iVOD / 161820

Field Value
IVOD_ID 161820
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/161820
日期 2025-05-22
會議資料.會議代碼 委員會-11-3-19-14
會議資料.會議代碼:str 第11屆第3會期經濟委員會第14次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 14
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第14次全體委員會議
影片種類 Clip
開始時間 2025-05-22T11:48:01+08:00
結束時間 2025-05-22T11:57:37+08:00
影片長度 00:09:36
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/1976c9e92d55c2f948140960124f65d1c1afe2edc2e0cc67672ba64a6a25585774ad0faf363c552f5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 羅廷瑋
委員發言時間 11:48:01 - 11:57:37
會議時間 2025-05-22T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第14次全體委員會議(事由:一、處理或審查114年度中央政府總預算有關經濟部及所屬主管預算凍結案等39案。 二、處理或審查114年度中央政府總預算有關國家發展委員會及所屬主管預算凍結案等21案。 三、繼續審查: (一)行政院函請審議「個人資料保護法部分條文修正草案」案。 (二)本院委員王美惠等18人擬具「個人資料保護法部分條文修正草案」案。 (三)本院委員羅廷瑋等17人擬具「個人資料保護法部分條文修正草案」案。 (四)本院委員李坤城等16人擬具「個人資料保護法部分條文修正草案」案。 (五)本院委員郭昱晴等19人擬具「個人資料保護法部分條文修正草案」案。 (六)本院委員陳亭妃等16人擬具「個人資料保護法第十二條、第二十七條及第四十八條條文修正草案」案。 (七)本院委員蔡易餘等18人擬具「個人資料保護法部分條文修正草案」案。 (第六案及第七案如未接獲議事處來函則不予審查。))
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 2.32596875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 9.63284375
transcript.pyannote[1].end 9.93659375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 13.44659375
transcript.pyannote[2].end 14.08784375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 21.32721875
transcript.pyannote[3].end 23.70659375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 24.28034375
transcript.pyannote[4].end 25.29284375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 28.97159375
transcript.pyannote[5].end 29.69721875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 33.62909375
transcript.pyannote[6].end 39.80534375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 39.90659375
transcript.pyannote[7].end 52.56284375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 53.06909375
transcript.pyannote[8].end 53.44034375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 55.06034375
transcript.pyannote[9].end 57.38909375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 56.19096875
transcript.pyannote[10].end 56.71409375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 57.38909375
transcript.pyannote[11].end 57.87846875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 58.36784375
transcript.pyannote[12].end 58.53659375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 58.60409375
transcript.pyannote[13].end 58.62096875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 58.63784375
transcript.pyannote[14].end 61.40534375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 61.01721875
transcript.pyannote[15].end 71.19284375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 71.20971875
transcript.pyannote[16].end 71.63159375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 71.76659375
transcript.pyannote[17].end 82.39784375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 84.13596875
transcript.pyannote[18].end 84.49034375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 84.97971875
transcript.pyannote[19].end 87.03846875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 87.29159375
transcript.pyannote[20].end 90.05909375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 90.48096875
transcript.pyannote[21].end 93.14721875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 93.63659375
transcript.pyannote[22].end 97.55159375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 97.95659375
transcript.pyannote[23].end 107.49096875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 107.82846875
transcript.pyannote[24].end 110.14034375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 110.69721875
transcript.pyannote[25].end 115.50659375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 116.13096875
transcript.pyannote[26].end 130.60971875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 133.36034375
transcript.pyannote[27].end 135.87471875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 136.33034375
transcript.pyannote[28].end 137.12346875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 137.44409375
transcript.pyannote[29].end 140.86971875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 140.97096875
transcript.pyannote[30].end 141.93284375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 142.42221875
transcript.pyannote[31].end 143.14784375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 143.14784375
transcript.pyannote[32].end 143.18159375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 143.78909375
transcript.pyannote[33].end 144.02534375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 144.02534375
transcript.pyannote[34].end 146.03346875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 146.60721875
transcript.pyannote[35].end 149.17221875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 146.77596875
transcript.pyannote[36].end 148.49721875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 149.67846875
transcript.pyannote[37].end 151.92284375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 151.97346875
transcript.pyannote[38].end 151.99034375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 152.32784375
transcript.pyannote[39].end 167.65034375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 168.27471875
transcript.pyannote[40].end 169.89471875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 170.60346875
transcript.pyannote[41].end 173.40471875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 174.01221875
transcript.pyannote[42].end 176.00346875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 176.71221875
transcript.pyannote[43].end 181.92659375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 182.12909375
transcript.pyannote[44].end 186.66846875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 187.36034375
transcript.pyannote[45].end 195.24096875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 195.59534375
transcript.pyannote[46].end 202.78409375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 203.03721875
transcript.pyannote[47].end 205.04534375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 205.48409375
transcript.pyannote[48].end 210.10784375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 210.76596875
transcript.pyannote[49].end 211.74471875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 212.38596875
transcript.pyannote[50].end 213.49971875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 213.98909375
transcript.pyannote[51].end 215.23784375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 215.89596875
transcript.pyannote[52].end 216.13221875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 217.11096875
transcript.pyannote[53].end 219.60846875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 220.50284375
transcript.pyannote[54].end 222.20721875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 222.73034375
transcript.pyannote[55].end 223.92846875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 224.85659375
transcript.pyannote[56].end 226.24034375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 227.06721875
transcript.pyannote[57].end 228.56909375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 229.00784375
transcript.pyannote[58].end 232.06221875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 232.39971875
transcript.pyannote[59].end 234.23909375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 234.84659375
transcript.pyannote[60].end 236.41596875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 236.46659375
transcript.pyannote[61].end 238.54221875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 239.16659375
transcript.pyannote[62].end 240.97221875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 240.97221875
transcript.pyannote[63].end 243.97596875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 244.21221875
transcript.pyannote[64].end 250.03409375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 247.41846875
transcript.pyannote[65].end 249.17346875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 250.03409375
transcript.pyannote[66].end 253.44284375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 254.06721875
transcript.pyannote[67].end 266.08221875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 254.84346875
transcript.pyannote[68].end 261.42471875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 267.02721875
transcript.pyannote[69].end 271.02659375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 271.27971875
transcript.pyannote[70].end 272.34284375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 273.10221875
transcript.pyannote[71].end 275.73471875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 276.89909375
transcript.pyannote[72].end 285.97784375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 281.45534375
transcript.pyannote[73].end 281.57346875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 284.18909375
transcript.pyannote[74].end 289.30221875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 287.31096875
transcript.pyannote[75].end 300.22034375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 289.77471875
transcript.pyannote[76].end 289.97721875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 297.16596875
transcript.pyannote[77].end 306.58221875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 301.51971875
transcript.pyannote[78].end 302.71784375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 302.97096875
transcript.pyannote[79].end 303.02159375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 303.03846875
transcript.pyannote[80].end 304.79346875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 306.58221875
transcript.pyannote[81].end 321.46596875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 306.59909375
transcript.pyannote[82].end 306.97034375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 306.97034375
transcript.pyannote[83].end 307.91534375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 307.91534375
transcript.pyannote[84].end 307.93221875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 321.98909375
transcript.pyannote[85].end 329.04284375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 329.53221875
transcript.pyannote[86].end 331.47284375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 333.51471875
transcript.pyannote[87].end 338.76284375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 338.98221875
transcript.pyannote[88].end 340.29846875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 341.05784375
transcript.pyannote[89].end 343.70721875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 343.97721875
transcript.pyannote[90].end 348.73596875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 349.51221875
transcript.pyannote[91].end 353.15721875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 354.03471875
transcript.pyannote[92].end 361.07159375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 361.44284375
transcript.pyannote[93].end 375.48284375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 375.76971875
transcript.pyannote[94].end 382.97534375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 383.29596875
transcript.pyannote[95].end 386.45159375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 387.43034375
transcript.pyannote[96].end 390.83909375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 391.75034375
transcript.pyannote[97].end 392.89784375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 393.15096875
transcript.pyannote[98].end 395.19284375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 395.91846875
transcript.pyannote[99].end 397.90971875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 398.60159375
transcript.pyannote[100].end 402.19596875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 402.68534375
transcript.pyannote[101].end 420.28596875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 420.47159375
transcript.pyannote[102].end 432.21659375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 432.77346875
transcript.pyannote[103].end 434.15721875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 434.68034375
transcript.pyannote[104].end 435.84471875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 436.82346875
transcript.pyannote[105].end 437.14409375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 438.05534375
transcript.pyannote[106].end 440.23221875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 441.80159375
transcript.pyannote[107].end 443.64096875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 445.02471875
transcript.pyannote[108].end 446.05409375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 447.21846875
transcript.pyannote[109].end 448.23096875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 449.37846875
transcript.pyannote[110].end 449.68221875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 449.68221875
transcript.pyannote[111].end 449.85096875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 449.85096875
transcript.pyannote[112].end 450.86346875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 450.86346875
transcript.pyannote[113].end 450.93096875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 450.96471875
transcript.pyannote[114].end 453.46221875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 453.96846875
transcript.pyannote[115].end 456.34784375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 457.25909375
transcript.pyannote[116].end 460.22909375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 460.53284375
transcript.pyannote[117].end 461.44409375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 461.98409375
transcript.pyannote[118].end 463.75596875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 465.83159375
transcript.pyannote[119].end 466.99596875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 466.99596875
transcript.pyannote[120].end 467.02971875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 467.51909375
transcript.pyannote[121].end 470.96159375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 470.97846875
transcript.pyannote[122].end 470.99534375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 471.41721875
transcript.pyannote[123].end 478.08284375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 471.77159375
transcript.pyannote[124].end 473.93159375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 474.26909375
transcript.pyannote[125].end 476.17596875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 478.53846875
transcript.pyannote[126].end 483.09471875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 479.01096875
transcript.pyannote[127].end 479.12909375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 479.68596875
transcript.pyannote[128].end 480.31034375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 480.51284375
transcript.pyannote[129].end 480.54659375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 483.56721875
transcript.pyannote[130].end 488.07284375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 488.78159375
transcript.pyannote[131].end 493.30409375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 491.68409375
transcript.pyannote[132].end 495.48096875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 495.91971875
transcript.pyannote[133].end 496.03784375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 496.03784375
transcript.pyannote[134].end 496.05471875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 496.05471875
transcript.pyannote[135].end 496.24034375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 496.24034375
transcript.pyannote[136].end 514.76909375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 496.49346875
transcript.pyannote[137].end 497.92784375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 511.02284375
transcript.pyannote[138].end 511.17471875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 511.66409375
transcript.pyannote[139].end 513.60471875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 515.08971875
transcript.pyannote[140].end 522.98721875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 521.77221875
transcript.pyannote[141].end 528.15096875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 523.61159375
transcript.pyannote[142].end 547.89471875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 548.26596875
transcript.pyannote[143].end 548.28284375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 548.28284375
transcript.pyannote[144].end 548.51909375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 548.51909375
transcript.pyannote[145].end 548.53596875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 548.53596875
transcript.pyannote[146].end 548.56971875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 549.04221875
transcript.pyannote[147].end 549.48096875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 549.75096875
transcript.pyannote[148].end 554.07096875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 554.34096875
transcript.pyannote[149].end 555.43784375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 555.43784375
transcript.pyannote[150].end 556.02846875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 556.02846875
transcript.pyannote[151].end 556.70346875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 556.70346875
transcript.pyannote[152].end 556.90596875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 556.90596875
transcript.pyannote[153].end 566.94659375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 557.07471875
transcript.pyannote[154].end 560.58471875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 561.22596875
transcript.pyannote[155].end 561.52971875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 568.24596875
transcript.pyannote[156].end 569.37659375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 570.06846875
transcript.pyannote[157].end 571.51971875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 571.84034375
transcript.pyannote[158].end 573.30846875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 574.00034375
transcript.pyannote[159].end 574.75971875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 575.14784375
transcript.pyannote[160].end 575.36721875
transcript.whisperx[0].start 0.129
transcript.whisperx[0].end 1.369
transcript.whisperx[0].text 來 請好 謝謝主席 有請部長來 請部長
transcript.whisperx[1].start 28.973
transcript.whisperx[1].end 52.223
transcript.whisperx[1].text 先給我第一張看一下好 部長好部長 想跟你先請問一下我們看這一則新聞核電機組陸續除役台電證明台中的電廠又沒量 屢創新低那台電也間接的證明盧修煙任內空污排放比2016年降低76%對嗎這我請台電來跟你們解釋台電對嗎 這你們的新聞稿
transcript.whisperx[2].start 58.359
transcript.whisperx[2].end 82.117
transcript.whisperx[2].text 是,因為這個是台電跟台中市這種所以他在上任時有372億度那減去去年的272億度大概大降了超過100億度電,對嗎?是好,那這個是我們現階段看到了台電間接承認我們台中市一直以來都在往減煤減排的方向在進行可是我們看下一張
transcript.whisperx[3].start 84.192
transcript.whisperx[3].end 108.792
transcript.whisperx[3].text 部長我還要延續5月1號的質詢部長你還記得5月1號我們兩個之間的對話嗎當時我問你火力發電會不會達到100%將近100%然後你跟我講這個機率很小那你知道在4月27到5月10號的這兩週14天內有12天有佔比突破90%的有14天有8天超過98%
transcript.whisperx[4].start 110.794
transcript.whisperx[4].end 130.298
transcript.whisperx[4].text 有五天超過99%有兩天超過100%相比部長告訴我台灣進入非核家園未來約84%電力將有火力發電支撐還沒進入非核家園的承諾就已經破功了嘛部長你怎麼回應
transcript.whisperx[5].start 133.407
transcript.whisperx[5].end 145.453
transcript.whisperx[5].text 我看數字的這個顯示嘛那如果委員認為這樣是火力全開我不反對又不反對前幾天不是說沒有火力全開嗎
transcript.whisperx[6].start 146.773
transcript.whisperx[6].end 169.634
transcript.whisperx[6].text 還是你要認為火力九成九開就是不叫火力全開可是我現在問你的問題是你當時告訴我84%支撐所謂的火力發電來支撐結果沒有啊事實證明都超過90%再來我那天也問你晚上無風無雨你告訴我所謂的機率很小
transcript.whisperx[7].start 170.675
transcript.whisperx[7].end 186.342
transcript.whisperx[7].text 平均發電在87%但今天我要看我們下一張圖核三二號機退役之後5月18到5月22每一個表格都是來自於台電的公開資料
transcript.whisperx[8].start 187.438
transcript.whisperx[8].end 197.982
transcript.whisperx[8].text 退場之後每天夜間的火力佔比都超高深夜火力佔比常常都99%以上5月18 995月19 1045月20 1015月21 1025月22 102你告訴我平均用電量晚上夜間87%相距甚遠部長這個你怎麼回應鐵針針的數據啊是
transcript.whisperx[9].start 217.182
transcript.whisperx[9].end 223.644
transcript.whisperx[9].text 那你有沒有覺得你應該為你的言論而道歉當時你就在這樣子的現場在國會的殿堂
transcript.whisperx[10].start 224.929
transcript.whisperx[10].end 253.16
transcript.whisperx[10].text 你講出這些數據完全沒有依據完全就是敷衍甜言蜜語來欺騙台中人你說87%嘛但現階段我們看到的數據全部最高達到102%那你要怎麼說你就是在某個時段裡面是這個樣子在某個時段裡面是這樣子平均值是這個樣子所以你還是在用平均值來算嘛
transcript.whisperx[11].start 254.144
transcript.whisperx[11].end 259.249
transcript.whisperx[11].text 那你中火更是火力全開剛剛說你可以認同5月18中火10部燃煤機組一部稅休9部可以發4950我們現階段發電發到了4587超過9成所以你現階段火力不是全開嗎
transcript.whisperx[12].start 276.963
transcript.whisperx[12].end 298.189
transcript.whisperx[12].text 九部藍莓機組 九部都開 你告訴我火力沒全開火力九成開 算不算火力全開還是你要這邊站那一層一部是稅休你稅休你沒有開嘛 你是因為稅休沒開不是因為你不開啊所以基本上已經是把最大用電的發電量將近把它全部5月13
transcript.whisperx[13].start 302.97
transcript.whisperx[13].end 331.192
transcript.whisperx[13].text 那我想你應該要就事實來說我要再回到我們下一張圖剛剛我講的第一張圖片我們在說的我們現階段2016年到2024年我們一直努力減碳減排終於有了成效可是在最近我們看到台中電廠的用煤量是屢創新高這個圖表我相信你都看過了這是用煤量我們下一張圖
transcript.whisperx[14].start 333.561
transcript.whisperx[14].end 352.859
transcript.whisperx[14].text 我們把去年5月14號跟今年5月14號來做對比慢慢往前推進到了去年的5月17到今年的5月17我們看出差距發電的總量我們這總和開始越來越高
transcript.whisperx[15].start 354.073
transcript.whisperx[15].end 371.903
transcript.whisperx[15].text 台電官網上說友善降載還有環保限制的跳票就用台中人的費來泰帝啊減煤承諾就是現階段我們看到的完全跳票為了救電可以犧牲台中人的健康台中火力發電會不會達到100%部長你當時還是說機率很少嗎
transcript.whisperx[16].start 376.105
transcript.whisperx[16].end 380.812
transcript.whisperx[16].text 對照數據郭部長就是睜眼說瞎話難道98 99不算接近100%嗎這說大話說習慣了搞不清楚狀況部長我必須要講你就是說謊你就是騙子
transcript.whisperx[17].start 391.826
transcript.whisperx[17].end 419.705
transcript.whisperx[17].text 你現階段你就是98%的騙子但是我沒有說你是100%的騙子因為你認為98%不是趨近於100%嗎所以我們現階段火力發電長年為全台供電台中市就要承受PM2.5超標肺癌居高不下口口聲聲的減煤 以氣換煤還有發展綠能你就是要告訴全民你的非核家園就是火力家園
transcript.whisperx[18].start 420.626
transcript.whisperx[18].end 439.58
transcript.whisperx[18].text 所以我要跟你講中火是全球最大最老舊的啞鈴界藍莓電廠什麼時候要除疫什麼時候要給台中人健康部長你可不可以回應還是你要再繼續說謊還是你死不承認部長上一次5月1號講到現在您今天選擇沉默以對嗎還是說不出來還是啞口無言
transcript.whisperx[19].start 449.414
transcript.whisperx[19].end 470.513
transcript.whisperx[19].text 部長 可以給我一些回應嗎那你給我時間講嗎請說好 這個所有發電的內容都是我們跟台中市政府合議的框架之內的數字這樣你知道嗎現階段你口口聲聲說合議的框架內啦
transcript.whisperx[20].start 471.482
transcript.whisperx[20].end 494.581
transcript.whisperx[20].text 但是我們看到的發電總和所以你的意思就是說是經過台中市政府同意所以台中市政府他發證照給你你就可以這樣子不斷的使用今天我們看到數字超標你推給台中市政府合議的框架然後拿這些甜言蜜語繼續告訴民眾沒有啊台中市同意啊這個是在合議的框架之內在運作
transcript.whisperx[21].start 495.982
transcript.whisperx[21].end 512.58
transcript.whisperx[21].text 你當然會這樣講可是我現階段跟你講的是2025年拿2024年你明明可以進步你現階段就是退步你還在用合議的框架你還在用這些數據平均量來告訴台中人沒有啊我們有持續的減煤減淡
transcript.whisperx[22].start 516.183
transcript.whisperx[22].end 540.271
transcript.whisperx[22].text 謝謝主席我要講的是台中人的健康不是給你這樣隨意糊弄台中人的健康是台中市政府允許的範圍之內喔允許的範圍我們希望你越來越好我們在做的生煤自治條例也被中央廢除我們都希望能夠持續的減煤減碳但是中央就是在其中杯葛尤其經濟部的錯誤能源政策造成台中人最後健康損失
transcript.whisperx[23].start 540.971
transcript.whisperx[23].end 565.443
transcript.whisperx[23].text 所以我們要再一次的抗議台中人應該要站起來我們更呼籲經濟部重視台中人的健康好我們經濟部非常重視所有全國國人的健康好 不好意思因為我下來了你又在講話所以我要回應你沒有啦沒有啦你如果今天重視的話今天麻煩你把真正的發電量能夠降低而不是我們看到了跟去年來對比我們的發電量屢創新高好 OK不要講了
transcript.whisperx[24].start 570.816
transcript.whisperx[24].end 574.481
transcript.whisperx[24].text 再講我們等一下還要處理那個處理法案