IVOD_ID |
161129 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/161129 |
日期 |
2025-05-08 |
會議資料.會議代碼 |
委員會-11-3-26-10 |
會議資料.會議代碼:str |
第11屆第3會期社會福利及衛生環境委員會第10次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
10 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第3會期社會福利及衛生環境委員會第10次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-05-08T13:15:59+08:00 |
結束時間 |
2025-05-08T13:28:55+08:00 |
影片長度 |
00:12:56 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/26c557d936b203c16785d4cd5ba16557bf088656e97d34035710b400f5dcf92492745e27300ebd055ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
楊曜 |
委員發言時間 |
13:15:59 - 13:28:55 |
會議時間 |
2025-05-08T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期社會福利及衛生環境委員會第10次全體委員會議(事由:一、邀請衛生福利部部長就「長照2.0執行情形檢討及3.0未來規劃」進行專題報告,並備質詢。
二、邀請衛生福利部部長就「澳洲進口豬腳驗出含萊克多巴胺,如何加強肉品食安查驗,讓民眾放心」進行專題報告,並備質詢。
【專題報告綜合詢答】) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
8.28284375 |
transcript.pyannote[0].end |
9.63284375 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
10.12221875 |
transcript.pyannote[1].end |
11.26971875 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
11.45534375 |
transcript.pyannote[2].end |
13.05846875 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
20.19659375 |
transcript.pyannote[3].end |
24.88784375 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
24.46596875 |
transcript.pyannote[4].end |
24.58409375 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
25.19159375 |
transcript.pyannote[5].end |
26.86221875 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
27.68909375 |
transcript.pyannote[6].end |
33.69659375 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
34.10159375 |
transcript.pyannote[7].end |
38.43846875 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
38.99534375 |
transcript.pyannote[8].end |
105.14534375 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
103.79534375 |
transcript.pyannote[9].end |
104.13284375 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
105.16221875 |
transcript.pyannote[10].end |
118.15596875 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
118.52721875 |
transcript.pyannote[11].end |
121.66596875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
122.07096875 |
transcript.pyannote[12].end |
148.71659375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
149.37471875 |
transcript.pyannote[13].end |
153.88034375 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
154.55534375 |
transcript.pyannote[14].end |
155.77034375 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
157.05284375 |
transcript.pyannote[15].end |
160.34346875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
161.27159375 |
transcript.pyannote[16].end |
162.65534375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
163.39784375 |
transcript.pyannote[17].end |
164.93346875 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
165.45659375 |
transcript.pyannote[18].end |
167.00909375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
167.46471875 |
transcript.pyannote[19].end |
167.97096875 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
167.53221875 |
transcript.pyannote[20].end |
167.85284375 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
167.97096875 |
transcript.pyannote[21].end |
169.37159375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
168.59534375 |
transcript.pyannote[22].end |
170.18159375 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
170.99159375 |
transcript.pyannote[23].end |
172.66221875 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
174.50159375 |
transcript.pyannote[24].end |
179.36159375 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
180.47534375 |
transcript.pyannote[25].end |
182.73659375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
183.76596875 |
transcript.pyannote[26].end |
185.13284375 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
185.89221875 |
transcript.pyannote[27].end |
186.63471875 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
188.13659375 |
transcript.pyannote[28].end |
188.44034375 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
188.99721875 |
transcript.pyannote[29].end |
191.37659375 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
192.59159375 |
transcript.pyannote[30].end |
193.84034375 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
195.39284375 |
transcript.pyannote[31].end |
197.58659375 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
198.14346875 |
transcript.pyannote[32].end |
198.59909375 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
198.83534375 |
transcript.pyannote[33].end |
266.09909375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
202.91909375 |
transcript.pyannote[34].end |
203.08784375 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
247.72221875 |
transcript.pyannote[35].end |
248.48159375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
264.00659375 |
transcript.pyannote[36].end |
280.03784375 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
280.79721875 |
transcript.pyannote[37].end |
282.67034375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
282.73784375 |
transcript.pyannote[38].end |
285.15096875 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
286.16346875 |
transcript.pyannote[39].end |
290.11221875 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
286.29846875 |
transcript.pyannote[40].end |
286.95659375 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
287.04096875 |
transcript.pyannote[41].end |
287.09159375 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
291.36096875 |
transcript.pyannote[42].end |
293.33534375 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
294.17909375 |
transcript.pyannote[43].end |
295.19159375 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
295.24221875 |
transcript.pyannote[44].end |
297.97596875 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
298.80284375 |
transcript.pyannote[45].end |
299.93346875 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
300.10221875 |
transcript.pyannote[46].end |
321.93846875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
322.71471875 |
transcript.pyannote[47].end |
334.52721875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
334.54409375 |
transcript.pyannote[48].end |
341.73284375 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
341.41221875 |
transcript.pyannote[49].end |
348.29721875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
342.25596875 |
transcript.pyannote[50].end |
342.57659375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
348.39846875 |
transcript.pyannote[51].end |
348.92159375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
349.42784375 |
transcript.pyannote[52].end |
355.45221875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
356.21159375 |
transcript.pyannote[53].end |
356.46471875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
357.27471875 |
transcript.pyannote[54].end |
360.83534375 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
361.78034375 |
transcript.pyannote[55].end |
365.79659375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
366.45471875 |
transcript.pyannote[56].end |
367.07909375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
367.93971875 |
transcript.pyannote[57].end |
369.12096875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
369.62721875 |
transcript.pyannote[58].end |
373.37346875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
374.68971875 |
transcript.pyannote[59].end |
387.21096875 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
387.41346875 |
transcript.pyannote[60].end |
387.95346875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
388.59471875 |
transcript.pyannote[61].end |
396.00284375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
396.32346875 |
transcript.pyannote[62].end |
397.92659375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
398.17971875 |
transcript.pyannote[63].end |
399.12471875 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
400.57596875 |
transcript.pyannote[64].end |
402.02721875 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
402.41534375 |
transcript.pyannote[65].end |
406.63409375 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
407.05596875 |
transcript.pyannote[66].end |
409.08096875 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
410.46471875 |
transcript.pyannote[67].end |
413.21534375 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
413.29971875 |
transcript.pyannote[68].end |
414.34596875 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
414.93659375 |
transcript.pyannote[69].end |
416.32034375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
416.77596875 |
transcript.pyannote[70].end |
417.46784375 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
418.04159375 |
transcript.pyannote[71].end |
418.91909375 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
420.58971875 |
transcript.pyannote[72].end |
421.39971875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
422.27721875 |
transcript.pyannote[73].end |
422.76659375 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
422.93534375 |
transcript.pyannote[74].end |
423.88034375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
424.23471875 |
transcript.pyannote[75].end |
425.75346875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
426.81659375 |
transcript.pyannote[76].end |
427.18784375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
428.28471875 |
transcript.pyannote[77].end |
429.58409375 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
430.20846875 |
transcript.pyannote[78].end |
431.17034375 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
431.49096875 |
transcript.pyannote[79].end |
433.51596875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
434.51159375 |
transcript.pyannote[80].end |
435.35534375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
435.92909375 |
transcript.pyannote[81].end |
436.72221875 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
436.94159375 |
transcript.pyannote[82].end |
437.75159375 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
438.44346875 |
transcript.pyannote[83].end |
440.24909375 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
440.38409375 |
transcript.pyannote[84].end |
441.64971875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
443.47221875 |
transcript.pyannote[85].end |
444.51846875 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
445.91909375 |
transcript.pyannote[86].end |
449.07471875 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
450.57659375 |
transcript.pyannote[87].end |
450.77909375 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
450.79596875 |
transcript.pyannote[88].end |
451.60596875 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
452.04471875 |
transcript.pyannote[89].end |
453.51284375 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
454.87971875 |
transcript.pyannote[90].end |
455.89221875 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
456.38159375 |
transcript.pyannote[91].end |
457.66409375 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
461.69721875 |
transcript.pyannote[92].end |
465.71346875 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
465.86534375 |
transcript.pyannote[93].end |
468.85221875 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
469.59471875 |
transcript.pyannote[94].end |
474.08346875 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
474.77534375 |
transcript.pyannote[95].end |
477.91409375 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
478.43721875 |
transcript.pyannote[96].end |
479.39909375 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
480.24284375 |
transcript.pyannote[97].end |
480.86721875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
481.60971875 |
transcript.pyannote[98].end |
482.47034375 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
482.95971875 |
transcript.pyannote[99].end |
484.84971875 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
485.05221875 |
transcript.pyannote[100].end |
486.90846875 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
486.97596875 |
transcript.pyannote[101].end |
487.81971875 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
490.19909375 |
transcript.pyannote[102].end |
490.85721875 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
491.16096875 |
transcript.pyannote[103].end |
492.25784375 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
493.35471875 |
transcript.pyannote[104].end |
493.86096875 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
494.14784375 |
transcript.pyannote[105].end |
495.70034375 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
496.35846875 |
transcript.pyannote[106].end |
498.77159375 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
498.78846875 |
transcript.pyannote[107].end |
499.07534375 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
499.14284375 |
transcript.pyannote[108].end |
499.95284375 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
501.20159375 |
transcript.pyannote[109].end |
501.67409375 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
501.96096875 |
transcript.pyannote[110].end |
503.59784375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
504.25596875 |
transcript.pyannote[111].end |
504.77909375 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
505.31909375 |
transcript.pyannote[112].end |
506.06159375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
506.80409375 |
transcript.pyannote[113].end |
507.64784375 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
508.91346875 |
transcript.pyannote[114].end |
510.80346875 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
511.20846875 |
transcript.pyannote[115].end |
513.36846875 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
514.65096875 |
transcript.pyannote[116].end |
514.98846875 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
516.40596875 |
transcript.pyannote[117].end |
517.90784375 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
518.27909375 |
transcript.pyannote[118].end |
519.79784375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
520.23659375 |
transcript.pyannote[119].end |
521.26596875 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
521.43471875 |
transcript.pyannote[120].end |
523.03784375 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
523.56096875 |
transcript.pyannote[121].end |
524.42159375 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
525.40034375 |
transcript.pyannote[122].end |
532.18409375 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
527.89784375 |
transcript.pyannote[123].end |
529.11284375 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
529.12971875 |
transcript.pyannote[124].end |
529.97346875 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
532.26846875 |
transcript.pyannote[125].end |
534.15846875 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
532.57221875 |
transcript.pyannote[126].end |
538.44471875 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
538.84971875 |
transcript.pyannote[127].end |
540.23346875 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
540.60471875 |
transcript.pyannote[128].end |
543.25409375 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
544.48596875 |
transcript.pyannote[129].end |
548.08034375 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
548.24909375 |
transcript.pyannote[130].end |
552.73784375 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
553.36221875 |
transcript.pyannote[131].end |
554.69534375 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
556.29846875 |
transcript.pyannote[132].end |
558.72846875 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
559.26846875 |
transcript.pyannote[133].end |
560.24721875 |
transcript.pyannote[134].speaker |
SPEAKER_01 |
transcript.pyannote[134].start |
560.82096875 |
transcript.pyannote[134].end |
585.35721875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
585.91409375 |
transcript.pyannote[135].end |
586.25159375 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
585.99846875 |
transcript.pyannote[136].end |
588.59721875 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
588.71534375 |
transcript.pyannote[137].end |
590.74034375 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
591.85409375 |
transcript.pyannote[138].end |
592.46159375 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
592.64721875 |
transcript.pyannote[139].end |
594.55409375 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
595.29659375 |
transcript.pyannote[140].end |
598.41846875 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
599.04284375 |
transcript.pyannote[141].end |
601.43909375 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
602.04659375 |
transcript.pyannote[142].end |
603.36284375 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
604.35846875 |
transcript.pyannote[143].end |
605.52284375 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
606.51846875 |
transcript.pyannote[144].end |
607.90221875 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
608.44221875 |
transcript.pyannote[145].end |
610.02846875 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
610.90596875 |
transcript.pyannote[146].end |
611.95221875 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
612.40784375 |
transcript.pyannote[147].end |
613.30221875 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
613.47096875 |
transcript.pyannote[148].end |
615.68159375 |
transcript.pyannote[149].speaker |
SPEAKER_01 |
transcript.pyannote[149].start |
616.25534375 |
transcript.pyannote[149].end |
630.88596875 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
630.88596875 |
transcript.pyannote[150].end |
636.69096875 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
637.56846875 |
transcript.pyannote[151].end |
640.16721875 |
transcript.pyannote[152].speaker |
SPEAKER_00 |
transcript.pyannote[152].start |
640.43721875 |
transcript.pyannote[152].end |
644.99346875 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
646.49534375 |
transcript.pyannote[153].end |
647.11971875 |
transcript.pyannote[154].speaker |
SPEAKER_01 |
transcript.pyannote[154].start |
646.52909375 |
transcript.pyannote[154].end |
656.48534375 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
649.60034375 |
transcript.pyannote[155].end |
650.69721875 |
transcript.pyannote[156].speaker |
SPEAKER_01 |
transcript.pyannote[156].start |
656.87346875 |
transcript.pyannote[156].end |
665.88471875 |
transcript.pyannote[157].speaker |
SPEAKER_00 |
transcript.pyannote[157].start |
665.31096875 |
transcript.pyannote[157].end |
681.24096875 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
681.57846875 |
transcript.pyannote[158].end |
684.46409375 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
684.78471875 |
transcript.pyannote[159].end |
684.81846875 |
transcript.pyannote[160].speaker |
SPEAKER_00 |
transcript.pyannote[160].start |
685.83096875 |
transcript.pyannote[160].end |
686.32034375 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
686.52284375 |
transcript.pyannote[161].end |
688.42971875 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
689.52659375 |
transcript.pyannote[162].end |
690.38721875 |
transcript.pyannote[163].speaker |
SPEAKER_00 |
transcript.pyannote[163].start |
690.60659375 |
transcript.pyannote[163].end |
696.41159375 |
transcript.pyannote[164].speaker |
SPEAKER_00 |
transcript.pyannote[164].start |
696.96846875 |
transcript.pyannote[164].end |
714.90659375 |
transcript.pyannote[165].speaker |
SPEAKER_00 |
transcript.pyannote[165].start |
715.32846875 |
transcript.pyannote[165].end |
716.81346875 |
transcript.pyannote[166].speaker |
SPEAKER_00 |
transcript.pyannote[166].start |
717.23534375 |
transcript.pyannote[166].end |
719.64846875 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
720.13784375 |
transcript.pyannote[167].end |
723.17534375 |
transcript.pyannote[168].speaker |
SPEAKER_00 |
transcript.pyannote[168].start |
723.52971875 |
transcript.pyannote[168].end |
738.41346875 |
transcript.pyannote[169].speaker |
SPEAKER_00 |
transcript.pyannote[169].start |
738.95346875 |
transcript.pyannote[169].end |
742.81784375 |
transcript.pyannote[170].speaker |
SPEAKER_00 |
transcript.pyannote[170].start |
743.67846875 |
transcript.pyannote[170].end |
744.48846875 |
transcript.pyannote[171].speaker |
SPEAKER_00 |
transcript.pyannote[171].start |
745.39971875 |
transcript.pyannote[171].end |
746.09159375 |
transcript.pyannote[172].speaker |
SPEAKER_00 |
transcript.pyannote[172].start |
747.59346875 |
transcript.pyannote[172].end |
749.04471875 |
transcript.pyannote[173].speaker |
SPEAKER_00 |
transcript.pyannote[173].start |
749.90534375 |
transcript.pyannote[173].end |
750.73221875 |
transcript.pyannote[174].speaker |
SPEAKER_00 |
transcript.pyannote[174].start |
751.76159375 |
transcript.pyannote[174].end |
752.65596875 |
transcript.pyannote[175].speaker |
SPEAKER_00 |
transcript.pyannote[175].start |
755.49096875 |
transcript.pyannote[175].end |
756.16596875 |
transcript.pyannote[176].speaker |
SPEAKER_00 |
transcript.pyannote[176].start |
756.53721875 |
transcript.pyannote[176].end |
757.26284375 |
transcript.pyannote[177].speaker |
SPEAKER_00 |
transcript.pyannote[177].start |
757.95471875 |
transcript.pyannote[177].end |
759.13596875 |
transcript.pyannote[178].speaker |
SPEAKER_00 |
transcript.pyannote[178].start |
759.37221875 |
transcript.pyannote[178].end |
761.43096875 |
transcript.pyannote[179].speaker |
SPEAKER_00 |
transcript.pyannote[179].start |
762.03846875 |
transcript.pyannote[179].end |
772.36596875 |
transcript.pyannote[180].speaker |
SPEAKER_01 |
transcript.pyannote[180].start |
772.26471875 |
transcript.pyannote[180].end |
773.22659375 |
transcript.pyannote[181].speaker |
SPEAKER_00 |
transcript.pyannote[181].start |
774.57659375 |
transcript.pyannote[181].end |
776.50034375 |
transcript.whisperx[0].start |
8.314 |
transcript.whisperx[0].end |
13.097 |
transcript.whisperx[0].text |
好 謝謝主席主席請一下長照師 處市長委員好市長好 市長我只有問你讓部長跟市長休息一下你能不能 |
transcript.whisperx[1].start |
27.762 |
transcript.whisperx[1].end |
38.116 |
transcript.whisperx[1].text |
用最簡單的方式最少的時間大概跟我講一下長照2.0跟長照3.0最大的區別到底在哪裡 |
transcript.whisperx[2].start |
39.056 |
transcript.whisperx[2].end |
48.664 |
transcript.whisperx[2].text |
好那簡單講其實他的基本的理念跟架構其實都是延續的都是以人為本社區為基礎提供連續性的照顧那在3.0要去強化的就是2.0過往跟醫療的那個銜接上面還是沒有很及時所以我們3.0要強化他能夠及時能夠接住銜接上盡量無縫能夠銜接 |
transcript.whisperx[3].start |
64.997 |
transcript.whisperx[3].end |
85.835 |
transcript.whisperx[3].text |
醫療面向就有很多元所以這一塊是我們一個強化重點第二個強化重點就是我們要導入一些積極的賦能就是配合在醫療這一端接過來之後不管他今天是在家還是今天在社區在這些相關不同場域裡面怎麼樣透過一些怎麼樣的鼓勵機制讓我們的長輩能夠被訓練讓他可以自主生活盡量減少依賴照顧這是第二個部分 |
transcript.whisperx[4].start |
93.621 |
transcript.whisperx[4].end |
117.86 |
transcript.whisperx[4].text |
那第三個部分當然會有伴隨因為2.0這邊有一些的檢討的一些服務的不足那這個部分會來積極強化把這樣的一個資源補起來老師我為什麼這樣子問呢因為就是我們從長照1.0 2.0到3.0其實我個人是不大喜歡這樣子的分類長照制度就是一個制度 |
transcript.whisperx[5].start |
118.641 |
transcript.whisperx[5].end |
136.676 |
transcript.whisperx[5].text |
那你剛剛講的也是在長照制度裡面加入醫療體系事實上醫療支撐事實上這個本來也是廣義長照的一環我實在是不知道為什麼你們會一直很喜歡用1.0、2.0、3.0我怕過幾年到10.0所以我才刻意提出這個問題 |
transcript.whisperx[6].start |
144.522 |
transcript.whisperx[6].end |
171.513 |
transcript.whisperx[6].text |
就是增加醫療的照護其實本身本來就是長照的一環長照是不可能脫離脫離醫療照護的好那我我先問就是說我們長照需求服務的涵蓋率是用需求人數推估的需求人數好那我問你 |
transcript.whisperx[7].start |
174.614 |
transcript.whisperx[7].end |
193.554 |
transcript.whisperx[7].text |
上一次的推估在113年就去年必須要需求的人需求的人數是94萬那衛福部最新的統計數字出來只有將近90萬差距超過5% 為什麼 |
transcript.whisperx[8].start |
198.986 |
transcript.whisperx[8].end |
217.276 |
transcript.whisperx[8].text |
委員您提的94萬是在長照2.0的核定本裡面的退估數那我們目前的退估數是因應人工普查的資料出來之後那有一些改變因為2.0的時期當時用的一些相關的參數包括失能率那時候是12.6 |
transcript.whisperx[9].start |
218.797 |
transcript.whisperx[9].end |
247.457 |
transcript.whisperx[9].text |
那到了這個等於在2.0執行的過程裡面因為人口普查又重新公告了已經從12.6調高到13.3所以我們就是重新把這些參數重算那對於過往2.0裡面有一些這個相關的一些身障的一些推估他採取的是高推估跟衰弱的部分也採取高推估那我們就是在這一批整體重新做一些處理低推估 |
transcript.whisperx[10].start |
248.838 |
transcript.whisperx[10].end |
263.621 |
transcript.whisperx[10].text |
我們把它調整因為因為身心障礙者65歲以上的增加幅度高可是他未滿65歲的這一塊他的年輕型的障礙者他其實人數是沒有那樣子的大幅增加所以我們就是改採低推估 |
transcript.whisperx[11].start |
264.022 |
transcript.whisperx[11].end |
291.931 |
transcript.whisperx[11].text |
所以才有這個數字的一個變動我這樣子問呢是因為其實事實上就是要推估本身就是一件很困難的事情啦要精準的推估本來就不過呢因為你推估出來的人數會影響到需求服務涵蓋率對不對所以我希望你們就是我不覺得 |
transcript.whisperx[12].start |
294.249 |
transcript.whisperx[12].end |
321.679 |
transcript.whisperx[12].text |
政府必須要把很多數字美化我覺得我現在不是在說你這件事我個人覺得就是應該是多少人數就多少人數我們服務的多少就服務多少總是盡可能的把事情做到最完美這個才是對的總比把數字文字 |
transcript.whisperx[13].start |
322.779 |
transcript.whisperx[13].end |
348.486 |
transcript.whisperx[13].text |
做的美化這個高明的多好不好我大概就是希望你們以後再推估的時候可以再精準一點因為這個會影響影響影響到後續很多很多東西包括預算的的編列好不好跟委員報告3.0這邊的退估就是用分零了因為我們後來新的調查有分零的失能率好 |
transcript.whisperx[14].start |
350.818 |
transcript.whisperx[14].end |
372.491 |
transcript.whisperx[14].text |
台灣今年開始邁入超高齡社會高齡人口的總數已經超過20%我們目前面臨的有關長照比較有問題的是台灣接受長照服務的平均年齡是76歲 |
transcript.whisperx[15].start |
374.738 |
transcript.whisperx[15].end |
398.883 |
transcript.whisperx[15].text |
也就是說在十年後戰後嬰兒潮的人口在這十年之內會逐步達到長照需求那現在有幾個問題我來人力上你們可能要盡可能的儲備長照所需要的人力另外一個就是我們的財源 |
transcript.whisperx[16].start |
402.77 |
transcript.whisperx[16].end |
425.522 |
transcript.whisperx[16].text |
因為戰鬥嬰兒潮的人數太多了占台灣總人口數的占比太高了根據OECD的國家統計長照的支出大概要占GDP的1.8%而且八成為公共長照支出 |
transcript.whisperx[17].start |
428.382 |
transcript.whisperx[17].end |
457.447 |
transcript.whisperx[17].text |
事實上我再講一次長照的總體支出要佔到GDP的1.8%而且其中這1.8%要八成是公共長照支出可是台灣這幾年長照的總支出未達GDP的百分之一公共支出更只佔四成 |
transcript.whisperx[18].start |
461.735 |
transcript.whisperx[18].end |
481.707 |
transcript.whisperx[18].text |
假如說比照韓國長照支出佔GDP的1.11.1就好了台灣的長照支出必須要有2600億以上可是今年只編列了900多億也就是說900多億是我們用韓國的1.1%來做比例 |
transcript.whisperx[19].start |
490.256 |
transcript.whisperx[19].end |
513.178 |
transcript.whisperx[19].text |
其實我們現在編列的只有必須編列的四成市長我這段話你有聽懂嗎有好那我想要問一下就是說面對人口結構的變化未來的支出一定會一直上升 |
transcript.whisperx[20].start |
516.628 |
transcript.whisperx[20].end |
543.076 |
transcript.whisperx[20].text |
在財源上我們現在單靠遺產稅、菸稅、菸捐和房地合一稅可以支應嗎目前是無餘因為我們現在累積的盈餘現在有2039億那我剛才就講了嘛因為我們的公共支出佔比太低嘛人民自行吸收的太高嘛 |
transcript.whisperx[21].start |
545.175 |
transcript.whisperx[21].end |
560.149 |
transcript.whisperx[21].text |
所以你才會覺得夠用嘛你假如說是按照OECD的標準八成必須要是公共長照裁員那你是不夠的嘛 |
transcript.whisperx[22].start |
561.549 |
transcript.whisperx[22].end |
584.89 |
transcript.whisperx[22].text |
這部分也要跟委員說明因為畢竟就是我們不管今天是長照還是小朋友幼兒的照顧其實在國家的立場其實是幫忙家庭一起來照顧大概沒有辦法替代家人照顧所以這個跟OECD國家有一些是走福利體系的國家的概念其實是不一樣 |
transcript.whisperx[23].start |
586.191 |
transcript.whisperx[23].end |
593.434 |
transcript.whisperx[23].text |
就是因為賦稅的問題師長這麼說呢我是覺得台灣這幾年的經濟成長跟台灣邁向高齡化台灣強調福利國政策然後我們把長照做這樣子的 |
transcript.whisperx[24].start |
610.953 |
transcript.whisperx[24].end |
635.612 |
transcript.whisperx[24].text |
的定位我覺得我覺得我好像不能介紹因為福利國家的話基本上的稅負每一個民眾的繳稅的稅負要高那現階段我們台灣的整個的一個稅負大概只有佔14%跟福利國家高達三四成以上是截然不同對對不是我現在我現在我現在講的是說是說 |
transcript.whisperx[25].start |
637.625 |
transcript.whisperx[25].end |
643.824 |
transcript.whisperx[25].text |
譬如我這樣子講啦市長你把長照定義為個人的 |
transcript.whisperx[26].start |
646.91 |
transcript.whisperx[26].end |
672.02 |
transcript.whisperx[26].text |
應該是說政府沒有辦法替代家人照顧沒有辦法替代對 是協助家人一起來做照顧就跟小朋友的照顧是一樣的概念所以我們已經沒有 我們不排富了相關的都普及式的都可以提供只是提供的方式是跟著家人一起來我因為時間的關係啦所以我大概也不想佔用其他的同事太多時間 |
transcript.whisperx[27].start |
675.604 |
transcript.whisperx[27].end |
682.454 |
transcript.whisperx[27].text |
就剛剛包括我的題目裡面就大家都覺得你們現在編了900多億從屏東到台中 |
transcript.whisperx[28].start |
689.551 |
transcript.whisperx[28].end |
713.712 |
transcript.whisperx[28].text |
到澎湖我相信是全台灣都覺得關懷據點給的經費太少那我也一直強調我向來主張預防勝於治療關懷據點做得好後續的長照支出就會少所以關懷據點這個從伙食到人力這個你們真的必須要很快的把 |
transcript.whisperx[29].start |
715.433 |
transcript.whisperx[29].end |
744.093 |
transcript.whisperx[29].text |
把補助金額提高我最後一個問題讓你回去想就是說假如說我們真的真的國家的財政沒有辦法支出很多的長照讓高齡化的台灣可以有一個安定的長照制度來支應老人生活為什麼 |
transcript.whisperx[30].start |
745.638 |
transcript.whisperx[30].end |
752.18 |
transcript.whisperx[30].text |
為什麼你們從來不考慮從來不考慮走保險制保險制 長照保險或者是保險跟公務預算雙軌這個我讓你待會去想不過我想我會找一天好好的跟你們討論這個問題謝謝市長 謝謝主席好 謝謝委員 |
transcript.whisperx[31].start |
774.582 |
transcript.whisperx[31].end |
774.683 |
transcript.whisperx[31].text |
謝謝袁偉仁 謝謝市長 |