iVOD / 161529

Field Value
IVOD_ID 161529
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/161529
日期 2025-05-19
會議資料.會議代碼 委員會-11-3-19-13
會議資料.會議代碼:str 第11屆第3會期經濟委員會第13次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 13
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第13次全體委員會議
影片種類 Clip
開始時間 2025-05-19T09:40:37+08:00
結束時間 2025-05-19T09:52:25+08:00
影片長度 00:11:48
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/ecb6f54fb5d604f0d07b6d4d1002497428de2cce2b28366a8b7b28ebcc841bb44c05adb7ad1365b05ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 邱議瑩
委員發言時間 09:40:37 - 09:52:25
會議時間 2025-05-19T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第13次全體委員會議(事由:一、處理或審查114年度中央政府總預算有關農業部及所屬主管預算凍結案等30案。 二、處理或審查114年度中央政府總預算有關公平交易委員會主管預算凍結案等8案。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 8.55284375
transcript.pyannote[0].end 8.82284375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 9.54846875
transcript.pyannote[1].end 10.93221875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 11.75909375
transcript.pyannote[2].end 12.45096875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 12.72096875
transcript.pyannote[3].end 14.64471875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 14.96534375
transcript.pyannote[4].end 15.53909375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 15.64034375
transcript.pyannote[5].end 16.83846875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 15.70784375
transcript.pyannote[6].end 15.75846875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 15.79221875
transcript.pyannote[7].end 16.72034375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 16.88909375
transcript.pyannote[8].end 17.29409375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 17.05784375
transcript.pyannote[9].end 17.09159375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 17.12534375
transcript.pyannote[10].end 17.15909375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 17.29409375
transcript.pyannote[11].end 17.44596875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 17.44596875
transcript.pyannote[12].end 18.18846875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 17.64846875
transcript.pyannote[13].end 18.27284375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 19.20096875
transcript.pyannote[14].end 21.31034375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 21.68159375
transcript.pyannote[15].end 22.44096875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 28.53284375
transcript.pyannote[16].end 29.02221875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 29.02221875
transcript.pyannote[17].end 35.60346875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 35.85659375
transcript.pyannote[18].end 41.54346875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 42.18471875
transcript.pyannote[19].end 56.35971875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 49.32284375
transcript.pyannote[20].end 50.77409375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 50.79096875
transcript.pyannote[21].end 50.84159375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 56.51159375
transcript.pyannote[22].end 66.18096875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 66.33284375
transcript.pyannote[23].end 67.22721875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 67.61534375
transcript.pyannote[24].end 80.30534375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 73.18409375
transcript.pyannote[25].end 73.40346875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 79.68096875
transcript.pyannote[26].end 82.39784375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 80.76096875
transcript.pyannote[27].end 117.17721875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 103.64346875
transcript.pyannote[28].end 104.80784375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 116.24909375
transcript.pyannote[29].end 124.77096875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 121.64909375
transcript.pyannote[30].end 121.81784375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 123.30284375
transcript.pyannote[31].end 130.13721875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 130.42409375
transcript.pyannote[32].end 133.10721875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 132.85409375
transcript.pyannote[33].end 133.37721875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 133.56284375
transcript.pyannote[34].end 135.41909375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 134.52471875
transcript.pyannote[35].end 144.76784375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 136.97159375
transcript.pyannote[36].end 139.24971875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 145.42596875
transcript.pyannote[37].end 148.98659375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 145.42596875
transcript.pyannote[38].end 160.29284375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 153.57659375
transcript.pyannote[39].end 153.81284375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 156.20909375
transcript.pyannote[40].end 156.68159375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 160.00596875
transcript.pyannote[41].end 169.15221875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 167.86971875
transcript.pyannote[42].end 180.62721875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 169.69221875
transcript.pyannote[43].end 172.94909375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 180.88034375
transcript.pyannote[44].end 191.12346875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 191.20784375
transcript.pyannote[45].end 201.61971875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 202.41284375
transcript.pyannote[46].end 206.20971875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 206.59784375
transcript.pyannote[47].end 209.06159375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 209.56784375
transcript.pyannote[48].end 213.51659375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 213.66846875
transcript.pyannote[49].end 225.68346875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 216.21659375
transcript.pyannote[50].end 216.63846875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 226.54409375
transcript.pyannote[51].end 236.66909375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 236.87159375
transcript.pyannote[52].end 251.65409375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 240.87096875
transcript.pyannote[53].end 241.27596875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 252.00846875
transcript.pyannote[54].end 254.08409375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 255.28221875
transcript.pyannote[55].end 261.13784375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 261.91409375
transcript.pyannote[56].end 268.19159375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 263.73659375
transcript.pyannote[57].end 264.17534375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 268.39409375
transcript.pyannote[58].end 274.75596875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 274.99221875
transcript.pyannote[59].end 277.72596875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 277.99596875
transcript.pyannote[60].end 278.55284375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 279.10971875
transcript.pyannote[61].end 283.68284375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 283.53096875
transcript.pyannote[62].end 295.83284375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 296.13659375
transcript.pyannote[63].end 324.57096875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 324.92534375
transcript.pyannote[64].end 325.34721875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 325.54971875
transcript.pyannote[65].end 358.05096875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 330.40971875
transcript.pyannote[66].end 330.79784375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 331.52346875
transcript.pyannote[67].end 332.18159375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 336.53534375
transcript.pyannote[68].end 337.07534375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 358.20284375
transcript.pyannote[69].end 361.81409375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 362.67471875
transcript.pyannote[70].end 363.18096875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 363.92346875
transcript.pyannote[71].end 370.55534375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 371.23034375
transcript.pyannote[72].end 379.75221875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 380.27534375
transcript.pyannote[73].end 382.72221875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 383.07659375
transcript.pyannote[74].end 388.40909375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 388.69596875
transcript.pyannote[75].end 390.06284375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 390.21471875
transcript.pyannote[76].end 391.09221875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 391.36221875
transcript.pyannote[77].end 391.56471875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 391.75034375
transcript.pyannote[78].end 400.30596875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 396.62721875
transcript.pyannote[79].end 396.96471875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 400.27221875
transcript.pyannote[80].end 400.64346875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 400.62659375
transcript.pyannote[81].end 412.28721875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 412.74284375
transcript.pyannote[82].end 423.79596875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 424.69034375
transcript.pyannote[83].end 426.69846875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 426.93471875
transcript.pyannote[84].end 433.53284375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 433.31346875
transcript.pyannote[85].end 437.90346875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 438.39284375
transcript.pyannote[86].end 460.29659375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 459.09846875
transcript.pyannote[87].end 469.94909375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 465.62909375
transcript.pyannote[88].end 467.04659375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 469.89846875
transcript.pyannote[89].end 471.43409375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 471.36659375
transcript.pyannote[90].end 487.83659375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 472.36221875
transcript.pyannote[91].end 474.18471875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 474.58971875
transcript.pyannote[92].end 475.19721875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 477.03659375
transcript.pyannote[93].end 477.55971875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 479.29784375
transcript.pyannote[94].end 479.46659375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 487.88721875
transcript.pyannote[95].end 494.40096875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 494.83971875
transcript.pyannote[96].end 498.07971875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 498.48471875
transcript.pyannote[97].end 509.79096875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 508.60971875
transcript.pyannote[98].end 509.77409375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 509.79096875
transcript.pyannote[99].end 509.90909375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 509.90909375
transcript.pyannote[100].end 509.95971875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 509.97659375
transcript.pyannote[101].end 513.85784375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 515.64659375
transcript.pyannote[102].end 534.85034375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 526.36221875
transcript.pyannote[103].end 526.75034375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 529.28159375
transcript.pyannote[104].end 529.83846875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 534.41159375
transcript.pyannote[105].end 534.71534375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 535.39034375
transcript.pyannote[106].end 539.55846875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 539.57534375
transcript.pyannote[107].end 544.55346875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 545.19471875
transcript.pyannote[108].end 547.64159375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 545.24534375
transcript.pyannote[109].end 546.24096875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 546.74721875
transcript.pyannote[110].end 552.18096875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 552.55221875
transcript.pyannote[111].end 554.98221875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 555.50534375
transcript.pyannote[112].end 561.58034375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 562.17096875
transcript.pyannote[113].end 563.70659375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 564.22971875
transcript.pyannote[114].end 584.34471875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 586.40346875
transcript.pyannote[115].end 587.34846875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 587.55096875
transcript.pyannote[116].end 595.11096875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 594.65534375
transcript.pyannote[117].end 602.36721875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 595.56659375
transcript.pyannote[118].end 596.03909375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 597.42284375
transcript.pyannote[119].end 600.44346875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 601.35471875
transcript.pyannote[120].end 611.07471875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 611.12534375
transcript.pyannote[121].end 615.47909375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 614.77034375
transcript.pyannote[122].end 634.05846875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 618.09471875
transcript.pyannote[123].end 618.68534375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 620.98034375
transcript.pyannote[124].end 621.55409375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 622.31346875
transcript.pyannote[125].end 622.81971875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 628.57409375
transcript.pyannote[126].end 628.91159375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 633.60284375
transcript.pyannote[127].end 633.68721875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 634.07534375
transcript.pyannote[128].end 664.23096875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 640.52159375
transcript.pyannote[129].end 640.97721875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 664.34909375
transcript.pyannote[130].end 667.38659375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 667.03221875
transcript.pyannote[131].end 675.25034375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 668.14596875
transcript.pyannote[132].end 668.71971875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 673.17471875
transcript.pyannote[133].end 673.68096875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 675.53721875
transcript.pyannote[134].end 686.38784375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 680.59971875
transcript.pyannote[135].end 681.00471875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 686.33721875
transcript.pyannote[136].end 703.29659375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 688.64909375
transcript.pyannote[137].end 689.74596875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 691.31534375
transcript.pyannote[138].end 692.02409375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 697.52534375
transcript.pyannote[139].end 698.95971875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 699.43221875
transcript.pyannote[140].end 699.92159375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 702.30096875
transcript.pyannote[141].end 702.65534375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 703.29659375
transcript.pyannote[142].end 704.69721875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 707.41409375
transcript.pyannote[143].end 708.15659375
transcript.whisperx[0].start 10.129
transcript.whisperx[0].end 21.006
transcript.whisperx[0].text 謝謝主席這個主席我待會可以暢所欲言嗎可以可以喔好謝謝沒問題我接下來請一下那個部長好請部長
transcript.whisperx[1].start 29.247
transcript.whisperx[1].end 50.034
transcript.whisperx[1].text 部長早部長我想先在我們處理這個詢問預算的解凍之前還是先請教一個這個時事題這個端午節馬上就到了那現在的租價已經是這三年來應該是同期最高我不曉得我昨天好像有看到農業部大概有一個一個措施
transcript.whisperx[2].start 50.934
transcript.whisperx[2].end 67.021
transcript.whisperx[2].text 我是不是給部長您一點時間讓部長說明一下因為現在這個豬價這麼高大概一般的消費群眾也是會唉叫到底是什麼樣的原因造成這個豬的價格這麼高是針對產量減少嗎那針對產量減少的這個部分農業部有什麼調配措施
transcript.whisperx[3].start 67.957
transcript.whisperx[3].end 94.375
transcript.whisperx[3].text 第一個跟委員講現在目前合理的一個價格是大概在95塊上下那過去這一個禮拜最主要是備料的關係因為端午節備料的關係所以大家就搶所以我們從明天開始我們會開始增工增加一成的租量那這個部分渴望讓租價不會再超過這個短時間超過100塊的部分然後第二個一個非常重要的就是
transcript.whisperx[4].start 94.935
transcript.whisperx[4].end 123.053
transcript.whisperx[4].text 因為之前在做冷鏈的那個豬舍的改建的時候那相對的那個豬隻本身的總投數有減少那現在慢慢的陸陸續續的這些改進的部分已經完成特別是像台塘等那種改進的部分完成了所以整個豬隻的飼養會回到一個比較正常的水準那個部長我請教兩個數字一個就是說您剛剛講從明天開始會增量大概會增加多少
transcript.whisperx[5].start 123.353
transcript.whisperx[5].end 139.526
transcript.whisperx[5].text 大概2.3萬每天2.3萬頭大概比過往的2萬2萬1增加了一成好每天會增加2.3萬頭沒有整個供應量是2.4每天大概增加2000頭的量對差不多2000頭的量那你說現在這個因為養豬場陸續建置好所以養豬的產量會增加
transcript.whisperx[6].start 145.998
transcript.whisperx[6].end 164.567
transcript.whisperx[6].text 是這樣嗎慢慢的會增加所以您的預期到什麼時候豬肉的價格當然端午節這一波因為用量大所以它的這個價格應該也會漲上去但您預期什麼時候那個豬價會回到一個比較平穩的狀態我相信大概在7月以後那個豬價到中原之間有沒有
transcript.whisperx[7].start 165.147
transcript.whisperx[7].end 171.693
transcript.whisperx[7].text 這個部分大概會應該在九十幾塊所以這個農業部應該也會長期密切的監控這個東西嗎接下來要請教一個這個關稅的問題很多的農民或者是說現在有很多的這種假新聞開始在講
transcript.whisperx[8].start 182.984
transcript.whisperx[8].end 201.312
transcript.whisperx[8].text 就是說未來台美的這個農業防線到底守不守得住如果全部的關稅是零的話那對於台灣的農業衝擊但是我不知道或者是說我其實並沒有很清楚的聽到農業部在這個方面對於關稅如果是零
transcript.whisperx[9].start 202.452
transcript.whisperx[9].end 223.109
transcript.whisperx[9].text 但或者是說從你們現在開始講我們是從零開始談目前有很多的包括台灣輸到美國或者是美國輸到台灣大概都是有六成左右的產品其實是零關稅的但是如果現在很多人去把它造謠說全部都是零美國以後進來的東西全部都是零關稅的話那對台灣整體農業的衝擊
transcript.whisperx[10].start 226.584
transcript.whisperx[10].end 249.722
transcript.whisperx[10].text 部長我想在這裡你用一分鐘的時間回答不了我這些這麼重大的議題但是我認為農業部應該好好的應對要好好的對農民說明跟好好對國人說明台灣的整體農業政策在面對到台美關稅議題的時候我們應該怎麼樣因應 怎麼樣面對那對於我們的台灣自體的農產品對農民的保護你們應該有什麼樣的對策
transcript.whisperx[11].start 255.559
transcript.whisperx[11].end 278.293
transcript.whisperx[11].text 這些東西這些說帖是不是能夠請農業部在很短的時間之內不管你用下鄉也好不管你是透過農會透過產銷辦透過各地方縣市政府我覺得應該都要讓農民很清楚的知道政府在對於農業的保護政策上面會做的事情應該做的事情還有
transcript.whisperx[12].start 279.173
transcript.whisperx[12].end 303.809
transcript.whisperx[12].text 要立即去做的事情有哪些這些能不能在很短的時間內去做到我想謝謝委員的一個提醒我想相關的資料我們都已經有準備了那我們現在就會立即的去用圖卡的方式然後下降的部分讓委員說明但是我這邊要強調一件事情以農業部的立場以我現在知道我們現在對美談判的部分像最近有說米會降到百分之幾絕對不會
transcript.whisperx[13].start 305.47
transcript.whisperx[13].end 324.39
transcript.whisperx[13].text 我覺得這個是一個就是用賴總統以零開始的這個模式去讓變成一個錯誤的訊息讓人家說稻米會降到零關稅這個不會發生因為到目前為止我們為了確保糧食安全我們對於稻米我們會一直捍衛著它的一個相關的一個現在的一個制度
transcript.whisperx[14].start 324.977
transcript.whisperx[14].end 347.218
transcript.whisperx[14].text 好 我覺得有一些對於台灣來講它是屬於戰略安全的糧食考量的部分我認為農業部應該要提出更多更強有力的數據跟對外的說明這一塊可能要再多做一點那這一題其實我特別藉由今天質詢的機會來提出來
transcript.whisperx[15].start 350.642
transcript.whisperx[15].end 361.042
transcript.whisperx[15].text 這個農業部裡頭現在大概組織改造有很多的這個組織其實是做了一些調整但是我們的植物防檢員跟動物防檢員
transcript.whisperx[16].start 362.751
transcript.whisperx[16].end 376.526
transcript.whisperx[16].text 在不要說同工不同酬啦同職等不同家籍不同酬的這件事情上面部長我知道你有曾經努力過但是我不曉得為什麼人事行政總處對於我們的職務房檢員的認識
transcript.whisperx[17].start 380.73
transcript.whisperx[17].end 400.055
transcript.whisperx[17].text 認知這麼樣的低造成我們很多植物房檢員對於他的工作不受到尊重我伯伯做房檢員有什麼做動物的他的家籍就比較高他的家籍是表10嘛那你的這個植物的是表2是比較低的嘛
transcript.whisperx[18].start 401.695
transcript.whisperx[18].end 423.584
transcript.whisperx[18].text 我們去問過了 我相信你也知道 人事行政總署說要叫這些植物防檢員要去取得植物診療師的資格他才能比照表實的加緊植物診療師法我們去年才通過 今年8月才考第一次那你叫這些高階的公務人員現在再回頭去考那個證照那個證照要8月以後才考
transcript.whisperx[19].start 424.724
transcript.whisperx[19].end 441.491
transcript.whisperx[19].text 那對他們來講情何以堪其實植物防檢員的工作辛勞的程度不會輸給動物防檢員部長您同意我的看法嗎我非常同意所以這也是為什麼我們在過去一年一直在爭取幫植物領域的部分能夠也爭取到表實的部分
transcript.whisperx[20].start 442.091
transcript.whisperx[20].end 466.704
transcript.whisperx[20].text 那現在我們還是會積極爭取那我們現在目前是不希望用等到植物診療室的考試才能夠取得我們用另外一個方式就是不需要任何考試因為領表實的專業家居不一定要考試在不同單位是這樣子部長如果我的資料沒錯的話啦你們現在如果能夠領到表實的人員大概只有169個對不對你的總體影響總體支出只會增加429萬嘛
transcript.whisperx[21].start 470.366
transcript.whisperx[21].end 497.789
transcript.whisperx[21].text 對 人數並不多啦人數不多但是這個對於大家的內心感受對於我們的公務人員的內心感受其實是差距極大的喔所以我想如果今天行政院或者是人事總署有聽到這一段的話我認為人事總署真的應該好好的去思考一下或者我其實會覺得改天要邀一下人事行政總署跟著我們的植物房檢員到田間去走一趟他就會知道有多辛苦在這樣的太陽底下
transcript.whisperx[22].start 498.63
transcript.whisperx[22].end 513.509
transcript.whisperx[22].text 三四十度的太陽底下到植物到田間裡頭去走訪喔你就會知道這個有多辛苦喔所以部長這個我們我想我們還是要一起來共同努力啦好不好那另外最後一點齁那個主席對不起我再一分鐘就好了齁
transcript.whisperx[23].start 515.697
transcript.whisperx[23].end 544.329
transcript.whisperx[23].text 真的氣候異常造成的這個稻作減產剛剛您在講到現在稻作的減產如果到全部收割完之後發現他的產量是減少20%的話你們就會有這個收入保險就會去理賠部長我現在跟你討論的就是收入保險的理賠金額的部分如果按照我們現有的辦法一般的天然災害的救助稻米的這個補助標準是一公頃1.8萬一分地大概只有
transcript.whisperx[24].start 545.305
transcript.whisperx[24].end 559.222
transcript.whisperx[24].text 我們已經提高到兩萬了我知道 你現在的收入保險是提高到兩萬但是你要知道 現在他們的成本你賺到我的成本差不多就是要一公項差不多就是要五萬到六萬啦12萬喔好
transcript.whisperx[25].start 562.425
transcript.whisperx[25].end 582.99
transcript.whisperx[25].text 你只賠2萬這個落差太大了啦那對於很多的農民來講當然他不希望靠你的保險理賠嘛他希望的是他的稻米能夠有好的收入但是在這樣的氣候變遷的狀態之下其實有沒有考慮我們的這個收入保險的理賠金額能夠適度的調漲
transcript.whisperx[26].start 586.428
transcript.whisperx[26].end 612.576
transcript.whisperx[26].text 跟委員報告第一個就是我們的收入保險是從天然災害保險轉過來的所以現在都調高兩萬而且我們會滾動的檢討你是調高到兩萬不是調高兩萬調高到兩萬從一萬八調高到兩萬只有增加兩千塊然後現在我們會定期的滾動的檢討特別是我已經跟同仁講我們至少在年度的時候會針對上一年度的成本有一些調高的時候我們會
transcript.whisperx[27].start 613.536
transcript.whisperx[27].end 633.367
transcript.whisperx[27].text 比照的去做一個調整所以部長這一題我就跟你提出來了嘛這一題我覺得應該放到你們滾動檢討的一個重要的項目之一啦那很顯然的現在在高雄地區的稻米收入其實是銳減的大寮就不用講了大寮那個收入大概最少都超過六成以上
transcript.whisperx[28].start 634.167
transcript.whisperx[28].end 663.627
transcript.whisperx[28].text 美農最近開始準備要收割了發現它的它的空爆彈的情況不會比大寮還輕喔所以未來在這一個多月內如果全部收割完成你們的計算基準出來之後我相信我期待這個理賠的速度是要加快第二就是我現在跟您提出來的滾動式檢討未來的理賠金額是不是能夠滾動的增加在明年開始或者是下半年開始我覺得這個可能要把農
transcript.whisperx[29].start 665.007
transcript.whisperx[29].end 685.779
transcript.whisperx[29].text 請農業部把他列為一個非常重要的一個會的我想我們已經有一個固定的那個滾動機制大概兩期做完了以後我們就會檢討然後第二個部分就是有關於這個保險的理賠他會比天然災害快因為天然災害每一塊地都去看那保險的都不用所以我剛才說的我們會等憑個資料一出來以後我們馬上計算
transcript.whisperx[30].start 686.499
transcript.whisperx[30].end 703.373
transcript.whisperx[30].text 那你的理賠其實還有另外一個是加強型的農民他必須付少許的金額那我覺得加強型的這一塊可能要加強去宣導啦很多農民不知道有加強型的這個保險所以加強型這一塊我覺得應該要加強去宣導好不好好謝謝