IVOD_ID |
161540 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/161540 |
日期 |
2025-05-19 |
會議資料.會議代碼 |
委員會-11-3-19-13 |
會議資料.會議代碼:str |
第11屆第3會期經濟委員會第13次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
13 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.標題 |
第11屆第3會期經濟委員會第13次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-05-19T10:29:08+08:00 |
結束時間 |
2025-05-19T10:38:23+08:00 |
影片長度 |
00:09:15 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/ecb6f54fb5d604f0046845e04bfe901f28de2cce2b28366acb2fe453f4508dd4b01f5819580778665ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
楊瓊瓔 |
委員發言時間 |
10:29:08 - 10:38:23 |
會議時間 |
2025-05-19T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期經濟委員會第13次全體委員會議(事由:一、處理或審查114年度中央政府總預算有關農業部及所屬主管預算凍結案等30案。
二、處理或審查114年度中央政府總預算有關公平交易委員會主管預算凍結案等8案。) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
0.04784375 |
transcript.pyannote[0].end |
1.73534375 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
1.97159375 |
transcript.pyannote[1].end |
2.34284375 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
3.52409375 |
transcript.pyannote[2].end |
4.06409375 |
transcript.pyannote[3].speaker |
SPEAKER_02 |
transcript.pyannote[3].start |
9.88596875 |
transcript.pyannote[3].end |
10.37534375 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
10.54409375 |
transcript.pyannote[4].end |
13.90221875 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
14.18909375 |
transcript.pyannote[5].end |
21.04034375 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
21.27659375 |
transcript.pyannote[6].end |
33.37596875 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
33.54471875 |
transcript.pyannote[7].end |
35.29971875 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
33.57846875 |
transcript.pyannote[8].end |
33.91596875 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
35.68784375 |
transcript.pyannote[9].end |
47.77034375 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
47.80409375 |
transcript.pyannote[10].end |
98.58096875 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
81.94221875 |
transcript.pyannote[11].end |
81.97596875 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
82.31346875 |
transcript.pyannote[12].end |
82.36409375 |
transcript.pyannote[13].speaker |
SPEAKER_02 |
transcript.pyannote[13].start |
98.58096875 |
transcript.pyannote[13].end |
103.40721875 |
transcript.pyannote[14].speaker |
SPEAKER_02 |
transcript.pyannote[14].start |
104.13284375 |
transcript.pyannote[14].end |
105.16221875 |
transcript.pyannote[15].speaker |
SPEAKER_02 |
transcript.pyannote[15].start |
105.22971875 |
transcript.pyannote[15].end |
109.65096875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
109.21221875 |
transcript.pyannote[16].end |
117.64971875 |
transcript.pyannote[17].speaker |
SPEAKER_02 |
transcript.pyannote[17].start |
110.46096875 |
transcript.pyannote[17].end |
112.35096875 |
transcript.pyannote[18].speaker |
SPEAKER_02 |
transcript.pyannote[18].start |
113.85284375 |
transcript.pyannote[18].end |
114.37596875 |
transcript.pyannote[19].speaker |
SPEAKER_02 |
transcript.pyannote[19].start |
116.41784375 |
transcript.pyannote[19].end |
150.08346875 |
transcript.pyannote[20].speaker |
SPEAKER_02 |
transcript.pyannote[20].start |
150.55596875 |
transcript.pyannote[20].end |
156.51284375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
156.39471875 |
transcript.pyannote[21].end |
156.78284375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
157.08659375 |
transcript.pyannote[22].end |
162.30096875 |
transcript.pyannote[23].speaker |
SPEAKER_02 |
transcript.pyannote[23].start |
161.82846875 |
transcript.pyannote[23].end |
161.99721875 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
162.43596875 |
transcript.pyannote[24].end |
183.79971875 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
169.94534375 |
transcript.pyannote[25].end |
170.31659375 |
transcript.pyannote[26].speaker |
SPEAKER_02 |
transcript.pyannote[26].start |
182.82096875 |
transcript.pyannote[26].end |
195.13971875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
194.81909375 |
transcript.pyannote[27].end |
243.72284375 |
transcript.pyannote[28].speaker |
SPEAKER_02 |
transcript.pyannote[28].start |
196.33784375 |
transcript.pyannote[28].end |
198.63284375 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
200.57346875 |
transcript.pyannote[29].end |
200.62409375 |
transcript.pyannote[30].speaker |
SPEAKER_02 |
transcript.pyannote[30].start |
200.62409375 |
transcript.pyannote[30].end |
200.91096875 |
transcript.pyannote[31].speaker |
SPEAKER_02 |
transcript.pyannote[31].start |
201.83909375 |
transcript.pyannote[31].end |
202.19346875 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
202.19346875 |
transcript.pyannote[32].end |
202.24409375 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
203.37471875 |
transcript.pyannote[33].end |
203.42534375 |
transcript.pyannote[34].speaker |
SPEAKER_02 |
transcript.pyannote[34].start |
203.42534375 |
transcript.pyannote[34].end |
203.86409375 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
203.86409375 |
transcript.pyannote[35].end |
204.72471875 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
207.47534375 |
transcript.pyannote[36].end |
207.93096875 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
214.88346875 |
transcript.pyannote[37].end |
215.11971875 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
218.24159375 |
transcript.pyannote[38].end |
219.25409375 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
219.87846875 |
transcript.pyannote[39].end |
220.19909375 |
transcript.pyannote[40].speaker |
SPEAKER_02 |
transcript.pyannote[40].start |
242.33909375 |
transcript.pyannote[40].end |
243.60471875 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
243.85784375 |
transcript.pyannote[41].end |
244.38096875 |
transcript.pyannote[42].speaker |
SPEAKER_02 |
transcript.pyannote[42].start |
244.90409375 |
transcript.pyannote[42].end |
245.20784375 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
245.44409375 |
transcript.pyannote[43].end |
247.08096875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
247.16534375 |
transcript.pyannote[44].end |
247.18221875 |
transcript.pyannote[45].speaker |
SPEAKER_02 |
transcript.pyannote[45].start |
247.18221875 |
transcript.pyannote[45].end |
247.60409375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
248.38034375 |
transcript.pyannote[46].end |
251.41784375 |
transcript.pyannote[47].speaker |
SPEAKER_02 |
transcript.pyannote[47].start |
250.99596875 |
transcript.pyannote[47].end |
252.36284375 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
252.31221875 |
transcript.pyannote[48].end |
273.22034375 |
transcript.pyannote[49].speaker |
SPEAKER_02 |
transcript.pyannote[49].start |
253.35846875 |
transcript.pyannote[49].end |
253.72971875 |
transcript.pyannote[50].speaker |
SPEAKER_02 |
transcript.pyannote[50].start |
254.30346875 |
transcript.pyannote[50].end |
254.38784375 |
transcript.pyannote[51].speaker |
SPEAKER_02 |
transcript.pyannote[51].start |
265.37346875 |
transcript.pyannote[51].end |
265.57596875 |
transcript.pyannote[52].speaker |
SPEAKER_02 |
transcript.pyannote[52].start |
265.60971875 |
transcript.pyannote[52].end |
265.72784375 |
transcript.pyannote[53].speaker |
SPEAKER_02 |
transcript.pyannote[53].start |
271.61721875 |
transcript.pyannote[53].end |
272.24159375 |
transcript.pyannote[54].speaker |
SPEAKER_02 |
transcript.pyannote[54].start |
273.99659375 |
transcript.pyannote[54].end |
289.52159375 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
274.13159375 |
transcript.pyannote[55].end |
274.63784375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
289.23471875 |
transcript.pyannote[56].end |
289.42034375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
289.84221875 |
transcript.pyannote[57].end |
295.44471875 |
transcript.pyannote[58].speaker |
SPEAKER_02 |
transcript.pyannote[58].start |
292.22159375 |
transcript.pyannote[58].end |
292.69409375 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
295.14096875 |
transcript.pyannote[59].end |
295.57971875 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
295.49534375 |
transcript.pyannote[60].end |
308.65784375 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
296.40659375 |
transcript.pyannote[61].end |
296.52471875 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
300.35534375 |
transcript.pyannote[62].end |
300.72659375 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
302.90346875 |
transcript.pyannote[63].end |
303.30846875 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
307.03784375 |
transcript.pyannote[64].end |
307.34159375 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
308.80971875 |
transcript.pyannote[65].end |
324.58784375 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
308.92784375 |
transcript.pyannote[66].end |
309.16409375 |
transcript.pyannote[67].speaker |
SPEAKER_02 |
transcript.pyannote[67].start |
324.46971875 |
transcript.pyannote[67].end |
324.75659375 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
324.67221875 |
transcript.pyannote[68].end |
326.57909375 |
transcript.pyannote[69].speaker |
SPEAKER_02 |
transcript.pyannote[69].start |
326.57909375 |
transcript.pyannote[69].end |
328.09784375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
328.18221875 |
transcript.pyannote[70].end |
374.63909375 |
transcript.pyannote[71].speaker |
SPEAKER_02 |
transcript.pyannote[71].start |
329.04284375 |
transcript.pyannote[71].end |
329.11034375 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
351.18284375 |
transcript.pyannote[72].end |
351.48659375 |
transcript.pyannote[73].speaker |
SPEAKER_01 |
transcript.pyannote[73].start |
358.10159375 |
transcript.pyannote[73].end |
361.47659375 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
361.99971875 |
transcript.pyannote[74].end |
362.53971875 |
transcript.pyannote[75].speaker |
SPEAKER_01 |
transcript.pyannote[75].start |
371.70284375 |
transcript.pyannote[75].end |
371.83784375 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
374.75721875 |
transcript.pyannote[76].end |
403.27596875 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
380.68034375 |
transcript.pyannote[77].end |
381.00096875 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
403.64721875 |
transcript.pyannote[78].end |
417.38346875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
417.61971875 |
transcript.pyannote[79].end |
420.37034375 |
transcript.pyannote[80].speaker |
SPEAKER_02 |
transcript.pyannote[80].start |
419.64471875 |
transcript.pyannote[80].end |
424.03221875 |
transcript.pyannote[81].speaker |
SPEAKER_02 |
transcript.pyannote[81].start |
424.26846875 |
transcript.pyannote[81].end |
425.39909375 |
transcript.pyannote[82].speaker |
SPEAKER_02 |
transcript.pyannote[82].start |
425.66909375 |
transcript.pyannote[82].end |
443.79284375 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
440.62034375 |
transcript.pyannote[83].end |
443.37096875 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
443.79284375 |
transcript.pyannote[84].end |
450.66096875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
451.40346875 |
transcript.pyannote[85].end |
452.66909375 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
452.50034375 |
transcript.pyannote[86].end |
452.61846875 |
transcript.pyannote[87].speaker |
SPEAKER_02 |
transcript.pyannote[87].start |
452.66909375 |
transcript.pyannote[87].end |
452.82096875 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
452.82096875 |
transcript.pyannote[88].end |
452.87159375 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
452.93909375 |
transcript.pyannote[89].end |
455.74034375 |
transcript.pyannote[90].speaker |
SPEAKER_02 |
transcript.pyannote[90].start |
456.28034375 |
transcript.pyannote[90].end |
470.25284375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
470.03346875 |
transcript.pyannote[91].end |
478.13346875 |
transcript.pyannote[92].speaker |
SPEAKER_02 |
transcript.pyannote[92].start |
470.79284375 |
transcript.pyannote[92].end |
472.42971875 |
transcript.pyannote[93].speaker |
SPEAKER_02 |
transcript.pyannote[93].start |
472.63221875 |
transcript.pyannote[93].end |
473.12159375 |
transcript.pyannote[94].speaker |
SPEAKER_02 |
transcript.pyannote[94].start |
476.49659375 |
transcript.pyannote[94].end |
476.66534375 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
480.95159375 |
transcript.pyannote[95].end |
488.91659375 |
transcript.pyannote[96].speaker |
SPEAKER_02 |
transcript.pyannote[96].start |
483.88784375 |
transcript.pyannote[96].end |
484.76534375 |
transcript.pyannote[97].speaker |
SPEAKER_02 |
transcript.pyannote[97].start |
485.15346875 |
transcript.pyannote[97].end |
485.87909375 |
transcript.pyannote[98].speaker |
SPEAKER_02 |
transcript.pyannote[98].start |
489.49034375 |
transcript.pyannote[98].end |
492.32534375 |
transcript.pyannote[99].speaker |
SPEAKER_02 |
transcript.pyannote[99].start |
492.66284375 |
transcript.pyannote[99].end |
493.52346875 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
493.52346875 |
transcript.pyannote[100].end |
493.54034375 |
transcript.pyannote[101].speaker |
SPEAKER_02 |
transcript.pyannote[101].start |
493.86096875 |
transcript.pyannote[101].end |
493.87784375 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
493.87784375 |
transcript.pyannote[102].end |
493.96221875 |
transcript.pyannote[103].speaker |
SPEAKER_02 |
transcript.pyannote[103].start |
493.96221875 |
transcript.pyannote[103].end |
494.02971875 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
494.02971875 |
transcript.pyannote[104].end |
494.58659375 |
transcript.pyannote[105].speaker |
SPEAKER_01 |
transcript.pyannote[105].start |
495.22784375 |
transcript.pyannote[105].end |
510.73596875 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
510.12846875 |
transcript.pyannote[106].end |
512.72721875 |
transcript.pyannote[107].speaker |
SPEAKER_01 |
transcript.pyannote[107].start |
511.20846875 |
transcript.pyannote[107].end |
513.94221875 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
513.35159375 |
transcript.pyannote[108].end |
528.97784375 |
transcript.pyannote[109].speaker |
SPEAKER_02 |
transcript.pyannote[109].start |
528.97784375 |
transcript.pyannote[109].end |
533.56784375 |
transcript.pyannote[110].speaker |
SPEAKER_02 |
transcript.pyannote[110].start |
534.29346875 |
transcript.pyannote[110].end |
537.01034375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
536.55471875 |
transcript.pyannote[111].end |
537.75284375 |
transcript.pyannote[112].speaker |
SPEAKER_02 |
transcript.pyannote[112].start |
537.06096875 |
transcript.pyannote[112].end |
547.30409375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
547.01721875 |
transcript.pyannote[113].end |
548.58659375 |
transcript.pyannote[114].speaker |
SPEAKER_02 |
transcript.pyannote[114].start |
552.70409375 |
transcript.pyannote[114].end |
553.96971875 |
transcript.whisperx[0].start |
0.833 |
transcript.whisperx[0].end |
3.926 |
transcript.whisperx[0].text |
请要请部长请部长 |
transcript.whisperx[1].start |
10.552 |
transcript.whisperx[1].end |
33.782 |
transcript.whisperx[1].text |
我們的農民看天吃飯所以我們好不容易也通過了農業保險法在這個執行的過程當中有很多的不方便所以我們也一直在精進一直在改進所以當時我們也推出了農業天然災害限地照相APP因為我們的農民比較孤兒 |
transcript.whisperx[2].start |
35.763 |
transcript.whisperx[2].end |
41.207 |
transcript.whisperx[2].text |
那他要用運用這個AI的這個系統呢他似乎我們還要去輔導之但是到目前為止我們發覺還是有很多的農民不知道要怎麼用尤其我們這個農損的時候你說阿我不會受這個我們聽了很難過所以在這樣的情況之下本行認為我們在整個數位 |
transcript.whisperx[3].start |
59.498 |
transcript.whisperx[3].end |
70.062 |
transcript.whisperx[3].text |
工具對APP的一個操作似乎還有提升的一個空間那目前我們看到3月底你們累進的從112年5月開始上路到現在下載的大概是6萬7千次那所以本席要請教我們有了工具我們希望要能夠用得上 |
transcript.whisperx[4].start |
82.566 |
transcript.whisperx[4].end |
103.113 |
transcript.whisperx[4].text |
因為我們農民我們一定要好好的這個協助所以本校請教到現在運用你所謂的農產天然災害限地照相APP而去申請的有多少件第一個我跟威洋報告就是說現在APP下載大概有七萬一千多 |
transcript.whisperx[5].start |
104.193 |
transcript.whisperx[5].end |
111.181 |
transcript.whisperx[5].text |
一次以去年最多因為他要去拍的時候這個是下載所以本下請教實際上真正有運用而上傳的有上傳的有75萬張 |
transcript.whisperx[6].start |
119.15 |
transcript.whisperx[6].end |
132.625 |
transcript.whisperx[6].text |
特別是在去年的三次颱風因為有災害以後農民才會去照相所以我們應該去看去年的災害的時候他是瞬間的暴增表示在那段時間有太多人用因為75萬張其實是蠻多的啦 |
transcript.whisperx[7].start |
134.767 |
transcript.whisperx[7].end |
156.413 |
transcript.whisperx[7].text |
那接下來到今年為止大概有40幾項40幾項的天然災害我們開出去了然後我們看這段時間還是很多用APP先去做證據保全的部分那等到我們開了天然災害以後他就拿這個照片上傳的照片就可以讓公所去做後端的查核當然 |
transcript.whisperx[8].start |
157.213 |
transcript.whisperx[8].end |
179.93 |
transcript.whisperx[8].text |
所以本席要告訴你的也就是說這個立即是非常的重要那麼呢尤其現在鄉鎮公所的人力也是都有限因為他們後端還要做查核的這個工作那麼我們也希望在這個部分能夠好好的再去推廣再去輔導讓大家都可以在第一時間可以保留到這個證據我想這個是對農民非常大的一個幫助 |
transcript.whisperx[9].start |
184.013 |
transcript.whisperx[9].end |
207.241 |
transcript.whisperx[9].text |
中部像他剛剛陳廷輝委員講的農園中部有很多農園對不對如果農民覺得他的情況有一些有益的時候他都可以先照降做證據保全所以這個就是你們要宣導嗎要去宣導嘛不然現在急降雨非常的多一沖下去了不見了那這個農民就非常的損失所以這個精進的方案必須要再去提升 |
transcript.whisperx[10].start |
208.461 |
transcript.whisperx[10].end |
212.826 |
transcript.whisperx[10].text |
讓這個立即以及保護這個證據一定要好好的去落實才不會我們有了這個工具但是是用不上我們希望好好的協助我們的農民接下來本席要跟你討論的也就是我們現在寵物美農業者那這個非常的多當然也有部分的糾紛 |
transcript.whisperx[11].start |
230.303 |
transcript.whisperx[11].end |
243.089 |
transcript.whisperx[11].text |
但是目前是社會所需在這個毛小孩的部分非常的重要在整個產業當然你們也提出了一個定型化契約出來以供參考以供參考嗎 是不是是 |
transcript.whisperx[12].start |
248.43 |
transcript.whisperx[12].end |
271.868 |
transcript.whisperx[12].text |
就是你們提出這個定型化契約也是範本的意思就是範本嘛 以供參考那麼本席也在這邊要求也就是我們針對於保障動物福利與飼主權益具有積極非常好的一個意義那所以在這個落實程度你們也要有一個輔導的機制而不是只有公告在那邊也要輔導 |
transcript.whisperx[13].start |
274.028 |
transcript.whisperx[13].end |
288.2 |
transcript.whisperx[13].text |
我們後續公告以後我們後續會找工會像美容工會的部分然後他還有一些美容的照護士那這個部分我們都會要求他們來去講解我們要怎麼樣透過合約去保障雙方的權益 |
transcript.whisperx[14].start |
289.901 |
transcript.whisperx[14].end |
294.966 |
transcript.whisperx[14].text |
部長這個就對了也是本席的要求因為工會也是我們最好的志工我們把政府怎麼樣可以協助民眾的我們必須要告訴他們清楚那也要請工會拜託他們也趕快給他們的會員來多做宣導換句話說政府要主動宣導才能夠落實 |
transcript.whisperx[15].start |
315.183 |
transcript.whisperx[15].end |
328.835 |
transcript.whisperx[15].text |
這個也能夠達到施主本身的一個安心那業者他也能夠安心達到一個最好的一個平衡點這個非常的重要一定要努力的去宣導我們會加強來做加強來做最後一個議題本期要請教也就是移工的這個部分114年5月9號這個月 |
transcript.whisperx[16].start |
336.041 |
transcript.whisperx[16].end |
363.832 |
transcript.whisperx[16].text |
你們實施農業移工的新制那由一萬兩千人開放到現在你們宣告的兩萬人那我要特別感謝在三個會期我們一直在討論移工的這個部分因為農民真的很辛苦他有的沒有辦法一整年度但是有的類別也需要就像我們的草皮 中部經濟的草皮你們就納入 豆芽菜也納入這個就是人民所需 |
transcript.whisperx[17].start |
364.252 |
transcript.whisperx[17].end |
386.573 |
transcript.whisperx[17].text |
政府就要探求明末 聽到人民的需求喔那但是呢 我們拿到了這個核許證的時候呢之後我們必須還要到這個勞動部去申請在這個依法90天內要去申請喔那但是本市認為我們的農業跟一般是不一樣的它有季節性的需求 |
transcript.whisperx[18].start |
388.876 |
transcript.whisperx[18].end |
396.946 |
transcript.whisperx[18].text |
這個時間性的需求所以在這樣情況之下本期具體建議我們開放的人數所以本期具體建議我們的農業部應該跟勞動部你們去討論一個怎麼樣的一個迅速 |
transcript.whisperx[19].start |
403.795 |
transcript.whisperx[19].end |
427.474 |
transcript.whisperx[19].text |
符合條件的怎麼樣迅速去核發你不要等到兩三個月我的這個季節需求已經過了那這個是太浪費了所以要怎麼樣能夠加速他們申請的這個流程請做說明我跟委員說委員非常關心就是說就算我們有那麼多增加了一些人但是如果效率太慢的話過了那個時節 |
transcript.whisperx[20].start |
428.775 |
transcript.whisperx[20].end |
449.92 |
transcript.whisperx[20].text |
所以我們有跟勞動部在談因為勞動部我們這邊審的完會給勞動部勞動部可能有自己的一套程序那我們希望說是不是可以針對農業的部分單獨拉出來去做審查因為本期是深怕我們有這個美意從一萬兩千人到兩萬人但是如果行政斷鏈 |
transcript.whisperx[21].start |
451.48 |
transcript.whisperx[21].end |
471.947 |
transcript.whisperx[21].text |
很沒差的所以這個部分你預計要怎麼做呢所以我現在我會再跟勞動部來特別是跟他們部長直接說可以說審查的過程中因為農業它比較特殊性有季節性的部分是不是可以先拉出來單獨審不管它人多人少一段時間就要去審一次那這個時間要怎麼壓縮你看你多久時間可以告訴我們農民大家都拭目以待都在等 |
transcript.whisperx[22].start |
480.896 |
transcript.whisperx[22].end |
481.036 |
transcript.whisperx[22].text |
跟委員說明齁 |
transcript.whisperx[23].start |
496.417 |
transcript.whisperx[23].end |
503.843 |
transcript.whisperx[23].text |
我們農業部的部分我們一定會壓縮時間儘快去處理申請案件至於勞動部的審查機制恐怕涉及相關的法規我們必須要跟他確認說有沒有修法的問題這個部分再來做解釋你要談嘛 你要談才知道答案嘛第一個 壓縮你農業部自己可以做的競訴 |
transcript.whisperx[24].start |
517.735 |
transcript.whisperx[24].end |
521.098 |
transcript.whisperx[24].text |
依法禁訴第二個立即跟勞動部來討論我們要怎麼樣可以把這個時間流程能夠簡便啊才能夠真正幫助到我們的農民嘛這樣這樣委員我知道您的關心我想我這個禮拜我們一定會 |
transcript.whisperx[25].start |
534.349 |
transcript.whisperx[25].end |
548.02 |
transcript.whisperx[25].text |
包括我自己跟部長那邊會有困擾我直接跟他講然後開相關的工作會議然後如果說他們要修法可能要慢一點如果不用修法就可以立即來處理然後月底之前來跟委員做說明月底之前說明謝謝 |