iVOD / 161192

Field Value
IVOD_ID 161192
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/161192
日期 2025-05-12
會議資料.會議代碼 委員會-11-3-23-11
會議資料.會議代碼:str 第11屆第3會期交通委員會第11次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 11
會議資料.種類 委員會
會議資料.委員會代碼[0] 23
會議資料.委員會代碼:str[0] 交通委員會
會議資料.標題 第11屆第3會期交通委員會第11次全體委員會議
影片種類 Clip
開始時間 2025-05-12T11:04:41+08:00
結束時間 2025-05-12T11:20:08+08:00
影片長度 00:15:27
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/2e24114430e85d52cd250dc40cd38822988fdfbeb5b66875394796d2191c023f4d9f4a3faaf30f325ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 魯明哲
委員發言時間 11:04:41 - 11:20:08
會議時間 2025-05-12T09:00:00+08:00
會議名稱 立法院第11屆第3會期交通委員會第11次全體委員會議(事由:一、審查(一)委員吳宗憲等17人、(二)委員賴士葆等28人、(三)委員楊瓊瓔等26人分別擬具「人工智慧基本法草案」及(四)台灣民眾黨黨團擬具「人工智慧發展及管理條例草案」案。 二、審查(一)委員林俊憲等23人擬具「公路法第二十七條、第二十八條及第七十五條條文修正草案」、(二)委員陳冠廷等18人、(三)委員徐富癸等17人分別擬具「公路法第三十二條條文修正草案」、(四)委員陳冠廷等16人擬具「公路法第三十三條條文修正草案」、(五)台灣民眾黨黨團、(六)委員馬文君等19人、(七)委員邱若華等17人分別擬具「公路法第三十九條之一條文修正草案」、(八)委員何欣純等18人擬具「公路法第四十六條及第六十條之一條文修正草案」、(九)委員王義川等16人擬具「公路法第六十五條條文修正草案」及(十)委員林俊憲等21人擬具「公路法第七十二條條文修正草案」案。 三、審查(一)委員林俊憲等22人擬具「停車場法第四條條文修正草案」、(二)委員廖先翔等17人擬具「停車場法第三十二條條文修正草案」及(三)台灣民眾黨黨團擬具「停車場法第三十八條條文修正草案」案。 【本日會議僅針對開會事由二及三進行合併詢答】)
transcript.pyannote[0].speaker SPEAKER_04
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 1.02659375
transcript.pyannote[1].speaker SPEAKER_04
transcript.pyannote[1].start 4.77284375
transcript.pyannote[1].end 7.50659375
transcript.pyannote[2].speaker SPEAKER_04
transcript.pyannote[2].start 8.02971875
transcript.pyannote[2].end 9.02534375
transcript.pyannote[3].speaker SPEAKER_04
transcript.pyannote[3].start 10.71284375
transcript.pyannote[3].end 11.28659375
transcript.pyannote[4].speaker SPEAKER_04
transcript.pyannote[4].start 12.48471875
transcript.pyannote[4].end 17.24346875
transcript.pyannote[5].speaker SPEAKER_04
transcript.pyannote[5].start 18.01971875
transcript.pyannote[5].end 18.94784375
transcript.pyannote[6].speaker SPEAKER_04
transcript.pyannote[6].start 19.38659375
transcript.pyannote[6].end 20.92221875
transcript.pyannote[7].speaker SPEAKER_04
transcript.pyannote[7].start 21.88409375
transcript.pyannote[7].end 22.42409375
transcript.pyannote[8].speaker SPEAKER_04
transcript.pyannote[8].start 23.04846875
transcript.pyannote[8].end 23.41971875
transcript.pyannote[9].speaker SPEAKER_04
transcript.pyannote[9].start 24.85409375
transcript.pyannote[9].end 26.27159375
transcript.pyannote[10].speaker SPEAKER_04
transcript.pyannote[10].start 26.64284375
transcript.pyannote[10].end 27.14909375
transcript.pyannote[11].speaker SPEAKER_04
transcript.pyannote[11].start 27.38534375
transcript.pyannote[11].end 29.47784375
transcript.pyannote[12].speaker SPEAKER_04
transcript.pyannote[12].start 29.84909375
transcript.pyannote[12].end 38.52284375
transcript.pyannote[13].speaker SPEAKER_04
transcript.pyannote[13].start 38.87721875
transcript.pyannote[13].end 50.60534375
transcript.pyannote[14].speaker SPEAKER_04
transcript.pyannote[14].start 51.49971875
transcript.pyannote[14].end 68.23971875
transcript.pyannote[15].speaker SPEAKER_04
transcript.pyannote[15].start 68.71221875
transcript.pyannote[15].end 73.08284375
transcript.pyannote[16].speaker SPEAKER_04
transcript.pyannote[16].start 73.20096875
transcript.pyannote[16].end 79.51221875
transcript.pyannote[17].speaker SPEAKER_04
transcript.pyannote[17].start 79.69784375
transcript.pyannote[17].end 81.46971875
transcript.pyannote[18].speaker SPEAKER_04
transcript.pyannote[18].start 81.73971875
transcript.pyannote[18].end 83.03909375
transcript.pyannote[19].speaker SPEAKER_04
transcript.pyannote[19].start 83.57909375
transcript.pyannote[19].end 87.03846875
transcript.pyannote[20].speaker SPEAKER_04
transcript.pyannote[20].start 87.07221875
transcript.pyannote[20].end 89.28284375
transcript.pyannote[21].speaker SPEAKER_04
transcript.pyannote[21].start 90.10971875
transcript.pyannote[21].end 90.85221875
transcript.pyannote[22].speaker SPEAKER_04
transcript.pyannote[22].start 91.44284375
transcript.pyannote[22].end 92.03346875
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 92.03346875
transcript.pyannote[23].end 92.05034375
transcript.pyannote[24].speaker SPEAKER_04
transcript.pyannote[24].start 92.05034375
transcript.pyannote[24].end 92.06721875
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 92.06721875
transcript.pyannote[25].end 93.33284375
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 94.37909375
transcript.pyannote[26].end 134.62596875
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 135.68909375
transcript.pyannote[27].end 137.96721875
transcript.pyannote[28].speaker SPEAKER_04
transcript.pyannote[28].start 137.96721875
transcript.pyannote[28].end 138.79409375
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 138.79409375
transcript.pyannote[29].end 138.97971875
transcript.pyannote[30].speaker SPEAKER_04
transcript.pyannote[30].start 138.97971875
transcript.pyannote[30].end 139.72221875
transcript.pyannote[31].speaker SPEAKER_04
transcript.pyannote[31].start 139.77284375
transcript.pyannote[31].end 141.73034375
transcript.pyannote[32].speaker SPEAKER_04
transcript.pyannote[32].start 142.35471875
transcript.pyannote[32].end 145.17284375
transcript.pyannote[33].speaker SPEAKER_04
transcript.pyannote[33].start 145.40909375
transcript.pyannote[33].end 163.53284375
transcript.pyannote[34].speaker SPEAKER_04
transcript.pyannote[34].start 164.00534375
transcript.pyannote[34].end 164.62971875
transcript.pyannote[35].speaker SPEAKER_04
transcript.pyannote[35].start 165.05159375
transcript.pyannote[35].end 166.57034375
transcript.pyannote[36].speaker SPEAKER_03
transcript.pyannote[36].start 168.34221875
transcript.pyannote[36].end 169.00034375
transcript.pyannote[37].speaker SPEAKER_04
transcript.pyannote[37].start 169.06784375
transcript.pyannote[37].end 174.45096875
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 174.45096875
transcript.pyannote[38].end 174.53534375
transcript.pyannote[39].speaker SPEAKER_04
transcript.pyannote[39].start 174.53534375
transcript.pyannote[39].end 174.55221875
transcript.pyannote[40].speaker SPEAKER_03
transcript.pyannote[40].start 174.55221875
transcript.pyannote[40].end 174.58596875
transcript.pyannote[41].speaker SPEAKER_04
transcript.pyannote[41].start 174.58596875
transcript.pyannote[41].end 174.65346875
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 174.65346875
transcript.pyannote[42].end 183.51284375
transcript.pyannote[43].speaker SPEAKER_04
transcript.pyannote[43].start 174.70409375
transcript.pyannote[43].end 174.88971875
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 183.79971875
transcript.pyannote[44].end 190.97159375
transcript.pyannote[45].speaker SPEAKER_04
transcript.pyannote[45].start 190.97159375
transcript.pyannote[45].end 191.35971875
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 191.35971875
transcript.pyannote[46].end 191.88284375
transcript.pyannote[47].speaker SPEAKER_04
transcript.pyannote[47].start 191.88284375
transcript.pyannote[47].end 192.86159375
transcript.pyannote[48].speaker SPEAKER_04
transcript.pyannote[48].start 193.04721875
transcript.pyannote[48].end 194.58284375
transcript.pyannote[49].speaker SPEAKER_04
transcript.pyannote[49].start 194.88659375
transcript.pyannote[49].end 200.52284375
transcript.pyannote[50].speaker SPEAKER_04
transcript.pyannote[50].start 200.75909375
transcript.pyannote[50].end 201.53534375
transcript.pyannote[51].speaker SPEAKER_04
transcript.pyannote[51].start 201.85596875
transcript.pyannote[51].end 204.16784375
transcript.pyannote[52].speaker SPEAKER_04
transcript.pyannote[52].start 204.31971875
transcript.pyannote[52].end 205.12971875
transcript.pyannote[53].speaker SPEAKER_04
transcript.pyannote[53].start 205.55159375
transcript.pyannote[53].end 205.87221875
transcript.pyannote[54].speaker SPEAKER_04
transcript.pyannote[54].start 205.97346875
transcript.pyannote[54].end 206.76659375
transcript.pyannote[55].speaker SPEAKER_04
transcript.pyannote[55].start 207.13784375
transcript.pyannote[55].end 207.84659375
transcript.pyannote[56].speaker SPEAKER_04
transcript.pyannote[56].start 208.67346875
transcript.pyannote[56].end 209.77034375
transcript.pyannote[57].speaker SPEAKER_04
transcript.pyannote[57].start 210.25971875
transcript.pyannote[57].end 210.88409375
transcript.pyannote[58].speaker SPEAKER_04
transcript.pyannote[58].start 211.28909375
transcript.pyannote[58].end 212.38596875
transcript.pyannote[59].speaker SPEAKER_04
transcript.pyannote[59].start 212.55471875
transcript.pyannote[59].end 213.85409375
transcript.pyannote[60].speaker SPEAKER_04
transcript.pyannote[60].start 214.44471875
transcript.pyannote[60].end 215.76096875
transcript.pyannote[61].speaker SPEAKER_04
transcript.pyannote[61].start 216.06471875
transcript.pyannote[61].end 217.09409375
transcript.pyannote[62].speaker SPEAKER_04
transcript.pyannote[62].start 217.33034375
transcript.pyannote[62].end 217.66784375
transcript.pyannote[63].speaker SPEAKER_04
transcript.pyannote[63].start 218.44409375
transcript.pyannote[63].end 218.86596875
transcript.pyannote[64].speaker SPEAKER_04
transcript.pyannote[64].start 219.15284375
transcript.pyannote[64].end 220.24971875
transcript.pyannote[65].speaker SPEAKER_04
transcript.pyannote[65].start 220.70534375
transcript.pyannote[65].end 224.83971875
transcript.pyannote[66].speaker SPEAKER_04
transcript.pyannote[66].start 225.36284375
transcript.pyannote[66].end 227.35409375
transcript.pyannote[67].speaker SPEAKER_04
transcript.pyannote[67].start 227.75909375
transcript.pyannote[67].end 230.42534375
transcript.pyannote[68].speaker SPEAKER_04
transcript.pyannote[68].start 230.88096875
transcript.pyannote[68].end 232.66971875
transcript.pyannote[69].speaker SPEAKER_04
transcript.pyannote[69].start 233.15909375
transcript.pyannote[69].end 233.58096875
transcript.pyannote[70].speaker SPEAKER_04
transcript.pyannote[70].start 234.20534375
transcript.pyannote[70].end 237.86721875
transcript.pyannote[71].speaker SPEAKER_04
transcript.pyannote[71].start 238.33971875
transcript.pyannote[71].end 242.77784375
transcript.pyannote[72].speaker SPEAKER_04
transcript.pyannote[72].start 243.03096875
transcript.pyannote[72].end 265.01909375
transcript.pyannote[73].speaker SPEAKER_04
transcript.pyannote[73].start 265.44096875
transcript.pyannote[73].end 266.43659375
transcript.pyannote[74].speaker SPEAKER_04
transcript.pyannote[74].start 266.84159375
transcript.pyannote[74].end 267.97221875
transcript.pyannote[75].speaker SPEAKER_04
transcript.pyannote[75].start 268.44471875
transcript.pyannote[75].end 269.45721875
transcript.pyannote[76].speaker SPEAKER_04
transcript.pyannote[76].start 269.57534375
transcript.pyannote[76].end 270.63846875
transcript.pyannote[77].speaker SPEAKER_04
transcript.pyannote[77].start 272.02221875
transcript.pyannote[77].end 272.03909375
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 272.03909375
transcript.pyannote[78].end 273.03471875
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 273.69284375
transcript.pyannote[79].end 292.96409375
transcript.pyannote[80].speaker SPEAKER_04
transcript.pyannote[80].start 292.96409375
transcript.pyannote[80].end 300.01784375
transcript.pyannote[81].speaker SPEAKER_04
transcript.pyannote[81].start 300.50721875
transcript.pyannote[81].end 305.35034375
transcript.pyannote[82].speaker SPEAKER_04
transcript.pyannote[82].start 305.40096875
transcript.pyannote[82].end 328.89096875
transcript.pyannote[83].speaker SPEAKER_04
transcript.pyannote[83].start 329.00909375
transcript.pyannote[83].end 331.32096875
transcript.pyannote[84].speaker SPEAKER_04
transcript.pyannote[84].start 331.38846875
transcript.pyannote[84].end 332.90721875
transcript.pyannote[85].speaker SPEAKER_04
transcript.pyannote[85].start 333.36284375
transcript.pyannote[85].end 333.95346875
transcript.pyannote[86].speaker SPEAKER_04
transcript.pyannote[86].start 334.39221875
transcript.pyannote[86].end 335.59034375
transcript.pyannote[87].speaker SPEAKER_04
transcript.pyannote[87].start 335.87721875
transcript.pyannote[87].end 337.71659375
transcript.pyannote[88].speaker SPEAKER_04
transcript.pyannote[88].start 338.71221875
transcript.pyannote[88].end 342.50909375
transcript.pyannote[89].speaker SPEAKER_04
transcript.pyannote[89].start 342.91409375
transcript.pyannote[89].end 346.84596875
transcript.pyannote[90].speaker SPEAKER_04
transcript.pyannote[90].start 347.41971875
transcript.pyannote[90].end 357.44346875
transcript.pyannote[91].speaker SPEAKER_04
transcript.pyannote[91].start 357.98346875
transcript.pyannote[91].end 359.36721875
transcript.pyannote[92].speaker SPEAKER_04
transcript.pyannote[92].start 359.73846875
transcript.pyannote[92].end 360.32909375
transcript.pyannote[93].speaker SPEAKER_04
transcript.pyannote[93].start 360.86909375
transcript.pyannote[93].end 364.17659375
transcript.pyannote[94].speaker SPEAKER_04
transcript.pyannote[94].start 364.63221875
transcript.pyannote[94].end 378.26721875
transcript.pyannote[95].speaker SPEAKER_04
transcript.pyannote[95].start 378.53721875
transcript.pyannote[95].end 380.29221875
transcript.pyannote[96].speaker SPEAKER_04
transcript.pyannote[96].start 380.69721875
transcript.pyannote[96].end 382.67159375
transcript.pyannote[97].speaker SPEAKER_04
transcript.pyannote[97].start 385.87784375
transcript.pyannote[97].end 389.96159375
transcript.pyannote[98].speaker SPEAKER_04
transcript.pyannote[98].start 390.07971875
transcript.pyannote[98].end 390.75471875
transcript.pyannote[99].speaker SPEAKER_04
transcript.pyannote[99].start 391.34534375
transcript.pyannote[99].end 392.99909375
transcript.pyannote[100].speaker SPEAKER_04
transcript.pyannote[100].start 393.57284375
transcript.pyannote[100].end 395.09159375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 395.95221875
transcript.pyannote[101].end 397.67346875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 397.70721875
transcript.pyannote[102].end 404.84534375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 404.84534375
transcript.pyannote[103].end 404.86221875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 404.86221875
transcript.pyannote[104].end 404.87909375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 404.87909375
transcript.pyannote[105].end 409.55346875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 409.78971875
transcript.pyannote[106].end 414.02534375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 414.02534375
transcript.pyannote[107].end 414.97034375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 414.97034375
transcript.pyannote[108].end 415.81409375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 415.81409375
transcript.pyannote[109].end 415.91534375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 415.91534375
transcript.pyannote[110].end 415.94909375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 415.94909375
transcript.pyannote[111].end 415.96596875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 415.96596875
transcript.pyannote[112].end 415.98284375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 415.98284375
transcript.pyannote[113].end 416.03346875
transcript.pyannote[114].speaker SPEAKER_04
transcript.pyannote[114].start 416.03346875
transcript.pyannote[114].end 416.06721875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 416.06721875
transcript.pyannote[115].end 416.08409375
transcript.pyannote[116].speaker SPEAKER_04
transcript.pyannote[116].start 416.25284375
transcript.pyannote[116].end 416.60721875
transcript.pyannote[117].speaker SPEAKER_04
transcript.pyannote[117].start 417.43409375
transcript.pyannote[117].end 419.79659375
transcript.pyannote[118].speaker SPEAKER_04
transcript.pyannote[118].start 420.03284375
transcript.pyannote[118].end 427.22159375
transcript.pyannote[119].speaker SPEAKER_04
transcript.pyannote[119].start 427.59284375
transcript.pyannote[119].end 433.06034375
transcript.pyannote[120].speaker SPEAKER_04
transcript.pyannote[120].start 433.78596875
transcript.pyannote[120].end 439.97909375
transcript.pyannote[121].speaker SPEAKER_04
transcript.pyannote[121].start 440.70471875
transcript.pyannote[121].end 442.64534375
transcript.pyannote[122].speaker SPEAKER_04
transcript.pyannote[122].start 442.88159375
transcript.pyannote[122].end 466.00034375
transcript.pyannote[123].speaker SPEAKER_04
transcript.pyannote[123].start 466.64159375
transcript.pyannote[123].end 470.03346875
transcript.pyannote[124].speaker SPEAKER_04
transcript.pyannote[124].start 470.37096875
transcript.pyannote[124].end 488.22471875
transcript.pyannote[125].speaker SPEAKER_04
transcript.pyannote[125].start 488.81534375
transcript.pyannote[125].end 492.40971875
transcript.pyannote[126].speaker SPEAKER_04
transcript.pyannote[126].start 492.93284375
transcript.pyannote[126].end 494.16471875
transcript.pyannote[127].speaker SPEAKER_04
transcript.pyannote[127].start 494.87346875
transcript.pyannote[127].end 495.51471875
transcript.pyannote[128].speaker SPEAKER_04
transcript.pyannote[128].start 495.64971875
transcript.pyannote[128].end 496.71284375
transcript.pyannote[129].speaker SPEAKER_04
transcript.pyannote[129].start 496.86471875
transcript.pyannote[129].end 498.02909375
transcript.pyannote[130].speaker SPEAKER_04
transcript.pyannote[130].start 498.56909375
transcript.pyannote[130].end 502.65284375
transcript.pyannote[131].speaker SPEAKER_04
transcript.pyannote[131].start 502.97346875
transcript.pyannote[131].end 503.74971875
transcript.pyannote[132].speaker SPEAKER_04
transcript.pyannote[132].start 504.13784375
transcript.pyannote[132].end 504.86346875
transcript.pyannote[133].speaker SPEAKER_04
transcript.pyannote[133].start 505.23471875
transcript.pyannote[133].end 508.99784375
transcript.pyannote[134].speaker SPEAKER_04
transcript.pyannote[134].start 509.21721875
transcript.pyannote[134].end 510.21284375
transcript.pyannote[135].speaker SPEAKER_04
transcript.pyannote[135].start 510.48284375
transcript.pyannote[135].end 514.56659375
transcript.pyannote[136].speaker SPEAKER_04
transcript.pyannote[136].start 515.25846875
transcript.pyannote[136].end 523.39221875
transcript.pyannote[137].speaker SPEAKER_04
transcript.pyannote[137].start 524.32034375
transcript.pyannote[137].end 526.93596875
transcript.pyannote[138].speaker SPEAKER_04
transcript.pyannote[138].start 527.20596875
transcript.pyannote[138].end 529.14659375
transcript.pyannote[139].speaker SPEAKER_04
transcript.pyannote[139].start 529.88909375
transcript.pyannote[139].end 531.28971875
transcript.pyannote[140].speaker SPEAKER_04
transcript.pyannote[140].start 531.89721875
transcript.pyannote[140].end 533.19659375
transcript.pyannote[141].speaker SPEAKER_04
transcript.pyannote[141].start 533.92221875
transcript.pyannote[141].end 534.85034375
transcript.pyannote[142].speaker SPEAKER_04
transcript.pyannote[142].start 535.22159375
transcript.pyannote[142].end 537.02721875
transcript.pyannote[143].speaker SPEAKER_04
transcript.pyannote[143].start 537.29721875
transcript.pyannote[143].end 538.73159375
transcript.pyannote[144].speaker SPEAKER_04
transcript.pyannote[144].start 538.95096875
transcript.pyannote[144].end 539.65971875
transcript.pyannote[145].speaker SPEAKER_04
transcript.pyannote[145].start 540.14909375
transcript.pyannote[145].end 553.19346875
transcript.pyannote[146].speaker SPEAKER_04
transcript.pyannote[146].start 553.59846875
transcript.pyannote[146].end 554.76284375
transcript.pyannote[147].speaker SPEAKER_04
transcript.pyannote[147].start 554.81346875
transcript.pyannote[147].end 562.03596875
transcript.pyannote[148].speaker SPEAKER_04
transcript.pyannote[148].start 562.25534375
transcript.pyannote[148].end 566.01846875
transcript.pyannote[149].speaker SPEAKER_04
transcript.pyannote[149].start 566.52471875
transcript.pyannote[149].end 571.13159375
transcript.pyannote[150].speaker SPEAKER_04
transcript.pyannote[150].start 571.30034375
transcript.pyannote[150].end 572.26221875
transcript.pyannote[151].speaker SPEAKER_04
transcript.pyannote[151].start 572.78534375
transcript.pyannote[151].end 575.21534375
transcript.pyannote[152].speaker SPEAKER_04
transcript.pyannote[152].start 576.26159375
transcript.pyannote[152].end 577.94909375
transcript.pyannote[153].speaker SPEAKER_04
transcript.pyannote[153].start 578.92784375
transcript.pyannote[153].end 579.58596875
transcript.pyannote[154].speaker SPEAKER_05
transcript.pyannote[154].start 579.99096875
transcript.pyannote[154].end 644.75721875
transcript.pyannote[155].speaker SPEAKER_04
transcript.pyannote[155].start 641.12909375
transcript.pyannote[155].end 642.71534375
transcript.pyannote[156].speaker SPEAKER_04
transcript.pyannote[156].start 643.62659375
transcript.pyannote[156].end 648.30096875
transcript.pyannote[157].speaker SPEAKER_04
transcript.pyannote[157].start 648.70596875
transcript.pyannote[157].end 654.25784375
transcript.pyannote[158].speaker SPEAKER_04
transcript.pyannote[158].start 655.18596875
transcript.pyannote[158].end 656.95784375
transcript.pyannote[159].speaker SPEAKER_04
transcript.pyannote[159].start 657.91971875
transcript.pyannote[159].end 666.71159375
transcript.pyannote[160].speaker SPEAKER_04
transcript.pyannote[160].start 666.82971875
transcript.pyannote[160].end 669.37784375
transcript.pyannote[161].speaker SPEAKER_04
transcript.pyannote[161].start 669.59721875
transcript.pyannote[161].end 671.13284375
transcript.pyannote[162].speaker SPEAKER_04
transcript.pyannote[162].start 671.47034375
transcript.pyannote[162].end 673.25909375
transcript.pyannote[163].speaker SPEAKER_04
transcript.pyannote[163].start 673.39409375
transcript.pyannote[163].end 674.91284375
transcript.pyannote[164].speaker SPEAKER_04
transcript.pyannote[164].start 675.50346875
transcript.pyannote[164].end 682.52346875
transcript.pyannote[165].speaker SPEAKER_04
transcript.pyannote[165].start 682.60784375
transcript.pyannote[165].end 688.85159375
transcript.pyannote[166].speaker SPEAKER_04
transcript.pyannote[166].start 689.17221875
transcript.pyannote[166].end 693.17159375
transcript.pyannote[167].speaker SPEAKER_04
transcript.pyannote[167].start 693.74534375
transcript.pyannote[167].end 698.03159375
transcript.pyannote[168].speaker SPEAKER_04
transcript.pyannote[168].start 698.28471875
transcript.pyannote[168].end 699.92159375
transcript.pyannote[169].speaker SPEAKER_04
transcript.pyannote[169].start 699.95534375
transcript.pyannote[169].end 700.93409375
transcript.pyannote[170].speaker SPEAKER_04
transcript.pyannote[170].start 701.33909375
transcript.pyannote[170].end 705.97971875
transcript.pyannote[171].speaker SPEAKER_04
transcript.pyannote[171].start 706.82346875
transcript.pyannote[171].end 707.59971875
transcript.pyannote[172].speaker SPEAKER_04
transcript.pyannote[172].start 708.13971875
transcript.pyannote[172].end 711.02534375
transcript.pyannote[173].speaker SPEAKER_04
transcript.pyannote[173].start 711.22784375
transcript.pyannote[173].end 712.64534375
transcript.pyannote[174].speaker SPEAKER_04
transcript.pyannote[174].start 713.26971875
transcript.pyannote[174].end 714.90659375
transcript.pyannote[175].speaker SPEAKER_04
transcript.pyannote[175].start 715.00784375
transcript.pyannote[175].end 717.01596875
transcript.pyannote[176].speaker SPEAKER_04
transcript.pyannote[176].start 717.10034375
transcript.pyannote[176].end 717.89346875
transcript.pyannote[177].speaker SPEAKER_04
transcript.pyannote[177].start 718.58534375
transcript.pyannote[177].end 719.27721875
transcript.pyannote[178].speaker SPEAKER_04
transcript.pyannote[178].start 719.53034375
transcript.pyannote[178].end 720.18846875
transcript.pyannote[179].speaker SPEAKER_04
transcript.pyannote[179].start 721.15034375
transcript.pyannote[179].end 722.34846875
transcript.pyannote[180].speaker SPEAKER_04
transcript.pyannote[180].start 723.05721875
transcript.pyannote[180].end 738.76784375
transcript.pyannote[181].speaker SPEAKER_05
transcript.pyannote[181].start 738.98721875
transcript.pyannote[181].end 739.35846875
transcript.pyannote[182].speaker SPEAKER_04
transcript.pyannote[182].start 739.35846875
transcript.pyannote[182].end 739.81409375
transcript.pyannote[183].speaker SPEAKER_04
transcript.pyannote[183].start 740.23596875
transcript.pyannote[183].end 742.63221875
transcript.pyannote[184].speaker SPEAKER_05
transcript.pyannote[184].start 742.17659375
transcript.pyannote[184].end 744.47159375
transcript.pyannote[185].speaker SPEAKER_04
transcript.pyannote[185].start 744.47159375
transcript.pyannote[185].end 744.64034375
transcript.pyannote[186].speaker SPEAKER_05
transcript.pyannote[186].start 744.64034375
transcript.pyannote[186].end 770.27346875
transcript.pyannote[187].speaker SPEAKER_04
transcript.pyannote[187].start 745.14659375
transcript.pyannote[187].end 745.95659375
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 746.29409375
transcript.pyannote[188].end 746.34471875
transcript.pyannote[189].speaker SPEAKER_04
transcript.pyannote[189].start 746.34471875
transcript.pyannote[189].end 747.82971875
transcript.pyannote[190].speaker SPEAKER_04
transcript.pyannote[190].start 767.75909375
transcript.pyannote[190].end 768.09659375
transcript.pyannote[191].speaker SPEAKER_04
transcript.pyannote[191].start 768.85596875
transcript.pyannote[191].end 769.66596875
transcript.pyannote[192].speaker SPEAKER_04
transcript.pyannote[192].start 769.95284375
transcript.pyannote[192].end 771.03284375
transcript.pyannote[193].speaker SPEAKER_04
transcript.pyannote[193].start 771.21846875
transcript.pyannote[193].end 777.10784375
transcript.pyannote[194].speaker SPEAKER_04
transcript.pyannote[194].start 777.22596875
transcript.pyannote[194].end 788.38034375
transcript.pyannote[195].speaker SPEAKER_04
transcript.pyannote[195].start 788.70096875
transcript.pyannote[195].end 790.54034375
transcript.pyannote[196].speaker SPEAKER_04
transcript.pyannote[196].start 790.91159375
transcript.pyannote[196].end 791.70471875
transcript.pyannote[197].speaker SPEAKER_04
transcript.pyannote[197].start 791.97471875
transcript.pyannote[197].end 796.88534375
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 798.20159375
transcript.pyannote[198].end 805.71096875
transcript.pyannote[199].speaker SPEAKER_04
transcript.pyannote[199].start 804.54659375
transcript.pyannote[199].end 805.69409375
transcript.pyannote[200].speaker SPEAKER_04
transcript.pyannote[200].start 805.71096875
transcript.pyannote[200].end 805.81221875
transcript.pyannote[201].speaker SPEAKER_02
transcript.pyannote[201].start 805.81221875
transcript.pyannote[201].end 805.89659375
transcript.pyannote[202].speaker SPEAKER_04
transcript.pyannote[202].start 806.80784375
transcript.pyannote[202].end 807.92159375
transcript.pyannote[203].speaker SPEAKER_04
transcript.pyannote[203].start 808.14096875
transcript.pyannote[203].end 810.65534375
transcript.pyannote[204].speaker SPEAKER_04
transcript.pyannote[204].start 810.87471875
transcript.pyannote[204].end 811.26284375
transcript.pyannote[205].speaker SPEAKER_04
transcript.pyannote[205].start 811.93784375
transcript.pyannote[205].end 812.78159375
transcript.pyannote[206].speaker SPEAKER_04
transcript.pyannote[206].start 813.49034375
transcript.pyannote[206].end 814.14846875
transcript.pyannote[207].speaker SPEAKER_04
transcript.pyannote[207].start 814.28346875
transcript.pyannote[207].end 816.30846875
transcript.pyannote[208].speaker SPEAKER_04
transcript.pyannote[208].start 817.27034375
transcript.pyannote[208].end 818.67096875
transcript.pyannote[209].speaker SPEAKER_04
transcript.pyannote[209].start 819.14346875
transcript.pyannote[209].end 820.29096875
transcript.pyannote[210].speaker SPEAKER_04
transcript.pyannote[210].start 820.96596875
transcript.pyannote[210].end 824.18909375
transcript.pyannote[211].speaker SPEAKER_04
transcript.pyannote[211].start 824.72909375
transcript.pyannote[211].end 825.15096875
transcript.pyannote[212].speaker SPEAKER_04
transcript.pyannote[212].start 825.80909375
transcript.pyannote[212].end 826.24784375
transcript.pyannote[213].speaker SPEAKER_04
transcript.pyannote[213].start 826.60221875
transcript.pyannote[213].end 827.24346875
transcript.pyannote[214].speaker SPEAKER_04
transcript.pyannote[214].start 828.98159375
transcript.pyannote[214].end 830.14596875
transcript.pyannote[215].speaker SPEAKER_04
transcript.pyannote[215].start 830.50034375
transcript.pyannote[215].end 833.45346875
transcript.pyannote[216].speaker SPEAKER_04
transcript.pyannote[216].start 834.06096875
transcript.pyannote[216].end 838.36409375
transcript.pyannote[217].speaker SPEAKER_04
transcript.pyannote[217].start 838.92096875
transcript.pyannote[217].end 840.05159375
transcript.pyannote[218].speaker SPEAKER_04
transcript.pyannote[218].start 840.94596875
transcript.pyannote[218].end 844.60784375
transcript.pyannote[219].speaker SPEAKER_04
transcript.pyannote[219].start 845.31659375
transcript.pyannote[219].end 847.03784375
transcript.pyannote[220].speaker SPEAKER_04
transcript.pyannote[220].start 847.12221875
transcript.pyannote[220].end 848.03346875
transcript.pyannote[221].speaker SPEAKER_04
transcript.pyannote[221].start 848.74221875
transcript.pyannote[221].end 853.33221875
transcript.pyannote[222].speaker SPEAKER_04
transcript.pyannote[222].start 853.82159375
transcript.pyannote[222].end 855.99846875
transcript.pyannote[223].speaker SPEAKER_04
transcript.pyannote[223].start 857.38221875
transcript.pyannote[223].end 865.44846875
transcript.pyannote[224].speaker SPEAKER_04
transcript.pyannote[224].start 865.93784375
transcript.pyannote[224].end 867.16971875
transcript.pyannote[225].speaker SPEAKER_04
transcript.pyannote[225].start 867.28784375
transcript.pyannote[225].end 869.86971875
transcript.pyannote[226].speaker SPEAKER_04
transcript.pyannote[226].start 870.12284375
transcript.pyannote[226].end 870.52784375
transcript.pyannote[227].speaker SPEAKER_04
transcript.pyannote[227].start 870.81471875
transcript.pyannote[227].end 873.05909375
transcript.pyannote[228].speaker SPEAKER_04
transcript.pyannote[228].start 874.08846875
transcript.pyannote[228].end 874.32471875
transcript.pyannote[229].speaker SPEAKER_04
transcript.pyannote[229].start 874.88159375
transcript.pyannote[229].end 875.25284375
transcript.pyannote[230].speaker SPEAKER_04
transcript.pyannote[230].start 875.55659375
transcript.pyannote[230].end 877.51409375
transcript.pyannote[231].speaker SPEAKER_04
transcript.pyannote[231].start 878.15534375
transcript.pyannote[231].end 879.03284375
transcript.pyannote[232].speaker SPEAKER_04
transcript.pyannote[232].start 879.21846875
transcript.pyannote[232].end 882.57659375
transcript.pyannote[233].speaker SPEAKER_04
transcript.pyannote[233].start 882.89721875
transcript.pyannote[233].end 885.10784375
transcript.pyannote[234].speaker SPEAKER_04
transcript.pyannote[234].start 885.68159375
transcript.pyannote[234].end 886.45784375
transcript.pyannote[235].speaker SPEAKER_04
transcript.pyannote[235].start 886.91346875
transcript.pyannote[235].end 888.06096875
transcript.pyannote[236].speaker SPEAKER_04
transcript.pyannote[236].start 888.60096875
transcript.pyannote[236].end 891.04784375
transcript.pyannote[237].speaker SPEAKER_04
transcript.pyannote[237].start 891.46971875
transcript.pyannote[237].end 919.98846875
transcript.pyannote[238].speaker SPEAKER_04
transcript.pyannote[238].start 920.14034375
transcript.pyannote[238].end 924.00471875
transcript.pyannote[239].speaker SPEAKER_05
transcript.pyannote[239].start 924.76409375
transcript.pyannote[239].end 925.89471875
transcript.pyannote[240].speaker SPEAKER_04
transcript.pyannote[240].start 925.48971875
transcript.pyannote[240].end 926.97471875
transcript.whisperx[0].start 4.831
transcript.whisperx[0].end 23.118
transcript.whisperx[0].text 好感謝主席有請我們陳次長我想數位部已經回家了對陳次長還有我們公路局好公路局陳局長委員好好
transcript.whisperx[1].start 25.652
transcript.whisperx[1].end 49.524
transcript.whisperx[1].text 這個首先啊因為你們兩位問你們兩位都公道了這個前面的公務總局的前局長現在公務局局長那這個問題事實上發生的時候網路在傳的時候我也打電話給我們現任的這個陳局長特別在談這個問題啊那那個情況你都知道嘛今年3月19號那個整個影片在傳嘛那當然他的這個
transcript.whisperx[2].start 51.545
transcript.whisperx[2].end 67.096
transcript.whisperx[2].text 排氣管你覺得是不是原廠的或者檢查相關的一些問題那後面的情況在爭議的過程中我們的監理站的人員就說你去摸嘛這個就很燙你要去摸如果你可以放在上面20秒
transcript.whisperx[3].start 69.418
transcript.whisperx[3].end 86.091
transcript.whisperx[3].text 20秒的話就算通過那我先問公務總局的這個陳彥博前局長好不好因為我感覺這個蠻有歷史是不是你那個時代傳承下來的這個經驗法則啊以前是有這樣規定嗎自己敢摸自己的排氣管那個發動之後20秒然後就算過關
transcript.whisperx[4].start 91.776
transcript.whisperx[4].end 104.791
transcript.whisperx[4].text 現在陳局長你說一下各位報告其實我們同仁就是排氣管不是這樣檢驗我們已經對於同仁就是說做了更嚴格的一些教育訓練還有就是說
transcript.whisperx[5].start 106.793
transcript.whisperx[5].end 134.486
transcript.whisperx[5].text 它的執行的方式我想我們也這個通令所有的各監理機關來做相關的一些檢討那基本上因為排氣管它就是防止就是說它被就是說這個太燙所以被燙到所以大概相關的形式跟這一個譬如說它的一個原廠的一些規格的話其實能夠改變的形式環境部也有相關的規範所以其實看那個大概就是說有一些這個環境部規定的一些形式的話其實就可以
transcript.whisperx[6].start 136.267
transcript.whisperx[6].end 162.344
transcript.whisperx[6].text 這我懂嘛 但是你們人員是依法 執法 依法 行政就很清楚 有問題沒有過不需要吵架 你知道嗎你用吵架 我覺得這很奇怪弄完之後咧 當影片出來對機關形象如何對他這個處理方法真的是很奇怪那你說這個假設有隔熱板是放在後面你要摸後面還摸前面在討論這個我覺得都不應該啊那到底有沒有測溫槍這件事啊
transcript.whisperx[7].start 164.085
transcript.whisperx[7].end 166.408
transcript.whisperx[7].text 你們有配備這個測溫槍嗎沒有就簡單來講這個排氣管合不合格形式合不合格需不需要透過測溫槍來測因為它基本上形式合格的部分的話其實就是它的這個溫度的話其實是可以就是說是沒有問題的
transcript.whisperx[8].start 184.106
transcript.whisperx[8].end 207.615
transcript.whisperx[8].text 所以其實不用去摸或者是不用去測這個溫度好 那這個部分說都做好教育了是是是OK那可是有一個問題就是我們照做一番網路就發覺同樣一位我們認真的監理站的夥伴在前一個月2月24號就今年的2月24號也跟人家
transcript.whisperx[9].start 208.715
transcript.whisperx[9].end 232.231
transcript.whisperx[9].text 跟一堆人在那邊吵啊 吵什麼 吵那個車牌啊右邊看到沒有 車牌 你看得很清楚吧 VLG然後 吵什麼車牌 V中間好像有一點有一些白色 是不是好像塗上去的好像為了讓大家看清楚 V 是不是有一些問題 然後
transcript.whisperx[10].start 234.272
transcript.whisperx[10].end 253.938
transcript.whisperx[10].text 也在那邊吵我就覺得很奇怪因為相關的法令那個規定啊這個我就覺得有點奇怪你到底現在的一個情況是不是能夠達到不能夠辨識他的牌照人家的起心動念是說糟糕了不管刮到什麼我的V怕別人認不出來是讓
transcript.whisperx[11].start 255.498
transcript.whisperx[11].end 270.465
transcript.whisperx[11].text 合法的牌照讓人家辨識更清楚假設我是黑色的是有點斷 被磨掉了我用黑色的鉛筆讓這個V呈現得更好這個有什麼好吵的啊那個局長你知不知道這件事
transcript.whisperx[12].start 272.242
transcript.whisperx[12].end 299.829
transcript.whisperx[12].text 還是現在才聽說就是就是牌照的部分基本上就是說當然要辨識啦那所以就是說他如果說這個沒辦法辨識的話大概同仁都會覺得說那可能是不是就是可以就是來做一個換一下這個牌照這樣子那所以好啦現在就是辨識的很清楚他要看中間這個字好像有一點白色是不是有奇異比的內容我不知道你們SOP什麼我真的不知道
transcript.whisperx[13].start 300.589
transcript.whisperx[13].end 320.977
transcript.whisperx[13].text 我真的 如果說每一個做事情你對的也不要吵架嘛可是你也不要去刻意去找人家的麻煩沒有影響到執法沒有影響到監理的公平的一個性質我覺得你要這個SOP啊但我真的建議你同樣一個人發生多次這麼認真的一個情況
transcript.whisperx[14].start 322.458
transcript.whisperx[14].end 337.173
transcript.whisperx[14].text 你去思考一下 是不適合他以這麼精細的態度是不是適合比較內情是不是不要接觸人不然到最後徒增很多的一些問題那我想要跟你說
transcript.whisperx[15].start 338.755
transcript.whisperx[15].end 346.48
transcript.whisperx[15].text 摸排氣管這件事情我那天在打電話給你今年度的時候我感覺你好像沒聽過這件事情結果我一去查我真的嚇一跳這個兩年多快三年了111年12月7號這也是媒體披露的就說那不是這個人了是在士林間裡站
transcript.whisperx[16].start 358.047
transcript.whisperx[16].end 377.861
transcript.whisperx[16].text 也是叫人家摸啊那時候環境部的新法規還沒出來喔舊法規的時候你們一樣叫人家摸叫他證明不燙所以兩年多之前你們的檢討報告也出來了說讓民眾手觸摸排氣管測量溫度確有不妥我要加強專業訓練避免再次情況情況再次發生就是再發生了
transcript.whisperx[17].start 385.902
transcript.whisperx[17].end 391.908
transcript.whisperx[17].text 好好檢討一下啦好不好這個東西到底是什麼原因那再來通用計程車的一個問題那這個新聞的部分
transcript.whisperx[18].start 395.93
transcript.whisperx[18].end 396.47
transcript.whisperx[18].text 打了七家好
transcript.whisperx[19].start 417.669
transcript.whisperx[19].end 439.808
transcript.whisperx[19].text 現在這個情況 你們也很清楚啦一直在想辦法 像4月有新的一些補助辦法規定我們也看到了嘛那說真的 這已經十幾年了十幾年了 那發生什麼樣一個情況呢這很多現在的現況急需解決啊你現在看看第二個 第一行是我們這個全國各六都 以六都為例
transcript.whisperx[20].start 440.769
transcript.whisperx[20].end 455.754
transcript.whisperx[20].text 身心障礙者人數的一個比例第二個比例是通用計程車在這幾個六都中間佔有的比例台北市看起來幾乎是四成但四成也不多你知道嗎因為全國總共在113年年底的統計才1324輛佔所有計程車的大概是1.5%
transcript.whisperx[21].start 466.738
transcript.whisperx[21].end 486.903
transcript.whisperx[21].text 所以你在看這個人數的一個比例服務的一個比例一台通用所謂無障礙計程車到底服務幾位身心障礙當然所有身心障礙的類別非常多啦不一定是輪椅那一類但是我們還是用這個通盤去做一個政策的參考的比較你看喔台北市每台車服務230人
transcript.whisperx[22].start 489.383
transcript.whisperx[22].end 513.421
transcript.whisperx[22].text 到了桃園每台車服務1281人到了最後台南一台車要服務2590人這個第一個車數明顯不夠總量不夠第二個呢分配的部分也不夠平均所以怎麼樣在政策去引導這個次長你回答一下那為什麼在這樣這麼缺車的情況
transcript.whisperx[23].start 515.463
transcript.whisperx[23].end 523.099
transcript.whisperx[23].text 隨便找三個城市啦不想弄表搞得花花的確實應該每一年都趕快來申請新北市
transcript.whisperx[24].start 524.366
transcript.whisperx[24].end 552.952
transcript.whisperx[24].text 前三年111213零沒有人申請沒有人要你們的錢一台車補助31萬新購車沒有人要台北市還好台北市做的最好了111213沒有112年他有提這個但是補助多少我不知道桃園我也問了是000就是說這個政策這個引導性重要性從中央政府到地方政府到底發生什麼事你能不能總結一下
transcript.whisperx[25].start 553.692
transcript.whisperx[25].end 574.88
transcript.whisperx[25].text 明明就很缺分配又不均可是大家又不想申請但你先看右邊這個零喔不要解釋這三都啦111年現在已經跟你申請結帳的右邊的表111年你們公務局補助出去的結帳的全國是零這最嚴重所以不要看其他縣市其他縣市沒有人跟你申請
transcript.whisperx[26].start 576.594
transcript.whisperx[26].end 601.313
transcript.whisperx[26].text 這麼急迫為什麼搞成這樣市長你說一下我跟委員報告一下剛才委員講一輛車尤其是我們的通用計程車服務整體上來看可能還要再加入地方政府的復康巴士所以我想整體復康巴士來營運的狀況會不一樣至於說通用計程車的申請這部是由各縣市政府來提出申請我們也有相關的博助
transcript.whisperx[27].start 601.673
transcript.whisperx[27].end 628.68
transcript.whisperx[27].text 那我們也發現通用計程車以往的時候來申請以後他不是用在這個載運這種需要輪椅來服務的這個乘客所以我們今年應該是四月我們就已經改變了相關的一個方式當然補助我們還是繼續補助應該是一台車應該是40萬的一個補助那另外呢他空車在等待也有給相關的經費然後他行駛空車行駛到這個載運這個無障礙也有
transcript.whisperx[28].start 630.58
transcript.whisperx[28].end 655.526
transcript.whisperx[28].text 那最重要的我們希望這些生前的通用計程車的駕駛朋友他要在一個運營所的一個平台上愛接送的平台上去顯示出來類似像以後可以加速這種通用計程車的使用通用計程車要不要在輪椅的客戶所有通用計程車要能夠掛牌合法作為通用計程車要不要做這樣的輔具設施
transcript.whisperx[29].start 658.01
transcript.whisperx[29].end 672.849
transcript.whisperx[29].text 要嘛就好了嘛你現在講說要載誰對一般人他也可以做一般的生意只要椅子夠我懂啦可是你這個成本是固定的嘛那我現在就請教你知道嗎大家都痛苦啊剛剛早上通完一個電話他坐了七年不坐了換車了絕對絕對不回去
transcript.whisperx[30].start 676.073
transcript.whisperx[30].end 692.093
transcript.whisperx[30].text 我剛剛講怎麼這麼堅決發生什麼事你們到底是不知道政策的領導當然我覺得有一半去做改了當然第一個購車的成本購車的成本他在目前全台灣除了原裝的車輛可能加原裝的大概主要有四到五款的車適合做
transcript.whisperx[31].start 693.795
transcript.whisperx[31].end 720.023
transcript.whisperx[31].text 那有稍微貴 稍微便宜的大概都一百八到兩百現況就是整個輔具做好大概就要這麼貴那你們補助款呢過去是三十一萬嗎三十幾萬是不是三十一萬然後現在四月開始三月六號公告現在變成四十萬請問一下我購車我現在要貸款要去借錢購車最痛苦購車最痛苦那你們呢
transcript.whisperx[32].start 721.55
transcript.whisperx[32].end 738.332
transcript.whisperx[32].text 講過去的31萬是不是應該要一次或者進駐要到位讓人家第一次花了180萬到200萬你補助他30萬只是貼他一點六分之一 趕快補助他一些回補一些經濟這也是你們當時的用意嘛 對不對
transcript.whisperx[33].start 739.073
transcript.whisperx[33].end 755.039
transcript.whisperx[33].text 是那有分年嗎或五年才給他滿意嗎一次一次到位一次到位一次到位啊是一次到位你知道現在的車隊我跟委員報告因為各種這個通用計程車他本來的樣式就不一樣所以我們當時在訂試駛的時候是有針對整個試車
transcript.whisperx[34].start 757.1
transcript.whisperx[34].end 770.295
transcript.whisperx[34].text 升降的這個輔助的設備那也跟委員說明一下有關通用計程車通用型的計程車目前我們也正在跟經濟部共同來研議在未來我們希望所有的計程車都是通用計程車如果是你講說的這麼OK的話不會每一年到現在只有這個
transcript.whisperx[35].start 780.044
transcript.whisperx[35].end 796.036
transcript.whisperx[35].text 1.5% 1300多台大家騎車都要來那你車輛的補助款你是一次給他那你覺得你有問過那個市長你有問過真正通用計程車的司機嗎駕駛嗎 車是自己買的他是一次拿到還是分好幾年拿到 你有沒有問跟這位委員報告一下目前這個通用計程車的部分大概是透過車隊的這個部分來好啦 你答案出來了嘛
transcript.whisperx[36].start 806.854
transcript.whisperx[36].end 824.049
transcript.whisperx[36].text 你的意思就是說本來是我們的概念政策是說錢給買車那個人結果中間說車隊不好意思不能自己來要透過我車隊申請然後車隊去你補給地方政府他給他申請31萬拿過來然後呢然後呢到車隊了
transcript.whisperx[37].start 829.005
transcript.whisperx[37].end 855.812
transcript.whisperx[37].text 到車隊然後怎麼樣如果他向台北市申請100輛車你把這麼多的錢放在車隊產生了幾十萬上百萬的利息你是圖利是不是我告訴你現在反映的車隊我不講哪個車隊就是五年你的31萬就是五年他不玩了嘛五年耶你一次要給他五年五年還分十次然後半年三萬一 三萬一
transcript.whisperx[38].start 857.418
transcript.whisperx[38].end 872.884
transcript.whisperx[38].text 不是你們的政策我是覺得如果要擔心說我補助你萬一不做但是第一次購車款你至少要給人家一半嘛你要給人家一半嘛後面再監督他到底做得怎麼樣好啦我建議這個市長市長拜託一下通運計程車隨機找一些朋友來不然這些你現在1324台我做個結論有多少是5年以上他已經沒有在幹了他根本不按了
transcript.whisperx[39].start 887.509
transcript.whisperx[39].end 895.471
transcript.whisperx[39].text 五年了吧 講是一般的車行員三年五年我不幹了你們這樣子我要多少服務態度要扶上去 扶下來 然後車制一樣 他不幹了所以我覺得第一次的車款即使不能給他也要給三分之二 三分之一呢看你到底有沒有去服務我們 真的不能這樣的
transcript.whisperx[40].start 909.915
transcript.whisperx[40].end 923.492
transcript.whisperx[40].text 不能這樣 你31萬要一次給他他第一次只拿到3萬1這是事實 早上的一個車隊的情況如果你們還不知道 跟你們政策的一個效度差異很大 請你們去研究 謝謝