iVOD / 161134

Field Value
IVOD_ID 161134
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/161134
日期 2025-05-08
會議資料.會議代碼 委員會-11-3-26-10
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第10次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 10
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第10次全體委員會議
影片種類 Clip
開始時間 2025-05-08T13:38:15+08:00
結束時間 2025-05-08T13:54:19+08:00
影片長度 00:16:04
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/26c557d936b203c1ae42befe85c4ffaabf088656e97d34035710b400f5dcf92418318873d924b4585ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 劉建國
委員發言時間 13:38:15 - 13:54:19
會議時間 2025-05-08T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第10次全體委員會議(事由:一、邀請衛生福利部部長就「長照2.0執行情形檢討及3.0未來規劃」進行專題報告,並備質詢。 二、邀請衛生福利部部長就「澳洲進口豬腳驗出含萊克多巴胺,如何加強肉品食安查驗,讓民眾放心」進行專題報告,並備質詢。 【專題報告綜合詢答】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 9.32909375
transcript.pyannote[0].end 12.51846875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 12.97409375
transcript.pyannote[1].end 14.05409375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 17.68221875
transcript.pyannote[2].end 19.13346875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 19.80846875
transcript.pyannote[3].end 20.80409375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 21.56346875
transcript.pyannote[4].end 23.97659375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 24.95534375
transcript.pyannote[5].end 39.13034375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 39.36659375
transcript.pyannote[6].end 41.91471875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 42.21846875
transcript.pyannote[7].end 48.93471875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 49.54221875
transcript.pyannote[8].end 51.58409375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 51.75284375
transcript.pyannote[9].end 64.78034375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 64.96596875
transcript.pyannote[10].end 66.24846875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 67.15971875
transcript.pyannote[11].end 76.08659375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 76.18784375
transcript.pyannote[12].end 92.33721875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 93.46784375
transcript.pyannote[13].end 94.76721875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 95.15534375
transcript.pyannote[14].end 97.73721875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 97.95659375
transcript.pyannote[15].end 100.53846875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 100.53846875
transcript.pyannote[16].end 101.50034375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 100.55534375
transcript.pyannote[17].end 101.02784375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 101.92221875
transcript.pyannote[18].end 102.09096875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 102.59721875
transcript.pyannote[19].end 112.26659375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 111.57471875
transcript.pyannote[20].end 111.81096875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 112.82346875
transcript.pyannote[21].end 128.21346875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 128.26409375
transcript.pyannote[22].end 128.98971875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 128.39909375
transcript.pyannote[23].end 128.77034375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 129.09096875
transcript.pyannote[24].end 166.24971875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 165.65909375
transcript.pyannote[25].end 183.56346875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 184.84596875
transcript.pyannote[26].end 186.87096875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 187.22534375
transcript.pyannote[27].end 204.11721875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 204.33659375
transcript.pyannote[28].end 205.06221875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 205.55159375
transcript.pyannote[29].end 207.91409375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 208.31909375
transcript.pyannote[30].end 211.42409375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 211.81221875
transcript.pyannote[31].end 216.46971875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 217.63409375
transcript.pyannote[32].end 218.57909375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 219.06846875
transcript.pyannote[33].end 224.56971875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 225.39659375
transcript.pyannote[34].end 226.61159375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 227.26971875
transcript.pyannote[35].end 230.54346875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 231.65721875
transcript.pyannote[36].end 238.12034375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 238.35659375
transcript.pyannote[37].end 239.38596875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 239.84159375
transcript.pyannote[38].end 240.49971875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 241.37721875
transcript.pyannote[39].end 244.75221875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 245.02221875
transcript.pyannote[40].end 284.83034375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 284.83034375
transcript.pyannote[41].end 294.92159375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 295.37721875
transcript.pyannote[42].end 295.98471875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 296.22096875
transcript.pyannote[43].end 302.05971875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 297.87471875
transcript.pyannote[44].end 299.51159375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 302.26221875
transcript.pyannote[45].end 320.87534375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 321.24659375
transcript.pyannote[46].end 332.23221875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 331.42221875
transcript.pyannote[47].end 336.68721875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 336.68721875
transcript.pyannote[48].end 337.26096875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 337.00784375
transcript.pyannote[49].end 338.39159375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 338.39159375
transcript.pyannote[50].end 344.14596875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 342.59346875
transcript.pyannote[51].end 347.13284375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 346.67721875
transcript.pyannote[52].end 347.09909375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 347.13284375
transcript.pyannote[53].end 347.20034375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 347.53784375
transcript.pyannote[54].end 354.25409375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 353.07284375
transcript.pyannote[55].end 360.22784375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 360.61596875
transcript.pyannote[56].end 371.06159375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 371.50034375
transcript.pyannote[57].end 372.41159375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 372.91784375
transcript.pyannote[58].end 380.89971875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 381.38909375
transcript.pyannote[59].end 381.40596875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 381.40596875
transcript.pyannote[60].end 393.20159375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 394.16346875
transcript.pyannote[61].end 395.90159375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 394.26471875
transcript.pyannote[62].end 394.56846875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 396.30659375
transcript.pyannote[63].end 396.32346875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 396.32346875
transcript.pyannote[64].end 396.55971875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 397.84221875
transcript.pyannote[65].end 397.85909375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 397.85909375
transcript.pyannote[66].end 398.75346875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 398.83784375
transcript.pyannote[67].end 399.04034375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 400.47471875
transcript.pyannote[68].end 406.54971875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 407.00534375
transcript.pyannote[69].end 407.15721875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 407.15721875
transcript.pyannote[70].end 407.44409375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 407.44409375
transcript.pyannote[71].end 407.46096875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 407.46096875
transcript.pyannote[72].end 418.02471875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 418.02471875
transcript.pyannote[73].end 420.94409375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 418.14284375
transcript.pyannote[74].end 418.59846875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 420.64034375
transcript.pyannote[75].end 420.74159375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 420.94409375
transcript.pyannote[76].end 420.96096875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 420.96096875
transcript.pyannote[77].end 420.99471875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 420.99471875
transcript.pyannote[78].end 423.88034375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 424.18409375
transcript.pyannote[79].end 425.97284375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 426.14159375
transcript.pyannote[80].end 433.80284375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 432.92534375
transcript.pyannote[81].end 433.71846875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 433.80284375
transcript.pyannote[82].end 435.13596875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 434.54534375
transcript.pyannote[83].end 435.32159375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 435.32159375
transcript.pyannote[84].end 435.87846875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 435.87846875
transcript.pyannote[85].end 435.97971875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 436.33409375
transcript.pyannote[86].end 437.49846875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 436.67159375
transcript.pyannote[87].end 445.04159375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 445.22721875
transcript.pyannote[88].end 451.79159375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 451.79159375
transcript.pyannote[89].end 454.47471875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 454.69409375
transcript.pyannote[90].end 455.89221875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 456.56721875
transcript.pyannote[91].end 458.05221875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 458.37284375
transcript.pyannote[92].end 459.77346875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 459.85784375
transcript.pyannote[93].end 459.90846875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 459.90846875
transcript.pyannote[94].end 461.56221875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 461.56221875
transcript.pyannote[95].end 467.41784375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 467.73846875
transcript.pyannote[96].end 469.44284375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 468.95346875
transcript.pyannote[97].end 470.37096875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 469.89846875
transcript.pyannote[98].end 475.60221875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 475.78784375
transcript.pyannote[99].end 497.03346875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 497.26971875
transcript.pyannote[100].end 499.04159375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 499.34534375
transcript.pyannote[101].end 500.40846875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 500.72909375
transcript.pyannote[102].end 505.30221875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 505.74096875
transcript.pyannote[103].end 510.80346875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 511.10721875
transcript.pyannote[104].end 521.70471875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 522.17721875
transcript.pyannote[105].end 530.39534375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 530.96909375
transcript.pyannote[106].end 532.04909375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 532.38659375
transcript.pyannote[107].end 534.27659375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 534.46221875
transcript.pyannote[108].end 551.37096875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 545.26221875
transcript.pyannote[109].end 545.48159375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 551.15159375
transcript.pyannote[110].end 552.11346875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 552.14721875
transcript.pyannote[111].end 552.18096875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 552.18096875
transcript.pyannote[112].end 553.59846875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 553.59846875
transcript.pyannote[113].end 556.63596875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 553.88534375
transcript.pyannote[114].end 554.03721875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 554.96534375
transcript.pyannote[115].end 555.97784375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 556.51784375
transcript.pyannote[116].end 558.35721875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 557.86784375
transcript.pyannote[117].end 559.80846875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 559.75784375
transcript.pyannote[118].end 561.04034375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 561.04034375
transcript.pyannote[119].end 561.34409375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 561.34409375
transcript.pyannote[120].end 565.20846875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 565.25909375
transcript.pyannote[121].end 565.74846875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 565.79909375
transcript.pyannote[122].end 584.69909375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 571.68846875
transcript.pyannote[123].end 572.49846875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 585.42471875
transcript.pyannote[124].end 586.69034375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 586.94346875
transcript.pyannote[125].end 598.95846875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 599.27909375
transcript.pyannote[126].end 603.02534375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 603.71721875
transcript.pyannote[127].end 616.86284375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 614.80409375
transcript.pyannote[128].end 615.04034375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 616.96409375
transcript.pyannote[129].end 639.72846875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 619.47846875
transcript.pyannote[130].end 619.81596875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 622.48221875
transcript.pyannote[131].end 622.71846875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 625.26659375
transcript.pyannote[132].end 627.25784375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 631.03784375
transcript.pyannote[133].end 634.31159375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 636.30284375
transcript.pyannote[134].end 637.02846875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 639.05346875
transcript.pyannote[135].end 639.96471875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 640.18409375
transcript.pyannote[136].end 640.82534375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 641.38221875
transcript.pyannote[137].end 651.81096875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 651.96284375
transcript.pyannote[138].end 675.87471875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 655.74284375
transcript.pyannote[139].end 656.43471875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 664.14659375
transcript.pyannote[140].end 664.85534375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 667.18409375
transcript.pyannote[141].end 667.67346875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 672.22971875
transcript.pyannote[142].end 672.82034375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 674.77784375
transcript.pyannote[143].end 675.75659375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 676.48221875
transcript.pyannote[144].end 677.93346875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 677.98409375
transcript.pyannote[145].end 678.33846875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 678.33846875
transcript.pyannote[146].end 680.66721875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 681.08909375
transcript.pyannote[147].end 682.00034375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 683.51909375
transcript.pyannote[148].end 683.70471875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 683.77221875
transcript.pyannote[149].end 684.64971875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 685.62846875
transcript.pyannote[150].end 686.87721875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 688.22721875
transcript.pyannote[151].end 689.52659375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 689.98221875
transcript.pyannote[152].end 714.23159375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 714.97409375
transcript.pyannote[153].end 717.74159375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 717.99471875
transcript.pyannote[154].end 720.37409375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 721.58909375
transcript.pyannote[155].end 723.86721875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 724.12034375
transcript.pyannote[156].end 724.49159375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 725.52096875
transcript.pyannote[157].end 725.82471875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 726.38159375
transcript.pyannote[158].end 733.36784375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 728.13659375
transcript.pyannote[159].end 728.15346875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 728.25471875
transcript.pyannote[160].end 728.49096875
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 728.49096875
transcript.pyannote[161].end 728.50784375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 734.17784375
transcript.pyannote[162].end 742.73346875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 743.18909375
transcript.pyannote[163].end 743.93159375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 744.67409375
transcript.pyannote[164].end 750.68159375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 746.04096875
transcript.pyannote[165].end 746.58096875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 751.50846875
transcript.pyannote[166].end 751.89659375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 752.47034375
transcript.pyannote[167].end 755.01846875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 755.06909375
transcript.pyannote[168].end 755.13659375
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 755.13659375
transcript.pyannote[169].end 755.67659375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 755.15346875
transcript.pyannote[170].end 755.17034375
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 755.30534375
transcript.pyannote[171].end 757.46534375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 759.32159375
transcript.pyannote[172].end 759.67596875
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 759.86159375
transcript.pyannote[173].end 760.24971875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 760.13159375
transcript.pyannote[174].end 760.87409375
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 761.00909375
transcript.pyannote[175].end 761.51534375
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 763.13534375
transcript.pyannote[176].end 763.94534375
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 764.46846875
transcript.pyannote[177].end 764.80596875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 767.13471875
transcript.pyannote[178].end 769.00784375
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 770.05409375
transcript.pyannote[179].end 781.59659375
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 782.65971875
transcript.pyannote[180].end 800.15909375
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 800.17596875
transcript.pyannote[181].end 802.47096875
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 802.77471875
transcript.pyannote[182].end 802.84221875
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 803.87159375
transcript.pyannote[183].end 804.66471875
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 805.28909375
transcript.pyannote[184].end 806.36909375
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 807.02721875
transcript.pyannote[185].end 813.32159375
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 813.84471875
transcript.pyannote[186].end 815.51534375
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 815.63346875
transcript.pyannote[187].end 817.57409375
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 819.43034375
transcript.pyannote[188].end 820.59471875
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 820.89846875
transcript.pyannote[189].end 821.87721875
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 821.97846875
transcript.pyannote[190].end 822.04596875
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 822.13034375
transcript.pyannote[191].end 824.02034375
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 824.67846875
transcript.pyannote[192].end 828.89721875
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 828.89721875
transcript.pyannote[193].end 829.25159375
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 830.56784375
transcript.pyannote[194].end 874.91534375
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 846.44721875
transcript.pyannote[195].end 846.85221875
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 849.36659375
transcript.pyannote[196].end 849.82221875
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 875.18534375
transcript.pyannote[197].end 875.67471875
transcript.pyannote[198].speaker SPEAKER_00
transcript.pyannote[198].start 876.29909375
transcript.pyannote[198].end 878.22284375
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 878.42534375
transcript.pyannote[199].end 879.70784375
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 878.61096875
transcript.pyannote[200].end 880.33221875
transcript.pyannote[201].speaker SPEAKER_02
transcript.pyannote[201].start 880.21409375
transcript.pyannote[201].end 880.23096875
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 880.26471875
transcript.pyannote[202].end 889.95096875
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 880.75409375
transcript.pyannote[203].end 881.26034375
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 890.15346875
transcript.pyannote[204].end 894.76034375
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 893.37659375
transcript.pyannote[205].end 896.31284375
transcript.pyannote[206].speaker SPEAKER_00
transcript.pyannote[206].start 895.85721875
transcript.pyannote[206].end 900.07596875
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 900.61596875
transcript.pyannote[207].end 901.88159375
transcript.pyannote[208].speaker SPEAKER_00
transcript.pyannote[208].start 902.53971875
transcript.pyannote[208].end 903.70409375
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 903.92346875
transcript.pyannote[209].end 904.86846875
transcript.pyannote[210].speaker SPEAKER_02
transcript.pyannote[210].start 904.19346875
transcript.pyannote[210].end 904.61534375
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 904.93596875
transcript.pyannote[211].end 904.95284375
transcript.pyannote[212].speaker SPEAKER_00
transcript.pyannote[212].start 904.96971875
transcript.pyannote[212].end 914.84159375
transcript.pyannote[213].speaker SPEAKER_02
transcript.pyannote[213].start 905.20596875
transcript.pyannote[213].end 906.47159375
transcript.pyannote[214].speaker SPEAKER_02
transcript.pyannote[214].start 906.53909375
transcript.pyannote[214].end 906.55596875
transcript.pyannote[215].speaker SPEAKER_00
transcript.pyannote[215].start 915.09471875
transcript.pyannote[215].end 930.34971875
transcript.pyannote[216].speaker SPEAKER_01
transcript.pyannote[216].start 917.23784375
transcript.pyannote[216].end 918.38534375
transcript.pyannote[217].speaker SPEAKER_02
transcript.pyannote[217].start 922.19909375
transcript.pyannote[217].end 922.55346875
transcript.pyannote[218].speaker SPEAKER_01
transcript.pyannote[218].start 923.51534375
transcript.pyannote[218].end 923.53221875
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 923.53221875
transcript.pyannote[219].end 923.83596875
transcript.pyannote[220].speaker SPEAKER_02
transcript.pyannote[220].start 929.18534375
transcript.pyannote[220].end 929.57346875
transcript.pyannote[221].speaker SPEAKER_02
transcript.pyannote[221].start 929.96159375
transcript.pyannote[221].end 930.43409375
transcript.pyannote[222].speaker SPEAKER_00
transcript.pyannote[222].start 930.41721875
transcript.pyannote[222].end 945.41909375
transcript.pyannote[223].speaker SPEAKER_02
transcript.pyannote[223].start 935.27721875
transcript.pyannote[223].end 935.76659375
transcript.pyannote[224].speaker SPEAKER_02
transcript.pyannote[224].start 944.37284375
transcript.pyannote[224].end 944.67659375
transcript.pyannote[225].speaker SPEAKER_00
transcript.pyannote[225].start 945.82409375
transcript.pyannote[225].end 948.06846875
transcript.pyannote[226].speaker SPEAKER_02
transcript.pyannote[226].start 948.18659375
transcript.pyannote[226].end 948.50721875
transcript.pyannote[227].speaker SPEAKER_00
transcript.pyannote[227].start 948.49034375
transcript.pyannote[227].end 952.35471875
transcript.pyannote[228].speaker SPEAKER_02
transcript.pyannote[228].start 949.75596875
transcript.pyannote[228].end 950.16096875
transcript.pyannote[229].speaker SPEAKER_02
transcript.pyannote[229].start 951.78096875
transcript.pyannote[229].end 953.16471875
transcript.pyannote[230].speaker SPEAKER_00
transcript.pyannote[230].start 952.50659375
transcript.pyannote[230].end 956.45534375
transcript.pyannote[231].speaker SPEAKER_02
transcript.pyannote[231].start 953.33346875
transcript.pyannote[231].end 953.80596875
transcript.pyannote[232].speaker SPEAKER_02
transcript.pyannote[232].start 954.16034375
transcript.pyannote[232].end 954.90284375
transcript.pyannote[233].speaker SPEAKER_00
transcript.pyannote[233].start 956.92784375
transcript.pyannote[233].end 963.96471875
transcript.pyannote[234].speaker SPEAKER_02
transcript.pyannote[234].start 960.21846875
transcript.pyannote[234].end 961.97346875
transcript.pyannote[235].speaker SPEAKER_01
transcript.pyannote[235].start 961.97346875
transcript.pyannote[235].end 962.86784375
transcript.pyannote[236].speaker SPEAKER_01
transcript.pyannote[236].start 962.95221875
transcript.pyannote[236].end 963.96471875
transcript.whisperx[0].start 9.827
transcript.whisperx[0].end 13.11
transcript.whisperx[0].text 謝謝主席,有請部長還有署長
transcript.whisperx[1].start 25.24
transcript.whisperx[1].end 53.648
transcript.whisperx[1].text 這個昨天齁 中華民國養豬協會潘連週理事長在媒體上就這樣表示的齁說看完進口萊豬致敬14年 相對大多數證明對進口豬肉沒有興趣只有加工廠商會給予成本採購所以不用太擔心這個進口內臟豬腳會影響到國內豬肉只要政府嚴格把關並追查豬肉動向但如果是肉品內臟還是加工品都必須要做到產地標示避免有魚目混豬的情況也保障國內豬籠的權益部長對潘理事長的說法有什麼看法現在就是這樣在做好 現在就這樣做
transcript.whisperx[2].start 54.528
transcript.whisperx[2].end 65.839
transcript.whisperx[2].text 但是潘理事長還有這段話的一個重點就是政府要嚴格把關並追查豬肉動向我們到底有沒有嚴格把關
transcript.whisperx[3].start 67.219
transcript.whisperx[3].end 92.066
transcript.whisperx[3].text 因為他在表示一週內連續有三批萊豬進口不可能是包裝錯誤或是巧合畢竟所有的貨物進口都要經過檢驗、封櫃、然後報官那這一次一週就有兩次澳洲萊豬進來那代表澳洲端沒有確實檢驗這才是問題的所在所以目前台灣在邊境的把關萊豬抽驗已經過了這四年是不是開始有一些
transcript.whisperx[4].start 93.493
transcript.whisperx[4].end 97.5
transcript.whisperx[4].text 怎麼說束縛懈怠不然怎麼會有這種事情發生
transcript.whisperx[5].start 98.358
transcript.whisperx[5].end 100.88
transcript.whisperx[5].text 好 應該不會了是不是我請署長好 請署長
transcript.whisperx[6].start 128.398
transcript.whisperx[6].end 146.231
transcript.whisperx[6].text 所以因此在過去一路以來我們看到他的風險並都沒有查到所以他的確是從以前逐批查到後來是降到2到10%的一個查查的比例那2到10%查查比例那我們目前看到雖然這次的檢出值是0.01到0.003ppm
transcript.whisperx[7].start 149.253
transcript.whisperx[7].end 167.199
transcript.whisperx[7].text 是小於我們的0.01的標準值但是剛才在先前委員會裡面委員們有一些些特別提醒我們要我們增加的我們剛才也有承諾說我們會讓國人更為安心把叉叉的比例往上提升這邊也跟委員特別做建議目前讓署長講得完整
transcript.whisperx[8].start 167.819
transcript.whisperx[8].end 183.125
transcript.whisperx[8].text 那如果是這個讓就是提高檢驗的這樣的一個量能嘛基本上應該要來嚇阻這些事情是應該是沒有多大的問題啦齁但是我現在用一個例子給你做參考齁那個時候你還沒有來當署長這家齁印度的Boss的香料與調味料
transcript.whisperx[9].start 185.105
transcript.whisperx[9].end 203.336
transcript.whisperx[9].text 這個公司在去年6月18日查出紅膠色素產品有蘇丹隆4號12月17號就是去年又被查到這個紅膠色素檢測出蘇丹隆1、2、4三個號然後今年2月11號又有辣椒油素質被檢出蘇丹隆2號跟4號這是幾點
transcript.whisperx[10].start 206.278
transcript.whisperx[10].end 230.074
transcript.whisperx[10].text 那去年2月27喔我們消息組的新聞稿寫得很清楚無論是邊境或後市場只要檢出蘇丹紅立即停止輸入查驗那簡單講就是說這家MOS公司在去年6月18被查驗後應該就立即停止輸入查驗為什麼它在12月還是在今年的2月11號都還可以持續進口
transcript.whisperx[11].start 231.861
transcript.whisperx[11].end 240.019
transcript.whisperx[11].text 這家BOSS公司一直在挑戰台灣的邊境茶葉如果說真的他來一次疏忽又被禁來了誰要負責
transcript.whisperx[12].start 241.811
transcript.whisperx[12].end 264.358
transcript.whisperx[12].text 這邊跟委員進一步報告這就是因為我們的邊境查驗的系統是智慧型的那它是不得檢出但是檢出了所以我們查驗比例不斷的挑高之後呢是百分之百它其實還沒到港口還沒有進入邊境我們的我們就知道這一家有進馬上就進去去做查查所以才有這個機會能夠這麼精準的把它再查到
transcript.whisperx[13].start 264.958
transcript.whisperx[13].end 294.358
transcript.whisperx[13].text 那因為進口商在做這件事情的時候他其實是我們在小署的部分是沒有辦法特別但是我們會予以輔導那因為輔導部分也很困難不在於本署的一個業務的能夠支持但是我們在邊境那決戰在境外的這樣子的心一定是不會改變的以上所以基本上你的意思就是說我們還是有一些防治防備防防制的機制存在但是這好像是廠家就是要跟你賭
transcript.whisperx[14].start 295.438
transcript.whisperx[14].end 320.476
transcript.whisperx[14].text 對不對 他就是在被堵嘛對 我們看到的情形是這樣的然後我們食藥署有這麼大的量能可以跟他對堵嗎我們跟委員報告我們的Border Protection Intelligence就是邊境的智慧茶茶的系統裡面對於這樣子的茶茶已經違規是不得檢出的它自然跳出來的就會變成百分之百只要這個廠家出來馬上就會是每一批
transcript.whisperx[15].start 321.337
transcript.whisperx[15].end 344.892
transcript.whisperx[15].text 因為報關的相關資料裡面我們就可以抓得到所以在這邊特別跟委員報告說我們已經在做所謂的精準抽驗上面已經有量能這樣的提升對國人的安全的努力現在這樣的場景為什麼不把它列作是一個黑名單對它就是黑名單就是我們知道它是黑名單但是我們就會去你覺得它是黑名單它還可以持續的這樣持續的報關來挑戰來跟你賭
transcript.whisperx[16].start 347.914
transcript.whisperx[16].end 372.252
transcript.whisperx[16].text 這在貿易的部分他們自由貿易的廠商的部分我覺得應該要有他們我覺得這應該要有個因應之道吧不能這個樣子嘛對不對你當然有相關的機制完備但是他還敢跟你賭那到底是我們有什麼調整的空間他連賭都不能賭就是他沒有提供安全足夠的這樣的品質保證的情況之下他都不需要賭了就是主角了啦
transcript.whisperx[17].start 373.012
transcript.whisperx[17].end 394.398
transcript.whisperx[17].text 也不用浪費這麼多的人力甚至於還有要用更進步的科技來做專業主角我覺得這應該是可以討論的吧謝謝委員我想這個部分我們一定帶回去看怎麼進一步可能不是單單在衛福部事要署這邊我們能夠在跨部會裡面做一些些溝通協調看怎麼能夠去努力一個月好不好問一下這個邊境一個月應該可以吧
transcript.whisperx[18].start 400.529
transcript.whisperx[18].end 422.815
transcript.whisperx[18].text 因為我們經生的問題我們經不起任何一次的疏忽嘛然後這廠家就是有就是慣性嘛對報告委員這邊其實剛才提到這家廠商真的是在今年1月24號之後我們有停止其輸入的查驗的是已經有這樣子的阻絕的動作今年的1月嘛有停止輸入的查驗嘛對不對是但是你在關稅的時候是今年的2月11號啊對所以
transcript.whisperx[19].start 424.275
transcript.whisperx[19].end 443.978
transcript.whisperx[19].text 在這種情形之下可能在時序上面呢還有讓他們有進來那我們也很因為我們有這個系統我們就有把他攬下來這時間沒有是正確的嘛對不對是的這時間沒有問題啊所以在1月已經有做了更完整的這樣的一個組決怎麼2月11號又發生了辣椒油素質蘇丹農2號跟4號
transcript.whisperx[20].start 445.479
transcript.whisperx[20].end 466.875
transcript.whisperx[20].text 對我們就回去我們直接來去跟跨部會裡面我們有機會能夠去做進一步的溝通再跟委員處報告所以這顯然還是有問題的存在啦還是有盲點啦一個月裡面提出我們相關的一些因應作為好我們來進一步的去研擬這是下部委例嘛因為實際上的問題我們就是不容許不容許農民百姓就是不容許我們卸貸啊
transcript.whisperx[21].start 467.856
transcript.whisperx[21].end 493.001
transcript.whisperx[21].text 我們就是更積極嘛 好不好 謝謝委員好 那第二件事情也是稍微排的 這個非常重要部長你看一下 署長你們請回頭台灣賣入超高齡社會大家都很清楚 65歲已經超過20%長照需求者的人數推估也將高達90萬人以上以因此2026的這個造福專員需求人率將達到造福需求人率 將達到這一個12萬但是你目前看
transcript.whisperx[22].start 493.801
transcript.whisperx[22].end 503.528
transcript.whisperx[22].text 這是往下墜的一個台灣居府人員的成長率從2020年7.79%2021年26%小數領就不再墜數了2022年7.9%2023年1.7%2024年來到1.3%居務員成長率這幾年低迷外我們台灣目前有5萬多的居府然後平均年齡都已經超過50歲未滿25歲才1800僅佔居府的3.6%
transcript.whisperx[23].start 522.322
transcript.whisperx[23].end 551.742
transcript.whisperx[23].text 還是次長你們怎麼看到現在這個狀況這不僅是會有偏鄉老老照顧現在連居府也都是一樣老老居府的窘境怎麼處理怎麼因應次長非常感謝建國委員對於這個問題的關心我跟委員報告兩個重點第一個其實整個居府現在委員剛剛所說的是2020到2024他那個曲線確實是低但是請委員要注意106年我要注意什麼
transcript.whisperx[24].start 552.282
transcript.whisperx[24].end 568.288
transcript.whisperx[24].text 不不不 請委員你就順順講清楚我會非常注意請委員那個那個圖表再貼回去來沒有啦 了解就是說我們從剛開辦的時候 他的曲線是這樣上去的是啊所以我們從剛開始的時候是2.5萬現在是10萬嘛所以現金是4倍所以他的曲線是這樣現在有人說說說說 沒錯 是5年
transcript.whisperx[25].start 578.032
transcript.whisperx[25].end 602.843
transcript.whisperx[25].text 現在也許現在到目前為止現在是目前有點就比較平但是這個部分我們也這個市場就是前幾年長照2.0在推的時候前8年也成長非常非常非常迅速最近這幾年是有點比較平滑但是第二點我們現在目前我也同意整個居福原它的平均年齡確實也偏高所以我們現在目前
transcript.whisperx[26].start 603.783
transcript.whisperx[26].end 628.03
transcript.whisperx[26].text 也希望能夠在這個部分能夠多能夠來來來多推動跟這一個學校學校端這邊的一個合作來來來加強這邊的這一根年輕化當然最重要的還是薪資啦沒錯啦好了好你已經提出問題的所在嘛對不對通常要是薪資嘛所以兩個問題你都講了嘛那第一個問題我們會注意嘛你要注意那個你要把高峰的曲線不要弄出來
transcript.whisperx[27].start 628.41
transcript.whisperx[27].end 649.738
transcript.whisperx[27].text 你不要因為低的才弄出來你要注意一點好不好第二點你就特別提到嘛這個年齡的問題嘛然後再來最主要還是薪資的問題長照長照大家都非常清楚一年的時候平均其實我們都我們都說的比較比較比較和緩一些的說成就還有還有50億沒啦沒這麼多啦
transcript.whisperx[28].start 652.559
transcript.whisperx[28].end 667.647
transcript.whisperx[28].text 其實拜託市長回去可能要再精算一下1.0之前平均1.0才真正的有付出的是多少錢這第一第二長照2.0從小英上來之後隔年的長照基金長照福華等等陸續推動我們從50來億應該是40 50億變成320億一直到現在800多要進入900多了對不對
transcript.whisperx[29].start 676.551
transcript.whisperx[29].end 700.199
transcript.whisperx[29].text 那將近8年 將近8年的長照相關的幾支戶 通通沒有調整這比較有道理 八個黨都沒有人調整你調整什麼 你說我聽因為次長你自己提到薪資的問題嘛 對不對你看喔 小英3年以來 台灣聚力工資每年調漲這個表格各位可以看一下嘛一英文的時候 時薪是1220調到126
transcript.whisperx[30].start 701.959
transcript.whisperx[30].end 707.221
transcript.whisperx[30].text 然後106的時候月薪從20008調到2019一直到114年的一列以後已經來到28590甚至於這個時薪已經調到190了長照怎麼會相關的幾支戶到現在8年連一個微調通通沒有
transcript.whisperx[31].start 722.842
transcript.whisperx[31].end 733.15
transcript.whisperx[31].text 這太過頭注意你就要特別注意這個事情啊你可以注意到曲線你怎麼不曉得你那個長照幾十或八年那個曲線是平的
transcript.whisperx[32].start 734.252
transcript.whisperx[32].end 757.188
transcript.whisperx[32].text 是平的 一定不會動你叫我注意管的因為我注意雞肋的 港肋的嘛你要叫我注意管的 那個白白白你知不知道部長是醫師嘛 很清楚到醫院有讀我看到一個數據是白白白代表什麼你知道嗎早我已經說了嘛所以要注意嘛白白白你注意嘛 已經不會有啊
transcript.whisperx[33].start 759.326
transcript.whisperx[33].end 764.707
transcript.whisperx[33].text 對不對現在要怎麼處理注意怎麼會把你完全都沒有動然後我們現在又針對喔衛部又針對長照3.0將讓入什麼有三項嘛第一經醫師診斷危老狀況且是能影響到日常生活第二經醫師診斷為癌末
transcript.whisperx[34].start 782.731
transcript.whisperx[34].end 802.027
transcript.whisperx[34].text 然後預期壽命低於六個月的私人病患那我們現在在第三項是符合前述條件且符合勞動力中階啦這個技術人力的取得永久居留權的外籍專業人士我們要擴大這個對象嘛對不對我們在擴大對象但我們一直不提升相關的給支付你怎麼有人你怎麼補起來
transcript.whisperx[35].start 807.551
transcript.whisperx[35].end 817.498
transcript.whisperx[35].text 你從很多的面向去處理 要讓更多的這個造福人力長照機構人力 我知道都有在做但是你的誘因在什麼地方 你的鼓勵在什麼地方處長都說是了 你叫他去注意啊我以後自己會好好注意啦
transcript.whisperx[36].start 831.221
transcript.whisperx[36].end 835.124
transcript.whisperx[36].text 非常佩服委員長期以來對這個問題的關心我相信真的是確實誠如委員剛才所說的我想這個需求要再提高長照其實最重要的就是人力
transcript.whisperx[37].start 846.694
transcript.whisperx[37].end 862.104
transcript.whisperx[37].text 因為我們也知道人力成本佔百分之六十嘛所以這個部分我們現在目前會根據我們的那個組合長照照顧組合的機制來做一個相關的一個成本效益分析但是我們現在是這樣啦簡單來講就是說業者應該自己的經驗應該最了解裡面的成本的那個結構所以你只要業者那邊拿出來大家都可以來探討嘛注意
transcript.whisperx[38].start 876.38
transcript.whisperx[38].end 899.694
transcript.whisperx[38].text 人家早早就已經提出來了市民們沒有注意到啦報告委員我們也跟這個居民這邊有跟他們拜託但他們說請他們提出但是他們到目前為止其實是不會的啦那我就會特別注意居民到底在做什麼是不是沒關係他們沒有提出啦我會注意他們為什麼沒有提出之後來跟你回報
transcript.whisperx[39].start 900.68
transcript.whisperx[39].end 929.437
transcript.whisperx[39].text 但是他們如果有提出那就要換你注意了對 沒錯我要提到一點喔我們 我剛才特別用那個就是基本工資來看待整個這個成長嘛那你怎麼可能會成照相關的幾支或標準照理講你也應該參考嘛 評估嘛就像可以依照基本工資啦還是勞健保費率啦 物價指數來做微調嘛即便居如沒有提出來至少還是可以來做嘛因為你剛剛特別提到的兩個點的中間的一個點薪資問題嘛
transcript.whisperx[40].start 931.098
transcript.whisperx[40].end 956.096
transcript.whisperx[40].text 所以不是只有居府 長照機構的人員基本上都是如此嘛所以是整體來做這個面向來做調查 來做相關的這些可以依據的參考我們應該 時間到了啦 要進到3.0之前就應該來做調整啦好不好 不然這樣等嘛好不好 會啦 你們來注意齁謝謝部長 一起注意 一個月內
transcript.whisperx[41].start 957.057
transcript.whisperx[41].end 960.603
transcript.whisperx[41].text 我們把這個注意事情處理完成 好不好好 謝謝 謝謝大家的注意