iVOD / 161998

Field Value
IVOD_ID 161998
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/161998
日期 2025-05-28
會議資料.會議代碼 委員會-11-3-19-15
會議資料.會議代碼:str 第11屆第3會期經濟委員會第15次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 15
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第15次全體委員會議
影片種類 Clip
開始時間 2025-05-28T11:27:25+08:00
結束時間 2025-05-28T11:35:37+08:00
影片長度 00:08:12
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/75aba70f567c6f2424c472fc75b1d6db1b5ee1b3bf308d2e87f2bf784d93fc30da25f9f11a3780b45ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 郭國文
委員發言時間 11:27:25 - 11:35:37
會議時間 2025-05-28T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第15次全體委員會議(事由:審查: 一、本院委員謝衣鳯等16人擬具「農民退休儲金條例第七條條文修正草案」案。 二、本院委員郭國文等17人擬具「農民退休儲金條例第七條條文修正草案」案。(詢答))
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 5.66721875
transcript.pyannote[0].end 7.01721875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 7.74284375
transcript.pyannote[1].end 8.16471875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 8.16471875
transcript.pyannote[2].end 8.18159375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 8.85659375
transcript.pyannote[3].end 9.43034375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 13.95284375
transcript.pyannote[4].end 14.54346875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 14.79659375
transcript.pyannote[5].end 27.65534375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 21.52971875
transcript.pyannote[6].end 21.96846875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 21.96846875
transcript.pyannote[7].end 22.18784375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 26.65971875
transcript.pyannote[8].end 27.01409375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 27.95909375
transcript.pyannote[9].end 41.93159375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 29.66346875
transcript.pyannote[10].end 29.96721875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 31.36784375
transcript.pyannote[11].end 31.46909375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 42.13409375
transcript.pyannote[12].end 44.14221875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 44.14221875
transcript.pyannote[13].end 61.08471875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 44.17596875
transcript.pyannote[14].end 44.44596875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 50.55471875
transcript.pyannote[15].end 50.79096875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 56.84909375
transcript.pyannote[16].end 57.13596875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 59.78534375
transcript.pyannote[17].end 61.43909375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 61.43909375
transcript.pyannote[18].end 65.87721875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 65.37096875
transcript.pyannote[19].end 65.86034375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 65.87721875
transcript.pyannote[20].end 65.91096875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 65.91096875
transcript.pyannote[21].end 69.42096875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 67.10909375
transcript.pyannote[22].end 67.14284375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 67.14284375
transcript.pyannote[23].end 87.64596875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 72.17159375
transcript.pyannote[24].end 72.20534375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 72.20534375
transcript.pyannote[25].end 72.54284375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 82.85346875
transcript.pyannote[26].end 88.15221875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 88.15221875
transcript.pyannote[27].end 88.16909375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 88.16909375
transcript.pyannote[28].end 90.39659375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 88.23659375
transcript.pyannote[29].end 91.35846875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 90.54846875
transcript.pyannote[30].end 90.71721875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 91.13909375
transcript.pyannote[31].end 127.38659375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 93.45096875
transcript.pyannote[32].end 93.85596875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 119.55659375
transcript.pyannote[33].end 119.89409375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 127.63971875
transcript.pyannote[34].end 153.34034375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 135.67221875
transcript.pyannote[35].end 135.94221875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 135.94221875
transcript.pyannote[36].end 135.95909375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 138.57471875
transcript.pyannote[37].end 139.16534375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 153.35721875
transcript.pyannote[38].end 154.74096875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 153.40784375
transcript.pyannote[39].end 153.42471875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 153.55971875
transcript.pyannote[40].end 153.74534375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 155.44971875
transcript.pyannote[41].end 156.02346875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 156.56346875
transcript.pyannote[42].end 157.93034375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 158.13284375
transcript.pyannote[43].end 160.27596875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 160.63034375
transcript.pyannote[44].end 163.66784375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 164.12346875
transcript.pyannote[45].end 174.73784375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 175.34534375
transcript.pyannote[46].end 181.85909375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 182.21346875
transcript.pyannote[47].end 185.21721875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 185.47034375
transcript.pyannote[48].end 198.83534375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 188.54159375
transcript.pyannote[49].end 189.31784375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 198.88596875
transcript.pyannote[50].end 209.04471875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 208.67346875
transcript.pyannote[51].end 210.59721875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 210.09096875
transcript.pyannote[52].end 224.29971875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 224.35034375
transcript.pyannote[53].end 236.88846875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 237.00659375
transcript.pyannote[54].end 237.42846875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 237.90096875
transcript.pyannote[55].end 238.03596875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 238.03596875
transcript.pyannote[56].end 239.85846875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 240.09471875
transcript.pyannote[57].end 240.41534375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 240.17909375
transcript.pyannote[58].end 244.51596875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 244.51596875
transcript.pyannote[59].end 244.71846875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 244.71846875
transcript.pyannote[60].end 247.67159375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 248.31284375
transcript.pyannote[61].end 272.79846875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 251.16471875
transcript.pyannote[62].end 251.31659375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 251.62034375
transcript.pyannote[63].end 251.67096875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 260.93534375
transcript.pyannote[64].end 261.15471875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 271.87034375
transcript.pyannote[65].end 289.23471875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 281.47221875
transcript.pyannote[66].end 282.28221875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 283.41284375
transcript.pyannote[67].end 283.86846875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 288.27284375
transcript.pyannote[68].end 301.53659375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 289.31909375
transcript.pyannote[69].end 289.42034375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 291.90096875
transcript.pyannote[70].end 292.33971875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 293.40284375
transcript.pyannote[71].end 293.74034375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 300.27096875
transcript.pyannote[72].end 300.43971875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 300.97971875
transcript.pyannote[73].end 302.54909375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 302.54909375
transcript.pyannote[74].end 306.61596875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 302.61659375
transcript.pyannote[75].end 305.97471875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 306.61596875
transcript.pyannote[76].end 306.71721875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 306.71721875
transcript.pyannote[77].end 306.97034375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 306.97034375
transcript.pyannote[78].end 307.84784375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 307.22346875
transcript.pyannote[79].end 328.94159375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 319.71096875
transcript.pyannote[80].end 319.99784375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 322.27596875
transcript.pyannote[81].end 324.04784375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 327.42284375
transcript.pyannote[82].end 347.20034375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 347.52096875
transcript.pyannote[83].end 350.06909375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 350.45721875
transcript.pyannote[84].end 351.73971875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 352.02659375
transcript.pyannote[85].end 378.65534375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 378.79034375
transcript.pyannote[86].end 382.03034375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 382.53659375
transcript.pyannote[87].end 402.82034375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 403.02284375
transcript.pyannote[88].end 403.79909375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 404.28846875
transcript.pyannote[89].end 406.87034375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 406.87034375
transcript.pyannote[90].end 431.94659375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 432.14909375
transcript.pyannote[91].end 439.62471875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 438.34221875
transcript.pyannote[92].end 439.35471875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 440.90721875
transcript.pyannote[93].end 440.92409375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 440.92409375
transcript.pyannote[94].end 440.97471875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 440.97471875
transcript.pyannote[95].end 441.02534375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 441.02534375
transcript.pyannote[96].end 441.24471875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 441.24471875
transcript.pyannote[97].end 441.26159375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 441.26159375
transcript.pyannote[98].end 444.92346875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 441.34596875
transcript.pyannote[99].end 442.96596875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 443.13471875
transcript.pyannote[100].end 444.34971875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 445.17659375
transcript.pyannote[101].end 448.93971875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 449.17596875
transcript.pyannote[102].end 450.37409375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 450.82971875
transcript.pyannote[103].end 451.70721875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 452.46659375
transcript.pyannote[104].end 453.98534375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 454.13721875
transcript.pyannote[105].end 458.11971875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 456.98909375
transcript.pyannote[106].end 478.96034375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 458.17034375
transcript.pyannote[107].end 458.50784375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 458.71034375
transcript.pyannote[108].end 458.79471875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 459.72284375
transcript.pyannote[109].end 459.92534375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 460.19534375
transcript.pyannote[110].end 460.36409375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 465.76409375
transcript.pyannote[111].end 468.04221875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 468.88596875
transcript.pyannote[112].end 469.32471875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 469.76346875
transcript.pyannote[113].end 470.30346875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 471.77159375
transcript.pyannote[114].end 472.02471875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 472.02471875
transcript.pyannote[115].end 472.63221875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 472.63221875
transcript.pyannote[116].end 472.66596875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 478.11659375
transcript.pyannote[117].end 478.23471875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 478.96034375
transcript.pyannote[118].end 483.14534375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 481.32284375
transcript.pyannote[119].end 484.66409375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 484.27596875
transcript.pyannote[120].end 484.59659375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 484.66409375
transcript.pyannote[121].end 485.35596875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 485.35596875
transcript.pyannote[122].end 485.54159375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 485.54159375
transcript.pyannote[123].end 486.28409375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 486.28409375
transcript.pyannote[124].end 486.30096875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 487.31346875
transcript.pyannote[125].end 488.22471875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 488.89971875
transcript.pyannote[126].end 491.97096875
transcript.whisperx[0].start 5.901
transcript.whisperx[0].end 7.968
transcript.whisperx[0].text 主席有請陳主委陳部長陳部長
transcript.whisperx[1].start 14.973
transcript.whisperx[1].end 41.725
transcript.whisperx[1].text 部長好 剛剛那個邱志偉委員在提到說我們駐日的單位當中已經增加了農業族那主要是針對這個台灣跟日本之間漁業往來的部分他說人家石斑一讓我們過去那里當我們一讓他什麼什麼過來其實有一個考量就是我們之前目前一直在討論的就是那個河豚的問題就我知道應該略有進展嘛那目前的進度怎麼樣有沒有可能今年開放
transcript.whisperx[2].start 42.442
transcript.whisperx[2].end 43.463
transcript.whisperx[2].text 順利的話今年有沒有可能
transcript.whisperx[3].start 62.138
transcript.whisperx[3].end 85.448
transcript.whisperx[3].text 這個部分要請教食藥署我們這邊沒有辦法幫食藥署做這也要關心一下關於這個部分我跟委員講河豚的部分其實我認為它只要是安全的就應該可以進來當然是安全那相對的就是說我們在雙邊在談的時候也希望說我們開了河豚以後也希望說它能夠更積極的有一些我們有在面對外銷的這個部分我們就側面了解應該今年底是有機會啦是有力啦好不好我知道這個我了解
transcript.whisperx[4].start 91.671
transcript.whisperx[4].end 114.796
transcript.whisperx[4].text 這樣也可以化解剛剛邱委員的疑慮那另外回到今天的主題我其實非常感謝我們經紀委會許許多多的同仁對於這一個本席的提案的予以贊同那我提案內容其實跟昭緯的內容是相似的那就內容的本身來說的話我必須提到這時候提這個案子的原因是因為我們歷經了四年我們覆蓋率其實都是在30%以下來進行排回
transcript.whisperx[5].start 117.117
transcript.whisperx[5].end 137.652
transcript.whisperx[5].text 那就制度已經到了一個天花板一個瓶頸的情況之下我們應該思考如果把這個覆蓋率能夠打開所以本期的體驗用意是在這邊也因此希望說農民在繳納這個以基本工資來計算的話繳納2859的時候相對政府提撥能不能提到1.5倍剛剛提到預算不過是增加15.5億而已
transcript.whisperx[6].start 140.034
transcript.whisperx[6].end 154.523
transcript.whisperx[6].text 那這個強化這個安全跟韌性的部分這個是重要你看到覆蓋率的部分覆蓋率是總人口數的總投保人數的部分也不過是28.7另外一個數字從青龍的部分本來我們是照顧未來的青龍希望從業人口增加
transcript.whisperx[7].start 155.484
transcript.whisperx[7].end 174.624
transcript.whisperx[7].text 更低耶只有25%耶老實講我也是很訝異啦所以訝異的情況底下當然我們提出來的時候那個貴部有提出一些回應你說其實換算於勞保的時候到時候幾副金額是相差無幾從社會保險的角度來看是這樣子可是我要跟那個主委說明喔
transcript.whisperx[8].start 175.445
transcript.whisperx[8].end 195.183
transcript.whisperx[8].text 就這個部分裡頭我們在這個投保年資的部分有將近9成都是在一個基本上都不可能用投保30年來計算的它可能中間在進來對中間進來或年齡其實根本不到嘛所以你用30的做一個計算跟比對其實就有它的問題點的存在
transcript.whisperx[9].start 196.904
transcript.whisperx[9].end 223.421
transcript.whisperx[9].text 最高金額夯不啷噹也不過是一萬塊錢而已一萬塊錢而已一點然後你去看那個金額喔所有來投保有一個現象我只要投保了我就繳納10%有沒有都是最高的唯一對最高的對不對這個高達這個九成以上那也就是說經濟誘因是最關鍵的嘛經濟誘因最關鍵當中不外乎是兩種嘛一種就是我付出的比較少我拿到比較多嘛
transcript.whisperx[10].start 224.562
transcript.whisperx[10].end 236.656
transcript.whisperx[10].text 這是最關鍵的啊所以說是不是制度上有可能朝向這種方向來進行本席的提案其實也不過是我繳納的金額跟政府提撥的金額的倍數比能夠增加
transcript.whisperx[11].start 237.947
transcript.whisperx[11].end 249.083
transcript.whisperx[11].text 那這個方向有沒有可能部長我想第一個我絕對沒有否定說委員的提案不好我說委員的提案就是我用100塊農民繳100塊我們繳150我們提報150嘛對對這個最後整體的退休會比較多一點這是一個方案
transcript.whisperx[12].start 255.091
transcript.whisperx[12].end 276.86
transcript.whisperx[12].text 那另外我們有想到就是如果同樣是一百的話他只要繳八十類似八十我們繳一百二那這樣的話也是減輕農民的負擔嘛這也是啊也許兩個案可以同時設計不一定說一定不是委員的版本就是我們的版本財政部長你這種說法是有創意的啦其實基本上你只要把那個
transcript.whisperx[13].start 278.862
transcript.whisperx[13].end 294.703
transcript.whisperx[13].text 那個這個繳納方跟提撥方的這個比例來做調整往多的方式上來做調整基本上我是覺得這一個覆蓋率的提升的可能性會就會增加是 所以我們會會去再更精準的試算而且我們也安排了跟院長做報告那你大概什麼時候會送院
transcript.whisperx[14].start 295.643
transcript.whisperx[14].end 324.343
transcript.whisperx[14].text 我想齁我們送院之前我們現在已經安排跟院長做專案報告對那就是你是說下禮拜嗎最近最近喔最近喔我私下的報告然後院會大概預計什麼時候會送然後跟他報告如果說出門上如果說院長同意這個方向的話我們就會把完整的方案報院報院大概什麼時候啊這個下個六月可不可以不是這個就是看院長聽取了以後的一個決定院長如果沒有意見應該六月就可以到行政院會了嗎報了以後就會
transcript.whisperx[15].start 325.243
transcript.whisperx[15].end 339.746
transcript.whisperx[15].text 各個單位然後下個會議就會送進來我希望六月啦好不好以六月為目標啦最後一個問題要問您的這我之前一直關心台南的牛肉湯的問題它受到飼養成本增加你看到那個近五年的肉牛的飼養的場數從778場降為628場那飼養的這個數量從34000變成30000
transcript.whisperx[16].start 347.868
transcript.whisperx[16].end 371.568
transcript.whisperx[16].text 變成三萬喔那這減少就是這主要原因當然是這一個關稅的問題吧紐西蘭部分還有未來美國如果牛乳開放的話同樣會遭到這種排擠那我們換算了一下呢現在的乳牛的這個飼養量有一部分的肉源是來自於乳牛淘汰的乳牛四千淘汰四千兩百頭去年啊今年預計只剩下三千七啊
transcript.whisperx[17].start 372.248
transcript.whisperx[17].end 400.602
transcript.whisperx[17].text 也就是說肉牛整體的部分減少然後淘汰跟著減少那未來可能還會再減少但是對肉的需求卻不斷的增加卻不斷的增加那以至於現在的這個成本價已經逐漸攀升從150已經變成190畢竟200大關那這種庶民美食如果一旦變成一個鄉親美食的話都會影響到整個城市的發展跟那個遊客的來
transcript.whisperx[18].start 402.083
transcript.whisperx[18].end 431.483
transcript.whisperx[18].text 萊克素啊部長我已經問了第三次了啦有沒有什麼好方法我跟委員做一個報告以現在的雖然說我們去年有一些淘汰寡產牛可是現在每一個月的進到屠宰場的數量是還算穩定啦還算穩定但是長久來看的話我們希望把乳牛的量控制在大概12萬頭左右然後整個的牛奶是控制在43萬噸左右在這個目標之下
transcript.whisperx[19].start 432.244
transcript.whisperx[19].end 450.944
transcript.whisperx[19].text 牛的部分可能降到某個程度不會再往下降所以我們希望說在這個部分問題是一直在降現在是現實上相關的數字都在降價格一直在攀升但是屠宰場每一天屠宰的量並沒有太多的變化
transcript.whisperx[20].start 452.529
transcript.whisperx[20].end 478.808
transcript.whisperx[20].text 所以這個部分我們也會跟消費地做溝通你把最近你的調查報告給本席一份給本席一份好不好那你的趨勢發展也看一下 那整個牛肉的價格也不斷攀升 請你注意一下市場中端市場的價格已經往上攀升了啦從以前100變120 150都有了事實上我就在做一般的市場了不用其實特意做民調 平常我們就生活在那個城市當中 我們大家也很清楚啊
transcript.whisperx[21].start 479.469
transcript.whisperx[21].end 486.122
transcript.whisperx[21].text 價格是上升但是投採量是穩定的部長早時間下來吃牛肉湯了我請你啦你就知道了啦好不好好 謝謝好 謝謝我們現在請陳廷飛委員做詢問