IVOD_ID |
161998 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/161998 |
日期 |
2025-05-28 |
會議資料.會議代碼 |
委員會-11-3-19-15 |
會議資料.會議代碼:str |
第11屆第3會期經濟委員會第15次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
15 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.標題 |
第11屆第3會期經濟委員會第15次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-05-28T11:27:25+08:00 |
結束時間 |
2025-05-28T11:35:37+08:00 |
影片長度 |
00:08:12 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/75aba70f567c6f2424c472fc75b1d6db1b5ee1b3bf308d2e87f2bf784d93fc30da25f9f11a3780b45ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
郭國文 |
委員發言時間 |
11:27:25 - 11:35:37 |
會議時間 |
2025-05-28T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期經濟委員會第15次全體委員會議(事由:審查:
一、本院委員謝衣鳯等16人擬具「農民退休儲金條例第七條條文修正草案」案。
二、本院委員郭國文等17人擬具「農民退休儲金條例第七條條文修正草案」案。(詢答)) |
transcript.pyannote[0].speaker |
SPEAKER_02 |
transcript.pyannote[0].start |
5.66721875 |
transcript.pyannote[0].end |
7.01721875 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
7.74284375 |
transcript.pyannote[1].end |
8.16471875 |
transcript.pyannote[2].speaker |
SPEAKER_02 |
transcript.pyannote[2].start |
8.16471875 |
transcript.pyannote[2].end |
8.18159375 |
transcript.pyannote[3].speaker |
SPEAKER_02 |
transcript.pyannote[3].start |
8.85659375 |
transcript.pyannote[3].end |
9.43034375 |
transcript.pyannote[4].speaker |
SPEAKER_02 |
transcript.pyannote[4].start |
13.95284375 |
transcript.pyannote[4].end |
14.54346875 |
transcript.pyannote[5].speaker |
SPEAKER_02 |
transcript.pyannote[5].start |
14.79659375 |
transcript.pyannote[5].end |
27.65534375 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
21.52971875 |
transcript.pyannote[6].end |
21.96846875 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
21.96846875 |
transcript.pyannote[7].end |
22.18784375 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
26.65971875 |
transcript.pyannote[8].end |
27.01409375 |
transcript.pyannote[9].speaker |
SPEAKER_02 |
transcript.pyannote[9].start |
27.95909375 |
transcript.pyannote[9].end |
41.93159375 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
29.66346875 |
transcript.pyannote[10].end |
29.96721875 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
31.36784375 |
transcript.pyannote[11].end |
31.46909375 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
42.13409375 |
transcript.pyannote[12].end |
44.14221875 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
44.14221875 |
transcript.pyannote[13].end |
61.08471875 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
44.17596875 |
transcript.pyannote[14].end |
44.44596875 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
50.55471875 |
transcript.pyannote[15].end |
50.79096875 |
transcript.pyannote[16].speaker |
SPEAKER_02 |
transcript.pyannote[16].start |
56.84909375 |
transcript.pyannote[16].end |
57.13596875 |
transcript.pyannote[17].speaker |
SPEAKER_02 |
transcript.pyannote[17].start |
59.78534375 |
transcript.pyannote[17].end |
61.43909375 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
61.43909375 |
transcript.pyannote[18].end |
65.87721875 |
transcript.pyannote[19].speaker |
SPEAKER_02 |
transcript.pyannote[19].start |
65.37096875 |
transcript.pyannote[19].end |
65.86034375 |
transcript.pyannote[20].speaker |
SPEAKER_02 |
transcript.pyannote[20].start |
65.87721875 |
transcript.pyannote[20].end |
65.91096875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
65.91096875 |
transcript.pyannote[21].end |
69.42096875 |
transcript.pyannote[22].speaker |
SPEAKER_02 |
transcript.pyannote[22].start |
67.10909375 |
transcript.pyannote[22].end |
67.14284375 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
67.14284375 |
transcript.pyannote[23].end |
87.64596875 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
72.17159375 |
transcript.pyannote[24].end |
72.20534375 |
transcript.pyannote[25].speaker |
SPEAKER_02 |
transcript.pyannote[25].start |
72.20534375 |
transcript.pyannote[25].end |
72.54284375 |
transcript.pyannote[26].speaker |
SPEAKER_02 |
transcript.pyannote[26].start |
82.85346875 |
transcript.pyannote[26].end |
88.15221875 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
88.15221875 |
transcript.pyannote[27].end |
88.16909375 |
transcript.pyannote[28].speaker |
SPEAKER_02 |
transcript.pyannote[28].start |
88.16909375 |
transcript.pyannote[28].end |
90.39659375 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
88.23659375 |
transcript.pyannote[29].end |
91.35846875 |
transcript.pyannote[30].speaker |
SPEAKER_02 |
transcript.pyannote[30].start |
90.54846875 |
transcript.pyannote[30].end |
90.71721875 |
transcript.pyannote[31].speaker |
SPEAKER_02 |
transcript.pyannote[31].start |
91.13909375 |
transcript.pyannote[31].end |
127.38659375 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
93.45096875 |
transcript.pyannote[32].end |
93.85596875 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
119.55659375 |
transcript.pyannote[33].end |
119.89409375 |
transcript.pyannote[34].speaker |
SPEAKER_02 |
transcript.pyannote[34].start |
127.63971875 |
transcript.pyannote[34].end |
153.34034375 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
135.67221875 |
transcript.pyannote[35].end |
135.94221875 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
135.94221875 |
transcript.pyannote[36].end |
135.95909375 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
138.57471875 |
transcript.pyannote[37].end |
139.16534375 |
transcript.pyannote[38].speaker |
SPEAKER_02 |
transcript.pyannote[38].start |
153.35721875 |
transcript.pyannote[38].end |
154.74096875 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
153.40784375 |
transcript.pyannote[39].end |
153.42471875 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
153.55971875 |
transcript.pyannote[40].end |
153.74534375 |
transcript.pyannote[41].speaker |
SPEAKER_02 |
transcript.pyannote[41].start |
155.44971875 |
transcript.pyannote[41].end |
156.02346875 |
transcript.pyannote[42].speaker |
SPEAKER_02 |
transcript.pyannote[42].start |
156.56346875 |
transcript.pyannote[42].end |
157.93034375 |
transcript.pyannote[43].speaker |
SPEAKER_02 |
transcript.pyannote[43].start |
158.13284375 |
transcript.pyannote[43].end |
160.27596875 |
transcript.pyannote[44].speaker |
SPEAKER_02 |
transcript.pyannote[44].start |
160.63034375 |
transcript.pyannote[44].end |
163.66784375 |
transcript.pyannote[45].speaker |
SPEAKER_02 |
transcript.pyannote[45].start |
164.12346875 |
transcript.pyannote[45].end |
174.73784375 |
transcript.pyannote[46].speaker |
SPEAKER_02 |
transcript.pyannote[46].start |
175.34534375 |
transcript.pyannote[46].end |
181.85909375 |
transcript.pyannote[47].speaker |
SPEAKER_02 |
transcript.pyannote[47].start |
182.21346875 |
transcript.pyannote[47].end |
185.21721875 |
transcript.pyannote[48].speaker |
SPEAKER_02 |
transcript.pyannote[48].start |
185.47034375 |
transcript.pyannote[48].end |
198.83534375 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
188.54159375 |
transcript.pyannote[49].end |
189.31784375 |
transcript.pyannote[50].speaker |
SPEAKER_02 |
transcript.pyannote[50].start |
198.88596875 |
transcript.pyannote[50].end |
209.04471875 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
208.67346875 |
transcript.pyannote[51].end |
210.59721875 |
transcript.pyannote[52].speaker |
SPEAKER_02 |
transcript.pyannote[52].start |
210.09096875 |
transcript.pyannote[52].end |
224.29971875 |
transcript.pyannote[53].speaker |
SPEAKER_02 |
transcript.pyannote[53].start |
224.35034375 |
transcript.pyannote[53].end |
236.88846875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
237.00659375 |
transcript.pyannote[54].end |
237.42846875 |
transcript.pyannote[55].speaker |
SPEAKER_02 |
transcript.pyannote[55].start |
237.90096875 |
transcript.pyannote[55].end |
238.03596875 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
238.03596875 |
transcript.pyannote[56].end |
239.85846875 |
transcript.pyannote[57].speaker |
SPEAKER_02 |
transcript.pyannote[57].start |
240.09471875 |
transcript.pyannote[57].end |
240.41534375 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
240.17909375 |
transcript.pyannote[58].end |
244.51596875 |
transcript.pyannote[59].speaker |
SPEAKER_02 |
transcript.pyannote[59].start |
244.51596875 |
transcript.pyannote[59].end |
244.71846875 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
244.71846875 |
transcript.pyannote[60].end |
247.67159375 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
248.31284375 |
transcript.pyannote[61].end |
272.79846875 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
251.16471875 |
transcript.pyannote[62].end |
251.31659375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
251.62034375 |
transcript.pyannote[63].end |
251.67096875 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
260.93534375 |
transcript.pyannote[64].end |
261.15471875 |
transcript.pyannote[65].speaker |
SPEAKER_02 |
transcript.pyannote[65].start |
271.87034375 |
transcript.pyannote[65].end |
289.23471875 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
281.47221875 |
transcript.pyannote[66].end |
282.28221875 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
283.41284375 |
transcript.pyannote[67].end |
283.86846875 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
288.27284375 |
transcript.pyannote[68].end |
301.53659375 |
transcript.pyannote[69].speaker |
SPEAKER_02 |
transcript.pyannote[69].start |
289.31909375 |
transcript.pyannote[69].end |
289.42034375 |
transcript.pyannote[70].speaker |
SPEAKER_02 |
transcript.pyannote[70].start |
291.90096875 |
transcript.pyannote[70].end |
292.33971875 |
transcript.pyannote[71].speaker |
SPEAKER_02 |
transcript.pyannote[71].start |
293.40284375 |
transcript.pyannote[71].end |
293.74034375 |
transcript.pyannote[72].speaker |
SPEAKER_02 |
transcript.pyannote[72].start |
300.27096875 |
transcript.pyannote[72].end |
300.43971875 |
transcript.pyannote[73].speaker |
SPEAKER_02 |
transcript.pyannote[73].start |
300.97971875 |
transcript.pyannote[73].end |
302.54909375 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
302.54909375 |
transcript.pyannote[74].end |
306.61596875 |
transcript.pyannote[75].speaker |
SPEAKER_02 |
transcript.pyannote[75].start |
302.61659375 |
transcript.pyannote[75].end |
305.97471875 |
transcript.pyannote[76].speaker |
SPEAKER_02 |
transcript.pyannote[76].start |
306.61596875 |
transcript.pyannote[76].end |
306.71721875 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
306.71721875 |
transcript.pyannote[77].end |
306.97034375 |
transcript.pyannote[78].speaker |
SPEAKER_02 |
transcript.pyannote[78].start |
306.97034375 |
transcript.pyannote[78].end |
307.84784375 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
307.22346875 |
transcript.pyannote[79].end |
328.94159375 |
transcript.pyannote[80].speaker |
SPEAKER_02 |
transcript.pyannote[80].start |
319.71096875 |
transcript.pyannote[80].end |
319.99784375 |
transcript.pyannote[81].speaker |
SPEAKER_02 |
transcript.pyannote[81].start |
322.27596875 |
transcript.pyannote[81].end |
324.04784375 |
transcript.pyannote[82].speaker |
SPEAKER_02 |
transcript.pyannote[82].start |
327.42284375 |
transcript.pyannote[82].end |
347.20034375 |
transcript.pyannote[83].speaker |
SPEAKER_02 |
transcript.pyannote[83].start |
347.52096875 |
transcript.pyannote[83].end |
350.06909375 |
transcript.pyannote[84].speaker |
SPEAKER_02 |
transcript.pyannote[84].start |
350.45721875 |
transcript.pyannote[84].end |
351.73971875 |
transcript.pyannote[85].speaker |
SPEAKER_02 |
transcript.pyannote[85].start |
352.02659375 |
transcript.pyannote[85].end |
378.65534375 |
transcript.pyannote[86].speaker |
SPEAKER_02 |
transcript.pyannote[86].start |
378.79034375 |
transcript.pyannote[86].end |
382.03034375 |
transcript.pyannote[87].speaker |
SPEAKER_02 |
transcript.pyannote[87].start |
382.53659375 |
transcript.pyannote[87].end |
402.82034375 |
transcript.pyannote[88].speaker |
SPEAKER_02 |
transcript.pyannote[88].start |
403.02284375 |
transcript.pyannote[88].end |
403.79909375 |
transcript.pyannote[89].speaker |
SPEAKER_02 |
transcript.pyannote[89].start |
404.28846875 |
transcript.pyannote[89].end |
406.87034375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
406.87034375 |
transcript.pyannote[90].end |
431.94659375 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
432.14909375 |
transcript.pyannote[91].end |
439.62471875 |
transcript.pyannote[92].speaker |
SPEAKER_02 |
transcript.pyannote[92].start |
438.34221875 |
transcript.pyannote[92].end |
439.35471875 |
transcript.pyannote[93].speaker |
SPEAKER_02 |
transcript.pyannote[93].start |
440.90721875 |
transcript.pyannote[93].end |
440.92409375 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
440.92409375 |
transcript.pyannote[94].end |
440.97471875 |
transcript.pyannote[95].speaker |
SPEAKER_02 |
transcript.pyannote[95].start |
440.97471875 |
transcript.pyannote[95].end |
441.02534375 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
441.02534375 |
transcript.pyannote[96].end |
441.24471875 |
transcript.pyannote[97].speaker |
SPEAKER_02 |
transcript.pyannote[97].start |
441.24471875 |
transcript.pyannote[97].end |
441.26159375 |
transcript.pyannote[98].speaker |
SPEAKER_01 |
transcript.pyannote[98].start |
441.26159375 |
transcript.pyannote[98].end |
444.92346875 |
transcript.pyannote[99].speaker |
SPEAKER_02 |
transcript.pyannote[99].start |
441.34596875 |
transcript.pyannote[99].end |
442.96596875 |
transcript.pyannote[100].speaker |
SPEAKER_02 |
transcript.pyannote[100].start |
443.13471875 |
transcript.pyannote[100].end |
444.34971875 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
445.17659375 |
transcript.pyannote[101].end |
448.93971875 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
449.17596875 |
transcript.pyannote[102].end |
450.37409375 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
450.82971875 |
transcript.pyannote[103].end |
451.70721875 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
452.46659375 |
transcript.pyannote[104].end |
453.98534375 |
transcript.pyannote[105].speaker |
SPEAKER_01 |
transcript.pyannote[105].start |
454.13721875 |
transcript.pyannote[105].end |
458.11971875 |
transcript.pyannote[106].speaker |
SPEAKER_02 |
transcript.pyannote[106].start |
456.98909375 |
transcript.pyannote[106].end |
478.96034375 |
transcript.pyannote[107].speaker |
SPEAKER_01 |
transcript.pyannote[107].start |
458.17034375 |
transcript.pyannote[107].end |
458.50784375 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
458.71034375 |
transcript.pyannote[108].end |
458.79471875 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
459.72284375 |
transcript.pyannote[109].end |
459.92534375 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
460.19534375 |
transcript.pyannote[110].end |
460.36409375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
465.76409375 |
transcript.pyannote[111].end |
468.04221875 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
468.88596875 |
transcript.pyannote[112].end |
469.32471875 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
469.76346875 |
transcript.pyannote[113].end |
470.30346875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
471.77159375 |
transcript.pyannote[114].end |
472.02471875 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
472.02471875 |
transcript.pyannote[115].end |
472.63221875 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
472.63221875 |
transcript.pyannote[116].end |
472.66596875 |
transcript.pyannote[117].speaker |
SPEAKER_01 |
transcript.pyannote[117].start |
478.11659375 |
transcript.pyannote[117].end |
478.23471875 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
478.96034375 |
transcript.pyannote[118].end |
483.14534375 |
transcript.pyannote[119].speaker |
SPEAKER_02 |
transcript.pyannote[119].start |
481.32284375 |
transcript.pyannote[119].end |
484.66409375 |
transcript.pyannote[120].speaker |
SPEAKER_01 |
transcript.pyannote[120].start |
484.27596875 |
transcript.pyannote[120].end |
484.59659375 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
484.66409375 |
transcript.pyannote[121].end |
485.35596875 |
transcript.pyannote[122].speaker |
SPEAKER_02 |
transcript.pyannote[122].start |
485.35596875 |
transcript.pyannote[122].end |
485.54159375 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
485.54159375 |
transcript.pyannote[123].end |
486.28409375 |
transcript.pyannote[124].speaker |
SPEAKER_02 |
transcript.pyannote[124].start |
486.28409375 |
transcript.pyannote[124].end |
486.30096875 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
487.31346875 |
transcript.pyannote[125].end |
488.22471875 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
488.89971875 |
transcript.pyannote[126].end |
491.97096875 |
transcript.whisperx[0].start |
5.901 |
transcript.whisperx[0].end |
7.968 |
transcript.whisperx[0].text |
主席有請陳主委陳部長陳部長 |
transcript.whisperx[1].start |
14.973 |
transcript.whisperx[1].end |
41.725 |
transcript.whisperx[1].text |
部長好 剛剛那個邱志偉委員在提到說我們駐日的單位當中已經增加了農業族那主要是針對這個台灣跟日本之間漁業往來的部分他說人家石斑一讓我們過去那里當我們一讓他什麼什麼過來其實有一個考量就是我們之前目前一直在討論的就是那個河豚的問題就我知道應該略有進展嘛那目前的進度怎麼樣有沒有可能今年開放 |
transcript.whisperx[2].start |
42.442 |
transcript.whisperx[2].end |
43.463 |
transcript.whisperx[2].text |
順利的話今年有沒有可能 |
transcript.whisperx[3].start |
62.138 |
transcript.whisperx[3].end |
85.448 |
transcript.whisperx[3].text |
這個部分要請教食藥署我們這邊沒有辦法幫食藥署做這也要關心一下關於這個部分我跟委員講河豚的部分其實我認為它只要是安全的就應該可以進來當然是安全那相對的就是說我們在雙邊在談的時候也希望說我們開了河豚以後也希望說它能夠更積極的有一些我們有在面對外銷的這個部分我們就側面了解應該今年底是有機會啦是有力啦好不好我知道這個我了解 |
transcript.whisperx[4].start |
91.671 |
transcript.whisperx[4].end |
114.796 |
transcript.whisperx[4].text |
這樣也可以化解剛剛邱委員的疑慮那另外回到今天的主題我其實非常感謝我們經紀委會許許多多的同仁對於這一個本席的提案的予以贊同那我提案內容其實跟昭緯的內容是相似的那就內容的本身來說的話我必須提到這時候提這個案子的原因是因為我們歷經了四年我們覆蓋率其實都是在30%以下來進行排回 |
transcript.whisperx[5].start |
117.117 |
transcript.whisperx[5].end |
137.652 |
transcript.whisperx[5].text |
那就制度已經到了一個天花板一個瓶頸的情況之下我們應該思考如果把這個覆蓋率能夠打開所以本期的體驗用意是在這邊也因此希望說農民在繳納這個以基本工資來計算的話繳納2859的時候相對政府提撥能不能提到1.5倍剛剛提到預算不過是增加15.5億而已 |
transcript.whisperx[6].start |
140.034 |
transcript.whisperx[6].end |
154.523 |
transcript.whisperx[6].text |
那這個強化這個安全跟韌性的部分這個是重要你看到覆蓋率的部分覆蓋率是總人口數的總投保人數的部分也不過是28.7另外一個數字從青龍的部分本來我們是照顧未來的青龍希望從業人口增加 |
transcript.whisperx[7].start |
155.484 |
transcript.whisperx[7].end |
174.624 |
transcript.whisperx[7].text |
更低耶只有25%耶老實講我也是很訝異啦所以訝異的情況底下當然我們提出來的時候那個貴部有提出一些回應你說其實換算於勞保的時候到時候幾副金額是相差無幾從社會保險的角度來看是這樣子可是我要跟那個主委說明喔 |
transcript.whisperx[8].start |
175.445 |
transcript.whisperx[8].end |
195.183 |
transcript.whisperx[8].text |
就這個部分裡頭我們在這個投保年資的部分有將近9成都是在一個基本上都不可能用投保30年來計算的它可能中間在進來對中間進來或年齡其實根本不到嘛所以你用30的做一個計算跟比對其實就有它的問題點的存在 |
transcript.whisperx[9].start |
196.904 |
transcript.whisperx[9].end |
223.421 |
transcript.whisperx[9].text |
最高金額夯不啷噹也不過是一萬塊錢而已一萬塊錢而已一點然後你去看那個金額喔所有來投保有一個現象我只要投保了我就繳納10%有沒有都是最高的唯一對最高的對不對這個高達這個九成以上那也就是說經濟誘因是最關鍵的嘛經濟誘因最關鍵當中不外乎是兩種嘛一種就是我付出的比較少我拿到比較多嘛 |
transcript.whisperx[10].start |
224.562 |
transcript.whisperx[10].end |
236.656 |
transcript.whisperx[10].text |
這是最關鍵的啊所以說是不是制度上有可能朝向這種方向來進行本席的提案其實也不過是我繳納的金額跟政府提撥的金額的倍數比能夠增加 |
transcript.whisperx[11].start |
237.947 |
transcript.whisperx[11].end |
249.083 |
transcript.whisperx[11].text |
那這個方向有沒有可能部長我想第一個我絕對沒有否定說委員的提案不好我說委員的提案就是我用100塊農民繳100塊我們繳150我們提報150嘛對對這個最後整體的退休會比較多一點這是一個方案 |
transcript.whisperx[12].start |
255.091 |
transcript.whisperx[12].end |
276.86 |
transcript.whisperx[12].text |
那另外我們有想到就是如果同樣是一百的話他只要繳八十類似八十我們繳一百二那這樣的話也是減輕農民的負擔嘛這也是啊也許兩個案可以同時設計不一定說一定不是委員的版本就是我們的版本財政部長你這種說法是有創意的啦其實基本上你只要把那個 |
transcript.whisperx[13].start |
278.862 |
transcript.whisperx[13].end |
294.703 |
transcript.whisperx[13].text |
那個這個繳納方跟提撥方的這個比例來做調整往多的方式上來做調整基本上我是覺得這一個覆蓋率的提升的可能性會就會增加是 所以我們會會去再更精準的試算而且我們也安排了跟院長做報告那你大概什麼時候會送院 |
transcript.whisperx[14].start |
295.643 |
transcript.whisperx[14].end |
324.343 |
transcript.whisperx[14].text |
我想齁我們送院之前我們現在已經安排跟院長做專案報告對那就是你是說下禮拜嗎最近最近喔最近喔我私下的報告然後院會大概預計什麼時候會送然後跟他報告如果說出門上如果說院長同意這個方向的話我們就會把完整的方案報院報院大概什麼時候啊這個下個六月可不可以不是這個就是看院長聽取了以後的一個決定院長如果沒有意見應該六月就可以到行政院會了嗎報了以後就會 |
transcript.whisperx[15].start |
325.243 |
transcript.whisperx[15].end |
339.746 |
transcript.whisperx[15].text |
各個單位然後下個會議就會送進來我希望六月啦好不好以六月為目標啦最後一個問題要問您的這我之前一直關心台南的牛肉湯的問題它受到飼養成本增加你看到那個近五年的肉牛的飼養的場數從778場降為628場那飼養的這個數量從34000變成30000 |
transcript.whisperx[16].start |
347.868 |
transcript.whisperx[16].end |
371.568 |
transcript.whisperx[16].text |
變成三萬喔那這減少就是這主要原因當然是這一個關稅的問題吧紐西蘭部分還有未來美國如果牛乳開放的話同樣會遭到這種排擠那我們換算了一下呢現在的乳牛的這個飼養量有一部分的肉源是來自於乳牛淘汰的乳牛四千淘汰四千兩百頭去年啊今年預計只剩下三千七啊 |
transcript.whisperx[17].start |
372.248 |
transcript.whisperx[17].end |
400.602 |
transcript.whisperx[17].text |
也就是說肉牛整體的部分減少然後淘汰跟著減少那未來可能還會再減少但是對肉的需求卻不斷的增加卻不斷的增加那以至於現在的這個成本價已經逐漸攀升從150已經變成190畢竟200大關那這種庶民美食如果一旦變成一個鄉親美食的話都會影響到整個城市的發展跟那個遊客的來 |
transcript.whisperx[18].start |
402.083 |
transcript.whisperx[18].end |
431.483 |
transcript.whisperx[18].text |
萊克素啊部長我已經問了第三次了啦有沒有什麼好方法我跟委員做一個報告以現在的雖然說我們去年有一些淘汰寡產牛可是現在每一個月的進到屠宰場的數量是還算穩定啦還算穩定但是長久來看的話我們希望把乳牛的量控制在大概12萬頭左右然後整個的牛奶是控制在43萬噸左右在這個目標之下 |
transcript.whisperx[19].start |
432.244 |
transcript.whisperx[19].end |
450.944 |
transcript.whisperx[19].text |
牛的部分可能降到某個程度不會再往下降所以我們希望說在這個部分問題是一直在降現在是現實上相關的數字都在降價格一直在攀升但是屠宰場每一天屠宰的量並沒有太多的變化 |
transcript.whisperx[20].start |
452.529 |
transcript.whisperx[20].end |
478.808 |
transcript.whisperx[20].text |
所以這個部分我們也會跟消費地做溝通你把最近你的調查報告給本席一份給本席一份好不好那你的趨勢發展也看一下 那整個牛肉的價格也不斷攀升 請你注意一下市場中端市場的價格已經往上攀升了啦從以前100變120 150都有了事實上我就在做一般的市場了不用其實特意做民調 平常我們就生活在那個城市當中 我們大家也很清楚啊 |
transcript.whisperx[21].start |
479.469 |
transcript.whisperx[21].end |
486.122 |
transcript.whisperx[21].text |
價格是上升但是投採量是穩定的部長早時間下來吃牛肉湯了我請你啦你就知道了啦好不好好 謝謝好 謝謝我們現在請陳廷飛委員做詢問 |