iVOD / 161116

Field Value
IVOD_ID 161116
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/161116
日期 2025-05-08
會議資料.會議代碼 委員會-11-3-26-10
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第10次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 10
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第10次全體委員會議
影片種類 Clip
開始時間 2025-05-08T12:24:33+08:00
結束時間 2025-05-08T12:33:15+08:00
影片長度 00:08:42
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/26c557d936b203c16a4dafae97dfb96fbf088656e97d3403567847e18f9cb587a4b7ee112536bc485ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 李坤城
委員發言時間 12:24:33 - 12:33:15
會議時間 2025-05-08T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第10次全體委員會議(事由:一、邀請衛生福利部部長就「長照2.0執行情形檢討及3.0未來規劃」進行專題報告,並備質詢。 二、邀請衛生福利部部長就「澳洲進口豬腳驗出含萊克多巴胺,如何加強肉品食安查驗,讓民眾放心」進行專題報告,並備質詢。 【專題報告綜合詢答】)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 4.77284375
transcript.pyannote[0].end 4.82346875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 5.38034375
transcript.pyannote[1].end 6.64596875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 7.57409375
transcript.pyannote[2].end 7.67534375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 7.67534375
transcript.pyannote[3].end 8.24909375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 8.24909375
transcript.pyannote[4].end 8.45159375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 8.45159375
transcript.pyannote[5].end 8.58659375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 8.48534375
transcript.pyannote[6].end 9.90284375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 10.83096875
transcript.pyannote[7].end 11.28659375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 12.19784375
transcript.pyannote[8].end 13.81784375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 14.93159375
transcript.pyannote[9].end 16.34909375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 16.53471875
transcript.pyannote[10].end 17.26034375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 25.09034375
transcript.pyannote[11].end 26.62596875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 26.72721875
transcript.pyannote[12].end 30.33846875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 31.55346875
transcript.pyannote[13].end 32.38034375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 32.85284375
transcript.pyannote[14].end 51.29721875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 33.54471875
transcript.pyannote[15].end 34.32096875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 51.71909375
transcript.pyannote[16].end 52.79909375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 53.33909375
transcript.pyannote[17].end 56.07284375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 58.38471875
transcript.pyannote[18].end 66.21471875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 66.07971875
transcript.pyannote[19].end 66.13034375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 66.13034375
transcript.pyannote[20].end 66.14721875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 66.21471875
transcript.pyannote[21].end 66.23159375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 66.23159375
transcript.pyannote[22].end 66.24846875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 66.24846875
transcript.pyannote[23].end 66.58596875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 66.58596875
transcript.pyannote[24].end 70.41659375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 69.96096875
transcript.pyannote[25].end 73.01534375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 70.99034375
transcript.pyannote[26].end 71.46284375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 73.31909375
transcript.pyannote[27].end 77.41971875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 77.53784375
transcript.pyannote[28].end 78.04409375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 78.55034375
transcript.pyannote[29].end 81.89159375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 82.21221875
transcript.pyannote[30].end 86.02596875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 86.43096875
transcript.pyannote[31].end 86.85284375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 86.83596875
transcript.pyannote[32].end 90.51471875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 90.32909375
transcript.pyannote[33].end 93.04596875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 90.88596875
transcript.pyannote[34].end 91.49346875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 93.31596875
transcript.pyannote[35].end 93.46784375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 93.60284375
transcript.pyannote[36].end 97.50096875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 97.85534375
transcript.pyannote[37].end 99.55971875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 100.11659375
transcript.pyannote[38].end 103.47471875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 103.50846875
transcript.pyannote[39].end 105.26346875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 105.46596875
transcript.pyannote[40].end 106.69784375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 106.88346875
transcript.pyannote[41].end 110.19096875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 110.51159375
transcript.pyannote[42].end 111.37221875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 111.67596875
transcript.pyannote[43].end 113.09346875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 113.71784375
transcript.pyannote[44].end 118.54409375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 118.61159375
transcript.pyannote[45].end 121.76721875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 121.37909375
transcript.pyannote[46].end 122.40846875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 122.56034375
transcript.pyannote[47].end 188.72721875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 189.19971875
transcript.pyannote[48].end 191.41034375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 192.06846875
transcript.pyannote[49].end 194.70096875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 194.22846875
transcript.pyannote[50].end 215.96346875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 216.60471875
transcript.pyannote[51].end 217.38096875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 218.51159375
transcript.pyannote[52].end 230.96534375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 223.27034375
transcript.pyannote[53].end 223.57409375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 231.18471875
transcript.pyannote[54].end 233.19284375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 233.19284375
transcript.pyannote[55].end 236.16284375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 233.34471875
transcript.pyannote[56].end 236.24721875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 236.24721875
transcript.pyannote[57].end 246.55784375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 246.00096875
transcript.pyannote[58].end 257.20596875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 257.20596875
transcript.pyannote[59].end 257.64471875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 257.64471875
transcript.pyannote[60].end 262.03221875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 262.03221875
transcript.pyannote[61].end 262.21784375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 262.21784375
transcript.pyannote[62].end 262.25159375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 262.25159375
transcript.pyannote[63].end 274.78971875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 275.22846875
transcript.pyannote[64].end 275.90346875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 275.76846875
transcript.pyannote[65].end 277.89471875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 278.19846875
transcript.pyannote[66].end 283.58159375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 285.01596875
transcript.pyannote[67].end 293.97659375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 293.25096875
transcript.pyannote[68].end 293.38596875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 293.97659375
transcript.pyannote[69].end 294.04409375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 294.04409375
transcript.pyannote[70].end 294.24659375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 294.24659375
transcript.pyannote[71].end 294.28034375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 294.28034375
transcript.pyannote[72].end 298.81971875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 294.76971875
transcript.pyannote[73].end 295.57971875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 299.20784375
transcript.pyannote[74].end 314.36159375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 307.18971875
transcript.pyannote[75].end 307.61159375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 309.88971875
transcript.pyannote[76].end 310.22721875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 314.36159375
transcript.pyannote[77].end 316.82534375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 314.37846875
transcript.pyannote[78].end 314.41221875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 317.50034375
transcript.pyannote[79].end 317.56784375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 317.56784375
transcript.pyannote[80].end 323.35596875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 323.69346875
transcript.pyannote[81].end 350.81159375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 329.53221875
transcript.pyannote[82].end 329.68409375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 329.80221875
transcript.pyannote[83].end 329.81909375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 329.83596875
transcript.pyannote[84].end 329.88659375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 332.85659375
transcript.pyannote[85].end 333.22784375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 334.42596875
transcript.pyannote[86].end 334.44284375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 341.59784375
transcript.pyannote[87].end 342.05346875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 343.67346875
transcript.pyannote[88].end 343.69034375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 343.92659375
transcript.pyannote[89].end 343.97721875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 348.19596875
transcript.pyannote[90].end 348.85409375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 349.30971875
transcript.pyannote[91].end 349.84971875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 351.55409375
transcript.pyannote[92].end 353.54534375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 353.42721875
transcript.pyannote[93].end 356.29596875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 356.76846875
transcript.pyannote[94].end 359.26596875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 359.16471875
transcript.pyannote[95].end 359.40096875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 359.31659375
transcript.pyannote[96].end 361.02096875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 361.66221875
transcript.pyannote[97].end 363.78846875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 364.22721875
transcript.pyannote[98].end 366.92721875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 367.29846875
transcript.pyannote[99].end 374.25096875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 374.40284375
transcript.pyannote[100].end 377.01846875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 377.01846875
transcript.pyannote[101].end 377.96346875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 377.37284375
transcript.pyannote[102].end 381.45659375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 381.40596875
transcript.pyannote[103].end 389.59034375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 389.59034375
transcript.pyannote[104].end 389.77596875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 389.77596875
transcript.pyannote[105].end 390.60284375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 389.84346875
transcript.pyannote[106].end 420.11721875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 398.09534375
transcript.pyannote[107].end 398.41596875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 414.22784375
transcript.pyannote[108].end 414.68346875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 419.00346875
transcript.pyannote[109].end 421.41659375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 420.79221875
transcript.pyannote[110].end 436.65471875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 428.52096875
transcript.pyannote[111].end 429.24659375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 429.31409375
transcript.pyannote[112].end 429.41534375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 429.41534375
transcript.pyannote[113].end 429.48284375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 436.99221875
transcript.pyannote[114].end 438.86534375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 439.01721875
transcript.pyannote[115].end 440.38409375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 440.58659375
transcript.pyannote[116].end 462.03471875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 462.03471875
transcript.pyannote[117].end 462.62534375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 462.62534375
transcript.pyannote[118].end 462.64221875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 463.14846875
transcript.pyannote[119].end 467.99159375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 468.04221875
transcript.pyannote[120].end 468.05909375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 468.05909375
transcript.pyannote[121].end 469.12221875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 469.12221875
transcript.pyannote[122].end 474.96096875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 474.28596875
transcript.pyannote[123].end 489.76034375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 489.33846875
transcript.pyannote[124].end 517.67159375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 493.62471875
transcript.pyannote[125].end 493.69221875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 495.93659375
transcript.pyannote[126].end 495.97034375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 495.97034375
transcript.pyannote[127].end 496.64534375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 496.64534375
transcript.pyannote[128].end 496.67909375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 497.69159375
transcript.pyannote[129].end 497.97846875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 497.97846875
transcript.pyannote[130].end 498.06284375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 504.12096875
transcript.pyannote[131].end 505.01534375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 517.26659375
transcript.pyannote[132].end 517.63784375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 517.67159375
transcript.pyannote[133].end 517.89096875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 517.80659375
transcript.pyannote[134].end 518.70096875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 518.70096875
transcript.pyannote[135].end 518.90346875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 518.90346875
transcript.pyannote[136].end 522.00846875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 518.97096875
transcript.pyannote[137].end 520.69221875
transcript.whisperx[0].start 5.705
transcript.whisperx[0].end 7.966
transcript.whisperx[0].text 我們今天會通過這個兒童托育服務法
transcript.whisperx[1].start 32.905
transcript.whisperx[1].end 55.897
transcript.whisperx[1].text 有報告 應該會核定那這個我有看到就是說這個就是專為0到2歲的托育利益的專訪然後其中有一項就是說我們保留監視的影像這個儲存30天 然後上傳雲端特別是針對我們的托育機構嘛 對不對其中是不是有這一項那這一項之前是不是也有在做
transcript.whisperx[2].start 58.427
transcript.whisperx[2].end 85.72
transcript.whisperx[2].text 我們之前有一個這個拖音中心監視錄影設備設置及資訊管理利用辦法我們之前是不是有這個辦法我們之前就有可是它是儲存在拖音中心裡面沒有上傳雲端所以我們現在有一個監管雲對我們日後就是我們希望是能夠上傳在地方政府的雲端那現在就是說各個這一個不管是公托私托也有對不對應該是全面性的
transcript.whisperx[3].start 86.862
transcript.whisperx[3].end 110.755
transcript.whisperx[3].text 目前公司立在自己的通運中心都有都有嘛對不對但是他們就是自己保存沒有上傳到雲端所以我們現在是要求是各個縣市政府都要設立這個監管雲嗎那經費就是各個縣市政府自己在處理嗎中央我們補助他們中央會補助中央會補助這個地方政府那是指針對這個通運機構公共的通運機構嗎
transcript.whisperx[4].start 114.298
transcript.whisperx[4].end 128.535
transcript.whisperx[4].text 我們法令通過之後我們就會補助他就是公司裡都要上雲端都要上雲端就對了然後就是保存30天30日因為其實其實我們也擔心其實很多這個案件就是說發現說保存在自己的這一個這個脫肉機構裡面你萬一啦
transcript.whisperx[5].start 132.439
transcript.whisperx[5].end 156.213
transcript.whisperx[5].text 發生事情的時候那通常不知道為什麼這個影片就會找不到所以我們就上場運動當然就是說怎麼去使用它要有相關的配套的措施這個也要兼顧到這一個兒童他們的人權那也包含這個教保員他們的人權我覺得這個就是說這個相關的配套措施要來做好那我再請教一下
transcript.whisperx[6].start 156.693
transcript.whisperx[6].end 164.524
transcript.whisperx[6].text 因為現在今天是討論這個長照3.0那我們這一個長期照護師的師長也有來嘛那現在我再討論一個就是獨老的問題獨老 獨老的問題那現在就是說按照數據來講的話我這裡有2024年的一個數據新北市是全台灣獨老
transcript.whisperx[7].start 174.457
transcript.whisperx[7].end 190.797
transcript.whisperx[7].text 最多的縣市總計有18.9萬人然後其實包含這個台北市高雄市也有那我不知道這個衛福部有沒有去統計就是說那到底我們現在這個獨老的狀況是怎麼樣就是說你超過65歲然後在家裡面只有你一個這個長者在有沒有這個數據
transcript.whisperx[8].start 192.813
transcript.whisperx[8].end 213.004
transcript.whisperx[8].text 那請那個理事長非常感謝委員的關心我跟委員報告我們現在對於所謂獨老我們事實上是有一定的定義就主要指的就是說你的譬如你的這一個子女就兩人兩人都65歲以上這是第一個情況第二個情況可能就是說你有子女可是他不在你所居住的這一個縣市縣市喔就是那個
transcript.whisperx[9].start 218.712
transcript.whisperx[9].end 234.822
transcript.whisperx[9].text 在你現在目前的縣市之外就是你的那個照管的那一個區域以這個定義來說的話我們現在目前全台有五萬五千一百二十九人這是有列冊的是不是有列冊關懷
transcript.whisperx[10].start 237.203
transcript.whisperx[10].end 251.09
transcript.whisperx[10].text 但是我看這個數據也不一樣啊審計部是說五萬多但是你們自己的這個數據是39萬然後內政部更高內政部是六十幾萬報告委員這個事實上是那個定義的問題內政部他們那邊是指就是說你那個是指那個戶是指那個戶數
transcript.whisperx[11].start 254.051
transcript.whisperx[11].end 283.366
transcript.whisperx[11].text 那我們的定義比方就是說虛關懷者虛關懷就是我剛剛說的嘛就是說你要符合這兩個要件那其實範圍滿大你們是以縣市譬如說好那今天在我三重對然後如果說家裡面有一個65歲自己一個人居住的然後呢可是他子女呢一定要在這一個台北才算嗎那如果說他是在在蘆洲那蘆洲可能稍微近一點啦那在板橋那邊那這樣就這樣就不算了是不是
transcript.whisperx[12].start 285.083
transcript.whisperx[12].end 288.779
transcript.whisperx[12].text 那個我們主要的事大概是第一個當然他是自己一個人住
transcript.whisperx[13].start 289.431
transcript.whisperx[13].end 316.282
transcript.whisperx[13].text 然後第二個是說他的子女沒有辦法就近的協助他對 可是你們的範圍太大了是跨縣市喔如果跨峽的話大概在鄰近的我們應該是有縣市就是鄰近的部分我們其實是應該是會第一個是他的這個縣市政府可能會評估啦他的子女是不是能夠照顧他如果不能關懷他那他也可以跟我們提出來我們也會列入在我們的獨老的名冊上我意思就是說你們在用跨縣市
transcript.whisperx[14].start 317.703
transcript.whisperx[14].end 334.044
transcript.whisperx[14].text 那如果是在不是在是同樣的縣市但是不同區那多少人數應該會更多應該這樣講就是說當然戶籍裡面單獨一戶的人就是剛剛提到的那個大概是戶政的資料他的人數是多的
transcript.whisperx[15].start 334.505
transcript.whisperx[15].end 360.281
transcript.whisperx[15].text 可是我們各地方政府在做獨老的這個關懷方式第一個是他可以表達他有需要關懷那這個叫做我們所謂的列冊那我們到今年底大概去年的六月大概是五萬六千人那今年又增加了大概有六萬人那大概我們目前的定義是這個樣子我是討論定義啦我就是說你們現在定義是放的就是說比較寬啦就是說你是要跨縣市捏
transcript.whisperx[16].start 361.741
transcript.whisperx[16].end 387.208
transcript.whisperx[16].text 是不是 比如說你在新北 三重你要跨到基隆 跨到台北然後家裡面只有一個人 這才算是獨老那我意思就是說如果他是住三重但是子女可能在板橋 這樣就不算沒有 他也可以說他有需求我們也會列入第三個條款就是他認為他有需要我們就會把他列進來好 那現在就是說那你們現在對於這種獨老的照顧有沒有列在你們這一個長照3.0裡面
transcript.whisperx[17].start 390.269
transcript.whisperx[17].end 418.289
transcript.whisperx[17].text 報告委員我先做兩個回覆第一個就是說剛剛說的你現在說的這一個39萬跟這一個我們6萬中間有相差28萬那我必須要承認這個我們可能有低估所以我們現在目前其實賴清德總統他也非常關心這個問題所以我們現在目前會有一個我們現在目前會有一個計畫跟地方政府這邊大家共同我們必須要來做一次全國性的一個設備然後把這一個人數我想就是說真的需要關心的我們會把它
transcript.whisperx[18].start 419.169
transcript.whisperx[18].end 439.705
transcript.whisperx[18].text 我覺得需要做一個調查啦這個部分也跟委員報告我們跟內政部那邊已經開過幾次會了我們這個部分計畫會最近會來推出這是第一個重點第二個重點就是說我們現在目前如果說你有這一個其實跟委員報告其實你雖然是獨老可是也不見得就一定會需要受到照顧
transcript.whisperx[19].start 440.946
transcript.whisperx[19].end 458.472
transcript.whisperx[19].text 有些長輩可能我覺得他覺得Live Along可能他自己就想要這樣他也不想要受到人家的打擾所以我們現在最重要是有關懷需求者那有關懷需求的話我們現在目前就是說3號3.0這邊會把他列入那這個列入的話就是除了擴大我們現在目前的1966那部分之外另外我們會加強有關於這剛剛說的獨老的訪視
transcript.whisperx[20].start 463.206
transcript.whisperx[20].end 478.543
transcript.whisperx[20].text 就是說這獨老房子現在是各個縣市政府他們自己社會局在做是他們社會局但是我有一些都是民間自己團體在做像一些獨老送餐那些都是民間團體自己在做的包圍那些有一些是他自己其實因為我在台中當過社會局長
transcript.whisperx[21].start 479.784
transcript.whisperx[21].end 491.116
transcript.whisperx[21].text 有很多事實上是我們社會局我們委託我們用那個我們我們有委辦的方式就是說我們那個名冊給他之後然後呢我們來由他來做送餐我是希望說你們長照3.0把這個獨老這個這個這個有需要照顧的要把它列進去那有時候他他
transcript.whisperx[22].start 499.484
transcript.whisperx[22].end 520.361
transcript.whisperx[22].text 有時候老人家會覺得說我不需要你的照顧但實際上他可能有需要啊所以不是說我不需要你的照顧那你就不用照顧但實際上他可能老人家有說面子或是怎麼樣我覺得這個東西你們自己要去除了他主觀的意願之外一些客觀的一些條件你們也要去做評估啊OK 好吧今天就先這樣好 謝謝李委員 謝謝部長