iVOD / 161554

Field Value
IVOD_ID 161554
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/161554
日期 2025-05-19
會議資料.會議代碼 委員會-11-3-19-13
會議資料.會議代碼:str 第11屆第3會期經濟委員會第13次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 13
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第13次全體委員會議
影片種類 Clip
開始時間 2025-05-19T11:30:19+08:00
結束時間 2025-05-19T11:39:01+08:00
影片長度 00:08:42
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/ecb6f54fb5d604f007c5cee1630ddec428de2cce2b28366a0be1aa9793fcacdd8053b69fbe3a03365ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 邱志偉
委員發言時間 11:30:19 - 11:39:01
會議時間 2025-05-19T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第13次全體委員會議(事由:一、處理或審查114年度中央政府總預算有關農業部及所屬主管預算凍結案等30案。 二、處理或審查114年度中央政府總預算有關公平交易委員會主管預算凍結案等8案。)
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 6.79784375
transcript.pyannote[0].end 9.54846875
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 11.21909375
transcript.pyannote[1].end 11.79284375
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 16.58534375
transcript.pyannote[2].end 24.73596875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 17.07471875
transcript.pyannote[3].end 17.66534375
transcript.pyannote[4].speaker SPEAKER_03
transcript.pyannote[4].start 25.27596875
transcript.pyannote[4].end 29.12346875
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 29.20784375
transcript.pyannote[5].end 37.03784375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 37.03784375
transcript.pyannote[6].end 46.28534375
transcript.pyannote[7].speaker SPEAKER_03
transcript.pyannote[7].start 43.72034375
transcript.pyannote[7].end 44.90159375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 46.42034375
transcript.pyannote[8].end 48.15846875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 48.96846875
transcript.pyannote[9].end 50.97659375
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 50.97659375
transcript.pyannote[10].end 50.99346875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 51.66846875
transcript.pyannote[11].end 52.02284375
transcript.pyannote[12].speaker SPEAKER_03
transcript.pyannote[12].start 52.02284375
transcript.pyannote[12].end 52.09034375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 52.09034375
transcript.pyannote[13].end 52.47846875
transcript.pyannote[14].speaker SPEAKER_03
transcript.pyannote[14].start 52.47846875
transcript.pyannote[14].end 55.12784375
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 55.90409375
transcript.pyannote[15].end 57.03471875
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 57.50721875
transcript.pyannote[16].end 60.27471875
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 60.62909375
transcript.pyannote[17].end 68.12159375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 67.83471875
transcript.pyannote[18].end 68.00346875
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 68.56034375
transcript.pyannote[19].end 79.56284375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 74.41596875
transcript.pyannote[20].end 74.83784375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 75.56346875
transcript.pyannote[21].end 75.93471875
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 80.10284375
transcript.pyannote[22].end 83.03909375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 83.03909375
transcript.pyannote[23].end 83.10659375
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 83.10659375
transcript.pyannote[24].end 83.56221875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 83.56221875
transcript.pyannote[25].end 83.57909375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 84.69284375
transcript.pyannote[26].end 87.29159375
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 84.76034375
transcript.pyannote[27].end 85.28346875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 87.76409375
transcript.pyannote[28].end 91.86471875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 92.16846875
transcript.pyannote[29].end 98.64846875
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 98.10846875
transcript.pyannote[30].end 98.69909375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 98.69909375
transcript.pyannote[31].end 98.71596875
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 98.71596875
transcript.pyannote[32].end 98.78346875
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 98.90159375
transcript.pyannote[33].end 101.63534375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 101.09534375
transcript.pyannote[34].end 101.43284375
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 101.93909375
transcript.pyannote[35].end 106.49534375
transcript.pyannote[36].speaker SPEAKER_03
transcript.pyannote[36].start 106.86659375
transcript.pyannote[36].end 121.10909375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 111.74346875
transcript.pyannote[37].end 111.97971875
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 121.48034375
transcript.pyannote[38].end 122.45909375
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 122.81346875
transcript.pyannote[39].end 132.02721875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 132.02721875
transcript.pyannote[40].end 133.05659375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 133.91721875
transcript.pyannote[41].end 143.29971875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 143.46846875
transcript.pyannote[42].end 156.52971875
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 154.20096875
transcript.pyannote[43].end 154.31909375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 156.85034375
transcript.pyannote[44].end 157.86284375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 159.06096875
transcript.pyannote[45].end 160.96784375
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 160.96784375
transcript.pyannote[46].end 162.33471875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 161.87909375
transcript.pyannote[47].end 162.09846875
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 162.52034375
transcript.pyannote[48].end 185.03159375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 168.27471875
transcript.pyannote[49].end 168.49409375
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 185.38596875
transcript.pyannote[50].end 190.02659375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 190.02659375
transcript.pyannote[51].end 190.87034375
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 191.86596875
transcript.pyannote[52].end 191.88284375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 191.88284375
transcript.pyannote[53].end 208.84221875
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 208.31909375
transcript.pyannote[54].end 264.39471875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 209.39909375
transcript.pyannote[55].end 209.71971875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 213.92159375
transcript.pyannote[56].end 214.25909375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 243.35159375
transcript.pyannote[57].end 243.60471875
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 264.83346875
transcript.pyannote[58].end 269.91284375
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 270.16596875
transcript.pyannote[59].end 273.03471875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 273.03471875
transcript.pyannote[60].end 295.96784375
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 289.03221875
transcript.pyannote[61].end 289.82534375
transcript.pyannote[62].speaker SPEAKER_03
transcript.pyannote[62].start 291.54659375
transcript.pyannote[62].end 292.71096875
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 295.96784375
transcript.pyannote[63].end 299.61284375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 297.60471875
transcript.pyannote[64].end 298.78596875
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 299.95034375
transcript.pyannote[65].end 301.55346875
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 303.56159375
transcript.pyannote[66].end 306.24471875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 303.59534375
transcript.pyannote[67].end 304.50659375
transcript.pyannote[68].speaker SPEAKER_03
transcript.pyannote[68].start 306.37971875
transcript.pyannote[68].end 306.39659375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 306.39659375
transcript.pyannote[69].end 320.72346875
transcript.pyannote[70].speaker SPEAKER_03
transcript.pyannote[70].start 306.81846875
transcript.pyannote[70].end 308.74221875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 320.90909375
transcript.pyannote[71].end 323.96346875
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 323.96346875
transcript.pyannote[72].end 332.38409375
transcript.pyannote[73].speaker SPEAKER_03
transcript.pyannote[73].start 332.62034375
transcript.pyannote[73].end 337.85159375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 337.85159375
transcript.pyannote[74].end 337.95284375
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 337.95284375
transcript.pyannote[75].end 337.96971875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 337.96971875
transcript.pyannote[76].end 367.02846875
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 367.02846875
transcript.pyannote[77].end 369.40784375
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 369.96471875
transcript.pyannote[78].end 370.74096875
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 371.26409375
transcript.pyannote[79].end 380.03909375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 380.03909375
transcript.pyannote[80].end 380.20784375
transcript.pyannote[81].speaker SPEAKER_03
transcript.pyannote[81].start 380.20784375
transcript.pyannote[81].end 380.25846875
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 380.79846875
transcript.pyannote[82].end 380.81534375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 380.81534375
transcript.pyannote[83].end 392.32409375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 392.62784375
transcript.pyannote[84].end 396.35721875
transcript.pyannote[85].speaker SPEAKER_03
transcript.pyannote[85].start 392.66159375
transcript.pyannote[85].end 392.67846875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 392.67846875
transcript.pyannote[86].end 394.02846875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 395.53034375
transcript.pyannote[87].end 396.69471875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 396.89721875
transcript.pyannote[88].end 427.08659375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 401.04846875
transcript.pyannote[89].end 401.53784375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 427.50846875
transcript.pyannote[90].end 436.65471875
transcript.pyannote[91].speaker SPEAKER_03
transcript.pyannote[91].start 436.65471875
transcript.pyannote[91].end 436.94159375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 437.49846875
transcript.pyannote[92].end 437.97096875
transcript.pyannote[93].speaker SPEAKER_03
transcript.pyannote[93].start 437.97096875
transcript.pyannote[93].end 446.18909375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 440.38409375
transcript.pyannote[94].end 440.80596875
transcript.pyannote[95].speaker SPEAKER_03
transcript.pyannote[95].start 446.74596875
transcript.pyannote[95].end 451.89284375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 449.42909375
transcript.pyannote[96].end 449.64846875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 449.81721875
transcript.pyannote[97].end 449.91846875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 450.03659375
transcript.pyannote[98].end 450.44159375
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 452.17971875
transcript.pyannote[99].end 452.71971875
transcript.pyannote[100].speaker SPEAKER_03
transcript.pyannote[100].start 453.24284375
transcript.pyannote[100].end 453.91784375
transcript.pyannote[101].speaker SPEAKER_03
transcript.pyannote[101].start 454.12034375
transcript.pyannote[101].end 459.03096875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 459.03096875
transcript.pyannote[102].end 459.35159375
transcript.pyannote[103].speaker SPEAKER_03
transcript.pyannote[103].start 459.95909375
transcript.pyannote[103].end 459.99284375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 459.99284375
transcript.pyannote[104].end 460.85346875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 461.08971875
transcript.pyannote[105].end 467.18159375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 467.78909375
transcript.pyannote[106].end 468.10971875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 468.41346875
transcript.pyannote[107].end 484.57971875
transcript.pyannote[108].speaker SPEAKER_03
transcript.pyannote[108].start 483.85409375
transcript.pyannote[108].end 495.02534375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 486.95909375
transcript.pyannote[109].end 487.29659375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 490.84034375
transcript.pyannote[110].end 491.17784375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 495.02534375
transcript.pyannote[111].end 496.52721875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 496.66221875
transcript.pyannote[112].end 504.61034375
transcript.pyannote[113].speaker SPEAKER_03
transcript.pyannote[113].start 503.51346875
transcript.pyannote[113].end 519.56159375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 506.77034375
transcript.pyannote[114].end 507.12471875
transcript.whisperx[0].start 6.82
transcript.whisperx[0].end 11.645
transcript.whisperx[0].text 好 谢谢主席 我请是不是请陈部长陈部长
transcript.whisperx[1].start 16.761
transcript.whisperx[1].end 45.897
transcript.whisperx[1].text 部長 那個 我第一個問題請教你就是台日農業交流 應該是農漁業交流是台日 那這個我們4月28號我們住宿代表宿農業組正式成立對我們在其他住館這個住宿有沒有農業組的相關的這個編制在美國有在歐盟 歐盟有對 總共只有三個住宿館處最主要就是我們的外銷最主要跟農業多才民外銷有關的歐盟是派出一位 然後
transcript.whisperx[2].start 46.918
transcript.whisperx[2].end 54.888
transcript.whisperx[2].text 這個北美一位對不對兩位那歐盟一位歐盟也是兩位然後日本也是兩位
transcript.whisperx[3].start 56.336
transcript.whisperx[3].end 83.171
transcript.whisperx[3].text 這個我覺得農業跟經濟一樣重要所以我們經濟組在主要管理處都有經濟組的同仁跟推廣或者協助農業的交流那我們現在對美國的關稅政策對農業當然有很多影響我們必須分散市場分散市場你要拓展我們出口市場所以出口多元化很重要那你東西也要考慮設立
transcript.whisperx[4].start 85.341
transcript.whisperx[4].end 105.653
transcript.whisperx[4].text 我們東協目前在印尼的部分有派我們的農業部的同仁在那邊去做協助然後最主要的外銷都是由國際私形成相關的策略以後因為你有這個派出人員你會制定工作目標你針對工作實現情形你們做管轄
transcript.whisperx[5].start 107.014
transcript.whisperx[5].end 131.106
transcript.whisperx[5].text 所以就像經濟組一樣不管是農業組同仁或經濟組同仁他也是歸經濟委員會來做監督考核所以我覺得這部分台日當然已經早就該成立了那你今天上個月成立那南韓跟台日的農業跟台韓的農業我覺得台日農業交流是比台農業交流好很多為什麼韓國南韓沒辦法做
transcript.whisperx[6].start 133.973
transcript.whisperx[6].end 157.146
transcript.whisperx[6].text 南韓我應該在去年吧去年年底的時候我有去過一次南韓那邊的這些寵物的飼料本身還有一些相關的我們的漁產品也有相關的外銷所以我們要看它的貿易量到某個程度的時候是不是值得我農業產品南韓是第幾大的出口市場南韓應該第幾
transcript.whisperx[7].start 159.484
transcript.whisperx[7].end 183.97
transcript.whisperx[7].text 應該是排行十以後的啦港換地緣經濟啊日本喜歡農漁產品出口第三大市場對不對那這個但是這樣還不夠是在我國日本對台這個進口的57%左右所以不只台日的這個農業交流有必要深化廣化
transcript.whisperx[8].start 185.45
transcript.whisperx[8].end 190.778
transcript.whisperx[8].text 那另外 台南之間 我覺得也應該要加把勁你要擬定對策啊
transcript.whisperx[9].start 192.386
transcript.whisperx[9].end 214.423
transcript.whisperx[9].text 這個部長謝謝委員我想我們會來啟動正式的一個評估啦包括我們未來可能要去銷到韓國的農產品然後用什麼樣的方式跟外館那邊有沒有什麼樣的方式去派駐人員因為這個人員大概都是從我們限職人員去調的是啦你要針對主要的國家韓國啦東協你說印尼你就應該在那邊設個農業組是我想人員不是問題專業不是問題但你有編制你就會有成果對
transcript.whisperx[10].start 222.069
transcript.whisperx[10].end 238.762
transcript.whisperx[10].text 另外我針對高雄石斑魚對內出口我們組成一個拓銷小組鼓勵各位龍虎班可以消往日本那我希望以南部為主的東高雄、台南、屏東石斑魚的產區對日本的出口應該要擴大
transcript.whisperx[11].start 242.145
transcript.whisperx[11].end 261.579
transcript.whisperx[11].text 所以通路很重要 通路不合作 日本主要的商社不管是以縣為主 以區域為主 應該要請我們諸位代表處的各個分處福岡 福岡辦事處 大阪 甚至北海道 雜荒 應該要給他們相關的責任
transcript.whisperx[12].start 264.901
transcript.whisperx[12].end 289.517
transcript.whisperx[12].text 去協助我們這個龍虎班、石班能夠在當地透過通路來打開我們的這個外銷我跟委員報告因為這次去年去的時候我特別針對那個石班類的部分他們評估就是在關東地區其實他的機會會比關西地區還多然後現在透過我們的西湖鐵道公司
transcript.whisperx[13].start 290.277
transcript.whisperx[13].end 301.196
transcript.whisperx[13].text 為什麼關東現在是關係為主嘛飲食習慣最主要是飲食習慣對 我們現在是嚮往關係嘛對 那關東是更大的一個機會更能夠接受嘛對我們太太是說都沒差
transcript.whisperx[14].start 303.635
transcript.whisperx[14].end 331.17
transcript.whisperx[14].text 日本人不管是關西 都要吃酒半夜所以我想我們會有一整套的一個措施特別是針對剛才您講的通路是非常重要的然後現在我們在西鐵鐵道公司這些中餐的部分 已經導入了署長很專業 署長這個海洋事務專家我希望說半年之內有具體的成果你把這個量 把這個量
transcript.whisperx[15].start 332.751
transcript.whisperx[15].end 347.607
transcript.whisperx[15].text 能夠擴大量也放大然後點也能夠遍及到全日本是 更委員更委員報告就是目前在十八年蘇日裡面價錢還是稍微有一點就是有點高那這一點
transcript.whisperx[16].start 348.208
transcript.whisperx[16].end 368.162
transcript.whisperx[16].text 那署裡面跟在部長的指導之下我們其實現在對於輸往日本的部分這種外銷獎勵的部分我們現在都會持續來推動那剛剛委員提到說日本各縣的這些的商社我想我們也都會來努力是最後一個問題就是你們的農保虧損的狀況
transcript.whisperx[17].start 370.343
transcript.whisperx[17].end 391.814
transcript.whisperx[17].text 農保啊我們這個有預算凍結是針對農保部分我希望農保這個未來改善有沒有具體的目標啊現在我們的虧損大概是1800多億那最主要是農保的保費有沒有保費是比較低嘛那你一年之內你要達到多少目標
transcript.whisperx[18].start 392.754
transcript.whisperx[18].end 417.743
transcript.whisperx[18].text 我們每一年 我把詳細的這邊可以請我們去年市長報告委員 我們農保每年虧損大概50億上下那現在就是因為整個農保的人數越來越降低所以我這個虧損會縮短那之所以現在來了50億的這樣的一個水準是因為我們之前調高了農保的商帳幾戶
transcript.whisperx[19].start 419.083
transcript.whisperx[19].end 436.385
transcript.whisperx[19].text 現在農保的支出最主要都是在上漲幾乎大概90到95%之間所以未來農保的人數下降之後這一部分的虧損會減少那我們也積極在做相關的查查的工作需要能夠讓農保制度健全
transcript.whisperx[20].start 437.78
transcript.whisperx[20].end 457.905
transcript.whisperx[20].text 財政平衡很重要 對農民的照顧也很重要所以這兩個目標都要兼顧另外這個農業保險你們覆蓋率我了解目前大概53點多對 農業保險你們有沒有具體的目標比如說 我覺得多少目標是合理的是你們預期達成的
transcript.whisperx[21].start 460.306
transcript.whisperx[21].end 488.452
transcript.whisperx[21].text 我跟委員報告我之前跟我們的農經署在討論過去充量不看品質那每一張保單可能有人保但是保的不多我現在希望說回過頭來去檢討我們的保單的品質希望每一張保單有很多人保這樣的話保險的理賠也不會那麼高險種很重要對然後對重要的農產品這個很重要對所以農業受極端氣候影響的
transcript.whisperx[22].start 489.452
transcript.whisperx[22].end 510.064
transcript.whisperx[22].text 受這個市場調節影響所以風險比較高的這些農業產品我覺得這個覆蓋率一定要最高對 這個覆蓋率最高就是每一張保單大部分的品項都已經納入了天然摘有關的但是現在就是每一張保單它就保單人數這不簡單這幾年之內農業保險覆蓋率可以提升到五成以上這個也算不簡單
transcript.whisperx[23].start 511.044
transcript.whisperx[23].end 519.14
transcript.whisperx[23].text 那我希望說針對主要的這個重要的農運產品它的覆蓋率應該會更高啦好會 我們會來努力好 謝謝謝謝部長 謝謝各位同仁 謝謝