transcript.whisperx[434].text 現在最重要的其實各方面都到了各方面都冒這個已經普遍的這個也不是現在出來在民間已經推動了4年了各方的媒體你去Google全部都在使用關鍵在政府有沒有決心有沒有決心要帶領的台灣做轉型做翻轉需要各部會大其實大家都沒有問題不是現狀的問題就可以解決立這個法
transcript.whisperx[435].start 12231.391
transcript.whisperx[435].end 12259.753
transcript.whisperx[435].text 謝謝!
transcript.whisperx[436].start 12261.001
transcript.whisperx[436].end 12266.123
transcript.whisperx[436].text 謝謝吳委員 謝謝次長還有部長接下來我們請楊瓊英委員質詢謝謝主席楊瓊發言首先請勞動部、衛福部、經濟部我們一起來討論這個案
transcript.whisperx[437].start 12296.007
transcript.whisperx[437].end 12315.575
transcript.whisperx[437].text 好 謝謝壯世代成為現在職場非常熱門關鍵字過去呢我們中年轉職不易到半途沒有人要請所以呢企業普遍喜歡運用這個年輕人但是我們也看到少子化的問題國發會在10月17號做了一個公佈2020年到2070年
transcript.whisperx[438].start 12321.897
transcript.whisperx[438].end 12345.794
transcript.whisperx[438].text 二零七零年我們會減少人口八百多萬人換句話說二零七零年二零七零年國發會所公布的我們台灣只剩下一千五百人一千五百人CIA的公布美國中情局公布我們是全世界少子化生育能力第一名
transcript.whisperx[439].start 12346.875
transcript.whisperx[439].end 12369.446
transcript.whisperx[439].text 最後一名所以剛剛我也跟國防會的主委在討論要怎麼樣去解決這個問題那所以提出了壯世代之所以必須要有這個法也就是讓政府能夠去看到這個問題而且也有所依歸怎麼樣去做大家贊不贊同這樣的一個論點
transcript.whisperx[440].start 12371.258
transcript.whisperx[440].end 12400.154
transcript.whisperx[440].text 三位都頻頻的點頭委員我非常感謝委員對這個問題的關心我想那個也非常佩服委員的這個的vision那我想剛剛何部長剛剛也說了就是說作為一個反年齡歧視我想這是一個好的idea那可是現在有個問題現在就是說他現在目前這個所謂的壯世代他有三個不明確第一個是整個學術概念上不明確第二個是整個法律概念不明確第三個是政策適用上不明確
transcript.whisperx[441].start 12401.054
transcript.whisperx[441].end 12418.682
transcript.whisperx[441].text 您現在所回答的這三件我要感謝英明的召集人排定了這個議程因為我們已經看到臺灣面臨的困境問題在全世界生育率世界最後一名看到我們的人口
transcript.whisperx[442].start 12420.483
transcript.whisperx[442].end 12440.217
transcript.whisperx[442].text 2070年我們只有1500萬人看到這樣子的一個憂心所以提出這樣的一個方針透過我們的法律案透過大家檢討所以我希望待會回答的各部會首長代表人你們應該要就針對既然你們剛剛三個都頻頻點頭就針對我們討論的議案
transcript.whisperx[443].start 12446.781
transcript.whisperx[443].end 12474.299
transcript.whisperx[443].text 他是一個新的東西本來我們立法院所提出的討論也就是互相共同去討論討論才能夠擦出這個火花應對目前台灣所面對的困境而不是只有一句話說這個法律外界不明確他本來就沒有當然不明確嘛這就是現在要討論的啊對不對所以我希望我們在討論是要有內容的而不是只有一個擋牆
transcript.whisperx[444].start 12477.282
transcript.whisperx[444].end 12492.736
transcript.whisperx[444].text 給他擋起來,這樣子不好的所以呢你們也點頭我們就繼續來討論台灣的人口紅利剛剛我說的那個數字我們已經逐漸消失我又看到2023年勞動高齡的這個勞動的報告當中台灣65歲65歲的高齡者參與的只有9.9
transcript.whisperx[445].start 12501.184
transcript.whisperx[445].end 12516.898
transcript.whisperx[445].text 那我們要看到全世界現在國外經濟部我們全部都要跟世界接軌所以我們要看到其他各國他們的作為這才是一個有為的政府的部門應當要做的所以我們看到我們只有9.9勞動部長在這裡我們看到韓國38.3日本25.7美國19.2
transcript.whisperx[446].start 12525.646
transcript.whisperx[446].end 12542.878
transcript.whisperx[446].text 那我們在少子化的情況又人口一直下降的情況我們要怎麼樣來加入我們的這個產業人口勞動人口世界各國有這樣的比例我們是
transcript.whisperx[447].start 12545.86
transcript.whisperx[447].end 12560.734
transcript.whisperx[447].text 十趴都不到在這樣情況之下我們要怎麼樣去因應請教勞動部長是各位報告其實我們從109年中高齡專法設立以來啦每年平均增加10萬人到現在已經增加38萬人
transcript.whisperx[448].start 12562.395
transcript.whisperx[448].end 12577.649
transcript.whisperx[448].text 的中高齡就業人我告訴部長您的方案您有努力我們看到但是我們一定要結果論你現在所做的還是全世界最低那我們有什麼精精方案可以滾動式的去檢討加速對
transcript.whisperx[449].start 12579.631
transcript.whisperx[449].end 12604.383
transcript.whisperx[449].text 這也就是為什麼我們的預算要重溢該當部署因為立法院不可以給你加預算我們錢要花在刀口上我希望可以聽到您也就是你在努力當中現在你所做的都對但是我們的答案是僅有9.9我們跟世界各國比例差那麼多我們還有什麼因應方案因為
transcript.whisperx[450].start 12605.484
transcript.whisperx[450].end 12608.206
transcript.whisperx[450].text 我們現在正在努力加速推出各樣的獎補助措施
transcript.whisperx[451].start 12628.801
transcript.whisperx[451].end 12654.653
transcript.whisperx[451].text 對,包括55 plus壯世代就業促進措施我們針對還有包括婦女在就業還有就是婦女在這個中高齡的族群這個也是本席一直跟你討論的啊他不要生了一個孩子回不了啦 對不對你要怎麼樣讓雇主讓他的職場環境他能夠放心可以回得了啊對,我們在這方面都有給雇主也有給勞工都有獎勵措施你把你來
transcript.whisperx[452].start 12655.873
transcript.whisperx[452].end 12674.8
transcript.whisperx[452].text 勞動部你把你進行方案就本席所提出我們65歲以上的高齡者勞動參與率只有9.9跟世界各國差距那麼大的時候你要怎麼樣進行方案你給本席好 謝謝我馬上就可以提供給您了馬上給我提供本席本席不答應你這樣子的回覆
transcript.whisperx[453].start 12676.55
transcript.whisperx[453].end 12696.048
transcript.whisperx[453].text 你現在是全世界最低你還把現在有的剛剛本席在講的精進方案你把你現在做的還是一樣9.9啊本席要你的你已經做了我也給你贊許但是你要去精進方案啊在這裡回答不要隨隨便便
transcript.whisperx[454].start 12697.029
transcript.whisperx[454].end 12714.177
transcript.whisperx[454].text 已經告訴你9.9不生氣都不行對不對你去精進方案好不好好謝謝你多久時間告訴本席好好你兩個禮拜告訴本席你的精進方案接下來本席衛福部不健康於命我們現在
transcript.whisperx[455].start 12715.538
transcript.whisperx[455].end 12739.955
transcript.whisperx[455].text 不健康與命的部分因為我們要整體性橫向全部來連結我們看到65歲以上的高齡人口我們是468萬人占總人口的20%而且一直在增長那我們看到內政部所公布2023年平均與命我也嚇一跳欸你們男生只有76.94要小心女生83.74
transcript.whisperx[456].start 12742.196
transcript.whisperx[456].end 12771.033
transcript.whisperx[456].text 平均是多少?平均是80.23雖然我們有較前年度增加0.39那麼其中在這樣的一個年齡我們又看到一個數字讓我會緊張我們國人平均不健康的餘命是高達8.5年這個跟世界各國我們的召集人是專家這個跟世界各國來比較我們又是第一名
transcript.whisperx[457].start 12772.148
transcript.whisperx[457].end 12797.986
transcript.whisperx[457].text 也是糟糕的第一名所以在這樣的一個情況之下我要請教我們衛福部市長不健康的餘命高達8.5年我們要怎麼樣去降低因為這個會牽扯到我們的勞動力怎麼降低我們要怎麼降低非常感謝委員垂詢我想大概我們現在目前賴總統他有一個健康台灣的一個方案對你十二期見
transcript.whisperx[458].start 12798.786
transcript.whisperx[458].end 12799.307
transcript.whisperx[458].text 務必要加速
transcript.whisperx[459].start 12814.77
transcript.whisperx[459].end 12834.221
transcript.whisperx[459].text 因為你已經8.5 8.5年跟世界各國來比我們是拉太長了所以在這樣的情況之下怎麼樣你的2.0必須要速度加快到3.0世界訊息萬變我們如果依照原來的歸宿速度這是跟不上潮流的怎麼樣加強
transcript.whisperx[460].start 12836.082
transcript.whisperx[460].end 12836.102
transcript.whisperx[460].text 市長﹖
transcript.whisperx[461].start 12864.229
transcript.whisperx[461].end 12885.051
transcript.whisperx[461].text 你這個回答本席也沒有辦法接受因為你的兩萬五到三萬九這是循序漸進多久時間累計上來我們將近在快八年的時間對你越講大家越沒有辦法接受嘛所以我們看待的是我們目前所面臨到的困境你要怎麼樣進行跟剛剛勞動部一樣
transcript.whisperx[462].start 12887.214
transcript.whisperx[462].end 12907.791
transcript.whisperx[462].text 我希望就針對我們不健康的平均餘命8.5年你們去精進方案好不好這個非常重要因為你政府有政策出來民眾會跟著走對不對我們已經看到答案不能就攤在那裡好不好你去精進那個方案給本席最後一個議題我覺得非常的重要長壽新經濟
transcript.whisperx[463].start 12911.828
transcript.whisperx[463].end 12934.848
transcript.whisperx[463].text 經濟部也在這裏,我們看到臺灣壯世代我們三分之一的人口跟三分之二的財務顯示我們壯世代的消費率是最強的你現在去看社會、走路、運動的幾乎都是這一個壯世代的人口有的提早退休要找第二春的工作環境的有工作生活的就在這裏所以
transcript.whisperx[464].start 12935.609
transcript.whisperx[464].end 12941.052
transcript.whisperx[464].text 市長在這裡我們針對於長壽新經濟你政府要怎麼樣去協助這些的產業你怎麼樣去培植新創的這個產業鏈能夠達到我們消費者既然你知道會消費的人就是在壯世代55歲以上這一環那我們要怎麼樣去推動長壽經濟發展
transcript.whisperx[465].start 12960.143
transcript.whisperx[465].end 12960.263
transcript.whisperx[465].text 請教次長。
transcript.whisperx[466].start 12978.643
transcript.whisperx[466].end 12999.053
transcript.whisperx[466].text ⋯⋯⋯
transcript.whisperx[467].start 12999.053
transcript.whisperx[467].end 13014.65
transcript.whisperx[467].text ⋯⋯⋯⋯
transcript.whisperx[468].start 13014.71
transcript.whisperx[468].end 13021.099
transcript.whisperx[468].text 市長你剛剛回答的是很美很美的一個境界但是這個計劃要能夠落實這個方案是怎麼樣你們大概多久時間可以把你這個長壽新經濟的商
transcript.whisperx[469].start 13033.695
transcript.whisperx[469].end 13047.811
transcript.whisperx[469].text 我們一個月把那個方案給委員一個月喔因為這個整個聯動效應是非常的大而且我們要就地取材取我們的優點讓我找個為英雄有經濟能力來消費的我們幫他協助
transcript.whisperx[470].start 13049.633
transcript.whisperx[470].end 13079.394
transcript.whisperx[470].text ﹏﹏﹏
transcript.whisperx[471].start 13082.498
transcript.whisperx[471].end 13084.381
transcript.whisperx[471].text 好謝謝楊委員 接著我們請陳穎委員
transcript.whisperx[472].start 13103.982
transcript.whisperx[472].end 13117.507
transcript.whisperx[472].text 謝謝主席因為不好意思因為我實在是看不出誰是主的機關所以我就麻煩請今天列席的官員請大家上台謝謝那個吃便當就坐著繼續吃沒吃的吃完再過來好不好好 謝謝慢慢吃啦
transcript.whisperx[473].start 13137.018
transcript.whisperx[473].end 13142.102
transcript.whisperx[473].text 我國的總人口數將低於23百萬人
transcript.whisperx[474].start 13168.707
transcript.whisperx[474].end 13190.134
transcript.whisperx[474].text 在就是統計顯示45歲到65歲的工作人口在2037年就會突破五成那顯示說勞動人口高齡化將成為一個趨勢因此我們今天討論的這個中高齡的相關政策計畫是有它的必要性那今天這個草案
transcript.whisperx[475].start 13192.595
transcript.whisperx[475].end 13208.185
transcript.whisperx[475].text 的確有一些需要被討論的問題首先就如同我剛剛不知道要請誰上來我們的主責或者主管機關並不是很明確在這部草案裡面
transcript.whisperx[476].start 13209.105
transcript.whisperx[476].end 13233.172
transcript.whisperx[476].text 草案裏面的就是說由行政院下設的這個壯世代政策辦公室它統籌整合各目的事業主管機關的權責並且是由這個行政院長擔任召集人所以各機關首長還有政委、學者、專家擔任委員那所以按照這樣的一個邏輯今天理應站在這裡來備詢的應該是行政院長
transcript.whisperx[477].start 13236.054
transcript.whisperx[477].end 13244.461
transcript.whisperx[477].text 我本來是想請教昭偉說我如果現在會議詢問說我們要不要暫停大家一起等那個院長來這裡備詢那我們先等昭偉一下
transcript.whisperx[478].start 13249.541
transcript.whisperx[478].end 13275.757
transcript.whisperx[478].text 好了我放過他那這個院長就是說對阿按照這個邏輯應該是今天卓院長要來這裡備詢嘛好那這個我們用這個辦公室用辦公室這個層級去實行整個這個委員制的這個統統整目前我們好像沒有這樣子的慣例吧應該沒有那
transcript.whisperx[479].start 13278.38
transcript.whisperx[479].end 13296.84
transcript.whisperx[479].text 所以我也不曉得就是說未來如何能夠執行的好以這樣子的一個設計來看那舉例而言部會首長負責的業務被討論的時候然後他自己本身又是委員那他扮演的角色就會有衝突嗎
transcript.whisperx[480].start 13298.742
transcript.whisperx[480].end 13326.241
transcript.whisperx[480].text 那有說代表部會的委員你在會議中然後你要報告你的執行成效然後你又可以提出檢討的意見本席對於這些兼任委員的機關首長還有政委你們必須要用這種人格分離的方式角色扮演我是感到就是說無限的同情那針對這一點不曉得哪一位可以來說明一下
transcript.whisperx[481].start 13327.622
transcript.whisperx[481].end 13352.529
transcript.whisperx[481].text 非常感謝委員的隨詢,因為確實就陳副委員剛剛所說的這個確實在整個主責跟這一個相當主管機關確實是相當有不明確性的問題那因此我們現在目前其實在院裡面其實本來我們就有一個我們的一個高齡社會白皮書還有另外有一個我們有另外有一個郵政委他來他來擔任我們跨部會之間的協調那到目前為止其實運作上老實說也相當的這一個順暢
transcript.whisperx[482].start 13353.789
transcript.whisperx[482].end 13380.112
transcript.whisperx[482].text 就是說這裡面當然就是說大家可能覺得就有若干需要精進可是這是我們到目前為止因應這個問題我想整個在整個組織上面來說我想是最可能是最有效的一個方式對那你們內部運作順暢但是到時候你們要開始報告的時候又要提出意見的時候到時候這個分裂的狀態人格分裂的狀態就必須要呈現就會呈現出來所以我反正我就
transcript.whisperx[483].start 13381.073
transcript.whisperx[483].end 13383.415
transcript.whisperx[483].text 第二條這個壯世代政策的定義本期認為太過於偏狹
transcript.whisperx[484].start 13407.896
transcript.whisperx[484].end 13428.586
transcript.whisperx[484].text 那這個草案的明定他是強迫大眾認為喔就是55歲高齡者他一定是能賺能花又活蹦亂跳沒有生病的長壽者按照這個草案裡面的定義是這樣喔每個人就是要幾百萬元你才可以符合叫做壯世代
transcript.whisperx[485].start 13429.566
transcript.whisperx[485].end 13455.498
transcript.whisperx[485].text 所以要這個協助他們持續成為生產者還有消費者然後提升他們的生活品質降低社會福利的負擔我想這樣的定義其實也是跟我們目前各部會都已經在做的政策其實沒有區隔我們是有往那個方向舉例說勞動部主管的這個中高齡及高齡者的這個就業促進法
transcript.whisperx[486].start 13457.158
transcript.whisperx[486].end 13479.235
transcript.whisperx[486].text 那不就是這個法就已經是讓他們在持續就業成為這個經濟的生產者嗎?對不對?那再相較說第一條的這個立法目的這個如海嘯般翻轉的格局這樣子的定義是實在是我看是有點很這個虎頭蛇尾然後狗尾敘雕啦
transcript.whisperx[487].start 13480.285
transcript.whisperx[487].end 13502.985
transcript.whisperx[487].text 因為本席認為這一點就是也是大家要重新去審視。你們有沒有要回應一下這個部分?是委員,對,就是您推選的事,就是您講的問題就處在這裡,對。好,對,就是那如果沒有能賺能花又活蹦亂跳那幾位外領的就被歧視了嗎?對。
transcript.whisperx[488].start 13507.829
transcript.whisperx[488].end 13518.817
transcript.whisperx[488].text 第三點就是這個草案呢好多好多的重點就像就真的重點太多然後反而看不出重點在哪裡那我們用一個這個
transcript.whisperx[489].start 13520.678
transcript.whisperx[489].end 13542.021
transcript.whisperx[489].text 我今天講了很多次這個翻轉銀髮海嘯人口變遷所生的新社會放在立法精神裡面然後從而衍生出實現世代經濟的循環創造跨鄰共榮、韌性永續之目標我想一般民眾的認知可能是很抽象
transcript.whisperx[490].start 13542.967
transcript.whisperx[490].end 13555.746
transcript.whisperx[490].text 那甚至就是會覺得不曉得要做什麼感覺啊本席的直覺是啊經濟循環就是沒有垃圾的意思啊世代的經濟循環啊世代不是在講人嗎
transcript.whisperx[491].start 13557.795
transcript.whisperx[491].end 13560.176
transcript.whisperx[491].text 每個人都必須成為有用的人
transcript.whisperx[492].start 13587.194
transcript.whisperx[492].end 13607.311
transcript.whisperx[492].text 我也是覺得很疑惑所以我們大家是不是來思考一下如何讓這個民眾能夠更了解這部法案的精神與目的所以第一條本席也是建議大家就要好好的討論一下這偉大的翻轉印法海嘯以及人的經濟循環我很在意這件事情
transcript.whisperx[493].start 13608.217
transcript.whisperx[493].end 13623.779
transcript.whisperx[493].text 好那最後一點呢就是有關於第15條的健康預期壽命的統計這點的利益非常良好但是我們現行所謂的平均餘命跟這個平均這個差別是在哪裡可不可以回答一下OK好
transcript.whisperx[494].start 13624.76
transcript.whisperx[494].end 13648.88
transcript.whisperx[494].text 報告委員我們現在目前的整個所謂的通常這是WHO他們也有一個定義就是所謂的Disabled Health Year就主要指的是屬於需要長照的這是WHO他們有一個特定的一個定義那現在目前就是說我們現在目前的預期壽命當然這是屬於人口學他們的一個定義那我們現在目前我們承認我們現在目前確實有8.585年的這一個
transcript.whisperx[495].start 13652.483
transcript.whisperx[495].end 13658.928
transcript.whisperx[495].text 市長講的就是我們早就有這個不同世代的這個平均移民的統計啦那但是現在在這草案加上了這個健康預期壽命這到底是要怎麼樣的調整
transcript.whisperx[496].start 13679.604
transcript.whisperx[496].end 13686.721
transcript.whisperx[496].text 舉例喔就是說身患重病的人他可能可以延續很長的存活時間一直躺在病床上
transcript.whisperx[497].start 13687.856
transcript.whisperx[497].end 13716.048
transcript.whisperx[497].text 但是因為不健康所以他的品質生活品質就是很差嘛對沒錯那健康與其壽命你要怎麼計算而且健康的定義他是一門專業那這個當然這個世界衛生組織的定義也涉及到就是說精神跟心理的層面是沒錯所以這個將來要發布健康與其壽命相較於平均餘命一定會比較短
transcript.whisperx[498].start 13718.569
transcript.whisperx[498].end 13736.023
transcript.whisperx[498].text 將來你要怎麼去解釋說明說這兩個估計值是相差越少還是相差越多才能夠凸顯這個國家的進步這個是大家要去思考的問題那這個也是非常的專業我們就是要請專家學者專業人士來規範會比較好啦
transcript.whisperx[499].start 13742.428
transcript.whisperx[499].end 13764.383
transcript.whisperx[499].text 我能簡單補充一下您剛剛所說確實沒錯現在在國際上面這個其實都還有一些爭論我舉個例子比如說有一個叫做ICOP就是所謂的健康與命的一個估計另外一個是WHO他們自己本身的定義可是在學界裡面其實基本上都還有一些不同的看法所以目前有明確的研究方法嗎
transcript.whisperx[500].start 13765.183
transcript.whisperx[500].end 13787.651
transcript.whisperx[500].text 到目前為止就我剛剛說的就是所謂ICOP還有另外就是WHO他們現在目前都有不同的一些定例那這個我們會來後續我們會來做這部分更進一步的這一個這個深化研究好所以目前你也是打問號啦就是說目前各家都有一些他自己本身的就一律一律這樣子是沒錯好不好好那總體就是說
transcript.whisperx[501].start 13790.013
transcript.whisperx[501].end 13815.835
transcript.whisperx[501].text 欸這樣說來就是整個中高齡的這個政策齁因為我現在我很不想用壯世代因為按照這個草案的定義我真的覺得人不能成為沒有用的人對沒錯沒錯那欸委員對不起我能不能再簡單的說一下就是說稍微要請坐我要抗議喔剛才你對楊瓊英委員很好他有三倍的時間所以我不要求比照辦理我兩倍就好我剛有在算喔五倍喔對不起那
transcript.whisperx[502].start 13818.035
transcript.whisperx[502].end 13834.312
transcript.whisperx[502].text 我沒有5分,5分是0.5倍而已啊好啦他就要補充你就多給他時間吧我也是簡單補充現在就是說對於退休這個國際上是有一個明確定就剛剛說65那中高齡其實ILO他也有明確定就45
transcript.whisperx[503].start 13835.213
transcript.whisperx[503].end 13853.029
transcript.whisperx[503].text ⋯⋯⋯
transcript.whisperx[504].start 13853.029
transcript.whisperx[504].end 13883.029
transcript.whisperx[504].text ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
transcript.whisperx[505].start 13883.529
transcript.whisperx[505].end 13891.713
transcript.whisperx[505].text 早上程序不發言了好感謝趙委員就把我早上時間挪到這裡來謝謝謝謝陳委員謝謝部長次長繼續我們請賴瑞隆小港的好謝謝主席先請行政院的蘇處長蘇處長
transcript.whisperx[506].start 13915.089
transcript.whisperx[506].end 13939.838
transcript.whisperx[506].text 市長,我先請教,其實現在包括少子化,包括高齡的社會都來臨,其實這是台灣嚴肅要面對的問題,其實很多國家都在處理這個問題,剛剛我在經濟委員會剛剛談了一下少子化的問題,我認為這個是確實需要重視,那當然高齡化是另外一個問題,怎麼樣讓這些的高齡的他有能力的也願意再繼續的能夠怎麼,我覺得確實是一個課題,
transcript.whisperx[507].start 13941.098
transcript.whisperx[507].end 13960.087
transcript.whisperx[507].text 那我首先還是要回來講這些事情其實行政院也在做啦各位也在做了嘛那今天要過這樣的就是要來審這樣的一個法的時候我先問一下他這個立法體力上面我看起來是比較特殊一點的齁 處長怎麼看我們也是解的啦齁第一個就是說他算是什麼樣的法
transcript.whisperx[508].start 13961.493
transcript.whisperx[508].end 13982.278
transcript.whisperx[508].text
transcript.whisperx[509].start 13982.918
transcript.whisperx[509].end 14007.966
transcript.whisperx[509].text 這個國際上是沒有對壯世代有一個定義所以這個部分來講確實我們對整部法認為說用法規範來講壯世代這個相關的作用我覺得它反倒比較有點像基本法的概念就是應該要怎樣應該怎樣但是它其實沒有賦予比如說得社利基金會包括我認為它看起來反而比較像基本法的精神反倒不像所謂的作用法或者是其他 我覺得反而不像啦
transcript.whisperx[510].start 14008.306
transcript.whisperx[510].end 14015.856
transcript.whisperx[510].text 所以我覺得也許在將來在討論的時候可以再慎重思考一下啦他的體力上那再來我也想請教啦他的主管機關到底是誰
transcript.whisperx[511].start 14017.486
transcript.whisperx[511].end 14017.666
transcript.whisperx[511].text 委員吳春城
transcript.whisperx[512].start 14047.534
transcript.whisperx[512].end 14068.097
transcript.whisperx[512].text ﹏﹏﹏
transcript.whisperx[513].start 14068.294
transcript.whisperx[513].end 14093.458
transcript.whisperx[513].text 那另外一個就是說實務上我們有關於壯世代這個部分來講因為政務委員開三次會我們10月31號院長要召開社會福利推動委員會他勞動部要做一個報告那事實上我們在組織裡面來講針對壯世代的議題已經做處理了而且院長也在負責的社會福利委員會裡面然後政務委員也負責一個專案辦公室這個組織的架構跟處理已經都有了
transcript.whisperx[514].start 14093.578
transcript.whisperx[514].end 14115.872
transcript.whisperx[514].text 就現在在運作上面其實已經在處理類似的事情了但是你現在突然通過一個法也定的不是那麼清楚的狀況下然後又出現了這個包括因設立一個辦公室而且是由院長兼任這個體力上也非常的奇怪包括他的將來的幕僚或是他的作業就是說我們一般通常會讓某個部會來擔任一個重要的一個主責單位但是這個又沒有
transcript.whisperx[515].start 14116.352
transcript.whisperx[515].end 14138.629
transcript.whisperx[515].text 行政院長跟就大概就你們幾個處而已啦其實人力上各方面其實都非常的吃緊就這樣子在進行這件事情到底能不能達到他的成效所以我希望在未來的公聽會或甚至在內部的討論我覺得這個要慎重在討論後面的這個體制的問題包括他的單位啦那再來我也想請教一下啦包括我也看到了他這個
transcript.whisperx[516].start 14141.407
transcript.whisperx[516].end 14146.841
transcript.whisperx[516].text 財政上的問題他得設立一個基金這個基金如果設立了現在由誰來管理
transcript.whisperx[517].start 14148.769
transcript.whisperx[517].end 14173.878
transcript.whisperx[517].text 因為規範也不明確而且設計金的話由院長自己來管理財政紀律法裡面規定來講這個有關基金的設計院長管理可能就是你管理欸因為你是這個處的負責的對不對所以我說整個體力上非常的奇怪完全不照我們過去所走的所以我覺得這裡面有非常多要來深切的討論的就是立法院立出來法的品質要達到一定的水準那我認為才要不然的話會造成很多的一些困擾
transcript.whisperx[518].start 14174.498
transcript.whisperx[518].end 14174.919
transcript.whisperx[518].text 接下來請教一下何部長好不好
transcript.whisperx[519].start 14192.108
transcript.whisperx[519].end 14211.55
transcript.whisperx[519].text 委員好是那個高齡化的問題其實大家都在面對包括怎麼樣這些勞動力的部分他本身有意願的也讓他能夠更參與進來的齁那我看到其實有很多都已經在在進行當中那我看到老闆部現在有一個是中高齡跟高齡的一個促進法的部分有相當成效部長對現在這樣的一個推動的進度滿意嗎
transcript.whisperx[520].start 14213.803
transcript.whisperx[520].end 14240.543
transcript.whisperx[520].text 基本上現在其實有達到一定程度的效果啦而且這從專跑推動也來到現在增加了38萬的中高齡就業人口就大概明年大概10萬多10萬多是是是對而且都超過對大概超過10萬對但是我們在看的話其實相較於其他的包括美國日本韓國的部分其實周邊幾個好像還有很大的空間是沒錯我們相較於他們都偏低是沒有錯
transcript.whisperx[521].start 14241.263
transcript.whisperx[521].end 14257.754
transcript.whisperx[521].text 部長怎麼認為我們怎麼樣可以來來我想今天這個有一個目的也是這樣他們希望能夠讓那怎麼樣讓有意願也有能力能夠怎麼來提升對我們就幾款旗下一個是行政措施獎勵啦包括像55plus就業措施獎勵婦女在就業獎勵不只針對雇主也針對勞工而且還有像植物在設計部分工時這一些機制的設計我們也都甚至都有獎勵所以現在是先用鼓勵
transcript.whisperx[522].start 14271.543
transcript.whisperx[522].end 14281.546
transcript.whisperx[522].text 來引導那麼其實在這一個年齡歧視方面當然我們也在中高齡法裡面也都訂定不得歧視都要你如果有歧視行為的話雇主要罰30到150萬這樣子的罰款
transcript.whisperx[523].start 14286.448
transcript.whisperx[523].end 14305.414
transcript.whisperx[523].text 所以其實目前大概有法律面還有包括行政獎勵措施面我們希望能夠來疾管其下還有包括委員你們今年謝謝你們在制定的中小企業加薪抵稅對65歲以上都還給他加薪的抵稅的優惠這樣子這個還有包括勞基法54條
transcript.whisperx[524].start 14307.654
transcript.whisperx[524].end 14323.042
transcript.whisperx[524].text 我們通過了合意退休就是不限於65歲你只要勞資雙方協商就可以延後不限65歲退休這樣子我們希望部長持續的努力我看到現在我們的55到59歲的也都在這次的
transcript.whisperx[525].start 14323.822
transcript.whisperx[525].end 14324.422
transcript.whisperx[525].text 接下來請翁曉琳委員質詢
transcript.whisperx[526].start 14356.499
transcript.whisperx[526].end 14363.827
transcript.whisperx[526].text 謝謝主席。這邊有請教育部司長嗎?司長好。今天次長沒有來
transcript.whisperx[527].start 14379.697
transcript.whisperx[527].end 14407.095
transcript.whisperx[527].text 沒關係 不過我這邊待會會有一些意見希望司長可以待會去反映給部長還有次長知道我覺得今天開衛環委員會今天開這個壯世代政策促進法的公聽會這是非常有意義的因為在同時間在經委會那裡則是談少子化的議題所以我們同一天一方一個委員會談少子化然後我們這裡則是談壯世代
transcript.whisperx[528].start 14410.777
transcript.whisperx[528].end 14438.642
transcript.whisperx[528].text 從這次的這個會議的安排裡面可以反映出我們現在社會結構的確是在改變少子化的問題那麼它會帶來社會的影響而我們所看到的這個高齡化的問題其實同樣的也會帶來這個社會的影響以及這個社會的未來的發展也要改變那本席因為之前在清大教書所以我特別重視有關於高教的問題那麼面對少子化
transcript.whisperx[529].start 14440.183
transcript.whisperx[529].end 14458.301
transcript.whisperx[529].text 教育系統看起來現在已經出現了嚴重的衝擊也就是我們看到很多學校退場或者是現在教育部也鼓勵大專院校彼此之間合併那麼有些學校呢它內部也在做組織方面的收編、縮編
transcript.whisperx[530].start 14459.983
transcript.whisperx[530].end 14480.172
transcript.whisperx[530].text 同時也反映出還有一個問題就是教育資源也出現有過剩或浪費的情況因為學生變少了那麼整個教育的品質出現兩極化然後實質結構也會出現失衡的狀況我們現在看到有不少的流浪教授失業過去是流浪教師現在
transcript.whisperx[531].start 14481.132
transcript.whisperx[531].end 14505.552
transcript.whisperx[531].text 早就已經幾年前吧就已經開始出現了一堆的流浪教師很多國外留學回來的博士其實也沒有也找不到工作這是其實這個少子化的問題其實已經衝擊到整個高教那麼所以呢現在我們正好來推動這個壯世代政策我倒是覺得對於教育體系來講他可能會是個契機怎麼說呢我們現在可以鼓勵
transcript.whisperx[532].start 14507.062
transcript.whisperx[532].end 14529.797
transcript.whisperx[532].text 更多的壯世代的民眾有機會可以再加入我們的整個的教育系統尤其是大學的教育體系我們中國人不是講說一句話活到老學到老對於壯世代可能從年齡45歲或是55歲那麼到他這個中間退休然後體力還很好的這段時間裡面其實是可以來
transcript.whisperx[533].start 14532.203
transcript.whisperx[533].end 14533.685
transcript.whisperx[533].text 我個人認為說這個都是非常重要的
transcript.whisperx[534].start 14551.583
transcript.whisperx[534].end 14578.726
transcript.whisperx[534].text 我們知道其實教育部他過去有推動一些高齡化的這些教育措施包含設置樂齡學習中心啊然後在大學裡面也推動所謂樂齡大學計畫但是事實上成果不是很好也就是教育部可能給的資源也不夠多然後呢另外一方面呢也沒有說很積極的在promote這一塊所以我這邊想聽聽看就是司長您的看法
transcript.whisperx[535].start 14580.28
transcript.whisperx[535].end 14603.565
transcript.whisperx[535].text 謝謝委員大概面對這個少子女化跟高齡化大概特別是像之前就是這個吳委員在談到這個壯世代的問題我們大概今年底我們就會有一個大概針對55歲以上的一些這些年齡的這些族群我們就會讓嘗試讓他們再進行類似植物的再設計還有讓
transcript.whisperx[536].start 14605.365
transcript.whisperx[536].end 14611.029
transcript.whisperx[536].text 市長,因為我剛剛聽到您的這個key point 就是你是希望未來讓他們能夠再投入職場可是本席正好有個另外的想法其實應該要鼓勵他們重返學校
transcript.whisperx[537].start 14626.78
transcript.whisperx[537].end 14651.194
transcript.whisperx[537].text 對在我們的壯世代的這個促進法草案的第9條裡面其實也有鼓勵大家未來都要能夠有這個開發我們的開啟我們的人生第三人生大學那麼如果說從這個角度來講的話那教育部其實應該就要開始去規劃要去設計一些誘因如何能夠讓鼓勵壯世代重返校園
transcript.whisperx[538].start 14652.434
transcript.whisperx[538].end 14652.554
transcript.whisperx[538].text 市長的發展
transcript.whisperx[539].start 14676.254
transcript.whisperx[539].end 14705.862
transcript.whisperx[539].text ⋯⋯⋯⋯
transcript.whisperx[540].start 14706.202
transcript.whisperx[540].end 14729.555
transcript.whisperx[540].text 所以這裡我本席也建議教育部應該再去積極地研習一些更多可以鼓勵這些壯世代重返校園讀書或是接受一些教育的措施方案比如說我們可以比照像是一些弱勢族群或是其他的鼓勵
transcript.whisperx[541].start 14731.221
transcript.whisperx[541].end 14752.883
transcript.whisperx[541].text 教育政策是不是可以未來沿你這壯世代重返校園可以學費減免或是得到相應的補助然後另外呢如果他去讀書的話他這是不是這個他是受撫養了因為可能退休了以後他就必須由他子女撫養所以這個教育的補助費也可以就是來來抵稅
transcript.whisperx[542].start 14754.882
transcript.whisperx[542].end 14776.909
transcript.whisperx[542].text 市長,其實這邊都是我們針對有需要協助的這些民眾我們都會來考慮來協助那大概我們目前有在規劃當中就是會來準備發放的是針對有需要來發放終身學習卷我覺得不要說是針對有需要而是你現在措施這個定下去之後它就應該普及化這樣子才會產生誘因嘛對不對然後呢是未來大家讀書
transcript.whisperx[543].start 14780.671
transcript.whisperx[543].end 14785.258
transcript.whisperx[543].text 而就可以有學費減免,因為他會帶來其他不同的效益
transcript.whisperx[544].start 14786.368
transcript.whisperx[544].end 14811.54
transcript.whisperx[544].text 是,那同時呢如果說我們可以多鼓勵他們以後在申請大學的時候也有類似特殊選才或是有些特殊的真實方法不要說跟著大家高中生一起去搶名額而是有另外的特殊的申請管道那我相信一定會有很多的壯世代的民眾會很樂意的再重返校園那麼這個其實對於提升壯世代的身心健康是有幫助的
transcript.whisperx[545].start 14811.92
transcript.whisperx[545].end 14812.02
transcript.whisperx[545].text 謝謝委員﹚謝謝市長
transcript.whisperx[546].start 14840.205
transcript.whisperx[546].end 14852.389
transcript.whisperx[546].text 那發言太踴躍了所以我們在王振旭委員質詢完畢後休息15分鐘我們請劉建國委員發言好謝謝主席主席很厲害今天把八個部會都找來太棒了八個部會對台灣高齡者政策
transcript.whisperx[547].start 14867.714
transcript.whisperx[547].end 14882.105
transcript.whisperx[547].text 有具體的研擬的相關的項目的請上台對高齡者政策相關面向有具體政策的還有相關法律依據制定的請上台
transcript.whisperx[548].start 14894.022
transcript.whisperx[548].end 14923.668
transcript.whisperx[548].text 那就全道了嘛對不對那對中高齡者有具體的政策全部的面向有具體政策的請留下中高齡者你們都有委員您要指的是我第一個針對高齡者的有訂定相關面向政策的就留在這個台上嘛對不對那第二個
transcript.whisperx[549].start 14924.54
transcript.whisperx[549].end 14948.888
transcript.whisperx[549].text 有含中高齡者有訂定相關面向政策的就請留在台上,沒有就請回去含中高齡?含中高齡一定有的含中高齡?含中高齡?含中高齡?含中高齡?含中高齡?含中高齡?含中高齡?含中高齡?含中高齡?含中高齡?含中高齡?含中高齡?含中高齡?含中高齡?含中高齡?含中高齡?含中高齡?含中高齡?含中高齡?含中高齡?含中高齡?含中高齡?含中高齡?含中高齡?含中高齡?含中
transcript.whisperx[550].start 14952.506
transcript.whisperx[550].end 14979.232
transcript.whisperx[550].text 你們先確定一下吧你們確定有我想這個人口快速的變動大家都非常清楚不是今年年底就是明年年初那最早在10年前是評估起來是到2026的時候台灣要進到超高齡的社會嘛對不對好然後現在提早一年就是2025那我個人感覺是到2024就12月底應該就達標了那達標之後什麼叫超高齡
transcript.whisperx[551].start 14980.51
transcript.whisperx[551].end 14995.015
transcript.whisperx[551].text 當台灣的政府更多部會講說針對高齡跟中高齡都有相關這個面下的政策相關的法律在做這樣的應應那請問一下何部長你有針對超高齡者的部分來做處理嗎委員是指65歲以上嗎對
transcript.whisperx[552].start 14999.179
transcript.whisperx[552].end 15008.747
transcript.whisperx[552].text 我這邊就是有中高齡就業促進法嘛那裡面當然就涵蓋了高齡65歲以上是兩塊不一樣的嘛中高齡跟高齡45到65是中高齡他們都有嘛他們剛才上來都是有喔
transcript.whisperx[553].start 15017.23
transcript.whisperx[553].end 15028.649
transcript.whisperx[553].text 麻煩拜託各位剛來上來的把你們的高齡跟中高齡相關的政策面向法律依據提供給本委員會做參考剛剛有上來的部會
transcript.whisperx[554].start 15030.133
transcript.whisperx[554].end 15058.108
transcript.whisperx[554].text 麻煩你一下你今天下午這個召委話喊休息前沒有提出來那我們大家就再請召委再排一次好好來檢討這個事情我為什麼會特別這麼問當台灣面臨到這個人口的結構快速轉變過程裡面在兩年前生不如死然後我們現在面對超高齡然後這兩塊坦白講就要讓台灣的所有的政府部門要很積極快速來做這個因應
transcript.whisperx[555].start 15059.4
transcript.whisperx[555].end 15065.351
transcript.whisperx[555].text 那我必須要講高齡者的一個全面的面向的政策我們有定嗎?
transcript.whisperx[556].start 15070.727
transcript.whisperx[556].end 15086.854
transcript.whisperx[556].text 委員,我們在行政院有因應超高齡社會對策方案。對策嘛,不是政策嘛。是,是,那是行政做事含法律。我們有針對高齡者的一個上位計畫嗎?有嗎?有啊,行政院這個就是啊。而且從這個...因應超高齡社會對策方案。
transcript.whisperx[557].start 15091.616
transcript.whisperx[557].end 15112.283
transcript.whisperx[557].text 那在這裡面我們今年再加進了中壯世代參與促進方案可是壯世代是這個方案這是外加的應該就是因應超高點社會對策方案好因為我們都在臺灣嘛然後你在公部門我們在民意機關嘛那想這個人口快速的改變最主要
transcript.whisperx[558].start 15112.483
transcript.whisperx[558].end 15141.408
transcript.whisperx[558].text ⋯⋯⋯⋯⋯
transcript.whisperx[559].start 15143.188
transcript.whisperx[559].end 15155.711
transcript.whisperx[559].text 是全面含15個部會每一個部會都有方案421項措施他是院長當任召集員陳時中政委主持實際執行什麼時候訂的
transcript.whisperx[560].start 15166.345
transcript.whisperx[560].end 15187.035
transcript.whisperx[560].text 委員這個在20我們在111年蘇院長時期就已經有這樣子的機制了那麼到今年今年這個機制當然蘇院長上來之後蘇院長繼續擔任這個召集人那麼陳時中政委主持了這一個
transcript.whisperx[561].start 15187.655
transcript.whisperx[561].end 15211.342
transcript.whisperx[561].text 因應高超高齡對策方案的這樣子的一個規劃跟執行因為你當過副秘書長應該對這事情很清楚但是我還是請何部長還有各部會今天的代表可能要再回去檢視一下吧因為你如果跟台灣的百姓講說我們中央政府有訂一個來因應超高齡相關的這個對策
transcript.whisperx[562].start 15213.102
transcript.whisperx[562].end 15232.572
transcript.whisperx[562].text 的這樣的一個積極的作為基本上那簡單就再講一句話說你知道台灣的老人政策是什麼嗎?高齡者政策是什麼嗎?你知道台灣百姓你可以去做民意調查台灣百姓會回你什麼?不會回你那個叫做超高齡的因應政策會回你什麼?你知道嗎?就會回一項而已啦
transcript.whisperx[563].start 15234.291
transcript.whisperx[563].end 15257.029
transcript.whisperx[563].text 長照2.0長照2.0是一個很重要的區塊但是這樣就本末倒置了為什麼叫本末倒置?長照服務法的定義是什麼?長期生理心理自己沒辦法治理要人家跟他料理那就是長照照顧的對象那如果台灣老人的政策是用長照2.0來focus的話
transcript.whisperx[564].start 15258.786
transcript.whisperx[564].end 15285.479
transcript.whisperx[564].text 那就代表臺灣的這個超高齡未來都要進入到長照都是身體心理長期自己沒辦法治理要讓人家料理所以這個是錯誤的所以我是要特別跟你表達就是到目前為止就讓我的感覺還有普羅大眾的感覺臺灣針對超高齡的政策因應政策對策基本上他有這個輪廓但是不是很清楚啦
transcript.whisperx[565].start 15287.264
transcript.whisperx[565].end 15308.284
transcript.whisperx[565].text 我要跟你表達是這樣所以這個請各部會是不是可以特別去思考一下那當然也給貴院就行政院也要特別去思考一下這個你講蘇院長的時候我在總質詢也都問過了但坦白講可以現在馬上來檢測了是有問題的這第一點那第二點因為部長你就留著我就持續問勞動部了
transcript.whisperx[566].start 15313.35
transcript.whisperx[566].end 15326.933
transcript.whisperx[566].text 這個上個上禮拜就問這個臺灣居委通部長看一下這個是又是勞動力發展署嘛這個應該部長機由心上禮拜我們討論的是在職這次是職檢你們這個職檢宣言完有一個叫做高齡者專區課程這應該是提供給高齡者在就業的一個培訓課程嘛對不對是好這是什麼狀況
transcript.whisperx[567].start 15339.979
transcript.whisperx[567].end 15355.789
transcript.whisperx[567].text 你現在有電腦幕了,有電腦可以馬上按一下它出現什麼?BUG是不是?BUG是什麼意思?BUGBUG是什麼意思?
transcript.whisperx[568].start 15357.632
transcript.whisperx[568].end 15376.029
transcript.whisperx[568].text 請署長回應一下我們這個台灣就業通這裡面我發現這裡面可能我們在那個系統的設計上是有產生問題所以我們一些課程現在裡面沒有辦法去呈現出來對啊為什麼會這樣剛剛部長的開宗明義我們針對高齡者跟中高齡者我們就是有這一個就業促進法對不對那你的網站為什麼會出問題
transcript.whisperx[569].start 15383.356
transcript.whisperx[569].end 15405.233
transcript.whisperx[569].text 好沒關係我們再看45歲到65歲叫中高齡嘛對不對好你的45歲到65歲的之前的這一個訓練碗是什麼你提供給我們這些中高齡者要來做什麼之前訓練拖車司機連結司機連結了連結了是35棟啊如果連結了又拖澳大老家不是35棟整棟你自己去請看嘛夜間物流司機
transcript.whisperx[570].start 15412.441
transcript.whisperx[570].end 15422.814
transcript.whisperx[570].text 水域活動教練我不曉得部長對老花鼠每個這種中高齡者的這些工作的之前訓練你有什麼看法
transcript.whisperx[571].start 15425.507
transcript.whisperx[571].end 15448.266
transcript.whisperx[571].text 我講一個例子我曾經要在我們母縣讓這個夜醫牙醫急診可以來落實然後當時有嘉義市提出來然後雲林縣也提出來結果嘉義市到現在還在做嘉義縣雲林縣到現在不到半年就撐不下去了因為平均的牙醫師差不多都在55歲
transcript.whisperx[572].start 15450.131
transcript.whisperx[572].end 15450.871
transcript.whisperx[572].text 委員什麼報告一下
transcript.whisperx[573].start 15479.189
transcript.whisperx[573].end 15497.683
transcript.whisperx[573].text 沒有職業講出來沒有職業這是就業徵才的一個登記我們其實因為45歲以上基本上是都在我們這樣的一個我沒有說45歲不用做這些事情但是你是45到65歲這個Range叫中高齡我就講清楚那你覺得來沒有這樣的職業
transcript.whisperx[574].start 15499.424
transcript.whisperx[574].end 15525.381
transcript.whisperx[574].text OK嗎?委員其實45到65歲其實對於一些資深的一些職業駕駛的司機可能他還是有這樣的一個能力那當然這個我們會做一些適性的一個我就會講說我們有說一定不行嘛那你們有做過相關的評估嗎?你們職安署有沒有其他的意見?職安署職安署在嗎?你們職安署跟老化署有TEST有共同坐下來討論說沒和這樣的
transcript.whisperx[575].start 15529.045
transcript.whisperx[575].end 15551.697
transcript.whisperx[575].text 要重體力,要熬夜,然後放在這個中高齡的領域裡面。可以嗎?這樣好嗎?報告委員,我們治安署有訂那個有關於中高齡就業的這個安全衛生的指引。那我們跟勞發署在這個促進就業包含植物災設計的部分也有一些合作。
transcript.whisperx[576].start 15553.055
transcript.whisperx[576].end 15578.548
transcript.whisperx[576].text 就是要注意這些被就業者就是被推介者他們在職場上的安全與健康那委員講這個我們會再跟勞法署再密切配合所以你們現在才開始要密切之前都沒有密切再更密切一點你覺得這幾個項目對中高齡是來沒有治安署的角度是適合的治安署請治安署回答是適合的嗎
transcript.whisperx[577].start 15580.786
transcript.whisperx[577].end 15609.379
transcript.whisperx[577].text 這些齁都是高耗能體力的欸對啊可能有些是產業別那也要顧慮到這個就是求職人他的個別的個別的他的身心狀況啦你們有做過相關的一些評估嗎應該是我們的勞安所或是說國際上應該也會有一些業別的調查有關於這個風險的程度然後南日署當然會去調查阿你們治安署的立場呢其實還是要看看業別的這個風險是不是適合中高齡有做風險嗎
transcript.whisperx[578].start 15611.155
transcript.whisperx[578].end 15612.015
transcript.whisperx[578].text 有沒有給老花鼠意見?
transcript.whisperx[579].start 15635.094
transcript.whisperx[579].end 15652.994
transcript.whisperx[579].text 還是沒有?你回答我就好有沒有?有沒有給意見?委員45到65這中間其實說真的45你說到55基本上這個都算現在都還是算年輕他擔任這種工作我可以認同
transcript.whisperx[580].start 15653.715
transcript.whisperx[580].end 15658.338
transcript.whisperx[580].text 對,可是我要跟您強調,他們這還不算危老行業啦這個大概我們在,我們就是說在這一個因為你如果說是45真的是現在還是算相對體力是OK的你的責任署已經在委員會講說這些屬於高風險的啊
transcript.whisperx[581].start 15683.311
transcript.whisperx[581].end 15699.104
transcript.whisperx[581].text 指安署已經講了啊不是就是說我們指安署這個部分這個行業它是不是高風險你要去看它在實際從事的時候它的那個狀態吧就是說
transcript.whisperx[582].start 15702.494
transcript.whisperx[582].end 15726.02
transcript.whisperx[582].text 你還給我回來了,不好吧,我是提醒這事情就是說我們要訂定高齡者跟中高齡者的相關的運營政策的時候要非常的嚴謹,訂了之後要有辦法去執行然後你們兩署如果對這一個基本上沒有共識那最好就是不要放上去這對勞動部絕對是正面的事情嘛
transcript.whisperx[583].start 15727.635
transcript.whisperx[583].end 15742.312
transcript.whisperx[583].text 這個我們回去檢討啦謝謝啦把那個指引再做一個更精細的行業別的檢討對啦你們應該是針對這個風險評估嘛對不對相關配套嘛還有這個就業的環境嘛這個可以給我們一個正式的研究報告再給
transcript.whisperx[584].start 15743.033
transcript.whisperx[584].end 15763.384
transcript.whisperx[584].text 我們委員會做參考好不好因為我坦白講這個臺灣就業通110年度裡面編了1億嘛那明年好像是好像再多1000萬都不多啦但是就像上禮拜我講那個事情到這個禮拜又是這樣的一個狀況那可能部長要特別注意喔那我事一直是對事我沒有在對人的啦這大家應該
transcript.whisperx[585].start 15765.078
transcript.whisperx[585].end 15783.156
transcript.whisperx[585].text 應該委員會都非常清楚但是如果我一直針對這個部會還是針對這個單位這個機關那對酒的時候對事對酒的時候就會變成對人我不希望發生這種事情因為我們現在討論公共的議題嘛對不對我不需要去對人好謝謝謝謝建國雄接下來我們請吳宗憲委員質詢
transcript.whisperx[586].start 15797.433
transcript.whisperx[586].end 15818.595
transcript.whisperx[586].text 謝謝主席,麻煩勞動部長部長,我想說從數據上面來看,其實我們現在臺灣的中高齡的勞動率只有64%那其實是遠低於日本、南韓還有美國的數據
transcript.whisperx[587].start 15820.14
transcript.whisperx[587].end 15833.141
transcript.whisperx[587].text 所以說在我們面對現在台灣有一些缺工的問題的時候其實鍾高麟他的參與也是一個很重要的這個解決缺工危機的一個問題那我想請問一下對於這勞動力短缺目前勞動部有什麼計畫
transcript.whisperx[588].start 15834.95
transcript.whisperx[588].end 15855.71
transcript.whisperx[588].text 對,我們從109年就開始有中高齡就業促進法所以其實這三年來已經補充了38萬的中高齡勞動力來進入就業市場那麼再來還會必須更加強因為我現在看就是說我們現在不以勞動部來說我們以國家整個政策來說我覺得國家對於中高齡的
transcript.whisperx[589].start 15856.531
transcript.whisperx[589].end 15872.821
transcript.whisperx[589].text 政策面其實他主要著力點還是在照顧面就像剛剛那個劉委員講的一樣他一直講說這個是在什麼照顧面的這個國家還是主要在這個計畫所以說像我們那個長照的支出2020年是好像386.7億然後明年我們是編到849億等於是這56年就漲了69.8%
transcript.whisperx[590].start 15883.448
transcript.whisperx[590].end 15903.263
transcript.whisperx[590].text 所以這個東西我們從這個角度去看政府對於這個中高齡的人他的錢是花在怎麼樣長照但是對於所謂的壯世代的一些就業國家所提他所編列的預算或是他的著重卻不在那個地方所以
transcript.whisperx[591].start 15904.204
transcript.whisperx[591].end 15925.32
transcript.whisperx[591].text 我覺得說這個年紀的人剛好是生活經驗最豐富的時候那因為現在像剛剛一直討論到那種健康的平均餘命等等的角度去看那事實上這些人其實剛好他的工作經驗最豐富而且依照現在人的體力其實這個年紀還體力非常的好
transcript.whisperx[592].start 15925.981
transcript.whisperx[592].end 15946.237
transcript.whisperx[592].text ⋯⋯⋯
transcript.whisperx[593].start 15946.317
transcript.whisperx[593].end 15946.477
transcript.whisperx[593].text 議員.審查委員.
transcript.whisperx[594].start 15974.311
transcript.whisperx[594].end 15999.212
transcript.whisperx[594].text 是當然這還是需要改進的那有的甚至到那2.7年然後什麼那個不同職業別他那個狀況不太一樣也就是說其實每一個中高齡他已經有一點年紀了但他想要回到職場他卻要花非常長的時間那反而是這些時間也是等於是讓他年紀又個人更長那是不是說
transcript.whisperx[595].start 16001.464
transcript.whisperx[595].end 16010.904
transcript.whisperx[595].text 國家再思考怎麼樣給這些人提供長照之外勞動部這邊也能夠多花一點精神對於這個壯世代的就業啊能夠
transcript.whisperx[596].start 16011.809
transcript.whisperx[596].end 16036.515
transcript.whisperx[596].text 再多努力一點不要說中高齡他們到現在還是很多人都不容易找到工作嘛因為我看到你們的報告還有寫說什麼什麼好幾種計畫嘛那這幾年受惠的好幾萬人但是數據上面來看他們還是必須等兩年以上的時間才有辦法找到工作所以這個東西並沒有辦法說我就已經做了一個很好的政策很多人受惠
transcript.whisperx[597].start 16037.475
transcript.whisperx[597].end 16064.899
transcript.whisperx[597].text 那這也就是為什麼這麼多委員他其實是支持這個壯世代政策跟產業發展促進法為什麼大家會支持這個是因為我們希望把壯世代的這個力量能夠用到社會上面可以解決很多缺工的問題那甚至這壯世代呢我們也要讓他們對生活還是有一些有所期待啦否則到2070年嘛我們依據那個數據來看一個生產者要養一個老人
transcript.whisperx[598].start 16065.339
transcript.whisperx[598].end 16094.634
transcript.whisperx[598].text 也就是說一份收入要養兩個人那這個其實對於年輕人的負擔也很大那最後我還是希望說跟部長分享一個就是我們之前看那個高年級實習生這個好像美國電影他其實他就是講一個70歲的一個人他回歸職場那他用他過去的經驗然後讓一個新世代新創產業的一個時裝店他回復到更好他變得更
transcript.whisperx[599].start 16095.194
transcript.whisperx[599].end 16120.368
transcript.whisperx[599].text 做得更好所以他那時候他有一句台詞就是說音樂家不會退休只要心中沒有音樂才會停止我相信很多中高齡的人他們對於這個社會或對於工作或對於自我的要求其實是滿滿的活力是不是說我們請部長將來也能夠支持我們對於這個促進法的推動然後我們一起來來把它做好看部長最後部長有什麼想法
transcript.whisperx[600].start 16123.361
transcript.whisperx[600].end 16135.129
transcript.whisperx[600].text 我支持壯世代這樣的反年齡歧視的這樣的概念的倡議,可是它要形成一個法律就比較保留啦,還需要討論好嗎?
transcript.whisperx[601].start 16139.532
transcript.whisperx[601].end 16160.843
transcript.whisperx[601].text 議員可以再討論我們不是質疑說你到底同不同意我只是說希望我能夠了解到你的想法是什麼那當然法案的部分立法院這邊還是會想辦法去推動因為明年剩兩個月我們就超高齡社會了那超高齡社會之後我們總是還是要有一些因應之道嘛我們都會老小孩子也會長大那總是要處理這個問題好不好謝謝部長謝謝
transcript.whisperx[602].start 16165.213
transcript.whisperx[602].end 16169.036
transcript.whisperx[602].text 謝謝吳委員 謝謝部長接下來我們請黃孟楷委員質詢好主席謝謝麻煩我們勞動部何部長行政院內政衛福勞動處書處長好不好也麻煩一下來
transcript.whisperx[603].start 16191.189
transcript.whisperx[603].end 16214.682
transcript.whisperx[603].text 何部長辛苦喔到現在喔不過我想先請教一下因為今天早上聽說我們衛環委員會一開始的時候沒有辦法順利的進行詢答那最主要是有一些委員在詢問那甚至還有程旭發言然後還特別提到說不清楚說到底壯世代什麼叫壯世代定義不明定義不清請教部長壯世代是什麼
transcript.whisperx[604].start 16216.827
transcript.whisperx[604].end 16221.092
transcript.whisperx[604].text 來部長你知不知道你們勞動部在今年2月有一個55plus壯世代就業促進措施
transcript.whisperx[605].start 16235.689
transcript.whisperx[605].end 16249.624
transcript.whisperx[605].text 是你今年2月55plus壯世代就業促進措施啊你不知道你說這是吳委員在今年10月才提出來的概念但你們今年2月就已經有這個措施了那你難道不知道壯世代是什麼
transcript.whisperx[606].start 16250.595
transcript.whisperx[606].end 16268.701
transcript.whisperx[606].text 再來今年9月2號勞動部的臉書喔勞動部攜手壯世代迎向就業新時代和沛山部長親接雲嘉南銀髮人才中心資源然後為勞動部壯世代就業網路再添亮點
transcript.whisperx[607].start 16270.787
transcript.whisperx[607].end 16293.063
transcript.whisperx[607].text 9月2號你們臉書上宣傳壯世代就你現在說你不知道這個定義我不是說不知道是說我當然支持這一個概念的倡議啦這我是支持的那當然這個法案裡面是說50歲以上可是我認為當然現在有很多委員認為55歲以上不清楚啦有很多委員認為不清楚但是我們行政部門都很清楚啊
transcript.whisperx[608].start 16293.763
transcript.whisperx[608].end 16310.734
transcript.whisperx[608].text 甚至吳春城委員在質詢總質詢這個行政院院長卓龍泰的時候卓龍泰表示他自己就是吳春城口中的壯世代所以連院長都清楚他就是壯世代的時候為什麼我們現在還有定義不清定義不明的問題
transcript.whisperx[609].start 16311.454
transcript.whisperx[609].end 16327.326
transcript.whisperx[609].text 但是委員就是說我們講的定義不清是說國際上沒有針對壯世代有一個很明確的定義所以這個會變成各說各話比如說吳委員講的是55歲以上或者是我們行政好我們也見到這個概念可是我們覺得這一個東西它
transcript.whisperx[610].start 16330.589
transcript.whisperx[610].end 16360.589
transcript.whisperx[610].text ⋯⋯⋯
transcript.whisperx[611].start 16360.829
transcript.whisperx[611].end 16389.421
transcript.whisperx[611].text 可以再討論再來第二個部分大家都已經講了其實我們對於人口的問題非常的擔憂因為我們真的是沒有人口紅利了嘛尤其是像明年三個月後65歲以上的人口就有20%全台灣五個人以上就有一位是65歲以上是不是這樣那現在經濟委員會同時間也在開會討論的就是少子化的現況對策交通委員會同時間討論的是國道客運缺工的問題
transcript.whisperx[612].start 16390.541
transcript.whisperx[612].end 16399.523
transcript.whisperx[612].text 所以今天光我們立法院7個委員會在開會的時候就有3個委員會其實核心概念價值都是一個缺工嘛
transcript.whisperx[613].start 16400.478
transcript.whisperx[613].end 16429.394
transcript.whisperx[613].text 我們為什麼會討論壯世代就是希望說延長退休的門檻讓有勞動力而且健康的人可以持續的付出投入我們討論少子化經濟發展也是認為是說我們現在缺工的問題很嚴重交通也是一樣沒有駕駛國道客運一般的公車大貨車沒有找到駕駛啊那這問題難道不嚴重嗎所以其實部長我覺得這就不能只是從勞動部的本位主義來看啊
transcript.whisperx[614].start 16430.374
transcript.whisperx[614].end 16441.605
transcript.whisperx[614].text 還有其實這一個法案我為什麼我也共同提案一起希望能夠有這個立法就是因為它其實是政策跟產業發展重點在於是產業發展
transcript.whisperx[615].start 16445.575
transcript.whisperx[615].end 16472.357
transcript.whisperx[615].text 年長者中高齡者他絕對不會是障礙他反而是一個助力以前我們的觀念會覺得說中高齡者可能他體力衰退了或說什麼樣所以說他可能對於產業不利但是現在的醫學進步以及科技發達反而中高齡者他的經驗如果能夠傳承的話對於產業是有有益的是所以我現在也請教一下處長不好意思處長您上來我其實最主要是要請教
transcript.whisperx[616].start 16473.058
transcript.whisperx[616].end 16496.057
transcript.whisperx[616].text 因為我有看到行政院的報告是講是說院長已經有責成我們的政務委員陳時中已經開過三次會是不是那說10月31號會報行政院會會報什麼樣的資料給行政院會?老人部會提一個壯世代的社會參與的促進方案他會提到院長主持的社會福利推動委員會
transcript.whisperx[617].start 16498.021
transcript.whisperx[617].end 16517.348
transcript.whisperx[617].text 所以他會提壯世代的社會參與對促進方案那如果說這樣的話又跟剛剛部長講部長不是講是說不能用壯世代這個名詞不要用壯世代這樣那就勞動部自己要提壯世代的就業服務方案公務員報告因為剛才部長也提到壯世代在國際上是沒有定義的可是我們會推動因為壯世代這個議題我們是重視的是
transcript.whisperx[618].start 16520.089
transcript.whisperx[618].end 16534.016
transcript.whisperx[618].text 為了要推動這個方案的話我們把壯世代稍微定義說是針對55歲以上健康有工作能力且為生產者及消費者因為這邊考慮到說我們現在有超過13%的話是失能者年長到一個階段沒有錯這個其實大家都理解嘛
transcript.whisperx[619].start 16542.941
transcript.whisperx[619].end 16566.901
transcript.whisperx[619].text 就是說可以投入勞動市場的人他本身如果說是有身體疾病或是真的他無行為能力當然我們不能把他算進來啊是啊所以在整體推動上我們是支持說用方案計畫來推動因為這邊還要配合現在的高齡社會白皮書跟應用超高齡社會對策方案在服務以現在我們長照2.0要把它提升為長照3.0
transcript.whisperx[620].start 16568.662
transcript.whisperx[620].end 16591.409
transcript.whisperx[620].text 希望未來建構的,再搭配壯世代的部分建構是一個完整的、高齡的政策方案拜託跟麻煩因為你已經有在行政院、政委這邊有開過會但是幾個觀念一定要帶回去第一,日本也有很多的長照他是以初老來服務中老有55歲、65歲的人來服務75歲、85歲的人
transcript.whisperx[621].start 16595.1
transcript.whisperx[621].end 16619.006
transcript.whisperx[621].text 那這就是一個銀髮共榮共存的概念第二,延長這所謂的這個退休年齡以外怎麼樣能夠讓產業有更多的誘因能夠來禁用而不是認為是說他們是老人企業這個部分也要方面去思考還有第三我覺得最重要的是為什麼會提出壯世代就是因為過去用銀髮用中高齡者
transcript.whisperx[622].start 16620.626
transcript.whisperx[622].end 16640.753
transcript.whisperx[622].text 會讓大家會有一個比較負面的標籤所以說才會希望是說符合現行的民意現行的民情壯世代他們是壯世代對比是什麼就是輕壯世代嘛輕壯世代可能是25到45歲的人那45歲以上以前叫我不知道處長你有沒有看過
transcript.whisperx[623].start 16642.273
transcript.whisperx[623].end 16662.874
transcript.whisperx[623].text 甚至有媒體報導啊上街頭遊行這是確實的他說上街頭遊行我看到了51歲的老翁他也站出來了你有沒有看過這種報導有記者連線的時候他說哇今天非常熱鬧這個遊行大家站出來了連高齡51歲的老翁都站出來了來我們請教這個老翁的看法
transcript.whisperx[624].start 16664.068
transcript.whisperx[624].end 16679.51
transcript.whisperx[624].text 這以前人家這樣子連線你會覺得好像但是你現在聽我這樣講好像覺得哪裡怪怪的因為現在其實連71歲我都不一定覺得說如果說他體態保持良好身體健康肌力夠他都不一定可以稱為老翁對不對
transcript.whisperx[625].start 16681.431
transcript.whisperx[625].end 16694.577
transcript.whisperx[625].text 我們期待行政院有拿出真真正正符合民情的版本那我們也希望未來這一個法案在衛環委員會進入到主條的時候我們再討論而行政部門不應該只是鐵板一塊好不好以上謝謝
transcript.whisperx[626].start 16713.274
transcript.whisperx[626].end 16717.575
transcript.whisperx[626].text 好 謝謝主席 大家再拎來一個吳浩安何部長部長好 我想今天到現在同樣的一些問題一直在請教部長還有相關的我們的官員所有委員其實都很關心就是我們如何能夠針對一個中高齡甚至是高齡的長者
transcript.whisperx[627].start 16740.523
transcript.whisperx[627].end 16756.833
transcript.whisperx[627].text 從臺灣需要的角度來請他們共同繼續替臺灣怕病我想最重要的重點應該在這裡那我們也知道有很多的努力包括之前我們也通過了65歲到底退休了可以有什麼其他的辦法
transcript.whisperx[628].start 16757.834
transcript.whisperx[628].end 16769.939
transcript.whisperx[628].text 所以我們今天就希望針對於在相關的法案裡面有提到要兩年之內要提出一些相關的補助或政策上面的理解所以我們就把它定在63歲的時候應該做什麼提供給部長這邊來做參考
transcript.whisperx[629].start 16773.681
transcript.whisperx[629].end 16797.075
transcript.whisperx[629].text 那經過這個勞基法50條修訂以後大家都很擔心到底執行上有沒有什麼困難實際上能夠做到什麼樣的一個可行的機會之下來協助這些即將退休的勞動朋友可以做哪一些事情所以變成如何能夠讓勞資雙方知道政府有補助方案的申請
transcript.whisperx[630].start 16798.876
transcript.whisperx[630].end 16823.919
transcript.whisperx[630].text 這些申請以後如果有做跟沒有做造成了影響有沒有機會麻煩勞動部這邊來做後續的分析這就是這次我們希望提供跟部長來討論的地方那我們也知道其實通知勞動朋友有哪一些權益目前都有在執行當中比如說清零退休金或者是相關的他的一些權益
transcript.whisperx[631].start 16825.18
transcript.whisperx[631].end 16825.3
transcript.whisperx[631].text 議員.審查委員
transcript.whisperx[632].start 16842.654
transcript.whisperx[632].end 16863.277
transcript.whisperx[632].text 我們可以看這個在54條修正以後就是年滿65歲就可以透過勞務雙方來協商延後那在中高齡跟高齡者就業促進法29條裡面的第一款第一項就是說要前兩年裡面要提供相關的這些補助措施而且需要
transcript.whisperx[633].start 16864.037
transcript.whisperx[633].end 16864.257
transcript.whisperx[633].text 議員吳春城
transcript.whisperx[634].start 16887.623
transcript.whisperx[634].end 16894.569
transcript.whisperx[634].text 的這個勞參率只剩下9.6相較於南韓跟日本真的是差非常的多那60到64歲之間從39%變成9%這個就是我們如何能夠讓這一群人有機會提高他的勞參率
transcript.whisperx[635].start 16903.497
transcript.whisperx[635].end 16909.984
transcript.whisperx[635].text 所以如果我們希望能夠有機會達到像日本跟韓國一樣的勞參與的話那我們如何能夠先讓這個63歲64歲的這些勞動者能夠參與那這是我們所知道的人口數
transcript.whisperx[636].start 16918.952
transcript.whisperx[636].end 16918.972
transcript.whisperx[636].text 對,這因
transcript.whisperx[637].start 16946.486
transcript.whisperx[637].end 16962.305
transcript.whisperx[637].text 委員我們就是指說這一個中高齡法今年修正以來在65歲退休前兩年就應該要準備計劃這個部分對這個因為法令剛通過我們正在緊鑼密鼓的規劃規劃這一個
transcript.whisperx[638].start 16966.124
transcript.whisperx[638].end 16966.564
transcript.whisperx[638].text 對 那麼這些我們都現在正在規劃進行中這樣子
transcript.whisperx[639].start 16984.469
transcript.whisperx[639].end 17010.667
transcript.whisperx[639].text 因為我們是7月才開始啟動嘛所以到現在為止差不多將近只有5個月時間可能會慢慢的累積一些相關的資料那也可以進行後續的分析我們後續也會來統計分析那相信剛剛楊承英委員也有提到為什麼我們的勞參率一直提升不起來他也希望部長這邊能夠提供相關的方案給他做參考
transcript.whisperx[640].start 17011.587
transcript.whisperx[640].end 17019.811
transcript.whisperx[640].text 這邊我們其實是有一些政策上的遷移也可以跟這邊林部長來討論看看針對63歲的這些勞動朋友們當他到63、64歲的時候那勞動部能夠主動的通知
transcript.whisperx[641].start 17027.014
transcript.whisperx[641].end 17052.134
transcript.whisperx[641].text 有就業補助這樣的方案那同時也能夠主動的去讓我們的企業主知道跟我們的勞動朋友可以協商延後退休這樣的可行性那最後呢也希望能夠有一個協商的指引可以提供給業主做參考那也可以當勞動朋友做參考那經過這個完整的配套以後我們就有機會去了解去統計調查為什麼
transcript.whisperx[642].start 17055.837
transcript.whisperx[642].end 17074.293
transcript.whisperx[642].text 如果他在執行上有困難或者是執行有無法達到目標的地方我們可以做後續的政策上滾動的一些檢討不知道部長針對這樣的這個政策建議在執行上預期會碰到哪一些的困難或者是如何能夠再去做調控的部分
transcript.whisperx[643].start 17074.904
transcript.whisperx[643].end 17094.051
transcript.whisperx[643].text 是,謝謝委員的這個建議,非常好像你前面講的勞動部主動通知中高齡就會補助還有主動通知可協商以後退休這個我們正在跟勞保局建立勾肌然後由勞保局的這個系統我們也許可以來主動來發送這些通知給勞工朋友
transcript.whisperx[644].start 17095.311
transcript.whisperx[644].end 17119.396
transcript.whisperx[644].text 然後比如說像勞動部主動建立延退協商指引我請我們的同仁我們現在來研究這個建立這個東西這是有必要的是好謝謝那針對於這個中高齡的就業協助的部分其實我們也知道很多的環境因素會影響到這些中高齡的勞動朋友的就業的這些意願
transcript.whisperx[645].start 17120.376
transcript.whisperx[645].end 17137.472
transcript.whisperx[645].text 我們可以看到一個數據就是如果是屬於技術層次三四級跟一二級其實就很大的不一樣對中高原來者對三四技術層次的這部分是有增加他的這個就業率反而一二層次就是會受到影響
transcript.whisperx[646].start 17138.973
transcript.whisperx[646].end 17162.711
transcript.whisperx[646].text 之前的署分委員講得非常清楚不同的就業的這個需求跟環境其實不一樣所以我們也希望說在這部分看部長有沒有在對策上在執行過程當中需要再做滾動式修正的部分也希望從這個角度來繼續做多方面的這些延伸那最後針對今天的法案
transcript.whisperx[647].start 17163.894
transcript.whisperx[647].end 17191.516
transcript.whisperx[647].text 其實我們很了解這個在理念上大家都非常的認同的確中高齡高齡的這些朋友們有需要有更全面的一些支應的方式來處理不過就好像我們討論非常多這個本法案的這個主管機關如果是在行政院的話基本上就不好不像是應該在衛防委員會裡面來說主要的討論
transcript.whisperx[648].start 17192.697
transcript.whisperx[648].end 17219.496
transcript.whisperx[648].text 所以應該包括像內政委員會或經濟委員會來主審可能會更適合那如果有那麼多的部會的參與可能要聯席財政交通跟交易委員會這個都是未來在處理的部分我們需要去更了解那當然有公聽會由我們這個委員會或者是由立院來主辦的公聽會應該是可以讓更多的學者專家還有相關的人員一起來努力好謝謝委員謝謝
transcript.whisperx[649].start 17223.035
transcript.whisperx[649].end 17226.099
transcript.whisperx[649].text 好謝謝部長謝謝王委員我們現在休息15分鐘齁
transcript.whisperx[650].start 17296.305
transcript.whisperx[650].end 17296.732
transcript.whisperx[650].text ﹏﹏
transcript.whisperx[651].start 17416.732
transcript.whisperx[651].end 17417.227
transcript.whisperx[651].text ﹏﹏
transcript.whisperx[652].start 17918.797
transcript.whisperx[652].end 17919.206
transcript.whisperx[652].text 響鐘
transcript.whisperx[653].start 18151.217
transcript.whisperx[653].end 18161.3
transcript.whisperx[653].text 好好我們繼續開會邱益穎委員邱益穎委員邱益穎委員不在接著我們請黃珊珊委員質詢好謝謝主席我想請何部長跟衛福部次長
transcript.whisperx[654].start 18182.681
transcript.whisperx[654].end 18182.761
transcript.whisperx[654].text 委員好
transcript.whisperx[655].start 18203.846
transcript.whisperx[655].end 18232.504
transcript.whisperx[655].text 我想次長這幾天我們總質詢的時候也提過現在台灣邁入所謂的超高齡明年就到了15年後將近會有30%的老人25年後將近有40%老人因為出生率太低我們現在已經大概就是跟韓國在比全世界第一名現在的問題就在於說我在禮拜二質詢的時候也問了一下現在你們今天的報告很重要就是企業現在也面臨到大缺工
transcript.whisperx[656].start 18233.044
transcript.whisperx[656].end 18233.304
transcript.whisperx[656].text 現在的問題在於
transcript.whisperx[657].start 18257.648
transcript.whisperx[657].end 18283.961
transcript.whisperx[657].text 下一頁現在在104調查的結果其實我們台灣的出生率這麼低但是我們可能勞動參與率沒有提高那現在日本老人人口也很多但是他的勞動參與率相對高於日本高於台灣很多在65歲以上我們只有9.9日本的勞動參與率將近25%也就是四個老人有一個在工作
transcript.whisperx[658].start 18284.901
transcript.whisperx[658].end 18312.64
transcript.whisperx[658].text 在45到64歲我們的參與率只有60%日本參與率有高達84%所以部長同樣的我們今天這個基本法的概念就是希望讓各種產業各種政策能夠讓更多的壯世代投入所謂的勞動市場您覺得現在台灣的65歲讓勞動參與率要怎麼樣提高這些人是不想做還是不願做還是沒有友善的環境讓他們繼續投入勞動市場
transcript.whisperx[659].start 18314.855
transcript.whisperx[659].end 18341.482
transcript.whisperx[659].text 委員首先就是說我們在109年中高齡專法推動以來其實是成長不少的有成長對增加了38萬這樣的中高齡老人我贊成但是我們現在成長不少還是只有9.9啦我的意思是說要達到不要到日本的程度至少到15%20%我覺得這是要繼續努力的地方委員日本跟韓國他會為什麼中高齡老人參與這麼高有一個
transcript.whisperx[660].start 18342.702
transcript.whisperx[660].end 18345.385
transcript.whisperx[660].text 大問題是他們的下流老人非常多
transcript.whisperx[661].start 18360.18
transcript.whisperx[661].end 18379.987
transcript.whisperx[661].text 我認識的公務員退休幾乎都是為了照顧長輩對照顧長輩成為他們最大的需求所以現在我在星期二總值群的時候有希望臺灣是不是應該開始提出所謂的長照保險制度比較全民健保的方式讓這些從德國從日本從南韓看得出來我們的
transcript.whisperx[662].start 18381.047
transcript.whisperx[662].end 18398.086
transcript.whisperx[662].text 大家勞動參與率不高其實是老人在照顧更老的人更老的人他的爸爸媽媽八九十歲以前是可能早就離世了所以他可以退休但現在他退休辭職的原因是為了照顧更大的長輩所以長照保險是我希望衛福部要開始規劃的
transcript.whisperx[663].start 18399.207
transcript.whisperx[663].end 18425.916
transcript.whisperx[663].text 可以嗎?我們那天秦部長已經因為他有去考察日本嘛所以是不是衛福部這部分還是要做出你們其實之前做過評估我希望能夠繼續往這個方向推動好的OK感謝委員我想任何只要對民眾有利的我想我們都是會來就是第一個所以可能長照就是讓大家現在出一點點錢將來照顧自己多一點而且不要讓我們的老人去照顧更老的人
transcript.whisperx[664].start 18426.856
transcript.whisperx[664].end 18450.415
transcript.whisperx[664].text 這件事情是我覺得勞動部跟衛福部要一起來推動的好不好能不能容許我那個做一個兩點簡單補充第一個就是說任何的國家推動保險之前一定都會先經過先經過整個那個資源部件我簡單講我同意現在就是說你不能讓民眾他我付了保險費但是卻沒有沒有得到服務我同意所以日本他們在2000年他們的之前辦之前就用那個黃金計畫台灣健保之前我們用醫療網
transcript.whisperx[665].start 18451.716
transcript.whisperx[665].end 18472.651
transcript.whisperx[665].text 我們目前在做資源佈建但是你們有點慢了希望快一點為什麼因為我們的明年就是超高齡社會了你現在還要再佈建的話我就會說衛福不肯失職這是800年前就知道的事你現在才要再佈建這是有點離譜而且長照已經從106年到現在了不是現在才開始佈建
transcript.whisperx[666].start 18473.331
transcript.whisperx[666].end 18498.514
transcript.whisperx[666].text 當然好不好衛福部這個理由不太好啦麻煩麻煩把長照保險納入商業保險之前我們希望在全民健保全民納保的情況下能夠讓長照保險慢慢的上路同樣的現在就要開始做規劃就像當年沒有全民健保誰知道什麼是全民健保推動了以後現在的成果看得出來他其實解決了台灣很多很多醫療的問題
transcript.whisperx[667].start 18499.395
transcript.whisperx[667].end 18499.855
transcript.whisperx[667].text 致詢林倩琦委員
transcript.whisperx[668].start 18524.415
transcript.whisperx[668].end 18524.815
transcript.whisperx[668].text 教育部、文化部
transcript.whisperx[669].start 18543.928
transcript.whisperx[669].end 18572.167
transcript.whisperx[669].text 那這兩個我想今天有點時間但是國發會、農業部、交通部都是我在這個今天這個議題《壯世代和產業發展促進法》裡面會關注的一些焦點所以謝謝張偉今天有這樣的一個議題首先這個勞動部長您比較辛苦因為現在的這個職司大概跟勞動部跟衛福部感覺上在這個區塊佔的比例非常大所以您今天一整天在
transcript.whisperx[670].start 18572.867
transcript.whisperx[670].end 18593.347
transcript.whisperx[670].text 跟很多委員的這個詢答上齁其實我這邊有一些想法來跟您的做一些討論其實每個單位都一樣齁我記得那個濫委員其實呃對不起廖先祥委員還在找他提出一個類比在法規上的類比跟一個世界趨勢的這個進步齁其實我覺得他這個想法非常的好所以但是您在回答他齁是從這個殘障福利法
transcript.whisperx[671].start 18595.669
transcript.whisperx[671].end 18595.929
transcript.whisperx[671].text 臺灣第一臺灣不因令風潮
transcript.whisperx[672].start 18615.828
transcript.whisperx[672].end 18639.07
transcript.whisperx[672].text ⋯⋯⋯
transcript.whisperx[673].start 18640.37
transcript.whisperx[673].end 18664.799
transcript.whisperx[673].text 國發會這邊在討論就業市場還有這個整個國家發展等等的缺工的這個問題所以其實這整個東西其實應該一起來思考那壯世代提供這樣一個突破瓶頸的概念所以這是為什麼我們在這邊討論的所以在衛福的這個部分我來跟衛福部請議一下你有沒有覺得在過往的這個思維跟你們目前的整個政策狀態應該對於所謂的
transcript.whisperx[674].start 18668.496
transcript.whisperx[674].end 18668.616
transcript.whisperx[674].text 議員吳春城
transcript.whisperx[675].start 18690.657
transcript.whisperx[675].end 18713.78
transcript.whisperx[675].text ⋯⋯⋯⋯
transcript.whisperx[676].start 18713.94
transcript.whisperx[676].end 18714.28
transcript.whisperx[676].text 委員吳春城
transcript.whisperx[677].start 18731.836
transcript.whisperx[677].end 18747.589
transcript.whisperx[677].text 在日本201616已經啟動了社會5.0那他也不一定是照護那這個思維就是說很重要就是發展那很多我們這個年紀的人還沒有到一定被你們照顧的階段好不好所以這是一個思維上的調整跟改變
transcript.whisperx[678].start 18748.63
transcript.whisperx[678].end 18749.93
transcript.whisperx[678].text 接下來文化部不好意思你們今天
transcript.whisperx[679].start 18773.357
transcript.whisperx[679].end 18800.269
transcript.whisperx[679].text 我們中間是司長文化部本席其實在上個會期已經建議你們將壯世代納入文化幣的發放對象但是你們目前經費裡面沒有看到當然你們會有很多的想法但是我這邊提醒你們如果有機會把壯世代放進去它其實是可以對文化市場創造乘數效果它跟對於你們目前在年齡的這個區塊
transcript.whisperx[680].start 18802.07
transcript.whisperx[680].end 18821.215
transcript.whisperx[680].text 的補助其實是不一樣的概念最後教育部教育部不好意思我要跟你們講那個列寧大學我們這個世代的人都被你們當成是這個什麼終身教育但是不要用這句話騙我們你們終身教育所目前的總經費大概只有36.15億那在整體的教育經費裡面1.98%
transcript.whisperx[681].start 18827.281
transcript.whisperx[681].end 18834.815
transcript.whisperx[681].text 那整個我們不要講壯世代光是高齡的人口你覺得這個比例跟現在國發會算出來的比例平衡嗎?
transcript.whisperx[682].start 18836.309
transcript.whisperx[682].end 18860.232
transcript.whisperx[682].text 這個回去要跟部裡面反映今天你們次長是在另外一個委員會然後派這個終身教育這從這個派的成績你不覺得好像對於壯世代難道我們真的沒有歧視嗎?對於高齡人口我們真的沒有歧視嗎?我想壯世代這樣一個法令的定定其實是想要告訴我們社會的實際現象是什麼?我們心裡沒有看到的自我現象是什麼?
transcript.whisperx[683].start 18861.033
transcript.whisperx[683].end 18869.237
transcript.whisperx[683].text 所以我很期待這樣一個法令當然能夠用正面的思維去看待他我相信他能夠解決很多社會的問題謝謝謝謝林委員接下來我們請林國成委員質詢好謝謝主席大家辛苦了我們請勞動部何部長衛務部我們次長
transcript.whisperx[684].start 18890.407
transcript.whisperx[684].end 18913.537
transcript.whisperx[684].text 行政院辦公室代表那其他的官員練習的話沒有請你們上來並非不尊重而是人數太多敬請原諒但是本席在建議的我也希望能夠聆聽進去然後能做的就做好不好來
transcript.whisperx[685].start 18915.162
transcript.whisperx[685].end 18937.908
transcript.whisperx[685].text 好部長我知道大家都很辛苦但是我們針對問題談問題第一過去的時代通通稱呼老人老人啊最後覺得老人啊有所以言其事說改為英華族英華族啦那現在很難得可以談到
transcript.whisperx[686].start 18939.798
transcript.whisperx[686].end 18944.865
transcript.whisperx[686].text 是壯世代那一來言語鼓勵二來是對
transcript.whisperx[687].start 18947.796
transcript.whisperx[687].end 18970.177
transcript.whisperx[687].text 一些壯世代的一個鼓舞作用其目的為什麼要壯世代因為他老來友誼啊也就是一直何部長你從許明謙部長跟到現在你都一直在提倡壯世代的第二村的就業
transcript.whisperx[688].start 18971.945
transcript.whisperx[688].end 18992.895
transcript.whisperx[688].text 這個成果是可以看得出來的啊但是代表什麼時代不一樣壯世代是可以用的但是我看到今天啊我們有一些委員同仁還有部長在打詢就是這個政策你支持這個法令暫時不支持我同意
transcript.whisperx[689].start 18993.815
transcript.whisperx[689].end 19015.605
transcript.whisperx[689].text 但是要把成績做出來那事實上以現在看起來兩個最重要的要先行去推行一行政院辦公室既然認同院長卓院長也成立一個辦公室那第二個很重要的就是勞動部第二個
transcript.whisperx[690].start 19016.801
transcript.whisperx[690].end 19039.269
transcript.whisperx[690].text 為福布這些東西是非常重要所以我要建議為什麼要請你們三位來一是管政策二是管執行那你們單位是在管執行阿其他單位是配合阿那配合要不要配合當然要配合你們兩位兩個部會成績做出來後面就好跟阿
transcript.whisperx[691].start 19040.009
transcript.whisperx[691].end 19057.21
transcript.whisperx[691].text 教育部的好跟在金融機構的好跟就跟著這個模型來做所以你們兩個部會是最重要的所以至於法令如何要不要定其實我是建議部長你要跟行政院建議啦
transcript.whisperx[692].start 19059.172
transcript.whisperx[692].end 19075.568
transcript.whisperx[692].text 這個法令的定定是吳春城委員他非常你看連署這麼多人三黨通通連署為什麼這就是共識嘛那你們也可以提版本那也不急於一時現在就談法律問題但是談實際問題
transcript.whisperx[693].start 19079.432
transcript.whisperx[693].end 19099.221
transcript.whisperx[693].text 也就是你把成績把成果把它做出來壯世代是未來的趨勢我們已經先做了這個也是在幫行政機關啊在做事欸所以不要去計較這些所以我還是要拜託我們何部長既然你們現在已經在做認真的去推
transcript.whisperx[694].start 19099.941
transcript.whisperx[694].end 19118.669
transcript.whisperx[694].text 第二個衛福部該做本來老人業務本來英華族的業務本來他的福利本來就是你們衛福部要做的所以你們兩個部會一定要去擔當那行政院既然不管是陳建寧院長現在卓榮泰院長啊有這個制度啊你們為什麼三大計讀不好好運用一下那
transcript.whisperx[695].start 19125.692
transcript.whisperx[695].end 19147.526
transcript.whisperx[695].text 才來擴大各部會 這個案子才推了會成功 這個案子才會去落實 所以我也要拜託何部長這種東西你不要怕法令 法令是對我們有幫助的 如果到最後推行整個壯世代遇到困難 你非得法令來解決嘛
transcript.whisperx[696].start 19148.727
transcript.whisperx[696].end 19164.893
transcript.whisperx[696].text 所以現在我要拜託兩個部會一個是衛福部一個是勞動部一個是就業問題一個是福利問題你們要先行推行把它做了一個非常嚴滿讓人家看到我們
transcript.whisperx[697].start 19166.493
transcript.whisperx[697].end 19188.911
transcript.whisperx[697].text 來政府的壯世代政策是起飛的是起步的是肯定的要這樣做不要去排除法令的問題法令你們也可以提啊你們認為這55歲或者不明確的問題你們可以提啊我們大家都可以來共商所以我要建議何部長你們的努力我們看到
transcript.whisperx[698].start 19189.631
transcript.whisperx[698].end 19214.357
transcript.whisperx[698].text 那個衛福部的努力邱部長這裡我們也看到但是我要拜託行政院你在作證政策指導的時候要很明確不要去排除其他的這些無謂政治的名稱跟無謂政治的說啊這三個功能不需要因為最後壯世代是一定要去落實
transcript.whisperx[699].start 19215.197
transcript.whisperx[699].end 19233.371
transcript.whisperx[699].text 因為這個高年齡化確實是一定要去面對所以何部長簡單你認為本席給你建議的你的看法是委員我們方向一致啦現在行政院我們勞動部就在執行行政院所交辦的壯世代發展促進方案
transcript.whisperx[700].start 19234.051
transcript.whisperx[700].end 19234.872
transcript.whisperx[700].text 我個人的看法我也同意你的看法
transcript.whisperx[701].start 19253.831
transcript.whisperx[701].end 19253.971
transcript.whisperx[701].text 我會朝這個方向來出
transcript.whisperx[702].start 19280.128
transcript.whisperx[702].end 19280.669
transcript.whisperx[702].text 謝謝林委員 謝謝部長、次長接下來我們請圖前級委員質詢
transcript.whisperx[703].start 19300.646
transcript.whisperx[703].end 19308.057
transcript.whisperx[703].text 謝謝主席先請我們勞保局的白局長還有我們勞動關係司的黃副司長
transcript.whisperx[704].start 19322.068
transcript.whisperx[704].end 19337.405
transcript.whisperx[704].text 白局長我想請問一下因為針對我們勞保局有發一份公文我想請問一下白局長針對說明的第4點局長可以幫我們唸一遍嗎說明的第4點你看得到嗎
transcript.whisperx[705].start 19339.042
transcript.whisperx[705].end 19360.927
transcript.whisperx[705].text 可以幫我們唸一下嗎?是報告委員我們的第4點是提到說至於勞資雙方如對雇傭關係存續期間之認定有爭議應向工作所在地之縣市政府勞工行政機關申請調處或向或循司法途徑解決與以謎爭議那這個主要是源自於現在針對勞資爭議有一個勞資爭議處理法所以我們以這樣的一個規定在這邊去續名
transcript.whisperx[706].start 19365.768
transcript.whisperx[706].end 19386.086
transcript.whisperx[706].text 所以他這邊有講嘛僱傭關係的存續期間那這個認定還有就是我們工作場所縣市政府勞工行政機關申請調處的意思也就是說那照我們勞保局講這個契約的性質它為定期或不定期應該是勞政主管機關的責任對不對
transcript.whisperx[707].start 19390.141
transcript.whisperx[707].end 19415.263
transcript.whisperx[707].text 各位委員報告,我們這邊主要是依勞資爭議處理法裡面,針對勞資雙方如果有爭議,他們依循的法令不見得是勞動基準法,就是在勞資之間有爭議的話都可以依照基準來處理。勞保局我們第4點講嘛,就是雇佣關係的存續,這部分勞工行政機關來申請調處嘛,所以這部分是勞動主管機關來負責處理嘛。
transcript.whisperx[708].start 19417.947
transcript.whisperx[708].end 19439.312
transcript.whisperx[708].text 你就針對第4點嘛對不對你的意思是不是這樣如果他要勞資正義調解可以找地方政府對啊就是有勞政主管機關那中央是勞動部嘛地方就是縣市政府嘛對不對沒有錯吧對沒關係你就針對你的回答就好你不要緊張好那我再請問一下我們勞動關係師黃副司長那針對我們
transcript.whisperx[709].start 19446.204
transcript.whisperx[709].end 19453.531
transcript.whisperx[709].text 韓港局我們有發文韓巡就是有關勞動契約的爭議,勞動契約爭議應該是我們勞動關係司在負責的業管單位嗎?勞動契約章是我們勞動關係司
transcript.whisperx[710].start 19461.822
transcript.whisperx[710].end 19482.177
transcript.whisperx[710].text 對,那我想請問一下副司長針對在航港局的回覆我們來討論一下你看有沒有什麼錯誤或者你覺得他這公文回覆有什麼問題的地方然後針對這公文我們把它陳述出來就是針對傳言法是否明定
transcript.whisperx[711].start 19483.308
transcript.whisperx[711].end 19508.339
transcript.whisperx[711].text 明文定義傳言法中何為定期契約、不定期契約那韓港局針對我們這問題他的回覆是說經查傳言法及相關執法並無定義定期契約或不定期契約也就是說傳言法他不管是本身他傳言法或相關執法並沒有明確的定義嘛這一部分他的回覆是這樣
transcript.whisperx[712].start 19513.432
transcript.whisperx[712].end 19524.046
transcript.whisperx[712].text 第二點,我們傳言法的僱傭契約中定期契約不定期契約的定義,載明中華民國哪一部法律中
transcript.whisperx[713].start 19524.787
transcript.whisperx[713].end 19539.351
transcript.whisperx[713].text 那業管的機關部會單位為何那行管局的回覆是載於勞基法的第9條主管機關在中央為勞動部在直轄市為縣市政府
transcript.whisperx[714].start 19542.592
transcript.whisperx[714].end 19564.08
transcript.whisperx[714].text 所以這部分跟剛剛我們勞保局的回覆也是一樣所以針對我們傳援法的僱傭契約他就說在中華民國法律就是勞基法第9條也就是說主管機關在中央的勞動部在地方的就是縣市政府在航港局的回覆沒關係如果你覺得航港局會有問題你也可以提出
transcript.whisperx[715].start 19565.08
transcript.whisperx[715].end 19586.733
transcript.whisperx[715].text 然後第三點傳言法中受僱用之傳言針對其僱用契約實質為定期契約不定期契約有相關爭議時就計投訴機關為何?韓港局的回覆是說傳言對於僱用契約之契約形式如有爭議勞資雙方可透過勞動主管機關進行協調或透過民事訴訟
transcript.whisperx[716].start 19592.236
transcript.whisperx[716].end 19598.161
transcript.whisperx[716].text 也就是說在中央他可以透過勞動部在地方可以透過縣市政府因為這剛剛已經講過那針對這部分韓港局的回覆我們副市長你覺得他回覆有沒有問題謝謝委員因為我們其實此時此刻我們也針對剛剛委員關心的議題我們正請交通部我們正式請交通部那個含附給我們那我們兩個部會之間會針對這樣的一個議題進行討論可是他已經含附了嘛
transcript.whisperx[717].start 19622.04
transcript.whisperx[717].end 19623.281
transcript.whisperx[717].text 因為這是港港局委員這邊提到港港局這邊提的
transcript.whisperx[718].start 19641.71
transcript.whisperx[718].end 19656.667
transcript.whisperx[718].text 因為我們這邊同時航空局交通部本部還沒有回覆給我們相關的每一個條文傳援勞動權益的問題所以我們會很及時的在做你不要繞圈子現在航空局的回覆有沒有問題
transcript.whisperx[719].start 19657.659
transcript.whisperx[719].end 19677.067
transcript.whisperx[719].text 因為這個部分在法院他也有一些的看法實務上面到最高法院跟監察院所以現在現在看得到的法令就是這些問題這些勞動契約他就很明確講啊傳言法就沒有定定明確定定定期或不定期啊他說
transcript.whisperx[720].start 19678.047
transcript.whisperx[720].end 19695.707
transcript.whisperx[720].text 在明於中華民國哪一部法律?他說就是勞基法第9條啊主管機關中央就是勞動部地方就是縣市政府剛剛勞保局也講然後現在韓港局也回復這樣也就是說其實這個回復都是一致的嘛所以是沒有問題嘛而且是公文回復喔不是私底下聊天喔
transcript.whisperx[721].start 19696.668
transcript.whisperx[721].end 19698.131
transcript.whisperx[721].text 我接下來請一下我們何部長
transcript.whisperx[722].start 19713.917
transcript.whisperx[722].end 19728.256
transcript.whisperx[722].text 市長,因為針對上次質詢過後我們有一些疑義啦齁那我後來也請相關單位也來了解一下那這是上次我們質詢的影片齁我們先放一下看你上次的回覆是怎麼回覆本席的
transcript.whisperx[723].start 19730.686
transcript.whisperx[723].end 19755.966
transcript.whisperx[723].text 他們是定期企業或不定期企業不是勞動部界定的他不是有勞基法主管的範圍啦勞動企業是船員法這個特別法區認定的他的主管機關認定的不是我所以船員法不是對船員法是交通部航港局主管的他的勞僱關係的界定必須從船員法去處理
transcript.whisperx[724].start 19757.322
transcript.whisperx[724].end 19780.383
transcript.whisperx[724].text 部長因為我那時候想說部長很專業啦所以我很相信可是後來我還是要下去查證可是我發現你看剛剛勞保局跟航港局的回覆你勞動關係事業講目前航港局這回覆是沒有問題的那照這樣來講好像我們部長的回覆跟我們航港局的回覆還有勞保局的回覆基本上好像是不太一致欸
transcript.whisperx[725].start 19781.292
transcript.whisperx[725].end 19783.795
transcript.whisperx[725].text 我上次是有問題喔我上次是有問題
transcript.whisperx[726].start 19798.652
transcript.whisperx[726].end 19812.779
transcript.whisperx[726].text 或是法院去認定我上次有特別問你他的僱傭關係的契約性質定期跟不定期是由誰來界定你說不是勞動部界定然後你還跟我講說這是傳言法界定
transcript.whisperx[727].start 19815.02
transcript.whisperx[727].end 19837.819
transcript.whisperx[727].text 那是韓港局說謊嗎我跟您報告交通部現在正在擬定不定期契約範本傳言法裡面的不定期契約範本傳言法裡面有定期契約目前現行是定期契約他目前沒有不定期契約範本他現在正在研擬
transcript.whisperx[728].start 19838.359
transcript.whisperx[728].end 19858.146
transcript.whisperx[728].text 那個部長剛剛我就講齁,韓港局回覆喔,他沒有定義喔委員,這個影片跟剛剛我們問的,我相信大家都看得非常非常的清楚,你直接就回覆,我問你
transcript.whisperx[729].start 19859.306
transcript.whisperx[729].end 19866.794
transcript.whisperx[729].text 我問你擁固關係的契約性質定期跟不定期到底是怎麼界定你從頭到尾都說跟勞動部沒有關係你說這是傳言法你還跟我講傳言法是特別法那韓港局也直接講
transcript.whisperx[730].start 19876.224
transcript.whisperx[730].end 19892.487
transcript.whisperx[730].text 這個傳言法從頭到尾他就不定義定期契約跟不定期契約而且他還直接講這個在勞基法第9條就連有講這個所有的勞動契約主管機關中央為勞動部地方為縣市政府我不知道部長你現在在爭什麼
transcript.whisperx[731].start 19893.168
transcript.whisperx[731].end 19901.432
transcript.whisperx[731].text 事由委員我唸傳言法第12條給您聽。僱傭人、僱傭傳言應簽訂書面僱傭契約,送請行政主管機關備查後,受僱傳言使得在傳上服務。僱傭契約終止時一統。第13條僱傭人、僱傭傳言、僱傭契約範本由行政主管機關定之。
transcript.whisperx[732].start 19914.981
transcript.whisperx[732].end 19927.881
transcript.whisperx[732].text 對這個僱傭的關係他裡面定期或不定期都是傳言法去界定的目前傳言法這個我告訴你他們怎麼跟假設今天這是中綱運通
transcript.whisperx[733].start 19928.962
transcript.whisperx[733].end 19929.002
transcript.whisperx[733].text 議員吳春城
transcript.whisperx[734].start 19954.723
transcript.whisperx[734].end 19962.372
transcript.whisperx[734].text 該去處理的直接的是高雄市政府勞工局,如果沒有的話,他們現在有在民事法院訴訟中,而且已經達到最高法院去了。
transcript.whisperx[735].start 19969.36
transcript.whisperx[735].end 19994.053
transcript.whisperx[735].text ⋯⋯⋯
transcript.whisperx[736].start 19994.995
transcript.whisperx[736].end 20013.62
transcript.whisperx[736].text 這個法律 這個牢記法已經寫得很清楚了 所以 韓港局的回覆 所以我就說 那很簡單啊 不然就是韓港局說謊 不然就是部長說謊 這麼簡單我們沒有誰說謊啦 我們都講的是事實 因為牢記法是普通法你們講的就不一致啊 大家都沒說謊 還是立委說謊
transcript.whisperx[737].start 20017.001
transcript.whisperx[737].end 20018.042
transcript.whisperx[737].text 老饑法是普通法
transcript.whisperx[738].start 20045.714
transcript.whisperx[738].end 20048.197
transcript.whisperx[738].text 護士長,勞基法是特別法還是普通法?傳言法是特別法,勞基法是什麼法?
transcript.whisperx[739].start 20061.073
transcript.whisperx[739].end 20084.455
transcript.whisperx[739].text 我們勞動基準法是適用雇用關係的普通法只要我們勞基法第一條條規定所以你講勞基法不是特別法嘛對不對是傳援法是特別法傳援法是特別法勞基法不是特別法那重點我們這個後法本來就是優於前法當然是你勞基法比傳援法大啊那今天它發生爭議的時候你怎麼全部推
transcript.whisperx[740].start 20084.955
transcript.whisperx[740].end 20109.297
transcript.whisperx[740].text 推光光然後勞基法第1條就明文規定如果有特別法的話要依特別法這是勞基法第1條的明文規定好我希望吼我相信吶現在我們要一個明確的問題我說很簡單航港局的回覆剛剛我們也講得很清楚了那部長的回覆跟他的回覆根本就是完全相反的所以我希望
transcript.whisperx[741].start 20110.218
transcript.whisperx[741].end 20124.879
transcript.whisperx[741].text 韓港局跟部長給我們一個明確的答案我不希望我們委員本席在這邊質詢的時候得到的答案部長給我們答案跟我們下去跟韓港局要的回覆是完全不一樣那我真的很想講我不知道為什麼
transcript.whisperx[742].start 20125.78
transcript.whisperx[742].end 20145.957
transcript.whisperx[742].text 我還聽到之前執政黨立委說我們勞動部有藐視國會的情形所以我希望這個事情能夠讓我們了解清楚而且我是認為這很明確啦部長你的答覆跟韓港局的回覆根本是天壤之別完全是相反然後你說是一致的我看不出哪裡一致完全都是不一樣的
transcript.whisperx[743].start 20149.144
transcript.whisperx[743].end 20161.992
transcript.whisperx[743].text 委員那個兩個部會本來我們在這部分的認知有差距問題我們得到的答案都是不一樣你怎麼協調那是以後的事現在你給我們的答覆就是不一樣的好謝謝謝謝
transcript.whisperx[744].start 20166.38
transcript.whisperx[744].end 20178.384
transcript.whisperx[744].text 告通和諧跟我們圖委員報告一下。那如果要提秒數國會是要提案的。不要簡單。好謝謝圖委員。那繼續我們請齋禹委員質詢。
transcript.whisperx[745].start 20200.501
transcript.whisperx[745].end 20211.326
transcript.whisperx[745].text 謝謝主席我們是不是有請我們勞動部部長以及我們這一個我看今天有我們經濟部經濟部我們次長部長這個針對我們今天在討論討論壯世代
transcript.whisperx[746].start 20230.87
transcript.whisperx[746].end 20244.95
transcript.whisperx[746].text 啊這個壯世代的定義齁因為我一天在聯..我..我有在聯署啦齁啊我想說他這個定義不明欸齁因為他的壯世代沒有我啊我不是壯世代啊部長啊你覺得我是不壯嗎
transcript.whisperx[747].start 20248.322
transcript.whisperx[747].end 20258.237
transcript.whisperx[747].text 我覺得這樣定義起來怪怪啦 因為要壯世代 我感覺啦 你也要加一條說 這個體重80公斤以上 應該都要納入壯世代
transcript.whisperx[748].start 20263.231
transcript.whisperx[748].end 20286.823
transcript.whisperx[748].text 你怎麼不贏所以我今天要來這裡就是說你說這壯世代我覺得今天真的有一點奇怪因為他我們在講這個壯世代的好你說就業也好還是壯世代要怎麼要讓他們可以發揮他們的強項這看起來就不是在衛房委員會
transcript.whisperx[749].start 20288.399
transcript.whisperx[749].end 20313.315
transcript.whisperx[749].text 可以處理這麼多議題啊 因為我看起來 這個比較像他這個和經濟比較有關係吧 次長你看看這個整部條文的本身你來看 這裏面只有那個第4條是跟那個產業發展有關 跟產業發展有關 只有一條因為他這看起來是一個 這應該是稍微反映類似這個
transcript.whisperx[750].start 20318.107
transcript.whisperx[750].end 20331.302
transcript.whisperx[750].text 條文又有應用法作用法又有又看起來像基本法的概念如果它是叫做壯世代基本法大概就只是比較一些原則的東西嘛但是它內容又有一些作用法的精神
transcript.whisperx[751].start 20332.862
transcript.whisperx[751].end 20358.844
transcript.whisperx[751].text 這太有趣了所以我在說剛剛在講那個特別法普通法我也覺得蠻有趣的這個中央法規標準法第16條就有規定特別法優於普通法至於這個剛剛我們國民黨委員在講到底傳播法跟勞基法誰是特別法這個我想這個就讓您去做解釋但是特別法優於普通法這是基本的法理原則
transcript.whisperx[752].start 20359.605
transcript.whisperx[752].end 20389.105
transcript.whisperx[752].text 同樣的在今天我們在討論這一個條文的時候壯世代的這個他看起來就是這個條文涉及的機關很大當然我也在想像說我們提案的委員他覺得說要替這個55歲以上的讓他發揮他的更大的作用而且他是不是也有一點覺得說你以前都很多法律都把它定義叫做老年人口
transcript.whisperx[753].start 20390.545
transcript.whisperx[753].end 20410.973
transcript.whisperx[753].text 會不會有歧視的問題?我是覺得這要怎麼說呢?有時候要說歧視也可以說,要說不是歧視,老就是老。老無老以及人之老。人家說我胖,我也是要接受啊,就真的胖啊。
transcript.whisperx[754].start 20412.627
transcript.whisperx[754].end 20425.184
transcript.whisperx[754].text 所以這在名詞定義上,我很覺得說這個很有不過是一個新的概念啦,我們知道事實上很多人都在講到說人進入了一個
transcript.whisperx[755].start 20428.373
transcript.whisperx[755].end 20442.222
transcript.whisperx[755].text 呃借您退休可是又還沒有退休或者是真的退休後他要有新的一個人生的規劃看起來這個是比較符合這個壯世代的基本的一個想法啊我是覺得馬希呃
transcript.whisperx[756].start 20443.883
transcript.whisperx[756].end 20469.282
transcript.whisperx[756].text 大家都可以討論可是討論之前要先確定好我們主管的委員會那以今天我們是在衛環委員會我感覺起來衛環來聯審經濟這個感覺上跟他整部條文起來我覺得是有點導致了應該是要以經濟來做主審的主審或者是其他委員會我覺得這個第一個要判斷一下那第二個我想要跟
transcript.whisperx[757].start 20470.017
transcript.whisperx[757].end 20494.916
transcript.whisperx[757].text 就是就叫我們部長那以及次長就是說我們現在未來如果引進了包括橋外生包括我們如果移工那我們也知道現在移工是不能在工廠裡面不能住在工廠裡面不能住在工廠那未來如果有這些橋外生那以及這些移工他住宿的需求你們的規劃是怎樣
transcript.whisperx[758].start 20499.14
transcript.whisperx[758].end 20515.051
transcript.whisperx[758].text 我請我署長來回答一下好不好那是有辦法回答的回答現在移工僱主的一個法定責任就是要安排他的生活照顧管理這裡面像移工的話就是他要安排住宿那這個住宿一般就要經過地方的公安消防等等檢查要合格
transcript.whisperx[759].start 20515.391
transcript.whisperx[759].end 20533.082
transcript.whisperx[759].text 一共是由部主來的,那喬艾森呢?那喬艾森基本上因為大部分因為他在臺灣就學大部分都有自己的租屋或是學校安排所以這部分大概基本上是不會完全那就學結束後呢?對,就看喬艾森有時候他自行駐居那這部分就沒有什麼樣的一個
transcript.whisperx[760].start 20533.722
transcript.whisperx[760].end 20551.894
transcript.whisperx[760].text 如果喬外森找到了他的就業,他就是畢業後兩年的時間,就是他的求職期間,那求職期間可能他自己要去找他住的地方,那如果他找到工作後呢?找到工作後基本上
transcript.whisperx[761].start 20553.058
transcript.whisperx[761].end 20579.189
transcript.whisperx[761].text 有些其實他大部分還是自行安排 雇主沒有一定要安排這樣的一個住宿所以雇主就沒有這樣的義務了 所以說由喬外森自己來安排那所以可能未來 這個住的問題就會變成 喬外森每天要去發財所以就會延伸到了說 喬外森現在如果他們畢業之後 那就是不能打工嘛
transcript.whisperx[762].start 20580.365
transcript.whisperx[762].end 20597.559
transcript.whisperx[762].text 那我早上我聽那個國發會主委說這部分可能會修正讓他們畢業後可以繼續打工然後兩年後到他們求職期間讓他穩定一個他薪資的來源所以你們未來的方向都是這樣嗎好那第二個我再請教一下就是說我們現在這個中高齡的這個就業狀況
transcript.whisperx[763].start 20600.18
transcript.whisperx[763].end 20614.96
transcript.whisperx[763].text 呃目前我們臺灣的比例上仍然是比其他國家以日本來說啦吼我們臺灣的呃65歲以上的就業狀況跟日本比起來我們的%是比較低吼表示說我們中高齡的就業呃
transcript.whisperx[764].start 20616.682
transcript.whisperx[764].end 20620.524
transcript.whisperx[764].text 中高齡就業法通過以來,我們已經增加38萬的中高齡勞動力了。我們希望每年增加10萬以上。中高齡部分其實是67%的。
transcript.whisperx[765].start 20642.896
transcript.whisperx[765].end 20669.281
transcript.whisperx[765].text 對阿這個是高齡是9%高齡是65歲以上啦那不過委員其實日韓的高齡者為什麼這麼多那麼那麼的饒餐率這麼高跟他們的這一個下流老人狀況有關係因為他們早年年金改革砍太多所以他們現在普遍那個年金太低啦所以他沒有辦法生活
transcript.whisperx[766].start 20669.881
transcript.whisperx[766].end 20693.979
transcript.whisperx[766].text 只好被迫那是被迫就業被迫要去找工作他們是有這個狀況的蠻嚴重的所以你去日本韓國你會看到很多街上或是到處都是紮營的老人對這個應該可以再注意一下是是所以這個是有個被迫就業啦你也不能不考慮這種因素那這個也不是好的那台灣好的是說真的我們的嬰兒潮世代
transcript.whisperx[767].start 20697.301
transcript.whisperx[767].end 20716.587
transcript.whisperx[767].text 臺灣最有財富能力的一群人,其實基本上有累積一定程度的財富,然後基本上我們的老人其實財務狀況相對日韓老人最好的臺灣的55歲以上都是財力最好的,所以才會有像我們這一輩叫做啃老族,我們都要努力不要當啃老族
transcript.whisperx[768].start 20726.64
transcript.whisperx[768].end 20731.242
transcript.whisperx[768].text 好謝謝蔡委員謝謝部長次長繼續我們請羅廷偉委員質詢好謝謝主席有請我們勞動部部長也請我們衛福部呂次長請準備
transcript.whisperx[769].start 20745.609
transcript.whisperx[769].end 20770.319
transcript.whisperx[769].text 好,部長,何部長想跟您請問一下最近最新的一個新聞有關於這個交通運駕有這樣子的草案說明會最後消機會呢因為有喊卡那所以最後變成這個外送工會不斷的在這個網路媒體在喊話那對於這個交通運駕突如其來的喊卡作為一個勞動部部長幫外送員表態一下您怎麼說
transcript.whisperx[770].start 20771.292
transcript.whisperx[770].end 20793.682
transcript.whisperx[770].text 我完全支持這個運費通名化方案因為這是我們跟交通部一起合作的方案它其實有個好處就是說它同時可以兼顧這一個工作他們勞動上面的彈性然後又可以兼顧他的權益我想我們為什麼要去研究這個東西我們的初衷是什麼
transcript.whisperx[771].start 20794.002
transcript.whisperx[771].end 20817.544
transcript.whisperx[771].text 我們的初衷是希望揭開這個平台的幕後在訂定整個外送員在收費的過程他所收到的每一筆運送過程最後的薪資是應該公開透明的所謂的公開透明是希望讓他們了解他們到底是做了這一單收到的錢是不是合理的我們的初衷不是為了要讓消費者增加任何的費用
transcript.whisperx[772].start 20817.824
transcript.whisperx[772].end 20846.3
transcript.whisperx[772].text 沒錯沒錯所以是不是也幫助我們的外送員一起來喊話一下勞動部對對那是兩件事就是這個消費者這一頭的這個費用不應該被這個不應該被算透明化也有助於消費者釐清他的消費過程到底有哪些是幕後我們不知道的也可以節省到錢甚至也可以知道原來平台賺了這麼多對對對我們一起加油好嗎是是謝謝委員好那再來呂市長喔
transcript.whisperx[773].start 20847.601
transcript.whisperx[773].end 20870.694
transcript.whisperx[773].text 市長好市長好久不見市長昨天因為時間的關係我本來想問部長但是這個菸娟的問題今天我想拋出一些想法請市長帶回去給部長研議一下昨天我想談的是健康台灣的政策的裁員問題因為衛福部明年要撥50億元給癌症心藥基金這個政策大家不分朝野都一定全力支持但是你覺得50億夠嗎
transcript.whisperx[774].start 20874.039
transcript.whisperx[774].end 20879.542
transcript.whisperx[774].text 你覺得?沒關係你個人覺得可以再增加嗎?我們都會來極力爭取在財源分配的方面除了公務預算的撥款你是否認為還有其他的財源可以補充?我們要確保這個基金能夠穩定而且能夠持續性
transcript.whisperx[775].start 20895.25
transcript.whisperx[775].end 20899.492
transcript.whisperx[775].text 我提供一個資料啦大家探討一下根據臺灣癌症基金會對這一次這一屆的立委我們有針對癌症新藥基金的裁員看法調查結果前三名分別新藥新醫療科技研發的相關基金有75%
transcript.whisperx[776].start 20921.761
transcript.whisperx[776].end 20947.345
transcript.whisperx[776].text 那逐年編列購物預算支持70% 煙捐跟新興煙品捐有69%而要國家編列特別預算最低占29%所以那就表示說從既有財源撥補到癌症型藥基金幾乎是委員們認為最有效最可行的共識所以台灣老年化逐漸的成長不是高齡化社會是超高齡化社會的可能性是越來越高
transcript.whisperx[777].start 20948.206
transcript.whisperx[777].end 20963.059
transcript.whisperx[777].text 長期的照顧跟慢性疾病的一個防治我們一定會進一步擴大有這個需求澳洲11年連續調漲煙稅吸煙率也成功的下降到一成以下之前國建署有說過臺灣的煙捐和煙稅佔煙價的54%然而世界衛生組織建議煙捐煙稅應該佔煙價的75%
transcript.whisperx[778].start 20971.767
transcript.whisperx[778].end 20990.317
transcript.whisperx[778].text 所以我們再看看再根據我們煙害防治法第4條每兩年就要邀集學者專家來檢討煙捐的相關政策也因此我們是不是能夠考慮按部就班適度的調整這個煙捐、煙稅來做一個調整所以就既有的規定喔次長知不知道今年大約何時會召開煙捐審議的委員會
transcript.whisperx[779].start 20994.21
transcript.whisperx[779].end 21018.841
transcript.whisperx[779].text 報告委員因為這個是應該是國建署那邊 國建署不是我督導但是我沒有記錯應該是年底好沒關係因為今年就要召開我想我們是不是應該納入剛剛我所提到的這些不管是調查結果還有世界潮流他們所做的一個建議我們一起來把這個癌症信號基金能夠普遍的來穩定持續的成長讓大家國人能夠更加安定
transcript.whisperx[780].start 21019.221
transcript.whisperx[780].end 21027.325
transcript.whisperx[780].text 是的,我也非常佩服委員的這件事。我想只要對民眾有利,我們都會來積極研議。感謝委員。好,謝謝,我們一起加油。感謝委員,謝謝。謝謝羅委員,謝謝部長。賴會員委員,賴會員委員,賴會員委員不在。好,繼續我們請麥一貞委員辭去。
transcript.whisperx[781].start 21054.92
transcript.whisperx[781].end 21056.169
transcript.whisperx[781].text 謝謝主席 有請部長
transcript.whisperx[782].start 21062.455
transcript.whisperx[782].end 21086.466
transcript.whisperx[782].text 好部長好不管什麼法但是今天部長就是被大家叫上來站法的臺灣現在在面臨快速人口老化我們今天審查的壯世代政策與產業發展促進草案
transcript.whisperx[783].start 21088.807
transcript.whisperx[783].end 21093.829
transcript.whisperx[783].text 重點就是要來促進壯世代參與經濟並認識他們的潛力而不是僅僅將他們視為年齡的負擔解決年齡的歧視問題創造年齡友善的工作場所確保台灣的高齡化的被視為一種
transcript.whisperx[784].start 21111.798
transcript.whisperx[784].end 21125.895
transcript.whisperx[784].text 經濟的支援而不是挑戰所以剛才我們其他委員就說他已經簽了連署但是呢都不了解部長你認同這個法案嗎
transcript.whisperx[785].start 21127.402
transcript.whisperx[785].end 21140.653
transcript.whisperx[785].text 委員我剛剛有報告過就是說概念上我支持這一個壯世代就是反年齡歧視的這個概念啦這我覺得是是但是說裡面都有寫清楚嘛所以說這樣自己自己沒了概念頭啊大家連署都是念頭嘛不是這樣對大家都要了解才會去簽連署嘛所以這個部分我們部長也很清楚
transcript.whisperx[786].start 21153.763
transcript.whisperx[786].end 21168.319
transcript.whisperx[786].text ⋯⋯⋯
transcript.whisperx[787].start 21168.929
transcript.whisperx[787].end 21185.843
transcript.whisperx[787].text 現在就是很嚴重的高齡但是我想要請教一下我們60歲以上的人口占比例多少就是我們的高齡人口我們的60歲以上委員這個可不可以讓我再查一下
transcript.whisperx[788].start 21187.385
transcript.whisperx[788].end 21212.547
transcript.whisperx[788].text 所以你都不知道多少的話你怎麼說這個高齡這個說有沒有需要所以現在我們的長照還有日照有沒有說足夠我請教部長一下說你要不要準備基金準備經費來養你的父母那當然每個人都需要所以說你另外一半的父母你要不要去撫養
transcript.whisperx[789].start 21214.539
transcript.whisperx[789].end 21220.65
transcript.whisperx[789].text 嗯當然這個要看世代啦看世代齁但是以你啊你覺得說以你要不要養要不要撫養要不要照顧嗯
transcript.whisperx[790].start 21225.555
transcript.whisperx[790].end 21250.35
transcript.whisperx[790].text ⋯⋯⋯⋯
transcript.whisperx[791].start 21250.59
transcript.whisperx[791].end 21276.932
transcript.whisperx[791].text 你照顧你的父母你回答得很清楚但是照顧另外一半你就就是這樣子就是就是有這樣子的問題存在所以我們就是不管怎麼樣我們就是為了就是我們的高齡來去創造一些福利所以我們是現在目前我們的日照長照其他不足所以我們才要去我們的春城委員才要覺得壯世代
transcript.whisperx[792].start 21278.453
transcript.whisperx[792].end 21278.933
transcript.whisperx[792].text 大委員您這邊顯示的就是20%是吧?
transcript.whisperx[793].start 21300.84
transcript.whisperx[793].end 21319.872
transcript.whisperx[793].text 我顯示是因為我有去做功課嘛,你來別諮詢你沒有做功課嘛所以呢,所以我們現在就是說我們要如何去協助我們的這個法案是不是可以幫助有一群人他們可以在自己照顧自己的
transcript.whisperx[794].start 21320.852
transcript.whisperx[794].end 21338.599
transcript.whisperx[794].text 所以現在學校也少子化少子化的話是不是學校也可以做另外一個就是壯世代的法案裡面的長照或者日照對我們的高齡也有幫助對我們的家庭有幫助對學校有幫助對我們的長輩跟小孩的互動更有幫助所以是不是有沒有想到這樣子的一個方法還有就是因為時間有限我先講完
transcript.whisperx[795].start 21350.563
transcript.whisperx[795].end 21361.227
transcript.whisperx[795].text 我希望就是說後面你可以給我一個書面的讓我更了解我們才能去幫助更多人所以民間大家有一句話不知道部長是不是知道就是現在的一句話就是說
transcript.whisperx[796].start 21366.796
transcript.whisperx[796].end 21367.516
transcript.whisperx[796].text :審查委員:完整會議
transcript.whisperx[797].start 21389.065
transcript.whisperx[797].end 21408.462
transcript.whisperx[797].text 退休但是不休這樣子的讓我們的高齡才能在這個社會上貢獻我們覺得說家族一老就是如一寶這樣子才真正的對高齡的幫助因為我這邊的社團每一個月都是去仁愛之家幫老人家剪頭髮他們我們看到他們不是病死
transcript.whisperx[798].start 21412.005
transcript.whisperx[798].end 21432.005
transcript.whisperx[798].text 議員.
transcript.whisperx[799].start 21432.005
transcript.whisperx[799].end 21451.152
transcript.whisperx[799].text ⋯⋯⋯⋯
transcript.whisperx[800].start 21453.035
transcript.whisperx[800].end 21459.517
transcript.whisperx[800].text 林黛樺委員不在林佩祥委員不在張祺凱委員不在林益鈞委員不在顏寬恒委員不在
transcript.whisperx[801].start 21478.206
transcript.whisperx[801].end 21482.729
transcript.whisperx[801].text 謝伊鳳委員邱志偉委員林靜憲委員張家俊委員高金素美委員
transcript.whisperx[802].start 21507.52
transcript.whisperx[802].end 21513.683
transcript.whisperx[802].text 賴先祥委員不在。林柱英委員不在。陳超明委員不在。接下來我們請陪夥的楊耀委員執行。
transcript.whisperx[803].start 21534.977
transcript.whisperx[803].end 21535.859
transcript.whisperx[803].text 謝謝各位。各位請一下何部長。
transcript.whisperx[804].start 21546.342
transcript.whisperx[804].end 21571.759
transcript.whisperx[804].text 部長好部長其實在台灣邁入超高齡社會的時候相關的勞動力的調整跟勞工的政策確實是必須要調整我們今天審查重世代的政策跟產業發展促進法的草案今天做詢答所以我有幾個問題問一下部長
transcript.whisperx[805].start 21575.621
transcript.whisperx[805].end 21585.228
transcript.whisperx[805].text 第一個就是呢假如按照就業人口來區分就今年的8月份的統計臺灣目前是未滿45歲的就業人數是成富成長的那45歲以上
transcript.whisperx[806].start 21594.521
transcript.whisperx[806].end 21618.435
transcript.whisperx[806].text 也就是大概接近壯世代接近我們現在壯世代的就業其實是呈現正常其中又以65歲以上的銀髮族的勞動力成長是最快速這個就顯現勞動力正朝著65歲以上做傾斜
transcript.whisperx[807].start 21619.54
transcript.whisperx[807].end 21632.908
transcript.whisperx[807].text 也代表臺灣的勞動力市場其實已經沒有人口紅利請教一下部長就在勞動力的老化短缺不可逆的情況我國的勞動政策會怎麼樣做調整
transcript.whisperx[808].start 21634.355
transcript.whisperx[808].end 21656.276
transcript.whisperx[808].text 是 所以委員一個當然中高齡的促進就業這是一個面向對那其次當然因應這樣的人口的不再人口紅利我先插一下話就是說中高齡的就業是我們的勞工政策的調整
transcript.whisperx[809].start 21657.517
transcript.whisperx[809].end 21675.811
transcript.whisperx[809].text ⋯⋯⋯⋯
transcript.whisperx[810].start 21676.658
transcript.whisperx[810].end 21704.56
transcript.whisperx[810].text 是,就是說當然我們這部分有帶努力啦因為台灣普遍早退啦有一個早退的文化那台灣當然在這樣子的就是說有跟鄰近國家比起來我們對年齡的歧視或者是對年齡的這樣子的社會文化也比較強比較嚴重,就是年齡歧視比較嚴重年齡歧視嚴重的原因是什麼
transcript.whisperx[811].start 21705.196
transcript.whisperx[811].end 21705.656
transcript.whisperx[811].text 那你們相對應的政策是什麼?
transcript.whisperx[812].start 21733.223
transcript.whisperx[812].end 21758.95
transcript.whisperx[812].text 是,所以這個年齡的歧視當然確實也是我們要去努力來克服的所以我們在中高齡法裡面也規定你歧視是要罰款的所以這是可以被處罰的啦這個我們在中高齡法是有明確定定的那當然謝謝委員不過部長我不覺得光是用處罰的方式可以消你職場
transcript.whisperx[813].start 21762.334
transcript.whisperx[813].end 21766.424
transcript.whisperx[813].text 勞動力市場的年齡歧視,我不覺得單純的處罰可以
transcript.whisperx[814].start 21769.631
transcript.whisperx[814].end 21793.243
transcript.whisperx[814].text 是我們還有用更積極的鼓勵措施啦也是有的譬如什麼像我們的行政獎勵措施對55plus對婦女再就業我們就是給雇主跟勞工都給補助給獎勵那其實是一個正面鼓勵的讓你去任用中高齡而且是不再把這個把這當成資產啦這是一個紅利啦對把它當成是一個你的
transcript.whisperx[815].start 21798.846
transcript.whisperx[815].end 21823.1
transcript.whisperx[815].text 這個職場上面的一個正面的因素來看我這邊的資料是55歲到剛剛部長講的55歲以上的受僱者收到年齡就業歧視的比例大概超過9%算很高確實蠻高的我也知道來東部大概每年都有
transcript.whisperx[816].start 21824.161
transcript.whisperx[816].end 21824.942
transcript.whisperx[816].text 我現在是問你檢討了沒有
transcript.whisperx[817].start 21851.97
transcript.whisperx[817].end 21869.661
transcript.whisperx[817].text 我們正在檢討我們正在檢討而且應該是這部分的要拿出對策啦好不好好謝謝委員最後一個問題可能部長也沒有辦法回答了不過我先
transcript.whisperx[818].start 21871.042
transcript.whisperx[818].end 21883.297
transcript.whisperx[818].text 先提出來其實根據審計部的報告其實有許多國家已經逐步在延長或者是沒有強制退休的年齡規定
transcript.whisperx[819].start 21887.128
transcript.whisperx[819].end 21901.677
transcript.whisperx[819].text 我不知道部裡面現在的有沒有相關的政策方向對,謝謝您今年就通過了拉基法第54條雙方合議可以延長退休合議完
transcript.whisperx[820].start 21903.138
transcript.whisperx[820].end 21926.216
transcript.whisperx[820].text 延長退休跟強制退休年齡是兩件事。當然。懂我的意思嗎?我現在問的是強制退休年齡。可是強制退休啊。不然這樣子,我幫你解一下。你們假如現在還沒有既定的政策方向,你就直接說沒有。
transcript.whisperx[821].start 21927.253
transcript.whisperx[821].end 21942.378
transcript.whisperx[821].text 那假如有的話你要說明再說明 懂我的意思嗎?因為我並不想太為難你 謝謝 強制退休也是一個重大的議題啦 這個知識體大 需要大家 這個東西
transcript.whisperx[822].start 21949.417
transcript.whisperx[822].end 21968.699
transcript.whisperx[822].text 我們現在先用合意退,我們先來落死牢計畫第54條這個修法為先啦。我知道啦,我知道啦,我就說你回答的跟我問的是兩件事情嘛。現在是65歲想要自治退休,然後可以合意研查吧。對。那我現在問的是你有沒有
transcript.whisperx[823].start 21969.902
transcript.whisperx[823].end 21994.985
transcript.whisperx[823].text 勞動部這邊有沒有政策方向對於強制退休年齡的延後有沒有目前沒有考慮目前沒有考慮那你就回答這樣子就可以了不過因為既然有那麼多國家都在對沿你我們縱使目前沒有相關的資料的收集跟討論
transcript.whisperx[824].start 21996.686
transcript.whisperx[824].end 22007.255
transcript.whisperx[824].text 我不是說必須要推出這樣子的政策可是總是必須要先做因應可以來研究對好好好這我們來做好謝謝委員謝謝部長謝謝主席謝謝楊委員葉延芝委員葉延芝委員葉延芝委員不在
transcript.whisperx[825].start 22023.939
transcript.whisperx[825].end 22040.539
transcript.whisperx[825].text 本日會議詢答全部結束委員盧憲一、張家俊、陳超敏、林玉京、邱毅穎、邱志偉、謝一鳳所提書面質詢列入紀錄刊登公報所以以下結議說明及詢答完畢
transcript.whisperx[826].start 22044.195
transcript.whisperx[826].end 22062.1
transcript.whisperx[826].text 委員執行為其答覆或請補充資料者相關機關於兩週內以書面答覆委員另要求期限者從其所定委員吳春城等42人擬具《壯世代政策與產業發展促進法草案》案令則其委員會辦公聽會及繼續審查
transcript.whisperx[827].start 22070.117
transcript.whisperx[827].end 22074.019
transcript.whisperx[827].text 本次會議到此結束,現在散會。謝謝大家。
IVOD_ID 16203
IVOD_URL https://ivod.ly.gov.tw/Play/Full/1M/16203
日期 2024-10-24
會議資料.會議代碼 聯席會議-11-2-26,19-1
會議資料.屆 11
會議資料.會期 2
會議資料.會次 1
會議資料.種類 聯席會議
會議資料.委員會代碼[0] 26
會議資料.委員會代碼[1] 19
會議資料.標題 第11屆第2會期社會福利及衛生環境、經濟委員會第1次聯席會議
影片種類 Full
開始時間 2024-10-24T08:31:47+08:00
結束時間 2024-10-24T14:40:00+08:00
支援功能[0] ai-transcript