IVOD_ID |
161987 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/161987 |
日期 |
2025-05-28 |
會議資料.會議代碼 |
委員會-11-3-19-15 |
會議資料.會議代碼:str |
第11屆第3會期經濟委員會第15次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
15 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.標題 |
第11屆第3會期經濟委員會第15次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-05-28T10:37:21+08:00 |
結束時間 |
2025-05-28T10:49:26+08:00 |
影片長度 |
00:12:05 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/75aba70f567c6f24bc2c94c5326e46861b5ee1b3bf308d2eb291a8f6a096732c53e0a86760a0e7675ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
謝衣鳯 |
委員發言時間 |
10:37:21 - 10:49:26 |
會議時間 |
2025-05-28T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期經濟委員會第15次全體委員會議(事由:審查:
一、本院委員謝衣鳯等16人擬具「農民退休儲金條例第七條條文修正草案」案。
二、本院委員郭國文等17人擬具「農民退休儲金條例第七條條文修正草案」案。(詢答)) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
0.21659375 |
transcript.pyannote[0].end |
3.77721875 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
15.03284375 |
transcript.pyannote[1].end |
18.03659375 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
18.69471875 |
transcript.pyannote[2].end |
19.47096875 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
26.00159375 |
transcript.pyannote[3].end |
26.50784375 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
26.62596875 |
transcript.pyannote[4].end |
26.96346875 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
26.77784375 |
transcript.pyannote[5].end |
67.48034375 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
34.33784375 |
transcript.pyannote[6].end |
34.97909375 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
52.56284375 |
transcript.pyannote[7].end |
52.76534375 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
52.83284375 |
transcript.pyannote[8].end |
52.88346875 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
67.59846875 |
transcript.pyannote[9].end |
95.83034375 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
80.79471875 |
transcript.pyannote[10].end |
81.16596875 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
85.67159375 |
transcript.pyannote[11].end |
86.00909375 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
89.60346875 |
transcript.pyannote[12].end |
89.75534375 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
90.02534375 |
transcript.pyannote[13].end |
90.71721875 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
96.28596875 |
transcript.pyannote[14].end |
109.56659375 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
109.90409375 |
transcript.pyannote[15].end |
110.84909375 |
transcript.pyannote[16].speaker |
SPEAKER_01 |
transcript.pyannote[16].start |
111.01784375 |
transcript.pyannote[16].end |
131.53784375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
123.87659375 |
transcript.pyannote[17].end |
124.33221875 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
131.77409375 |
transcript.pyannote[18].end |
156.96846875 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
138.28784375 |
transcript.pyannote[19].end |
138.62534375 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
155.92221875 |
transcript.pyannote[20].end |
158.36909375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
157.62659375 |
transcript.pyannote[21].end |
162.57096875 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
160.47846875 |
transcript.pyannote[22].end |
162.41909375 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
162.75659375 |
transcript.pyannote[23].end |
165.38909375 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
165.25409375 |
transcript.pyannote[24].end |
165.62534375 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
165.42284375 |
transcript.pyannote[25].end |
165.43971875 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
165.62534375 |
transcript.pyannote[26].end |
174.60284375 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
176.10471875 |
transcript.pyannote[27].end |
183.63096875 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
183.63096875 |
transcript.pyannote[28].end |
184.00221875 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
184.00221875 |
transcript.pyannote[29].end |
188.11971875 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
188.23784375 |
transcript.pyannote[30].end |
188.64284375 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
188.64284375 |
transcript.pyannote[31].end |
192.89534375 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
193.36784375 |
transcript.pyannote[32].end |
200.47221875 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
201.28221875 |
transcript.pyannote[33].end |
206.68221875 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
206.10846875 |
transcript.pyannote[34].end |
206.54721875 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
206.95221875 |
transcript.pyannote[35].end |
225.64971875 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
225.85221875 |
transcript.pyannote[36].end |
228.85596875 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
229.37909375 |
transcript.pyannote[37].end |
229.83471875 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
229.83471875 |
transcript.pyannote[38].end |
230.23971875 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
230.59409375 |
transcript.pyannote[39].end |
232.39971875 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
232.73721875 |
transcript.pyannote[40].end |
233.17596875 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
233.61471875 |
transcript.pyannote[41].end |
235.30221875 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
233.88471875 |
transcript.pyannote[42].end |
236.46659375 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
236.17971875 |
transcript.pyannote[43].end |
236.58471875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
237.51284375 |
transcript.pyannote[44].end |
243.41909375 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
242.00159375 |
transcript.pyannote[45].end |
242.25471875 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
243.04784375 |
transcript.pyannote[46].end |
243.14909375 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
243.65534375 |
transcript.pyannote[47].end |
255.48471875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
255.50159375 |
transcript.pyannote[48].end |
260.05784375 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
255.78846875 |
transcript.pyannote[49].end |
255.88971875 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
260.20971875 |
transcript.pyannote[50].end |
278.85659375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
261.00284375 |
transcript.pyannote[51].end |
261.62721875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
263.02784375 |
transcript.pyannote[52].end |
264.05721875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
267.61784375 |
transcript.pyannote[53].end |
268.10721875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
275.81909375 |
transcript.pyannote[54].end |
276.64596875 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
279.16034375 |
transcript.pyannote[55].end |
282.50159375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
281.91096875 |
transcript.pyannote[56].end |
283.73346875 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
283.78409375 |
transcript.pyannote[57].end |
287.22659375 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
285.97784375 |
transcript.pyannote[58].end |
292.03596875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
288.40784375 |
transcript.pyannote[59].end |
288.62721875 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
292.32284375 |
transcript.pyannote[60].end |
293.23409375 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
294.12846875 |
transcript.pyannote[61].end |
300.43971875 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
300.43971875 |
transcript.pyannote[62].end |
300.70971875 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
300.70971875 |
transcript.pyannote[63].end |
306.21096875 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
300.72659375 |
transcript.pyannote[64].end |
300.76034375 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
306.68346875 |
transcript.pyannote[65].end |
308.13471875 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
307.88159375 |
transcript.pyannote[66].end |
308.42159375 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
308.62409375 |
transcript.pyannote[67].end |
310.46346875 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
308.69159375 |
transcript.pyannote[68].end |
316.74096875 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
311.08784375 |
transcript.pyannote[69].end |
312.79221875 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
317.56784375 |
transcript.pyannote[70].end |
320.90909375 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
321.29721875 |
transcript.pyannote[71].end |
326.37659375 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
326.37659375 |
transcript.pyannote[72].end |
326.39346875 |
transcript.pyannote[73].speaker |
SPEAKER_01 |
transcript.pyannote[73].start |
326.39346875 |
transcript.pyannote[73].end |
326.41034375 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
326.41034375 |
transcript.pyannote[74].end |
326.47784375 |
transcript.pyannote[75].speaker |
SPEAKER_01 |
transcript.pyannote[75].start |
326.47784375 |
transcript.pyannote[75].end |
329.02596875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
326.61284375 |
transcript.pyannote[76].end |
327.67596875 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
328.40159375 |
transcript.pyannote[77].end |
331.35471875 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
331.33784375 |
transcript.pyannote[78].end |
332.21534375 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
332.77221875 |
transcript.pyannote[79].end |
345.96846875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
335.06721875 |
transcript.pyannote[80].end |
335.52284375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
338.96534375 |
transcript.pyannote[81].end |
340.58534375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
341.24346875 |
transcript.pyannote[82].end |
344.80409375 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
346.15409375 |
transcript.pyannote[83].end |
349.09034375 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
349.41096875 |
transcript.pyannote[84].end |
378.18284375 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
379.04346875 |
transcript.pyannote[85].end |
382.03034375 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
382.03034375 |
transcript.pyannote[86].end |
385.16909375 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
385.57409375 |
transcript.pyannote[87].end |
395.85096875 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
394.07909375 |
transcript.pyannote[88].end |
394.11284375 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
395.96909375 |
transcript.pyannote[89].end |
399.41159375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
398.90534375 |
transcript.pyannote[90].end |
406.02659375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
401.70659375 |
transcript.pyannote[91].end |
403.07346875 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
406.02659375 |
transcript.pyannote[92].end |
428.40284375 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
428.67284375 |
transcript.pyannote[93].end |
431.08596875 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
431.35596875 |
transcript.pyannote[94].end |
432.23346875 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
432.45284375 |
transcript.pyannote[95].end |
433.19534375 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
433.56659375 |
transcript.pyannote[96].end |
434.49471875 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
434.95034375 |
transcript.pyannote[97].end |
437.04284375 |
transcript.pyannote[98].speaker |
SPEAKER_01 |
transcript.pyannote[98].start |
435.08534375 |
transcript.pyannote[98].end |
435.30471875 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
437.36346875 |
transcript.pyannote[99].end |
445.88534375 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
444.90659375 |
transcript.pyannote[100].end |
476.68221875 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
446.69534375 |
transcript.pyannote[101].end |
447.87659375 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
451.35284375 |
transcript.pyannote[102].end |
451.67346875 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
454.91346875 |
transcript.pyannote[103].end |
455.26784375 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
460.54971875 |
transcript.pyannote[104].end |
461.47784375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
462.64221875 |
transcript.pyannote[105].end |
462.69284375 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
466.52346875 |
transcript.pyannote[106].end |
467.02971875 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
467.92409375 |
transcript.pyannote[107].end |
468.21096875 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
468.76784375 |
transcript.pyannote[108].end |
469.22346875 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
476.05784375 |
transcript.pyannote[109].end |
481.28909375 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
481.20471875 |
transcript.pyannote[110].end |
481.55909375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
481.47471875 |
transcript.pyannote[111].end |
488.08971875 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
488.08971875 |
transcript.pyannote[112].end |
498.85596875 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
488.27534375 |
transcript.pyannote[113].end |
488.71409375 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
490.04721875 |
transcript.pyannote[114].end |
490.95846875 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
498.92346875 |
transcript.pyannote[115].end |
502.68659375 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
502.73721875 |
transcript.pyannote[116].end |
503.10846875 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
503.00721875 |
transcript.pyannote[117].end |
505.50471875 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
505.60596875 |
transcript.pyannote[118].end |
511.42784375 |
transcript.pyannote[119].speaker |
SPEAKER_01 |
transcript.pyannote[119].start |
511.42784375 |
transcript.pyannote[119].end |
511.81596875 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
511.95096875 |
transcript.pyannote[120].end |
514.95471875 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
514.66784375 |
transcript.pyannote[121].end |
533.04471875 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
519.22409375 |
transcript.pyannote[122].end |
520.84409375 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
523.86471875 |
transcript.pyannote[123].end |
524.50596875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
526.44659375 |
transcript.pyannote[124].end |
526.95284375 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
531.86346875 |
transcript.pyannote[125].end |
536.06534375 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
533.43284375 |
transcript.pyannote[126].end |
534.15846875 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
536.30159375 |
transcript.pyannote[127].end |
540.60471875 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
540.97596875 |
transcript.pyannote[128].end |
549.78471875 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
542.05596875 |
transcript.pyannote[129].end |
542.41034375 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
545.31284375 |
transcript.pyannote[130].end |
545.80221875 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
550.00409375 |
transcript.pyannote[131].end |
551.65784375 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
551.77596875 |
transcript.pyannote[132].end |
552.09659375 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
552.68721875 |
transcript.pyannote[133].end |
559.92659375 |
transcript.pyannote[134].speaker |
SPEAKER_01 |
transcript.pyannote[134].start |
560.80409375 |
transcript.pyannote[134].end |
561.31034375 |
transcript.pyannote[135].speaker |
SPEAKER_01 |
transcript.pyannote[135].start |
561.42846875 |
transcript.pyannote[135].end |
569.62971875 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
565.07346875 |
transcript.pyannote[136].end |
565.96784375 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
567.09846875 |
transcript.pyannote[137].end |
567.48659375 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
569.39346875 |
transcript.pyannote[138].end |
569.73096875 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
569.96721875 |
transcript.pyannote[139].end |
576.93659375 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
577.25721875 |
transcript.pyannote[140].end |
582.42096875 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
582.99471875 |
transcript.pyannote[141].end |
583.80471875 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
584.20971875 |
transcript.pyannote[142].end |
585.86346875 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
586.11659375 |
transcript.pyannote[143].end |
590.87534375 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
591.38159375 |
transcript.pyannote[144].end |
592.25909375 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
592.25909375 |
transcript.pyannote[145].end |
592.68096875 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
592.78221875 |
transcript.pyannote[146].end |
597.55784375 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
598.28346875 |
transcript.pyannote[147].end |
599.58284375 |
transcript.pyannote[148].speaker |
SPEAKER_01 |
transcript.pyannote[148].start |
599.76846875 |
transcript.pyannote[148].end |
636.23534375 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
603.48096875 |
transcript.pyannote[149].end |
605.26971875 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
610.34909375 |
transcript.pyannote[150].end |
610.78784375 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
617.77409375 |
transcript.pyannote[151].end |
618.53346875 |
transcript.pyannote[152].speaker |
SPEAKER_00 |
transcript.pyannote[152].start |
623.54534375 |
transcript.pyannote[152].end |
624.13596875 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
624.87846875 |
transcript.pyannote[153].end |
625.38471875 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
625.94159375 |
transcript.pyannote[154].end |
626.54909375 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
636.08346875 |
transcript.pyannote[155].end |
636.21846875 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
636.23534375 |
transcript.pyannote[156].end |
636.42096875 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
636.37034375 |
transcript.pyannote[157].end |
641.16284375 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
640.33596875 |
transcript.pyannote[158].end |
648.19971875 |
transcript.pyannote[159].speaker |
SPEAKER_01 |
transcript.pyannote[159].start |
646.47846875 |
transcript.pyannote[159].end |
646.54596875 |
transcript.pyannote[160].speaker |
SPEAKER_01 |
transcript.pyannote[160].start |
646.61346875 |
transcript.pyannote[160].end |
646.84971875 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
648.63846875 |
transcript.pyannote[161].end |
653.51534375 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
654.12284375 |
transcript.pyannote[162].end |
658.10534375 |
transcript.pyannote[163].speaker |
SPEAKER_00 |
transcript.pyannote[163].start |
658.25721875 |
transcript.pyannote[163].end |
676.71846875 |
transcript.pyannote[164].speaker |
SPEAKER_01 |
transcript.pyannote[164].start |
668.11221875 |
transcript.pyannote[164].end |
668.39909375 |
transcript.pyannote[165].speaker |
SPEAKER_01 |
transcript.pyannote[165].start |
676.04346875 |
transcript.pyannote[165].end |
676.31346875 |
transcript.pyannote[166].speaker |
SPEAKER_00 |
transcript.pyannote[166].start |
677.25846875 |
transcript.pyannote[166].end |
692.00721875 |
transcript.pyannote[167].speaker |
SPEAKER_01 |
transcript.pyannote[167].start |
691.28159375 |
transcript.pyannote[167].end |
694.38659375 |
transcript.pyannote[168].speaker |
SPEAKER_00 |
transcript.pyannote[168].start |
694.06596875 |
transcript.pyannote[168].end |
717.42096875 |
transcript.pyannote[169].speaker |
SPEAKER_01 |
transcript.pyannote[169].start |
705.87846875 |
transcript.pyannote[169].end |
706.19909375 |
transcript.pyannote[170].speaker |
SPEAKER_01 |
transcript.pyannote[170].start |
717.82596875 |
transcript.pyannote[170].end |
718.23096875 |
transcript.pyannote[171].speaker |
SPEAKER_00 |
transcript.pyannote[171].start |
718.33221875 |
transcript.pyannote[171].end |
718.70346875 |
transcript.pyannote[172].speaker |
SPEAKER_01 |
transcript.pyannote[172].start |
718.85534375 |
transcript.pyannote[172].end |
721.45409375 |
transcript.pyannote[173].speaker |
SPEAKER_00 |
transcript.pyannote[173].start |
721.38659375 |
transcript.pyannote[173].end |
722.68596875 |
transcript.pyannote[174].speaker |
SPEAKER_01 |
transcript.pyannote[174].start |
721.62284375 |
transcript.pyannote[174].end |
722.77034375 |
transcript.pyannote[175].speaker |
SPEAKER_01 |
transcript.pyannote[175].start |
724.03596875 |
transcript.pyannote[175].end |
724.93034375 |
transcript.whisperx[0].start |
0.229 |
transcript.whisperx[0].end |
3.572 |
transcript.whisperx[0].text |
好 接下來我們請謝一芬委員請做詢答好 謝謝主席我想要請陳部長我們請部長 |
transcript.whisperx[1].start |
26.021 |
transcript.whisperx[1].end |
41.882 |
transcript.whisperx[1].text |
委員好部長好去年我們颱風影響到荔枝的樹勢所以今年荔枝的佐果又受到低溫的影響那我們彰化有很多的荔枝果園的話會受損嚴重其中以 |
transcript.whisperx[2].start |
42.423 |
transcript.whisperx[2].end |
66.888 |
transcript.whisperx[2].text |
黑葉、玉荷包等的那個品種最為嚴重所以農業部他公告說彰化縣是符合天然災害救助的標準是不是那但是我們現在的農業保險裡面卻只有針對氣溫太高以及降雨太多才會啟動理賠那這個部分未來是不是可以提供給農民更好的保險內容 |
transcript.whisperx[3].start |
68.068 |
transcript.whisperx[3].end |
88.773 |
transcript.whisperx[3].text |
第一個就是非常謝謝委員的關心特別是針對荔枝的一個產業發展那我們也去看了縣幹分兩個部分天然栽培的部分我們看的確花開得很漂亮但是沒有佐果的部分所以我們開了天然栽培救助第二個部分就是農業保險的部分農業保險本身它現在是開水跟溫度 |
transcript.whisperx[4].start |
90.634 |
transcript.whisperx[4].end |
109.291 |
transcript.whisperx[4].text |
但是相對的因為他必須由我們的試驗單位去界定多少的雨量跟多少的多低的溫度會影響那這個部分我也已經請我們試驗場的同仁去做更明確的界定那界定完了以後就可以納到保險裡面去 |
transcript.whisperx[5].start |
109.952 |
transcript.whisperx[5].end |
131.275 |
transcript.whisperx[5].text |
好那過去我們除了就是荔枝春夏以外其實我們荔枝細蚵對於荔枝的落果以及外觀也會造成影響會影響到我們荔枝的品質那所以未來除了春夏以外對於荔枝細蚵我們可以有什麼樣子的處置 |
transcript.whisperx[6].start |
132.015 |
transcript.whisperx[6].end |
154.462 |
transcript.whisperx[6].text |
我想我們基本上都像荔枝春相本身它有生物防治跟非生物防治嘛看它不同的時間點那荔枝繫兒的時候我們也可以用其他的方式像用特定的光譜特定的光譜去照射的時候讓它不會吸引它那這個部分在實驗單位都有些成果我們會盡量的 |
transcript.whisperx[7].start |
156.062 |
transcript.whisperx[7].end |
173.289 |
transcript.whisperx[7].text |
因為荔枝蟹它怕光嘛對它有不同藍光特別的光啊特定光譜的話它可以去那個好所以我們就可以利用這樣子來防治嘛是好那再回到我們今天的主題其實我們今天修的這個農民退休條例第七條那 |
transcript.whisperx[8].start |
176.158 |
transcript.whisperx[8].end |
200.201 |
transcript.whisperx[8].text |
那個部長你知道嘛其實我們提供的這個相關的提撥金額是對於農民有一個比較好的保障而且其實我們第7條的第3項第4項有講到就是我們提收的退撥儲金不計入當年度 |
transcript.whisperx[9].start |
201.648 |
transcript.whisperx[9].end |
228.969 |
transcript.whisperx[9].text |
怎麼樣提繳的這個其他的所得課稅嘛是不是那其實對於農民有一個比較好的而且這個跟老農年金不一樣嘛那我們當初在推行的時候就發現到很多農民他如果加入農保或是相關的他有時候其他的課稅太高的時候他沒有辦法領到那個他會被剔除耶 |
transcript.whisperx[10].start |
229.449 |
transcript.whisperx[10].end |
234.505 |
transcript.whisperx[10].text |
是不是?是他會被剔除農民資格欸對那還是沒有辦法領導農年金欸沒有 |
transcript.whisperx[11].start |
237.757 |
transcript.whisperx[11].end |
259.776 |
transcript.whisperx[11].text |
農民退休儲金你要加保的時候你農保一定是綠燈所有的條件都符合那這個部分因為有些農民他擔心他的農保可能短時間剛好有點換地質或是土地有一些買賣或什麼的所以他就不敢加保啦那這個可能就是我們必須要去更加強的宣導的一個原因 |
transcript.whisperx[12].start |
260.276 |
transcript.whisperx[12].end |
278.526 |
transcript.whisperx[12].text |
不只這個啦還有其他的相關的啦就是說大家對於這個其他的條例的部分那當然你知道說我們那個勞農津貼有很多農民在最後的時候他可能因為土地的轉移等等的 |
transcript.whisperx[13].start |
279.206 |
transcript.whisperx[13].end |
305.084 |
transcript.whisperx[13].text |
他可能都沒有辦法領到這些不過他不影響老農津貼老農年金的影響不影響65歲以上對 我是說他有可能都沒有辦法領到老農津貼你知道線型上面線型上面對啦 那個就是牌婦的部分那牌婦的部分剛才也說了委員也在關心牌婦條款我們就盡可能的努力去讓這個牌婦條款能夠做適度的放寬這個我們會來努力 |
transcript.whisperx[14].start |
306.758 |
transcript.whisperx[14].end |
331.528 |
transcript.whisperx[14].text |
你們會去努力嗎對我們本身就認同這樣的方式會努力嗎我們認同這樣的方式我認為喔其實我們提高這個比例喔那還是放在政府的部門裡面啊是不是我們提高了這個比例最後還是放在政府部門裡面啊是不是放在是不是勞保沒有他的個人的賬戶裡面喔我是說 |
transcript.whisperx[15].start |
332.833 |
transcript.whisperx[15].end |
348.59 |
transcript.whisperx[15].text |
我是說當然啦最後是個人的賬戶裡面可是他還是給勞保局的那個基金運用管理局來來全權處理嘛還是政府的基金部位嘛是不是那所以你有問過嗎其他的勞保基金 |
transcript.whisperx[16].start |
349.531 |
transcript.whisperx[16].end |
377.916 |
transcript.whisperx[16].text |
管理局他們也有沒有意見那財政部有沒有相關意見那其實在某種程度上面我們還是在政府的基金操作裡面啊是不是那我們還是維持相關的穩定的那個啊那其實也沒有說也沒有說給予農民的比例有什麼樣子的提高只是提高他的保障而已嘛是不是那連這樣子提高他們的保障 |
transcript.whisperx[17].start |
379.096 |
transcript.whisperx[17].end |
395.469 |
transcript.whisperx[17].text |
我覺得這個也沒有什麼沒有什麼好值得那個我跟委員報告就是所提到的1.5比1的部分他會把天花板打開就是他退休時候領的月退的部分會更高啦 |
transcript.whisperx[18].start |
396.469 |
transcript.whisperx[18].end |
409.799 |
transcript.whisperx[18].text |
那委員一直關心就是說怎麼樣...他是根據我們的定存的嘛定存的利率嘛 是不是不過您所提的版本是1.5的部分是他繳100塊 政府撥150 |
transcript.whisperx[19].start |
412.501 |
transcript.whisperx[19].end |
436.712 |
transcript.whisperx[19].text |
又多了150給放在這個儲金多了50塊所以到30年以後它累積的月退會更高但是我知道委員的想法就是要支持我們的農民去加入減輕農民負擔所以我們用另外一個思維就是我們同樣是100塊對100塊現在就是說有沒有可能政府多出一點然後農民負擔少一點 |
transcript.whisperx[20].start |
437.432 |
transcript.whisperx[20].end |
461.044 |
transcript.whisperx[20].text |
那這樣的話他的天花板沒打開200塊沒有變成250的時候那跟其他的勞保的這些年金比起來就不會差太多那你有試算過嗎試算過怎麼樣子對政府的縱效是比較好的啊是不是你要對於政府整體的縱效這個我提出的提高1就是說我們提高的相關的1.5的比率 |
transcript.whisperx[21].start |
462.965 |
transcript.whisperx[21].end |
480.885 |
transcript.whisperx[21].text |
對政府來講也是放在共同的基金運用裡面啊是不是那對於我們這樣子整體的運作來講也沒有什麼有損失的部分嗎我跟你講喔它所增加的金額15億其實不是很巨大 |
transcript.whisperx[22].start |
481.545 |
transcript.whisperx[22].end |
505.083 |
transcript.whisperx[22].text |
但是考量到就是說他30年後退休以後他所領的跟勞工朋友所領的你今天都沒有一個試算的比例嗎你只有增加你只是把它兩個加起來其實農民有時候根本也領不到這個相關的兩個加起來的沒有你如果持續從事農業的話你農農年金一定可以領然後同時你的農民退休儲金可以領 |
transcript.whisperx[23].start |
505.743 |
transcript.whisperx[23].end |
526.085 |
transcript.whisperx[23].text |
然後加起來大概是4萬5千多如果1.5的話那勞工朋友才領3萬3那現在的情勢是我們領3萬8可是你要知道他們兩個的條件是不一樣的我知道 農民退休儲金跟勞保的退休金那是不一樣的喔 |
transcript.whisperx[24].start |
526.525 |
transcript.whisperx[24].end |
550.431 |
transcript.whisperx[24].text |
是不是又跟公保跟那個公務人員的退休金是不一樣的計算方式我們有更好勞保的退休儲金是雇主提撥最高百分之六那我們現在的制度是政府幫你提撥百分之十最高百分之十所以已經比勞保更好了所以我希望說未來是朝向怎樣也符合委員的期待就是我們減輕農民的負擔 |
transcript.whisperx[25].start |
552.725 |
transcript.whisperx[25].end |
559.522 |
transcript.whisperx[25].text |
他獲得一樣的保障那那個保障在30年後試算的時候也比老公朋友好一些這是我們的目標 |
transcript.whisperx[26].start |
560.874 |
transcript.whisperx[26].end |
582.161 |
transcript.whisperx[26].text |
所以你的意思是說你不支持這樣子你要提出其他的是不是那你提出其他的說預算是一樣還是怎樣我想委員提的我們一定尊重而且也是選擇的方案之一然後我們會把不同的方案去做更詳細的評估然後再看看說哪一個方案是 |
transcript.whisperx[27].start |
583.041 |
transcript.whisperx[27].end |
597.282 |
transcript.whisperx[27].text |
包括對我們的農民朋友是最有利的那以我們現在的了解農民朋友是希望減少他的每個月的負擔啊減少每個月的負擔就是說保障一樣但是政府出多一點 |
transcript.whisperx[28].start |
598.665 |
transcript.whisperx[28].end |
625.67 |
transcript.whisperx[28].text |
他們出少一點我是可以同意說我們可以把不同的條件拿出來比較但是我覺得說以目前這樣子的方式因為我們當初在委員會有提出討論的時候我們就有說到其實我們就應該要隔年度就是說來再討論這個比例以及就是說怎麼樣子能夠增加農民的這個提就是說加保的這個加保率 |
transcript.whisperx[29].start |
626.39 |
transcript.whisperx[29].end |
653.316 |
transcript.whisperx[29].text |
那未來怎麼樣子來提高農民的加保率以及怎麼樣子來增加我們就是農業的從業人員或者對不對這個都是我們當初希望討論的方向也是我們農曆的目標就是特別委員一直關心包括上個會議你也關心的就是覆蓋率的問題有一些農民他現在沒有辦法參加農民職業災農民的退休儲金有沒有辦法 |
transcript.whisperx[30].start |
654.216 |
transcript.whisperx[30].end |
672.79 |
transcript.whisperx[30].text |
替他們解決一些問題把他納進來包括有一些有沒有曾經操控過勞保的嘛所以這個部分我們都同步在研議包括您所提的方案還有郭文委員所提的方案還有我們想到的方案還有一些可以讓更多人加入的這些方案都納進來以後這樣的話來討論會比較什麼時候 |
transcript.whisperx[31].start |
677.293 |
transcript.whisperx[31].end |
693.679 |
transcript.whisperx[31].text |
你什麼時候可以提出我想我們會在最近一個月之內應該就有一個因為我們也延期的差不多了那有個重點就是說我們的方案也要經過行政院來了解跟同意所以目前你們的方案是沒有經過行政院 |
transcript.whisperx[32].start |
694.439 |
transcript.whisperx[32].end |
721.464 |
transcript.whisperx[32].text |
對 我們沒有經過行政院最後的方案是沒辦法確定的包括現在的老農津貼行政院也說因為八大基金要橫平性但是我們會去爭取農業可不可以先行這個部分我們包括農民的退休儲金的部分的一些調整的機制那也要行政院這邊能夠得到支持因為有得到行政院支持才有經費啦好 那希望你敬述好不好好 謝謝 |
transcript.whisperx[33].start |
724.111 |
transcript.whisperx[33].end |
724.131 |
transcript.whisperx[33].text |
好 謝謝 |