IVOD_ID |
161342 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/161342 |
日期 |
2025-05-14 |
會議資料.會議代碼 |
聯席會議-11-3-22,23-1 |
會議資料.會議代碼:str |
第11屆第3會期教育及文化、交通委員會第1次聯席會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
1 |
會議資料.種類 |
聯席會議 |
會議資料.委員會代碼[0] |
22 |
會議資料.委員會代碼[1] |
23 |
會議資料.委員會代碼:str[0] |
教育及文化委員會 |
會議資料.委員會代碼:str[1] |
交通委員會 |
會議資料.標題 |
第11屆第3會期教育及文化、交通委員會第1次聯席會議 |
影片種類 |
Clip |
開始時間 |
2025-05-14T11:10:04+08:00 |
結束時間 |
2025-05-14T11:24:14+08:00 |
影片長度 |
00:14:10 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/4f2e91488ef6971b95cb8196b27acf11ebe85dec65e1b640ab8e08a4c8c91792277aaf2a4e3413f65ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
葉元之 |
委員發言時間 |
11:10:04 - 11:24:14 |
會議時間 |
2025-05-14T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期教育及文化、交通委員會第1次聯席會議(事由:一、審查委員葛如鈞等37人擬具「人工智慧基本法草案」案。
二、審查委員邱若華等17人擬具「人工智慧基本法草案」案。
三、審查委員羅廷瑋等17人擬具「人工智慧基本法草案」案。
四、審查委員萬美玲等18人擬具「人工智慧基本法草案」案。
五、審查委員許宇甄等20人擬具「人工智慧基本法草案」案。
六、審查委員張嘉郡等21人擬具「人工智慧基本法草案」案。
七、審查委員林倩綺等23人擬具「人工智慧基本法草案」案。
(僅進行詢答)) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
14.74596875 |
transcript.pyannote[0].end |
16.68659375 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
17.47971875 |
transcript.pyannote[1].end |
19.47096875 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
23.72346875 |
transcript.pyannote[2].end |
38.65784375 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
38.91096875 |
transcript.pyannote[3].end |
48.15846875 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
48.78284375 |
transcript.pyannote[4].end |
53.40659375 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
53.87909375 |
transcript.pyannote[5].end |
67.42971875 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
67.63221875 |
transcript.pyannote[6].end |
67.64909375 |
transcript.pyannote[7].speaker |
SPEAKER_02 |
transcript.pyannote[7].start |
67.64909375 |
transcript.pyannote[7].end |
70.65284375 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
68.23971875 |
transcript.pyannote[8].end |
71.66534375 |
transcript.pyannote[9].speaker |
SPEAKER_02 |
transcript.pyannote[9].start |
71.66534375 |
transcript.pyannote[9].end |
93.04596875 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
72.86346875 |
transcript.pyannote[10].end |
72.98159375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
92.80971875 |
transcript.pyannote[11].end |
99.55971875 |
transcript.pyannote[12].speaker |
SPEAKER_02 |
transcript.pyannote[12].start |
97.63596875 |
transcript.pyannote[12].end |
109.27971875 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
108.33471875 |
transcript.pyannote[13].end |
114.27471875 |
transcript.pyannote[14].speaker |
SPEAKER_02 |
transcript.pyannote[14].start |
114.27471875 |
transcript.pyannote[14].end |
114.46034375 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
114.46034375 |
transcript.pyannote[15].end |
115.08471875 |
transcript.pyannote[16].speaker |
SPEAKER_02 |
transcript.pyannote[16].start |
115.08471875 |
transcript.pyannote[16].end |
124.78784375 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
115.11846875 |
transcript.pyannote[17].end |
115.47284375 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
121.54784375 |
transcript.pyannote[18].end |
121.96971875 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
124.31534375 |
transcript.pyannote[19].end |
127.13346875 |
transcript.pyannote[20].speaker |
SPEAKER_02 |
transcript.pyannote[20].start |
125.63159375 |
transcript.pyannote[20].end |
128.09534375 |
transcript.pyannote[21].speaker |
SPEAKER_02 |
transcript.pyannote[21].start |
128.33159375 |
transcript.pyannote[21].end |
132.55034375 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
131.45346875 |
transcript.pyannote[22].end |
133.83284375 |
transcript.pyannote[23].speaker |
SPEAKER_02 |
transcript.pyannote[23].start |
134.22096875 |
transcript.pyannote[23].end |
134.37284375 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
134.37284375 |
transcript.pyannote[24].end |
137.64659375 |
transcript.pyannote[25].speaker |
SPEAKER_02 |
transcript.pyannote[25].start |
135.79034375 |
transcript.pyannote[25].end |
135.97596875 |
transcript.pyannote[26].speaker |
SPEAKER_02 |
transcript.pyannote[26].start |
137.17409375 |
transcript.pyannote[26].end |
139.65471875 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
138.49034375 |
transcript.pyannote[27].end |
144.97034375 |
transcript.pyannote[28].speaker |
SPEAKER_02 |
transcript.pyannote[28].start |
143.41784375 |
transcript.pyannote[28].end |
143.80596875 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
146.21909375 |
transcript.pyannote[29].end |
148.98659375 |
transcript.pyannote[30].speaker |
SPEAKER_02 |
transcript.pyannote[30].start |
146.67471875 |
transcript.pyannote[30].end |
147.01221875 |
transcript.pyannote[31].speaker |
SPEAKER_02 |
transcript.pyannote[31].start |
148.21034375 |
transcript.pyannote[31].end |
148.58159375 |
transcript.pyannote[32].speaker |
SPEAKER_02 |
transcript.pyannote[32].start |
148.98659375 |
transcript.pyannote[32].end |
149.88096875 |
transcript.pyannote[33].speaker |
SPEAKER_02 |
transcript.pyannote[33].start |
150.38721875 |
transcript.pyannote[33].end |
151.14659375 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
151.14659375 |
transcript.pyannote[34].end |
153.25596875 |
transcript.pyannote[35].speaker |
SPEAKER_02 |
transcript.pyannote[35].start |
151.16346875 |
transcript.pyannote[35].end |
151.70346875 |
transcript.pyannote[36].speaker |
SPEAKER_02 |
transcript.pyannote[36].start |
153.05346875 |
transcript.pyannote[36].end |
153.99846875 |
transcript.pyannote[37].speaker |
SPEAKER_02 |
transcript.pyannote[37].start |
154.96034375 |
transcript.pyannote[37].end |
158.67284375 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
156.02346875 |
transcript.pyannote[38].end |
156.39471875 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
158.67284375 |
transcript.pyannote[39].end |
179.44596875 |
transcript.pyannote[40].speaker |
SPEAKER_02 |
transcript.pyannote[40].start |
178.50096875 |
transcript.pyannote[40].end |
191.02221875 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
179.96909375 |
transcript.pyannote[41].end |
180.74534375 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
191.02221875 |
transcript.pyannote[42].end |
191.03909375 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
191.37659375 |
transcript.pyannote[43].end |
191.39346875 |
transcript.pyannote[44].speaker |
SPEAKER_02 |
transcript.pyannote[44].start |
191.39346875 |
transcript.pyannote[44].end |
192.03471875 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
192.03471875 |
transcript.pyannote[45].end |
195.88221875 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
198.32909375 |
transcript.pyannote[46].end |
210.34409375 |
transcript.pyannote[47].speaker |
SPEAKER_01 |
transcript.pyannote[47].start |
211.10346875 |
transcript.pyannote[47].end |
213.66846875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
213.60096875 |
transcript.pyannote[48].end |
215.40659375 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
213.71909375 |
transcript.pyannote[49].end |
214.27596875 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
215.40659375 |
transcript.pyannote[50].end |
240.04409375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
240.53346875 |
transcript.pyannote[51].end |
241.93409375 |
transcript.pyannote[52].speaker |
SPEAKER_01 |
transcript.pyannote[52].start |
241.34346875 |
transcript.pyannote[52].end |
250.91159375 |
transcript.pyannote[53].speaker |
SPEAKER_01 |
transcript.pyannote[53].start |
252.04221875 |
transcript.pyannote[53].end |
253.12221875 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
253.57784375 |
transcript.pyannote[54].end |
255.53534375 |
transcript.pyannote[55].speaker |
SPEAKER_02 |
transcript.pyannote[55].start |
255.53534375 |
transcript.pyannote[55].end |
266.23409375 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
255.55221875 |
transcript.pyannote[56].end |
255.70409375 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
256.39596875 |
transcript.pyannote[57].end |
256.69971875 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
265.22159375 |
transcript.pyannote[58].end |
266.16659375 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
266.23409375 |
transcript.pyannote[59].end |
266.84159375 |
transcript.pyannote[60].speaker |
SPEAKER_02 |
transcript.pyannote[60].start |
266.84159375 |
transcript.pyannote[60].end |
266.85846875 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
266.85846875 |
transcript.pyannote[61].end |
266.87534375 |
transcript.pyannote[62].speaker |
SPEAKER_02 |
transcript.pyannote[62].start |
266.87534375 |
transcript.pyannote[62].end |
266.92596875 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
266.92596875 |
transcript.pyannote[63].end |
266.95971875 |
transcript.pyannote[64].speaker |
SPEAKER_02 |
transcript.pyannote[64].start |
266.95971875 |
transcript.pyannote[64].end |
267.02721875 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
267.02721875 |
transcript.pyannote[65].end |
268.74846875 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
269.15346875 |
transcript.pyannote[66].end |
274.51971875 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
269.64284375 |
transcript.pyannote[67].end |
270.40221875 |
transcript.pyannote[68].speaker |
SPEAKER_02 |
transcript.pyannote[68].start |
270.40221875 |
transcript.pyannote[68].end |
270.41909375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
275.68409375 |
transcript.pyannote[69].end |
287.73284375 |
transcript.pyannote[70].speaker |
SPEAKER_04 |
transcript.pyannote[70].start |
287.36159375 |
transcript.pyannote[70].end |
287.85096875 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
287.85096875 |
transcript.pyannote[71].end |
289.58909375 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
289.96034375 |
transcript.pyannote[72].end |
319.32284375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
319.69409375 |
transcript.pyannote[73].end |
334.49346875 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
320.33534375 |
transcript.pyannote[74].end |
320.53784375 |
transcript.pyannote[75].speaker |
SPEAKER_01 |
transcript.pyannote[75].start |
334.49346875 |
transcript.pyannote[75].end |
338.10471875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
337.81784375 |
transcript.pyannote[76].end |
351.01409375 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
341.71596875 |
transcript.pyannote[77].end |
342.17159375 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
343.21784375 |
transcript.pyannote[78].end |
343.60596875 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
350.72721875 |
transcript.pyannote[79].end |
362.57346875 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
362.80971875 |
transcript.pyannote[80].end |
369.32346875 |
transcript.pyannote[81].speaker |
SPEAKER_01 |
transcript.pyannote[81].start |
369.45846875 |
transcript.pyannote[81].end |
386.89034375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
387.05909375 |
transcript.pyannote[82].end |
433.78596875 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
432.50346875 |
transcript.pyannote[83].end |
432.55409375 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
433.78596875 |
transcript.pyannote[84].end |
435.49034375 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
435.49034375 |
transcript.pyannote[85].end |
441.76784375 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
440.82284375 |
transcript.pyannote[86].end |
474.30284375 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
449.05784375 |
transcript.pyannote[87].end |
449.66534375 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
449.73284375 |
transcript.pyannote[88].end |
450.52596875 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
464.17784375 |
transcript.pyannote[89].end |
465.34221875 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
465.76409375 |
transcript.pyannote[90].end |
466.69221875 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
473.39159375 |
transcript.pyannote[91].end |
481.93034375 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
479.48346875 |
transcript.pyannote[92].end |
479.90534375 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
481.93034375 |
transcript.pyannote[93].end |
500.99909375 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
497.16846875 |
transcript.pyannote[94].end |
498.82221875 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
501.18471875 |
transcript.pyannote[95].end |
510.70221875 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
509.08221875 |
transcript.pyannote[96].end |
540.19971875 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
513.30096875 |
transcript.pyannote[97].end |
513.67221875 |
transcript.pyannote[98].speaker |
SPEAKER_01 |
transcript.pyannote[98].start |
515.35971875 |
transcript.pyannote[98].end |
515.71409375 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
536.85846875 |
transcript.pyannote[99].end |
537.55034375 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
538.61346875 |
transcript.pyannote[100].end |
547.92846875 |
transcript.pyannote[101].speaker |
SPEAKER_04 |
transcript.pyannote[101].start |
546.51096875 |
transcript.pyannote[101].end |
547.89471875 |
transcript.pyannote[102].speaker |
SPEAKER_04 |
transcript.pyannote[102].start |
547.92846875 |
transcript.pyannote[102].end |
548.45159375 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
547.97909375 |
transcript.pyannote[103].end |
555.91034375 |
transcript.pyannote[104].speaker |
SPEAKER_04 |
transcript.pyannote[104].start |
550.98284375 |
transcript.pyannote[104].end |
551.32034375 |
transcript.pyannote[105].speaker |
SPEAKER_01 |
transcript.pyannote[105].start |
558.00284375 |
transcript.pyannote[105].end |
559.52159375 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
559.69034375 |
transcript.pyannote[106].end |
580.15971875 |
transcript.pyannote[107].speaker |
SPEAKER_03 |
transcript.pyannote[107].start |
580.48034375 |
transcript.pyannote[107].end |
582.62346875 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
582.23534375 |
transcript.pyannote[108].end |
584.07471875 |
transcript.pyannote[109].speaker |
SPEAKER_03 |
transcript.pyannote[109].start |
584.04096875 |
transcript.pyannote[109].end |
587.02784375 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
587.02784375 |
transcript.pyannote[110].end |
594.60471875 |
transcript.pyannote[111].speaker |
SPEAKER_03 |
transcript.pyannote[111].start |
593.42346875 |
transcript.pyannote[111].end |
593.62596875 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
594.95909375 |
transcript.pyannote[112].end |
598.24971875 |
transcript.pyannote[113].speaker |
SPEAKER_03 |
transcript.pyannote[113].start |
598.41846875 |
transcript.pyannote[113].end |
599.49846875 |
transcript.pyannote[114].speaker |
SPEAKER_01 |
transcript.pyannote[114].start |
599.49846875 |
transcript.pyannote[114].end |
599.90346875 |
transcript.pyannote[115].speaker |
SPEAKER_03 |
transcript.pyannote[115].start |
599.90346875 |
transcript.pyannote[115].end |
601.08471875 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
601.08471875 |
transcript.pyannote[116].end |
601.18596875 |
transcript.pyannote[117].speaker |
SPEAKER_03 |
transcript.pyannote[117].start |
601.18596875 |
transcript.pyannote[117].end |
610.02846875 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
601.25346875 |
transcript.pyannote[118].end |
605.50596875 |
transcript.pyannote[119].speaker |
SPEAKER_01 |
transcript.pyannote[119].start |
610.02846875 |
transcript.pyannote[119].end |
623.78159375 |
transcript.pyannote[120].speaker |
SPEAKER_03 |
transcript.pyannote[120].start |
617.21721875 |
transcript.pyannote[120].end |
617.75721875 |
transcript.pyannote[121].speaker |
SPEAKER_03 |
transcript.pyannote[121].start |
622.12784375 |
transcript.pyannote[121].end |
633.02909375 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
633.02909375 |
transcript.pyannote[122].end |
633.36659375 |
transcript.pyannote[123].speaker |
SPEAKER_03 |
transcript.pyannote[123].start |
633.36659375 |
transcript.pyannote[123].end |
633.38346875 |
transcript.pyannote[124].speaker |
SPEAKER_01 |
transcript.pyannote[124].start |
633.38346875 |
transcript.pyannote[124].end |
656.38409375 |
transcript.pyannote[125].speaker |
SPEAKER_03 |
transcript.pyannote[125].start |
633.40034375 |
transcript.pyannote[125].end |
636.97784375 |
transcript.pyannote[126].speaker |
SPEAKER_02 |
transcript.pyannote[126].start |
636.97784375 |
transcript.pyannote[126].end |
637.66971875 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
639.81284375 |
transcript.pyannote[127].end |
639.82971875 |
transcript.pyannote[128].speaker |
SPEAKER_02 |
transcript.pyannote[128].start |
639.82971875 |
transcript.pyannote[128].end |
640.13346875 |
transcript.pyannote[129].speaker |
SPEAKER_02 |
transcript.pyannote[129].start |
643.64346875 |
transcript.pyannote[129].end |
644.72346875 |
transcript.pyannote[130].speaker |
SPEAKER_04 |
transcript.pyannote[130].start |
648.60471875 |
transcript.pyannote[130].end |
648.65534375 |
transcript.pyannote[131].speaker |
SPEAKER_03 |
transcript.pyannote[131].start |
648.65534375 |
transcript.pyannote[131].end |
648.72284375 |
transcript.pyannote[132].speaker |
SPEAKER_04 |
transcript.pyannote[132].start |
648.72284375 |
transcript.pyannote[132].end |
648.77346875 |
transcript.pyannote[133].speaker |
SPEAKER_03 |
transcript.pyannote[133].start |
650.02221875 |
transcript.pyannote[133].end |
650.69721875 |
transcript.pyannote[134].speaker |
SPEAKER_04 |
transcript.pyannote[134].start |
650.69721875 |
transcript.pyannote[134].end |
650.71409375 |
transcript.pyannote[135].speaker |
SPEAKER_03 |
transcript.pyannote[135].start |
652.26659375 |
transcript.pyannote[135].end |
652.62096875 |
transcript.pyannote[136].speaker |
SPEAKER_03 |
transcript.pyannote[136].start |
654.34221875 |
transcript.pyannote[136].end |
654.35909375 |
transcript.pyannote[137].speaker |
SPEAKER_04 |
transcript.pyannote[137].start |
654.35909375 |
transcript.pyannote[137].end |
654.37596875 |
transcript.pyannote[138].speaker |
SPEAKER_03 |
transcript.pyannote[138].start |
654.37596875 |
transcript.pyannote[138].end |
654.94971875 |
transcript.pyannote[139].speaker |
SPEAKER_03 |
transcript.pyannote[139].start |
656.38409375 |
transcript.pyannote[139].end |
656.63721875 |
transcript.pyannote[140].speaker |
SPEAKER_01 |
transcript.pyannote[140].start |
656.63721875 |
transcript.pyannote[140].end |
656.67096875 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
656.70471875 |
transcript.pyannote[141].end |
663.89346875 |
transcript.pyannote[142].speaker |
SPEAKER_01 |
transcript.pyannote[142].start |
664.14659375 |
transcript.pyannote[142].end |
687.67034375 |
transcript.pyannote[143].speaker |
SPEAKER_03 |
transcript.pyannote[143].start |
687.67034375 |
transcript.pyannote[143].end |
687.88971875 |
transcript.pyannote[144].speaker |
SPEAKER_01 |
transcript.pyannote[144].start |
687.88971875 |
transcript.pyannote[144].end |
697.18784375 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
697.54221875 |
transcript.pyannote[145].end |
698.62221875 |
transcript.pyannote[146].speaker |
SPEAKER_01 |
transcript.pyannote[146].start |
699.53346875 |
transcript.pyannote[146].end |
704.96721875 |
transcript.pyannote[147].speaker |
SPEAKER_03 |
transcript.pyannote[147].start |
701.44034375 |
transcript.pyannote[147].end |
702.53721875 |
transcript.pyannote[148].speaker |
SPEAKER_03 |
transcript.pyannote[148].start |
704.96721875 |
transcript.pyannote[148].end |
715.34534375 |
transcript.pyannote[149].speaker |
SPEAKER_01 |
transcript.pyannote[149].start |
713.92784375 |
transcript.pyannote[149].end |
716.23971875 |
transcript.pyannote[150].speaker |
SPEAKER_03 |
transcript.pyannote[150].start |
716.23971875 |
transcript.pyannote[150].end |
729.21659375 |
transcript.pyannote[151].speaker |
SPEAKER_01 |
transcript.pyannote[151].start |
716.25659375 |
transcript.pyannote[151].end |
717.96096875 |
transcript.pyannote[152].speaker |
SPEAKER_01 |
transcript.pyannote[152].start |
718.77096875 |
transcript.pyannote[152].end |
719.12534375 |
transcript.pyannote[153].speaker |
SPEAKER_01 |
transcript.pyannote[153].start |
725.84159375 |
transcript.pyannote[153].end |
746.96909375 |
transcript.pyannote[154].speaker |
SPEAKER_03 |
transcript.pyannote[154].start |
734.19471875 |
transcript.pyannote[154].end |
734.36346875 |
transcript.pyannote[155].speaker |
SPEAKER_04 |
transcript.pyannote[155].start |
746.98596875 |
transcript.pyannote[155].end |
747.00284375 |
transcript.pyannote[156].speaker |
SPEAKER_04 |
transcript.pyannote[156].start |
747.01971875 |
transcript.pyannote[156].end |
747.42471875 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
747.88034375 |
transcript.pyannote[157].end |
748.33596875 |
transcript.pyannote[158].speaker |
SPEAKER_03 |
transcript.pyannote[158].start |
748.33596875 |
transcript.pyannote[158].end |
748.35284375 |
transcript.pyannote[159].speaker |
SPEAKER_01 |
transcript.pyannote[159].start |
748.35284375 |
transcript.pyannote[159].end |
748.36971875 |
transcript.pyannote[160].speaker |
SPEAKER_03 |
transcript.pyannote[160].start |
748.75784375 |
transcript.pyannote[160].end |
762.86534375 |
transcript.pyannote[161].speaker |
SPEAKER_01 |
transcript.pyannote[161].start |
756.72284375 |
transcript.pyannote[161].end |
762.49409375 |
transcript.pyannote[162].speaker |
SPEAKER_04 |
transcript.pyannote[162].start |
762.86534375 |
transcript.pyannote[162].end |
762.88221875 |
transcript.pyannote[163].speaker |
SPEAKER_03 |
transcript.pyannote[163].start |
762.88221875 |
transcript.pyannote[163].end |
762.91596875 |
transcript.pyannote[164].speaker |
SPEAKER_01 |
transcript.pyannote[164].start |
763.03409375 |
transcript.pyannote[164].end |
764.18159375 |
transcript.pyannote[165].speaker |
SPEAKER_03 |
transcript.pyannote[165].start |
764.18159375 |
transcript.pyannote[165].end |
764.43471875 |
transcript.pyannote[166].speaker |
SPEAKER_01 |
transcript.pyannote[166].start |
765.34596875 |
transcript.pyannote[166].end |
767.52284375 |
transcript.pyannote[167].speaker |
SPEAKER_03 |
transcript.pyannote[167].start |
766.47659375 |
transcript.pyannote[167].end |
767.50596875 |
transcript.pyannote[168].speaker |
SPEAKER_03 |
transcript.pyannote[168].start |
767.52284375 |
transcript.pyannote[168].end |
767.91096875 |
transcript.pyannote[169].speaker |
SPEAKER_01 |
transcript.pyannote[169].start |
768.82221875 |
transcript.pyannote[169].end |
794.28659375 |
transcript.pyannote[170].speaker |
SPEAKER_03 |
transcript.pyannote[170].start |
794.28659375 |
transcript.pyannote[170].end |
794.55659375 |
transcript.pyannote[171].speaker |
SPEAKER_01 |
transcript.pyannote[171].start |
794.55659375 |
transcript.pyannote[171].end |
803.98971875 |
transcript.pyannote[172].speaker |
SPEAKER_03 |
transcript.pyannote[172].start |
803.92221875 |
transcript.pyannote[172].end |
804.17534375 |
transcript.pyannote[173].speaker |
SPEAKER_01 |
transcript.pyannote[173].start |
804.17534375 |
transcript.pyannote[173].end |
829.94346875 |
transcript.pyannote[174].speaker |
SPEAKER_01 |
transcript.pyannote[174].start |
830.38221875 |
transcript.pyannote[174].end |
844.38846875 |
transcript.pyannote[175].speaker |
SPEAKER_00 |
transcript.pyannote[175].start |
830.41596875 |
transcript.pyannote[175].end |
831.96846875 |
transcript.pyannote[176].speaker |
SPEAKER_01 |
transcript.pyannote[176].start |
844.79346875 |
transcript.pyannote[176].end |
849.45096875 |
transcript.pyannote[177].speaker |
SPEAKER_00 |
transcript.pyannote[177].start |
848.53971875 |
transcript.pyannote[177].end |
848.59034375 |
transcript.whisperx[0].start |
15.202 |
transcript.whisperx[0].end |
16.303 |
transcript.whisperx[0].text |
麻煩請國會會主委 謝謝有請吳主委 貝子荀 謝謝 |
transcript.whisperx[1].start |
24.293 |
transcript.whisperx[1].end |
43.03 |
transcript.whisperx[1].text |
主委好我們現在大家在談這個AI的時候都會談到我們要有自己的主權AI嘛那就是希望也能夠有那個我們大型的大語言的模型那我之前我們有關心國科會的那個TED計畫那當時那個TED計畫是在112年編列了2.1億2.3億啦在做這個事情然後第二年也編列了 |
transcript.whisperx[2].start |
48.935 |
transcript.whisperx[2].end |
65.861 |
transcript.whisperx[2].text |
第二年也有持續編列8000萬的預算那第一年的2.3億裡面大概有1.12億是購置硬體我現在想要問國科會這個TED的計畫這個大語言模型還有要繼續發展嗎 |
transcript.whisperx[3].start |
67.702 |
transcript.whisperx[3].end |
89.705 |
transcript.whisperx[3].text |
我們現在持續在發展,那我們現在發展的重點...我說針對模型本身啊模型本身我們因為政府不能夠永遠是靠政府在發展模型我們現在把這個相關的資源也把它推動到希望我們的學界、產業界共同來發展各種不同應用需要的一些代言模型 |
transcript.whisperx[4].start |
90.625 |
transcript.whisperx[4].end |
109.841 |
transcript.whisperx[4].text |
所以這個才是最根本的做法意思是說現在政府沒有要來做這個模型是希望業界或學界延續來做全世界都是學界跟產業界在發展不是政府本身發展所以我們只是做了一個試驗性的範例那你有信心說透過這樣的方式我們的主權AI是可以發展起來嗎可以你有信心 |
transcript.whisperx[5].start |
116.426 |
transcript.whisperx[5].end |
142.363 |
transcript.whisperx[5].text |
我有信心我跟委員報告我們近期我們的產業界就會宣布會大力的投資在我們的這個算力產業界會投資喔產業界會投資因為產業界是哪一些產業哪一些企業這個他們宣布委員就會知道大概投資多少錢金額這個投資額會蠻大的蠻大是大概多少我不能幫他們講講一個範圍嘛讓我們大家有點信心嘛大概範圍多少有超過幾千億嗎 |
transcript.whisperx[6].start |
146.626 |
transcript.whisperx[6].end |
153.131 |
transcript.whisperx[6].text |
幾千億喔或是 或者多少這個差不多喔我看你的表情好像覺得我猜對了這個喔 |
transcript.whisperx[7].start |
155.011 |
transcript.whisperx[7].end |
177.292 |
transcript.whisperx[7].text |
大家期待啦 因為Computex他們就會宣布了我們非常期待那但是因為國科會也有編列計畫啦我們就有看到說後續的延續計畫是科技計畫1.4億看起來是要讓各單位各機關可能也包括學界來申請然後是跟大語言模型可以應用的資料庫都可以來申請計畫對不對 |
transcript.whisperx[8].start |
181.156 |
transcript.whisperx[8].end |
195.434 |
transcript.whisperx[8].text |
國會都是希望學界跟產業界以民間的力量來執行相關的研究的工作那我請問一下速發部主委稍微再留一下 請問一下速發部 |
transcript.whisperx[9].start |
199.04 |
transcript.whisperx[9].end |
209.634 |
transcript.whisperx[9].text |
我們從文化部提供的資料裡面看到文化部說要配合速發部建構台灣主權AI訓練語料庫所以代表說速發部有這個 |
transcript.whisperx[10].start |
211.175 |
transcript.whisperx[10].end |
235.663 |
transcript.whisperx[10].text |
雨料庫的這個計畫嘛對不對對我們正在逐步啟動當中但是在你們報告裡面卻沒提到這非常奇怪理論上我們今天討論AI你們應該要主動提到啦這也不是什麼機密啦因為你們之前曾經也有在那個媒體有發布過相關訊息那為什麼報告裡面沒有是怕大家問還是怎麼樣那我想來問這個速發部你跟國科會申請經費應該是在國科會的1.4億的科技計畫裡面嘛主委應該是這樣吧 |
transcript.whisperx[11].start |
240.578 |
transcript.whisperx[11].end |
267.247 |
transcript.whisperx[11].text |
我們這個計畫我問主委你後來AI是有編列1.4億的科技計畫嗎讓各單位申請書發部是不是根據這個計畫申請了這個語料庫的資料是不是不是我們各部會申請的會不一樣不一樣我們編列的這個學界的研究是國科會在執行對那各部還會有其他那書發部好OK那書發部你們這個計畫要用多少錢 |
transcript.whisperx[12].start |
270.018 |
transcript.whisperx[12].end |
297.306 |
transcript.whisperx[12].text |
就是主權AI訓練語料庫中文語料這個資料庫的計畫要花多少錢我們現在向國科會的科發基金申請一個政府資料匯流跟主權AI部署的計畫那我們目前的這個希望的計畫金額大概是四千萬今年度申請四千萬那這個計畫主要要做什麼我們看一下好不好因為我有針對你們之前記者會新聞稿有來秀一下請那個是次長嗎 |
transcript.whisperx[13].start |
298.266 |
transcript.whisperx[13].end |
318.653 |
transcript.whisperx[13].text |
幫我們確認一下對不對啦你們是講說要建立這個資料庫是要鬆綁駐作權法免費提供一些訓練語料給我們的國內以外他是要給國內以外的大型語言模型讓大家來多使用台灣的訓練資料包括優先採用政府擁有駐作權的非機密文件等等如施政報告是這個嗎 |
transcript.whisperx[14].start |
320.481 |
transcript.whisperx[14].end |
345.19 |
transcript.whisperx[14].text |
是 但是鬆綁著作權法這個方法應該是說它詳細的內容是透過標準的授權的條款方便資料提供者跟資料需求者能夠快速的達成餘料的使用所以你今天要提供的是有著作權的相關資料除了沒有著作權 政府有很多當然也沒有著作權政府有些出版品是有著作權 |
transcript.whisperx[15].start |
346.39 |
transcript.whisperx[15].end |
361.803 |
transcript.whisperx[15].text |
對 然後希望能夠透過授權條款能夠解決AI訓練上可能會發生那其實這個您提到的一個業界現在很擔心的問題因為現在很多業界他們在訓練AI的時候常常就是會面臨到這個這個公開資料有沒有取得授權問題 |
transcript.whisperx[16].start |
363.104 |
transcript.whisperx[16].end |
385.664 |
transcript.whisperx[16].text |
有的資料是公開的但是沒有取得授權他不曉得能不能拿來做訓練國外也有面臨到這樣的狀況如果今天蘇巴部提供的當然都是有授權的很好可是他並沒有進一步解決我剛剛提出來業界的憂慮我不知道蘇巴部或國科會對於我剛剛所提到的這個問題就是資料授權條款的解決有沒有什麼構想 |
transcript.whisperx[17].start |
387.096 |
transcript.whisperx[17].end |
408.832 |
transcript.whisperx[17].text |
跟委員報告就是說我們這個語料庫大概有兩個好處第一個從前如果要談授權要個別去談這是非常耗費時間成本的那有一個語料庫的話那上面都是合法授權的那當然就能夠這個快速的來訓練使用那另外一件事情當然就是所謂的這個授權條款過去要個別商議如果有一個 |
transcript.whisperx[18].start |
409.652 |
transcript.whisperx[18].end |
433.202 |
transcript.whisperx[18].text |
標準的或模範的範本的這個授權條款大家都適用狀況之下的話那這個註冊權商議個別這個談條件的這個問題也可以解決這個大概是我們跟各位台德的團隊在研商他們過去的這個收集資料過程中他們覺得最困擾的問題就他們要個別去談第二他還個別的授權條件可能還不一樣那我們從這方面來解決那怎麼解決現在想法是什麼 |
transcript.whisperx[19].start |
435.863 |
transcript.whisperx[19].end |
458.754 |
transcript.whisperx[19].text |
第一個它就是一個綜合式的語料庫集中式的語料庫你現在這個語料庫是有解決的但是我現在講說比如說產業個別他們要訓練他們的AI模型的時候就會面臨到有一些資料它是公開的資料但是因為也許沒有取得授權所以他們就面臨到說到底這個拿那個資料來做訓練會不會違法的問題那這個問題不解決其實是會影響到我們台灣AI的發展 |
transcript.whisperx[20].start |
464.737 |
transcript.whisperx[20].end |
489.069 |
transcript.whisperx[20].text |
蘇巴布你懂我的意思嗎我懂啊那現在問題是怎麼解決我現在不是講你這個語料庫怎樣我現在是從這個語料庫延伸出那個議題來跟你請教對我們為什麼要設語料庫就是不是供這個學術界使用是要供產業界使用的所以我們當然會希望這個語料庫能夠規模問題是你的語料庫一定有一些資料是不是產業界需要的嘛產業界有時候他需要的有些資料可能不在你的語料庫裡面嘛 |
transcript.whisperx[21].start |
490.69 |
transcript.whisperx[21].end |
508.001 |
transcript.whisperx[21].text |
那他拿一些資料來做訓練的時候他就會面臨我剛剛講的狀況嘛因為這個東西是公開但是沒有授權到底是可用不可用所以我是說除了速發部你自己建立你的語料庫之外你要去思考說企業在使用公開資料的這個免責的問題我不知道這個議題你們有沒有在討論啊我的問題是這個 |
transcript.whisperx[22].start |
510.783 |
transcript.whisperx[22].end |
522.365 |
transcript.whisperx[22].text |
是謝謝委員指教委員談到是另外一個問題就是產業資料的共享的問題那這個在本部開始研擬一個資料創新應用的條例那以歐盟情形來講會針對特定的領域設立Data Space譬如說它是汽車業它是這個農牧業它是這個環境業那在這個產業裡面建立他們是可以資料共享互換的一個機制 |
transcript.whisperx[23].start |
537.188 |
transcript.whisperx[23].end |
554.294 |
transcript.whisperx[23].text |
那這個會在我們的新的法律裡面你會有一個條例是不是因為我現在時間不夠啦可能也沒時間讓你詳細闡述可不可以給我一份資料你剛剛講的那個條例還有研究的方向好不好針對這個部分謝謝主委還有那個朱阿富我最後再問一個問題我請勞動部好不好 |
transcript.whisperx[24].start |
558.472 |
transcript.whisperx[24].end |
579.541 |
transcript.whisperx[24].text |
勞動部是關心說AI的發展可能會造成有一些勞工失業的問題我先問勞動部因為民進黨的立委很擔心放假多放個四天勞工就會說會被AI取代請問一下勞動部有這樣的顧慮嗎因為放假四天所以勞工就會擔心被AI取代勞動部會有這樣的顧慮嗎 |
transcript.whisperx[25].start |
580.933 |
transcript.whisperx[25].end |
597.812 |
transcript.whisperx[25].text |
包委員放四天假就會取代因為今天就委員的提案我們這邊勞動部有沒有這樣顧慮勞動部有立委提出這種高見你們當然要研究就是放了四天假勞工就會擔心被取代這種高見你們都沒研究 |
transcript.whisperx[26].start |
598.833 |
transcript.whisperx[26].end |
619.139 |
transcript.whisperx[26].text |
事實上會不會被AI取代?因為多放四天假,所以會不會?到底以後AI的應用會不會導致勞工失業?我知道,我現在是問說放,不要塔非所問啦我是說因為多放了四天假,員工就會害怕被AI取代有民進黨立委提出這種高見,你們勞動部有沒有? |
transcript.whisperx[27].start |
620.899 |
transcript.whisperx[27].end |
625.242 |
transcript.whisperx[27].text |
有沒有去研究有沒有這樣的一個問題我們勞動部事實上對於這個AI的應用那會對勞工產生的衝擊我們勞動部持續有在做研究你們各方面的影響都要研究AI會研究放假會不會導致員工被AI取代這種你要研究因為這是你們執政黨的立委提出來的啊好啦沒關係啦我知道你不太想回答 |
transcript.whisperx[28].start |
647.535 |
transcript.whisperx[28].end |
663.544 |
transcript.whisperx[28].text |
那我就跟您請教因為我今天看你勞動部的報告裡面針對AI你剛提到的主題AI的發展對勞工的影響我覺得你寫得很空洞你的兩個重點第一個重點是你要去訓練大家懂AI這個我都沒有意見但第二件事情 |
transcript.whisperx[29].start |
664.304 |
transcript.whisperx[29].end |
688.341 |
transcript.whisperx[29].text |
你說恐造成勞工失業部分你們有設一個台灣就業通一個網站平台讓他們去找工作還有一個就是各地都有就業服務站你就講這兩件事這本來就有在做這本來就有在做的東西你並沒有針對AI的發展導致員工失業提出任何有建設性的文字我舉個例子來講好了 |
transcript.whisperx[30].start |
689.702 |
transcript.whisperx[30].end |
698.464 |
transcript.whisperx[30].text |
比如說你有沒有告訴大家說哪一些產業或哪一些工作會因為AI的發展導致失業報告裡面看不到啊 |
transcript.whisperx[31].start |
699.828 |
transcript.whisperx[31].end |
719.174 |
transcript.whisperx[31].text |
請問一下勞動部你們有研究過嗎哪一些產業或哪一些職缺會受到影響跟委員報告事實上這個產業的會對AI的部分所造成的影響我們勞動部事實上都有在做研究那都沒有寫報告都沒有那你現在簡單講有什麼簡單來講跟委員報告是說跟對勞動權益因為我們今天是針對委員版本的提案的條文 |
transcript.whisperx[32].start |
726.796 |
transcript.whisperx[32].end |
746.537 |
transcript.whisperx[32].text |
不是啦等一下今天在這邊雖然是針對版本給意見但你今天也是代表勞動部來嘛只要問相關AI跟勞工的你就應該要回答啊所以我現在就請教你嘛你們有研究如果有研究那目前勞動部盤點哪一些職缺或產業會因為AI發展受到影響哪一些嘛哪一些 |
transcript.whisperx[33].start |
750.381 |
transcript.whisperx[33].end |
760.984 |
transcript.whisperx[33].text |
我們認為說有產業的類別來講的話不管是哪一種產業類別我們都是依照哪一些啦你不要一直跟我繞圈圈你們到底有沒有盤點過你到底有沒有盤點過有一些產業的類那哪一些嘛 |
transcript.whisperx[34].start |
768.928 |
transcript.whisperx[34].end |
795.058 |
transcript.whisperx[34].text |
所以你根本沒有盤點過啊所以你講不出來啊那我現在直接告訴你啦哪一種職缺可能會受到影響做文書處理的嘛做資料收集的嘛舉例來講可能一個事務所他本來需要十個十個助理在處理文件他現在可能因為AI的應用他只需要三個啦因為他只要會用AI就取代了很多人工收集資料或寫報告的這樣的一個工作啊對所以 |
transcript.whisperx[35].start |
795.698 |
transcript.whisperx[35].end |
811.219 |
transcript.whisperx[35].text |
比如說本來需要10個職缺現在只需要3個那剩下7個那就變成職缺的消失了嘛那當然會影響到勞工啊那針對這些人你們提出了什麼輔導措施看不到嘛因為你現在提的都只是你要教大家用AI對啊 |
transcript.whisperx[36].start |
812.12 |
transcript.whisperx[36].end |
829.029 |
transcript.whisperx[36].text |
十個裡面你教會人家用AI然後但是會用AI啊會用AI它就造成其他人不需要職缺就消失了啊所以有很多人會因為這樣子可能沒有工作然後那你怎麼去輔導他們你說因為我有平台跟我有救福站這個等於是沒有解決問題啊 |
transcript.whisperx[37].start |
830.51 |
transcript.whisperx[37].end |
849.044 |
transcript.whisperx[37].text |
所以今天勞動部來這邊像你們民進黨委員連放假都要扯到勞工會被AI取代然後結果今天勞動部來針對這個影響都講不出半點有內容的東西我希望勞動部是不是可以針對我剛剛的問題今天也不為難你啦好不好提供一個報告給我們好不好好 謝謝 |