iVOD / 161129

Field Value
IVOD_ID 161129
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/161129
日期 2025-05-08
會議資料.會議代碼 委員會-11-3-26-10
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第10次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 10
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第10次全體委員會議
影片種類 Clip
開始時間 2025-05-08T13:15:59+08:00
結束時間 2025-05-08T13:28:55+08:00
影片長度 00:12:56
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/26c557d936b203c16785d4cd5ba16557bf088656e97d34035710b400f5dcf92492745e27300ebd055ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 楊曜
委員發言時間 13:15:59 - 13:28:55
會議時間 2025-05-08T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第10次全體委員會議(事由:一、邀請衛生福利部部長就「長照2.0執行情形檢討及3.0未來規劃」進行專題報告,並備質詢。 二、邀請衛生福利部部長就「澳洲進口豬腳驗出含萊克多巴胺,如何加強肉品食安查驗,讓民眾放心」進行專題報告,並備質詢。 【專題報告綜合詢答】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 8.28284375
transcript.pyannote[0].end 9.63284375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 10.12221875
transcript.pyannote[1].end 11.26971875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 11.45534375
transcript.pyannote[2].end 13.05846875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 20.19659375
transcript.pyannote[3].end 24.88784375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 24.46596875
transcript.pyannote[4].end 24.58409375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 25.19159375
transcript.pyannote[5].end 26.86221875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 27.68909375
transcript.pyannote[6].end 33.69659375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 34.10159375
transcript.pyannote[7].end 38.43846875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 38.99534375
transcript.pyannote[8].end 105.14534375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 103.79534375
transcript.pyannote[9].end 104.13284375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 105.16221875
transcript.pyannote[10].end 118.15596875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 118.52721875
transcript.pyannote[11].end 121.66596875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 122.07096875
transcript.pyannote[12].end 148.71659375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 149.37471875
transcript.pyannote[13].end 153.88034375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 154.55534375
transcript.pyannote[14].end 155.77034375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 157.05284375
transcript.pyannote[15].end 160.34346875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 161.27159375
transcript.pyannote[16].end 162.65534375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 163.39784375
transcript.pyannote[17].end 164.93346875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 165.45659375
transcript.pyannote[18].end 167.00909375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 167.46471875
transcript.pyannote[19].end 167.97096875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 167.53221875
transcript.pyannote[20].end 167.85284375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 167.97096875
transcript.pyannote[21].end 169.37159375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 168.59534375
transcript.pyannote[22].end 170.18159375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 170.99159375
transcript.pyannote[23].end 172.66221875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 174.50159375
transcript.pyannote[24].end 179.36159375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 180.47534375
transcript.pyannote[25].end 182.73659375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 183.76596875
transcript.pyannote[26].end 185.13284375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 185.89221875
transcript.pyannote[27].end 186.63471875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 188.13659375
transcript.pyannote[28].end 188.44034375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 188.99721875
transcript.pyannote[29].end 191.37659375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 192.59159375
transcript.pyannote[30].end 193.84034375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 195.39284375
transcript.pyannote[31].end 197.58659375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 198.14346875
transcript.pyannote[32].end 198.59909375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 198.83534375
transcript.pyannote[33].end 266.09909375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 202.91909375
transcript.pyannote[34].end 203.08784375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 247.72221875
transcript.pyannote[35].end 248.48159375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 264.00659375
transcript.pyannote[36].end 280.03784375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 280.79721875
transcript.pyannote[37].end 282.67034375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 282.73784375
transcript.pyannote[38].end 285.15096875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 286.16346875
transcript.pyannote[39].end 290.11221875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 286.29846875
transcript.pyannote[40].end 286.95659375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 287.04096875
transcript.pyannote[41].end 287.09159375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 291.36096875
transcript.pyannote[42].end 293.33534375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 294.17909375
transcript.pyannote[43].end 295.19159375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 295.24221875
transcript.pyannote[44].end 297.97596875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 298.80284375
transcript.pyannote[45].end 299.93346875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 300.10221875
transcript.pyannote[46].end 321.93846875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 322.71471875
transcript.pyannote[47].end 334.52721875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 334.54409375
transcript.pyannote[48].end 341.73284375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 341.41221875
transcript.pyannote[49].end 348.29721875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 342.25596875
transcript.pyannote[50].end 342.57659375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 348.39846875
transcript.pyannote[51].end 348.92159375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 349.42784375
transcript.pyannote[52].end 355.45221875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 356.21159375
transcript.pyannote[53].end 356.46471875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 357.27471875
transcript.pyannote[54].end 360.83534375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 361.78034375
transcript.pyannote[55].end 365.79659375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 366.45471875
transcript.pyannote[56].end 367.07909375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 367.93971875
transcript.pyannote[57].end 369.12096875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 369.62721875
transcript.pyannote[58].end 373.37346875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 374.68971875
transcript.pyannote[59].end 387.21096875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 387.41346875
transcript.pyannote[60].end 387.95346875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 388.59471875
transcript.pyannote[61].end 396.00284375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 396.32346875
transcript.pyannote[62].end 397.92659375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 398.17971875
transcript.pyannote[63].end 399.12471875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 400.57596875
transcript.pyannote[64].end 402.02721875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 402.41534375
transcript.pyannote[65].end 406.63409375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 407.05596875
transcript.pyannote[66].end 409.08096875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 410.46471875
transcript.pyannote[67].end 413.21534375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 413.29971875
transcript.pyannote[68].end 414.34596875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 414.93659375
transcript.pyannote[69].end 416.32034375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 416.77596875
transcript.pyannote[70].end 417.46784375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 418.04159375
transcript.pyannote[71].end 418.91909375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 420.58971875
transcript.pyannote[72].end 421.39971875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 422.27721875
transcript.pyannote[73].end 422.76659375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 422.93534375
transcript.pyannote[74].end 423.88034375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 424.23471875
transcript.pyannote[75].end 425.75346875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 426.81659375
transcript.pyannote[76].end 427.18784375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 428.28471875
transcript.pyannote[77].end 429.58409375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 430.20846875
transcript.pyannote[78].end 431.17034375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 431.49096875
transcript.pyannote[79].end 433.51596875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 434.51159375
transcript.pyannote[80].end 435.35534375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 435.92909375
transcript.pyannote[81].end 436.72221875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 436.94159375
transcript.pyannote[82].end 437.75159375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 438.44346875
transcript.pyannote[83].end 440.24909375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 440.38409375
transcript.pyannote[84].end 441.64971875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 443.47221875
transcript.pyannote[85].end 444.51846875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 445.91909375
transcript.pyannote[86].end 449.07471875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 450.57659375
transcript.pyannote[87].end 450.77909375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 450.79596875
transcript.pyannote[88].end 451.60596875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 452.04471875
transcript.pyannote[89].end 453.51284375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 454.87971875
transcript.pyannote[90].end 455.89221875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 456.38159375
transcript.pyannote[91].end 457.66409375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 461.69721875
transcript.pyannote[92].end 465.71346875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 465.86534375
transcript.pyannote[93].end 468.85221875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 469.59471875
transcript.pyannote[94].end 474.08346875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 474.77534375
transcript.pyannote[95].end 477.91409375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 478.43721875
transcript.pyannote[96].end 479.39909375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 480.24284375
transcript.pyannote[97].end 480.86721875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 481.60971875
transcript.pyannote[98].end 482.47034375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 482.95971875
transcript.pyannote[99].end 484.84971875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 485.05221875
transcript.pyannote[100].end 486.90846875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 486.97596875
transcript.pyannote[101].end 487.81971875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 490.19909375
transcript.pyannote[102].end 490.85721875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 491.16096875
transcript.pyannote[103].end 492.25784375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 493.35471875
transcript.pyannote[104].end 493.86096875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 494.14784375
transcript.pyannote[105].end 495.70034375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 496.35846875
transcript.pyannote[106].end 498.77159375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 498.78846875
transcript.pyannote[107].end 499.07534375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 499.14284375
transcript.pyannote[108].end 499.95284375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 501.20159375
transcript.pyannote[109].end 501.67409375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 501.96096875
transcript.pyannote[110].end 503.59784375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 504.25596875
transcript.pyannote[111].end 504.77909375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 505.31909375
transcript.pyannote[112].end 506.06159375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 506.80409375
transcript.pyannote[113].end 507.64784375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 508.91346875
transcript.pyannote[114].end 510.80346875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 511.20846875
transcript.pyannote[115].end 513.36846875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 514.65096875
transcript.pyannote[116].end 514.98846875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 516.40596875
transcript.pyannote[117].end 517.90784375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 518.27909375
transcript.pyannote[118].end 519.79784375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 520.23659375
transcript.pyannote[119].end 521.26596875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 521.43471875
transcript.pyannote[120].end 523.03784375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 523.56096875
transcript.pyannote[121].end 524.42159375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 525.40034375
transcript.pyannote[122].end 532.18409375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 527.89784375
transcript.pyannote[123].end 529.11284375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 529.12971875
transcript.pyannote[124].end 529.97346875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 532.26846875
transcript.pyannote[125].end 534.15846875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 532.57221875
transcript.pyannote[126].end 538.44471875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 538.84971875
transcript.pyannote[127].end 540.23346875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 540.60471875
transcript.pyannote[128].end 543.25409375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 544.48596875
transcript.pyannote[129].end 548.08034375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 548.24909375
transcript.pyannote[130].end 552.73784375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 553.36221875
transcript.pyannote[131].end 554.69534375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 556.29846875
transcript.pyannote[132].end 558.72846875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 559.26846875
transcript.pyannote[133].end 560.24721875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 560.82096875
transcript.pyannote[134].end 585.35721875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 585.91409375
transcript.pyannote[135].end 586.25159375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 585.99846875
transcript.pyannote[136].end 588.59721875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 588.71534375
transcript.pyannote[137].end 590.74034375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 591.85409375
transcript.pyannote[138].end 592.46159375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 592.64721875
transcript.pyannote[139].end 594.55409375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 595.29659375
transcript.pyannote[140].end 598.41846875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 599.04284375
transcript.pyannote[141].end 601.43909375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 602.04659375
transcript.pyannote[142].end 603.36284375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 604.35846875
transcript.pyannote[143].end 605.52284375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 606.51846875
transcript.pyannote[144].end 607.90221875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 608.44221875
transcript.pyannote[145].end 610.02846875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 610.90596875
transcript.pyannote[146].end 611.95221875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 612.40784375
transcript.pyannote[147].end 613.30221875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 613.47096875
transcript.pyannote[148].end 615.68159375
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 616.25534375
transcript.pyannote[149].end 630.88596875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 630.88596875
transcript.pyannote[150].end 636.69096875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 637.56846875
transcript.pyannote[151].end 640.16721875
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 640.43721875
transcript.pyannote[152].end 644.99346875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 646.49534375
transcript.pyannote[153].end 647.11971875
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 646.52909375
transcript.pyannote[154].end 656.48534375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 649.60034375
transcript.pyannote[155].end 650.69721875
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 656.87346875
transcript.pyannote[156].end 665.88471875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 665.31096875
transcript.pyannote[157].end 681.24096875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 681.57846875
transcript.pyannote[158].end 684.46409375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 684.78471875
transcript.pyannote[159].end 684.81846875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 685.83096875
transcript.pyannote[160].end 686.32034375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 686.52284375
transcript.pyannote[161].end 688.42971875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 689.52659375
transcript.pyannote[162].end 690.38721875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 690.60659375
transcript.pyannote[163].end 696.41159375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 696.96846875
transcript.pyannote[164].end 714.90659375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 715.32846875
transcript.pyannote[165].end 716.81346875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 717.23534375
transcript.pyannote[166].end 719.64846875
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 720.13784375
transcript.pyannote[167].end 723.17534375
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 723.52971875
transcript.pyannote[168].end 738.41346875
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 738.95346875
transcript.pyannote[169].end 742.81784375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 743.67846875
transcript.pyannote[170].end 744.48846875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 745.39971875
transcript.pyannote[171].end 746.09159375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 747.59346875
transcript.pyannote[172].end 749.04471875
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 749.90534375
transcript.pyannote[173].end 750.73221875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 751.76159375
transcript.pyannote[174].end 752.65596875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 755.49096875
transcript.pyannote[175].end 756.16596875
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 756.53721875
transcript.pyannote[176].end 757.26284375
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 757.95471875
transcript.pyannote[177].end 759.13596875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 759.37221875
transcript.pyannote[178].end 761.43096875
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 762.03846875
transcript.pyannote[179].end 772.36596875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 772.26471875
transcript.pyannote[180].end 773.22659375
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 774.57659375
transcript.pyannote[181].end 776.50034375
transcript.whisperx[0].start 8.314
transcript.whisperx[0].end 13.097
transcript.whisperx[0].text 好 謝謝主席主席請一下長照師 處市長委員好市長好 市長我只有問你讓部長跟市長休息一下你能不能
transcript.whisperx[1].start 27.762
transcript.whisperx[1].end 38.116
transcript.whisperx[1].text 用最簡單的方式最少的時間大概跟我講一下長照2.0跟長照3.0最大的區別到底在哪裡
transcript.whisperx[2].start 39.056
transcript.whisperx[2].end 48.664
transcript.whisperx[2].text 好那簡單講其實他的基本的理念跟架構其實都是延續的都是以人為本社區為基礎提供連續性的照顧那在3.0要去強化的就是2.0過往跟醫療的那個銜接上面還是沒有很及時所以我們3.0要強化他能夠及時能夠接住銜接上盡量無縫能夠銜接
transcript.whisperx[3].start 64.997
transcript.whisperx[3].end 85.835
transcript.whisperx[3].text 醫療面向就有很多元所以這一塊是我們一個強化重點第二個強化重點就是我們要導入一些積極的賦能就是配合在醫療這一端接過來之後不管他今天是在家還是今天在社區在這些相關不同場域裡面怎麼樣透過一些怎麼樣的鼓勵機制讓我們的長輩能夠被訓練讓他可以自主生活盡量減少依賴照顧這是第二個部分
transcript.whisperx[4].start 93.621
transcript.whisperx[4].end 117.86
transcript.whisperx[4].text 那第三個部分當然會有伴隨因為2.0這邊有一些的檢討的一些服務的不足那這個部分會來積極強化把這樣的一個資源補起來老師我為什麼這樣子問呢因為就是我們從長照1.0 2.0到3.0其實我個人是不大喜歡這樣子的分類長照制度就是一個制度
transcript.whisperx[5].start 118.641
transcript.whisperx[5].end 136.676
transcript.whisperx[5].text 那你剛剛講的也是在長照制度裡面加入醫療體系事實上醫療支撐事實上這個本來也是廣義長照的一環我實在是不知道為什麼你們會一直很喜歡用1.0、2.0、3.0我怕過幾年到10.0所以我才刻意提出這個問題
transcript.whisperx[6].start 144.522
transcript.whisperx[6].end 171.513
transcript.whisperx[6].text 就是增加醫療的照護其實本身本來就是長照的一環長照是不可能脫離脫離醫療照護的好那我我先問就是說我們長照需求服務的涵蓋率是用需求人數推估的需求人數好那我問你
transcript.whisperx[7].start 174.614
transcript.whisperx[7].end 193.554
transcript.whisperx[7].text 上一次的推估在113年就去年必須要需求的人需求的人數是94萬那衛福部最新的統計數字出來只有將近90萬差距超過5% 為什麼
transcript.whisperx[8].start 198.986
transcript.whisperx[8].end 217.276
transcript.whisperx[8].text 委員您提的94萬是在長照2.0的核定本裡面的退估數那我們目前的退估數是因應人工普查的資料出來之後那有一些改變因為2.0的時期當時用的一些相關的參數包括失能率那時候是12.6
transcript.whisperx[9].start 218.797
transcript.whisperx[9].end 247.457
transcript.whisperx[9].text 那到了這個等於在2.0執行的過程裡面因為人口普查又重新公告了已經從12.6調高到13.3所以我們就是重新把這些參數重算那對於過往2.0裡面有一些這個相關的一些身障的一些推估他採取的是高推估跟衰弱的部分也採取高推估那我們就是在這一批整體重新做一些處理低推估
transcript.whisperx[10].start 248.838
transcript.whisperx[10].end 263.621
transcript.whisperx[10].text 我們把它調整因為因為身心障礙者65歲以上的增加幅度高可是他未滿65歲的這一塊他的年輕型的障礙者他其實人數是沒有那樣子的大幅增加所以我們就是改採低推估
transcript.whisperx[11].start 264.022
transcript.whisperx[11].end 291.931
transcript.whisperx[11].text 所以才有這個數字的一個變動我這樣子問呢是因為其實事實上就是要推估本身就是一件很困難的事情啦要精準的推估本來就不過呢因為你推估出來的人數會影響到需求服務涵蓋率對不對所以我希望你們就是我不覺得
transcript.whisperx[12].start 294.249
transcript.whisperx[12].end 321.679
transcript.whisperx[12].text 政府必須要把很多數字美化我覺得我現在不是在說你這件事我個人覺得就是應該是多少人數就多少人數我們服務的多少就服務多少總是盡可能的把事情做到最完美這個才是對的總比把數字文字
transcript.whisperx[13].start 322.779
transcript.whisperx[13].end 348.486
transcript.whisperx[13].text 做的美化這個高明的多好不好我大概就是希望你們以後再推估的時候可以再精準一點因為這個會影響影響影響到後續很多很多東西包括預算的的編列好不好跟委員報告3.0這邊的退估就是用分零了因為我們後來新的調查有分零的失能率好
transcript.whisperx[14].start 350.818
transcript.whisperx[14].end 372.491
transcript.whisperx[14].text 台灣今年開始邁入超高齡社會高齡人口的總數已經超過20%我們目前面臨的有關長照比較有問題的是台灣接受長照服務的平均年齡是76歲
transcript.whisperx[15].start 374.738
transcript.whisperx[15].end 398.883
transcript.whisperx[15].text 也就是說在十年後戰後嬰兒潮的人口在這十年之內會逐步達到長照需求那現在有幾個問題我來人力上你們可能要盡可能的儲備長照所需要的人力另外一個就是我們的財源
transcript.whisperx[16].start 402.77
transcript.whisperx[16].end 425.522
transcript.whisperx[16].text 因為戰鬥嬰兒潮的人數太多了占台灣總人口數的占比太高了根據OECD的國家統計長照的支出大概要占GDP的1.8%而且八成為公共長照支出
transcript.whisperx[17].start 428.382
transcript.whisperx[17].end 457.447
transcript.whisperx[17].text 事實上我再講一次長照的總體支出要佔到GDP的1.8%而且其中這1.8%要八成是公共長照支出可是台灣這幾年長照的總支出未達GDP的百分之一公共支出更只佔四成
transcript.whisperx[18].start 461.735
transcript.whisperx[18].end 481.707
transcript.whisperx[18].text 假如說比照韓國長照支出佔GDP的1.11.1就好了台灣的長照支出必須要有2600億以上可是今年只編列了900多億也就是說900多億是我們用韓國的1.1%來做比例
transcript.whisperx[19].start 490.256
transcript.whisperx[19].end 513.178
transcript.whisperx[19].text 其實我們現在編列的只有必須編列的四成市長我這段話你有聽懂嗎有好那我想要問一下就是說面對人口結構的變化未來的支出一定會一直上升
transcript.whisperx[20].start 516.628
transcript.whisperx[20].end 543.076
transcript.whisperx[20].text 在財源上我們現在單靠遺產稅、菸稅、菸捐和房地合一稅可以支應嗎目前是無餘因為我們現在累積的盈餘現在有2039億那我剛才就講了嘛因為我們的公共支出佔比太低嘛人民自行吸收的太高嘛
transcript.whisperx[21].start 545.175
transcript.whisperx[21].end 560.149
transcript.whisperx[21].text 所以你才會覺得夠用嘛你假如說是按照OECD的標準八成必須要是公共長照裁員那你是不夠的嘛
transcript.whisperx[22].start 561.549
transcript.whisperx[22].end 584.89
transcript.whisperx[22].text 這部分也要跟委員說明因為畢竟就是我們不管今天是長照還是小朋友幼兒的照顧其實在國家的立場其實是幫忙家庭一起來照顧大概沒有辦法替代家人照顧所以這個跟OECD國家有一些是走福利體系的國家的概念其實是不一樣
transcript.whisperx[23].start 586.191
transcript.whisperx[23].end 593.434
transcript.whisperx[23].text 就是因為賦稅的問題師長這麼說呢我是覺得台灣這幾年的經濟成長跟台灣邁向高齡化台灣強調福利國政策然後我們把長照做這樣子的
transcript.whisperx[24].start 610.953
transcript.whisperx[24].end 635.612
transcript.whisperx[24].text 的定位我覺得我覺得我好像不能介紹因為福利國家的話基本上的稅負每一個民眾的繳稅的稅負要高那現階段我們台灣的整個的一個稅負大概只有佔14%跟福利國家高達三四成以上是截然不同對對不是我現在我現在我現在講的是說是說
transcript.whisperx[25].start 637.625
transcript.whisperx[25].end 643.824
transcript.whisperx[25].text 譬如我這樣子講啦市長你把長照定義為個人的
transcript.whisperx[26].start 646.91
transcript.whisperx[26].end 672.02
transcript.whisperx[26].text 應該是說政府沒有辦法替代家人照顧沒有辦法替代對 是協助家人一起來做照顧就跟小朋友的照顧是一樣的概念所以我們已經沒有 我們不排富了相關的都普及式的都可以提供只是提供的方式是跟著家人一起來我因為時間的關係啦所以我大概也不想佔用其他的同事太多時間
transcript.whisperx[27].start 675.604
transcript.whisperx[27].end 682.454
transcript.whisperx[27].text 就剛剛包括我的題目裡面就大家都覺得你們現在編了900多億從屏東到台中
transcript.whisperx[28].start 689.551
transcript.whisperx[28].end 713.712
transcript.whisperx[28].text 到澎湖我相信是全台灣都覺得關懷據點給的經費太少那我也一直強調我向來主張預防勝於治療關懷據點做得好後續的長照支出就會少所以關懷據點這個從伙食到人力這個你們真的必須要很快的把
transcript.whisperx[29].start 715.433
transcript.whisperx[29].end 744.093
transcript.whisperx[29].text 把補助金額提高我最後一個問題讓你回去想就是說假如說我們真的真的國家的財政沒有辦法支出很多的長照讓高齡化的台灣可以有一個安定的長照制度來支應老人生活為什麼
transcript.whisperx[30].start 745.638
transcript.whisperx[30].end 752.18
transcript.whisperx[30].text 為什麼你們從來不考慮從來不考慮走保險制保險制 長照保險或者是保險跟公務預算雙軌這個我讓你待會去想不過我想我會找一天好好的跟你們討論這個問題謝謝市長 謝謝主席好 謝謝委員
transcript.whisperx[31].start 774.582
transcript.whisperx[31].end 774.683
transcript.whisperx[31].text 謝謝袁偉仁 謝謝市長