iVOD / 160827

Field Value
IVOD_ID 160827
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160827
日期 2025-04-30
會議資料.會議代碼 委員會-11-3-26-9
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第9次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 9
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第9次全體委員會議
影片種類 Clip
開始時間 2025-04-30T12:46:33+08:00
結束時間 2025-04-30T12:57:33+08:00
影片長度 00:11:00
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/b6da7da99b942369f1b10be0ccf0f37c8b6df88a6e7dffca98ab4b80bc74e67d94c2a44ecd674d185ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 楊曜
委員發言時間 12:46:33 - 12:57:33
會議時間 2025-04-30T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第9次全體委員會議(事由:邀請勞動部部長、經濟部及內政部就「五一勞動節前夕,我國勞工職場預防職業災害及場(廠)墜落事故之檢討與精進作為」進行專題報告,並備質詢。 【4月30日及5月1日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 1.31346875
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 1.53284375
transcript.pyannote[1].end 3.72659375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 9.12659375
transcript.pyannote[2].end 9.86909375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 9.90284375
transcript.pyannote[3].end 11.62409375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 13.37909375
transcript.pyannote[4].end 15.79221875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 13.76721875
transcript.pyannote[5].end 14.35784375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 14.74596875
transcript.pyannote[6].end 15.53909375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 16.43346875
transcript.pyannote[7].end 17.96909375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 16.48409375
transcript.pyannote[8].end 16.63596875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 16.63596875
transcript.pyannote[9].end 17.05784375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 17.05784375
transcript.pyannote[10].end 17.07471875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 18.32346875
transcript.pyannote[11].end 19.57221875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 20.70284375
transcript.pyannote[12].end 22.17096875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 22.17096875
transcript.pyannote[13].end 22.18784375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 22.18784375
transcript.pyannote[14].end 22.20471875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 23.58846875
transcript.pyannote[15].end 23.60534375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 23.60534375
transcript.pyannote[16].end 25.76534375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 26.74409375
transcript.pyannote[17].end 34.60784375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 34.75971875
transcript.pyannote[18].end 38.75909375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 39.13034375
transcript.pyannote[19].end 39.50159375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 39.88971875
transcript.pyannote[20].end 40.88534375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 40.90221875
transcript.pyannote[21].end 41.96534375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 42.77534375
transcript.pyannote[22].end 52.52909375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 43.48409375
transcript.pyannote[23].end 43.78784375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 53.25471875
transcript.pyannote[24].end 54.08159375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 54.46971875
transcript.pyannote[25].end 57.77721875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 59.09346875
transcript.pyannote[26].end 60.25784375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 61.32096875
transcript.pyannote[27].end 66.09659375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 67.36221875
transcript.pyannote[28].end 71.39534375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 71.83409375
transcript.pyannote[29].end 73.63971875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 75.79971875
transcript.pyannote[30].end 77.33534375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 77.58846875
transcript.pyannote[31].end 79.54596875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 80.59221875
transcript.pyannote[32].end 82.43159375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 84.47346875
transcript.pyannote[33].end 85.03034375
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 85.03034375
transcript.pyannote[34].end 85.45221875
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 85.84034375
transcript.pyannote[35].end 86.27909375
transcript.pyannote[36].speaker SPEAKER_03
transcript.pyannote[36].start 86.78534375
transcript.pyannote[36].end 100.69034375
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 101.51721875
transcript.pyannote[37].end 103.98096875
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 104.94284375
transcript.pyannote[38].end 117.17721875
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 117.41346875
transcript.pyannote[39].end 120.16409375
transcript.pyannote[40].speaker SPEAKER_03
transcript.pyannote[40].start 120.41721875
transcript.pyannote[40].end 128.06159375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 128.06159375
transcript.pyannote[41].end 132.48284375
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 134.05221875
transcript.pyannote[42].end 173.64096875
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 174.09659375
transcript.pyannote[43].end 184.96409375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 184.96409375
transcript.pyannote[44].end 189.65534375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 190.11096875
transcript.pyannote[45].end 190.44846875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 191.34284375
transcript.pyannote[46].end 193.09784375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 194.43096875
transcript.pyannote[47].end 207.99846875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 203.45909375
transcript.pyannote[48].end 203.47596875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 203.47596875
transcript.pyannote[49].end 203.49284375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 203.49284375
transcript.pyannote[50].end 204.92721875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 207.84659375
transcript.pyannote[51].end 207.88034375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 207.88034375
transcript.pyannote[52].end 207.94784375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 207.99846875
transcript.pyannote[53].end 208.11659375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 208.11659375
transcript.pyannote[54].end 208.26846875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 208.26846875
transcript.pyannote[55].end 208.30221875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 208.45409375
transcript.pyannote[56].end 208.74096875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 209.50034375
transcript.pyannote[57].end 210.04034375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 211.44096875
transcript.pyannote[58].end 213.98909375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 214.46159375
transcript.pyannote[59].end 229.37909375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 229.73346875
transcript.pyannote[60].end 237.19221875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 238.00221875
transcript.pyannote[61].end 241.93409375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 243.03096875
transcript.pyannote[62].end 244.06034375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 244.11096875
transcript.pyannote[63].end 260.02409375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 261.00284375
transcript.pyannote[64].end 266.70659375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 268.27596875
transcript.pyannote[65].end 271.02659375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 271.34721875
transcript.pyannote[66].end 280.67909375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 281.23596875
transcript.pyannote[67].end 290.98971875
transcript.pyannote[68].speaker SPEAKER_03
transcript.pyannote[68].start 292.94721875
transcript.pyannote[68].end 311.96534375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 310.96971875
transcript.pyannote[69].end 311.00346875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 311.18909375
transcript.pyannote[70].end 311.39159375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 311.96534375
transcript.pyannote[71].end 317.16284375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 317.87159375
transcript.pyannote[72].end 328.50284375
transcript.pyannote[73].speaker SPEAKER_03
transcript.pyannote[73].start 328.94159375
transcript.pyannote[73].end 347.90909375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 348.51659375
transcript.pyannote[74].end 353.17409375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 354.37221875
transcript.pyannote[75].end 354.97971875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 355.62096875
transcript.pyannote[76].end 356.34659375
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 359.35034375
transcript.pyannote[77].end 374.14971875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 366.28596875
transcript.pyannote[78].end 366.64034375
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 374.63909375
transcript.pyannote[79].end 381.43971875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 381.43971875
transcript.pyannote[80].end 404.44034375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 405.03096875
transcript.pyannote[81].end 406.48221875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 407.52846875
transcript.pyannote[82].end 408.64221875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 410.43096875
transcript.pyannote[83].end 424.31909375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 424.48784375
transcript.pyannote[84].end 427.69409375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 428.25096875
transcript.pyannote[85].end 432.23346875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 432.82409375
transcript.pyannote[86].end 433.17846875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 433.56659375
transcript.pyannote[87].end 435.08534375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 436.30034375
transcript.pyannote[88].end 438.19034375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 438.79784375
transcript.pyannote[89].end 447.94409375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 449.93534375
transcript.pyannote[90].end 453.34409375
transcript.pyannote[91].speaker SPEAKER_03
transcript.pyannote[91].start 453.34409375
transcript.pyannote[91].end 453.36096875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 454.57596875
transcript.pyannote[92].end 454.67721875
transcript.pyannote[93].speaker SPEAKER_03
transcript.pyannote[93].start 454.67721875
transcript.pyannote[93].end 455.43659375
transcript.pyannote[94].speaker SPEAKER_03
transcript.pyannote[94].start 455.48721875
transcript.pyannote[94].end 474.13409375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 473.56034375
transcript.pyannote[95].end 474.77534375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 475.31534375
transcript.pyannote[96].end 475.87221875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 476.86784375
transcript.pyannote[97].end 477.20534375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 477.74534375
transcript.pyannote[98].end 481.35659375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 482.09909375
transcript.pyannote[99].end 483.60096875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 483.98909375
transcript.pyannote[100].end 484.91721875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 485.44034375
transcript.pyannote[101].end 487.12784375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 488.32596875
transcript.pyannote[102].end 489.32159375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 490.43534375
transcript.pyannote[103].end 491.32971875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 492.66284375
transcript.pyannote[104].end 497.92784375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 499.75034375
transcript.pyannote[105].end 503.05784375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 503.95221875
transcript.pyannote[106].end 505.42034375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 506.34846875
transcript.pyannote[107].end 508.23846875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 508.86284375
transcript.pyannote[108].end 511.17471875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 512.32221875
transcript.pyannote[109].end 513.57096875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 513.75659375
transcript.pyannote[110].end 515.03909375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 516.91221875
transcript.pyannote[111].end 520.11846875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 521.19846875
transcript.pyannote[112].end 522.64971875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 523.20659375
transcript.pyannote[113].end 536.89221875
transcript.pyannote[114].speaker SPEAKER_03
transcript.pyannote[114].start 537.82034375
transcript.pyannote[114].end 540.97596875
transcript.pyannote[115].speaker SPEAKER_03
transcript.pyannote[115].start 541.24596875
transcript.pyannote[115].end 568.16159375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 566.33909375
transcript.pyannote[116].end 577.03784375
transcript.pyannote[117].speaker SPEAKER_03
transcript.pyannote[117].start 577.20659375
transcript.pyannote[117].end 577.25721875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 577.25721875
transcript.pyannote[118].end 577.30784375
transcript.pyannote[119].speaker SPEAKER_03
transcript.pyannote[119].start 577.30784375
transcript.pyannote[119].end 577.88159375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 577.88159375
transcript.pyannote[120].end 578.08409375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 578.13471875
transcript.pyannote[121].end 579.13034375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 579.19784375
transcript.pyannote[122].end 585.61034375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 586.13346875
transcript.pyannote[123].end 595.87034375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 596.34284375
transcript.pyannote[124].end 596.83221875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 597.54096875
transcript.pyannote[125].end 598.84034375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 598.84034375
transcript.pyannote[126].end 640.50471875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 642.46221875
transcript.pyannote[127].end 656.24909375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 657.59909375
transcript.pyannote[128].end 658.25721875
transcript.whisperx[0].start 9.437
transcript.whisperx[0].end 25.29
transcript.whisperx[0].text 請部長好,謝謝主席請部長,有要叫別人嗎?指南署長也來好了來,署長來表演好,部長好部長回答或署長回答都可以齁
transcript.whisperx[1].start 27.326
transcript.whisperx[1].end 51.174
transcript.whisperx[1].text 我們在2023年的重大職災死亡的人數大概總共有300個人以產業比來看營造業的死亡人數佔比超過50%有151個人以災害的類型來看是以墜落滾落導致死亡的人數也高達47%那
transcript.whisperx[2].start 55.451
transcript.whisperx[2].end 82.182
transcript.whisperx[2].text 職安署的資料是這樣子,就五年來營造工程業佔職災死亡的人數大概都是近五成的職安署也把營造工程業列為重點稽查的對象是什麼原因造成營造業的職災死亡人數高居不下
transcript.whisperx[3].start 84.88
transcript.whisperx[3].end 103.474
transcript.whisperx[3].text 蘇長回答好了跟委員報告營造業他的工作樣態跟一般的工廠廠長是不一樣因為他每天的這個作業非常多的包商同時在作業那他之間的施工的界面勞工跟勞工或是包商跟包商之間
transcript.whisperx[4].start 104.994
transcript.whisperx[4].end 132.265
transcript.whisperx[4].text 大概目前主要的問題是在現場的一個統合管理的部分造成這個它的一個風險一直存在所以會造成說這個第一線的作業勞工或許他不曉得因為他今天進來不曉得昨天的這個包商把哪一些安全防護做了移除他都不曉得所以這個部分目前在這個營造業裡面它是最大的風險是在這個地方好 那署長既然知道原因那你們有沒有減災的策略
transcript.whisperx[5].start 134.29
transcript.whisperx[5].end 152.708
transcript.whisperx[5].text 跟委員報告在策略部分我想還是要從法制面那目前我們也檢討目前在整個最上位的這個治安法看起來是在規定上是有一些漏洞所以我們目前是要去補這個每一層的包商都要去管理他現場的這個負責管理他現場的公安
transcript.whisperx[6].start 153.208
transcript.whisperx[6].end 170.456
transcript.whisperx[6].text 那執行面的部分大概我們現在也去調整一些做法就是說我們在這個整個比較過去比較高違規的或高職災的這些工地列管然後頻率甚至說它這一兩年來發生兩線職災我們就會把它當作每個月去檢查一次這個執行面我們這邊也在做
transcript.whisperx[7].start 174.258
transcript.whisperx[7].end 192.771
transcript.whisperx[7].text 再來就是教育訓練的部分,那我想剛剛委員都提到這個部份怎麼去加強基層勞工的安全衛生的資能,這個部份我們也在努力所以剛剛講的三個策略,其中有一個是修法,那修法的部份你們有什麼時候會提出來?
transcript.whisperx[8].start 195.229
transcript.whisperx[8].end 207.762
transcript.whisperx[8].text 修法的部分我們其實已經送行政院了那應該是接下來會在行政院的法治程序裡面我們希望也可以盡快的審議那看能不能在這個會期我們希望能夠送到立法院裡面
transcript.whisperx[9].start 211.499
transcript.whisperx[9].end 236.925
transcript.whisperx[9].text 有學者分析近年的職業災害的案例針對營建業的最多關鍵危害的因素提出了大概剛剛署長也都講了我還是希望你們能夠就工地設施的配置不大
transcript.whisperx[10].start 238.189
transcript.whisperx[10].end 266.011
transcript.whisperx[10].text 還有工地本體防護不足跟沒有安全設施工地設施性能跟強度不足這三點還是必須要在不管法制面的健全也好現場的的勞動檢查也好必須要注意到所以這是弱勢面的部分?對營造業的重大職災案件中又以臨時工
transcript.whisperx[11].start 268.325
transcript.whisperx[11].end 290.455
transcript.whisperx[11].text 跟其他工種譬如說其他工種就是像清潔沒有辦法歸納的以這種臨時性的勞動力算是危害最高我不知道像臨時性的治安署這邊要怎麼提升治安的觀念跟訓練
transcript.whisperx[12].start 293.247
transcript.whisperx[12].end 315.34
transcript.whisperx[12].text 跟委員報告 確實在一個工地裡面有時候有十幾個包商的勞工都在現場那這個時候呢 我們認為管理上就是最上包這個大包就是營造廠 他要負責這個任務所以工地裡面 不管進到他的場域裡面他都要負責這個職業災害的防止者我知道 我是說 因為臨時工 他可能就是
transcript.whisperx[13].start 317.941
transcript.whisperx[13].end 344.915
transcript.whisperx[13].text 不是非常在這個領域工作嗎?臨時工進來特定的場域你們有沒有什麼特別的職安觀念的訓練?是,確實因為如果是非常小的包商他有可能是只有一位到兩位這個部分就現在在部裡面這邊就要推動所謂的職安卡的教育訓練就是說這些無一定雇主勞工,甚至我們都補助經費,上六小時的課程
transcript.whisperx[14].start 346.196
transcript.whisperx[14].end 373.875
transcript.whisperx[14].text 來強化他們的安全衛生的知識那像這一類的臨時工你們怎麼監督營造業投保 自災保險跟委員報告確實我們目前還是希望剛剛提到的這個最上位這個包商他在做入場管制的時候必須要去查到底這個今天進來的這些所有的工人
transcript.whisperx[15].start 374.756
transcript.whisperx[15].end 403.095
transcript.whisperx[15].text 作為勞工是不是有投勞保或是投災保那個目前我們是要求最上包營造廠要善盡這個責任就是還是以最上面的包廂為主還是要去落實啦因為工作的性質特別是以臨時工來講這個在經濟上通常是比較弱勢這個第一點第二就是他對工作的場域比較不熟悉所以更需要保險的支持
transcript.whisperx[16].start 407.63
transcript.whisperx[16].end 407.851
transcript.whisperx[16].text 我們依據
transcript.whisperx[17].start 410.672
transcript.whisperx[17].end 431.88
transcript.whisperx[17].text 職業安全衛生法的相關規定除了政府機關或5人以下的事業單位以外大概都必須要設置職安衛生管理人員我們現在是30人以上的事業單位依照規定必須要設置而且必須要報勞檢機構備查
transcript.whisperx[18].start 436.508
transcript.whisperx[18].end 453.107
transcript.whisperx[18].text 請問一下現在我們超過5人未滿30人因為他有級距的規定超過5人未滿30人的事業單位我們是怎麼確保或查核他有相關的設置
transcript.whisperx[19].start 454.619
transcript.whisperx[19].end 471.575
transcript.whisperx[19].text 案件人員跟委員報告確實這個小微型企業30年以下目前法令沒有規定說一定要通報但是呢我們在這個規定上不一定說他這個這麼小還要在另外設一個老年人由雇主本身去接受20個小時訓練他還是可以擔任這個老年人
transcript.whisperx[20].start 477.847
transcript.whisperx[20].end 486.293
transcript.whisperx[20].text 我們現在是這樣子齁就是剛才是5人以上30人未滿現在問的是30人以上100人這個級距按照勞動檢查的統計2023的統計數字在30到100人的製造業已經有設置
transcript.whisperx[21].start 506.36
transcript.whisperx[21].end 514.967
transcript.whisperx[21].text 安全衛生人員的業者大概是七成七非營造業大概是六成四我請問一下這個設置比例
transcript.whisperx[22].start 521.666
transcript.whisperx[22].end 536.656
transcript.whisperx[22].text 這個數字假如是對的原因在哪裡就是為什麼還有製造業還有大概兩成多然後非製造業還有大概三分之一沒有設置原因是什麼
transcript.whisperx[23].start 538.204
transcript.whisperx[23].end 556.48
transcript.whisperx[23].text 跟委員報告確實那個勞安人員或職安人員他基本上也是會做一些異動那他有時候是因為在等待上課因為他這個我們外界的這個訓練的訓練單位他的班並不是每個禮拜開班所以他會因為
transcript.whisperx[24].start 557.58
transcript.whisperx[24].end 585.16
transcript.whisperx[24].text 這個部分他需要去配合這個上課時間所以在這個時間如果被我們檢查到的話我們就會認定說你現在是沒有設置就是有的時候會有空窗期啦就是他的原本的人走了然後應該補的人就是可能還沒有取得資格署長的意思是不是這樣有部分是這樣有部分是這樣那個柯文我覺得這個比率是真的有要大幅提高的對的必要啦
transcript.whisperx[25].start 586.221
transcript.whisperx[25].end 603.218
transcript.whisperx[25].text 那我是認為這個這都是法規上面的要求那把法規上的要求必須做到那我覺得這部分我會來加強要求那最後用時間的關係所以我就直接講了就是
transcript.whisperx[26].start 604.679
transcript.whisperx[26].end 628.695
transcript.whisperx[26].text 部長曾經有講過就是勞檢人員其實工作很辛苦啦那勞動條件跟職業安全衛生的法令能不能落實其實跟勞檢人員息息相關那希望部長能夠在比較短的時間之內看如何讓我們因為我們的勞檢人力其實一直是有
transcript.whisperx[27].start 629.896
transcript.whisperx[27].end 654.711
transcript.whisperx[27].text 有不足的那不足的原因大概部長也都知道那希望部長能夠部長也有講過考慮提高薪資也好加上9任的獎金也好這個相關的工作可以做的請部裡面這邊盡速進行好不好謝謝部長謝謝署長也謝謝主席好謝謝