iVOD / 160795

Field Value
IVOD_ID 160795
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160795
日期 2025-04-30
會議資料.會議代碼 委員會-11-3-26-9
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第9次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 9
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第9次全體委員會議
影片種類 Clip
開始時間 2025-04-30T11:23:11+08:00
結束時間 2025-04-30T11:38:22+08:00
影片長度 00:15:11
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/b6da7da99b942369a698fe5b10a14bb18b6df88a6e7dffcad78ea87b1712f8823d33e1e9d2057dc95ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 劉建國
委員發言時間 11:23:11 - 11:38:22
會議時間 2025-04-30T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第9次全體委員會議(事由:邀請勞動部部長、經濟部及內政部就「五一勞動節前夕,我國勞工職場預防職業災害及場(廠)墜落事故之檢討與精進作為」進行專題報告,並備質詢。 【4月30日及5月1日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.85784375
transcript.pyannote[0].end 3.22034375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 5.56596875
transcript.pyannote[1].end 6.32534375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 8.46846875
transcript.pyannote[2].end 15.40409375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 15.89346875
transcript.pyannote[3].end 21.09096875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 21.37784375
transcript.pyannote[4].end 21.79971875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 21.79971875
transcript.pyannote[5].end 21.90096875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 21.90096875
transcript.pyannote[6].end 21.91784375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 21.91784375
transcript.pyannote[7].end 21.96846875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 22.87971875
transcript.pyannote[8].end 24.92159375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 25.10721875
transcript.pyannote[9].end 26.13659375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 27.79034375
transcript.pyannote[10].end 28.60034375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 28.95471875
transcript.pyannote[11].end 33.39284375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 34.47284375
transcript.pyannote[12].end 35.97471875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 35.97471875
transcript.pyannote[13].end 36.53159375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 36.95346875
transcript.pyannote[14].end 37.78034375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 38.20221875
transcript.pyannote[15].end 38.21909375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 38.21909375
transcript.pyannote[16].end 38.30346875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 38.30346875
transcript.pyannote[17].end 38.64096875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 38.40471875
transcript.pyannote[18].end 38.55659375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 38.64096875
transcript.pyannote[19].end 38.69159375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 38.69159375
transcript.pyannote[20].end 38.97846875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 38.97846875
transcript.pyannote[21].end 39.02909375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 39.02909375
transcript.pyannote[22].end 39.51846875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 41.22284375
transcript.pyannote[23].end 41.62784375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 42.13409375
transcript.pyannote[24].end 65.70846875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 66.48471875
transcript.pyannote[25].end 67.86846875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 72.07034375
transcript.pyannote[26].end 91.08846875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 91.61159375
transcript.pyannote[27].end 94.69971875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 96.20159375
transcript.pyannote[28].end 96.96096875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 98.07471875
transcript.pyannote[29].end 99.89721875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 99.69471875
transcript.pyannote[30].end 108.03096875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 108.03096875
transcript.pyannote[31].end 109.49909375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 110.00534375
transcript.pyannote[32].end 113.12721875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 113.85284375
transcript.pyannote[33].end 119.72534375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 120.26534375
transcript.pyannote[34].end 126.01971875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 126.62721875
transcript.pyannote[35].end 133.64721875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 135.31784375
transcript.pyannote[36].end 137.10659375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 137.64659375
transcript.pyannote[37].end 139.65471875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 140.31284375
transcript.pyannote[38].end 147.70409375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 148.36221875
transcript.pyannote[39].end 155.70284375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 156.22596875
transcript.pyannote[40].end 157.52534375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 157.81221875
transcript.pyannote[41].end 158.82471875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 161.45721875
transcript.pyannote[42].end 163.27971875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 163.60034375
transcript.pyannote[43].end 164.71409375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 167.46471875
transcript.pyannote[44].end 169.45596875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 169.97909375
transcript.pyannote[45].end 170.35034375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 171.31221875
transcript.pyannote[46].end 172.74659375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 174.85596875
transcript.pyannote[47].end 177.74159375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 178.12971875
transcript.pyannote[48].end 179.96909375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 180.20534375
transcript.pyannote[49].end 180.22221875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 180.22221875
transcript.pyannote[50].end 180.23909375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 180.23909375
transcript.pyannote[51].end 181.21784375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 181.79159375
transcript.pyannote[52].end 196.06784375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 196.21971875
transcript.pyannote[53].end 197.21534375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 196.28721875
transcript.pyannote[54].end 224.78909375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 205.61909375
transcript.pyannote[55].end 206.04096875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 225.16034375
transcript.pyannote[56].end 239.09909375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 239.62221875
transcript.pyannote[57].end 240.26346875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 241.29284375
transcript.pyannote[58].end 243.26721875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 243.89159375
transcript.pyannote[59].end 245.32596875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 245.47784375
transcript.pyannote[60].end 249.02159375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 249.42659375
transcript.pyannote[61].end 250.21971875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 250.74284375
transcript.pyannote[62].end 251.94096875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 252.59909375
transcript.pyannote[63].end 254.80971875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 255.34971875
transcript.pyannote[64].end 257.47596875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 257.83034375
transcript.pyannote[65].end 258.20159375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 258.58971875
transcript.pyannote[66].end 263.07846875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 263.82096875
transcript.pyannote[67].end 266.36909375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 267.04409375
transcript.pyannote[68].end 268.69784375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 269.91284375
transcript.pyannote[69].end 271.17846875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 273.11909375
transcript.pyannote[70].end 278.51909375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 278.92409375
transcript.pyannote[71].end 281.15159375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 281.84346875
transcript.pyannote[72].end 283.29471875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 283.68284375
transcript.pyannote[73].end 286.19721875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 286.88909375
transcript.pyannote[74].end 288.27284375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 288.79596875
transcript.pyannote[75].end 297.84096875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 297.84096875
transcript.pyannote[76].end 298.00971875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 298.00971875
transcript.pyannote[77].end 299.62971875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 300.18659375
transcript.pyannote[78].end 313.72034375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 314.20971875
transcript.pyannote[79].end 317.17971875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 318.69846875
transcript.pyannote[80].end 319.54221875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 320.84159375
transcript.pyannote[81].end 321.66846875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 322.39409375
transcript.pyannote[82].end 323.55846875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 324.57096875
transcript.pyannote[83].end 325.93784375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 328.11471875
transcript.pyannote[84].end 343.97721875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 341.44596875
transcript.pyannote[85].end 341.93534375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 343.97721875
transcript.pyannote[86].end 359.48534375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 360.44721875
transcript.pyannote[87].end 371.61846875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 372.19221875
transcript.pyannote[88].end 387.90284375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 388.66221875
transcript.pyannote[89].end 389.96159375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 390.53534375
transcript.pyannote[90].end 392.20596875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 393.04971875
transcript.pyannote[91].end 395.73284375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 396.45846875
transcript.pyannote[92].end 401.87534375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 396.61034375
transcript.pyannote[93].end 397.03221875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 399.44534375
transcript.pyannote[94].end 399.96846875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 401.94284375
transcript.pyannote[95].end 402.06096875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 402.06096875
transcript.pyannote[96].end 403.02284375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 405.35159375
transcript.pyannote[97].end 406.02659375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 406.65096875
transcript.pyannote[98].end 407.10659375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 407.51159375
transcript.pyannote[99].end 407.83221875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 408.70971875
transcript.pyannote[100].end 409.21596875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 409.89096875
transcript.pyannote[101].end 410.19471875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 410.49846875
transcript.pyannote[102].end 412.74284375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 412.94534375
transcript.pyannote[103].end 415.52721875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 416.69159375
transcript.pyannote[104].end 417.51846875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 417.82221875
transcript.pyannote[105].end 420.20159375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 420.84284375
transcript.pyannote[106].end 424.13346875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 424.42034375
transcript.pyannote[107].end 427.22159375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 427.66034375
transcript.pyannote[108].end 429.46596875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 429.61784375
transcript.pyannote[109].end 430.56284375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 430.74846875
transcript.pyannote[110].end 432.92534375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 433.27971875
transcript.pyannote[111].end 446.29034375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 446.34096875
transcript.pyannote[112].end 447.06659375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 447.85971875
transcript.pyannote[113].end 479.21346875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 479.21346875
transcript.pyannote[114].end 530.53034375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 531.35721875
transcript.pyannote[115].end 532.85909375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 533.02784375
transcript.pyannote[116].end 534.95159375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 535.49159375
transcript.pyannote[117].end 536.60534375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 536.80784375
transcript.pyannote[118].end 538.93409375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 539.71034375
transcript.pyannote[119].end 542.98409375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 543.47346875
transcript.pyannote[120].end 544.67159375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 545.16096875
transcript.pyannote[121].end 547.10159375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 547.70909375
transcript.pyannote[122].end 549.71721875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 550.35846875
transcript.pyannote[123].end 551.28659375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 551.82659375
transcript.pyannote[124].end 553.61534375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 553.69971875
transcript.pyannote[125].end 556.66971875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 556.66971875
transcript.pyannote[126].end 574.13534375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 559.31909375
transcript.pyannote[127].end 559.38659375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 574.65846875
transcript.pyannote[128].end 579.29909375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 578.45534375
transcript.pyannote[129].end 583.88909375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 582.57284375
transcript.pyannote[130].end 588.20909375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 588.64784375
transcript.pyannote[131].end 609.84284375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 609.84284375
transcript.pyannote[132].end 622.81971875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 623.83221875
transcript.pyannote[133].end 624.20346875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 624.97971875
transcript.pyannote[134].end 627.98346875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 628.27034375
transcript.pyannote[135].end 632.20221875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 633.02909375
transcript.pyannote[136].end 635.30721875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 635.69534375
transcript.pyannote[137].end 636.97784375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 637.50096875
transcript.pyannote[138].end 639.67784375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 640.89284375
transcript.pyannote[139].end 641.83784375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 642.14159375
transcript.pyannote[140].end 642.83346875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 643.49159375
transcript.pyannote[141].end 648.04784375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 648.06471875
transcript.pyannote[142].end 650.32596875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 650.76471875
transcript.pyannote[143].end 651.62534375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 653.98784375
transcript.pyannote[144].end 656.56971875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 656.58659375
transcript.pyannote[145].end 661.56471875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 661.78409375
transcript.pyannote[146].end 663.31971875
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 664.04534375
transcript.pyannote[147].end 665.66534375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 667.79159375
transcript.pyannote[148].end 668.77034375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 669.17534375
transcript.pyannote[149].end 671.01471875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 671.38596875
transcript.pyannote[150].end 672.93846875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 673.84971875
transcript.pyannote[151].end 675.13221875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 675.13221875
transcript.pyannote[152].end 675.16596875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 677.22471875
transcript.pyannote[153].end 687.14721875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 685.37534375
transcript.pyannote[154].end 686.13471875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 687.36659375
transcript.pyannote[155].end 692.64846875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 692.64846875
transcript.pyannote[156].end 694.92659375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 692.74971875
transcript.pyannote[157].end 692.83409375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 694.92659375
transcript.pyannote[158].end 695.11221875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 695.11221875
transcript.pyannote[159].end 697.79534375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 698.04846875
transcript.pyannote[160].end 701.08596875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 701.42346875
transcript.pyannote[161].end 704.93346875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 704.93346875
transcript.pyannote[162].end 704.95034375
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 706.03034375
transcript.pyannote[163].end 706.08096875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 706.08096875
transcript.pyannote[164].end 706.80659375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 707.31284375
transcript.pyannote[165].end 727.88346875
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 708.67971875
transcript.pyannote[166].end 708.83159375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 729.58784375
transcript.pyannote[167].end 734.88659375
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 736.32096875
transcript.pyannote[168].end 741.34971875
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 739.62846875
transcript.pyannote[169].end 740.64096875
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 740.79284375
transcript.pyannote[170].end 740.80971875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 741.34971875
transcript.pyannote[171].end 784.21221875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 741.36659375
transcript.pyannote[172].end 741.40034375
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 784.21221875
transcript.pyannote[173].end 784.36409375
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 784.36409375
transcript.pyannote[174].end 784.44846875
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 784.44846875
transcript.pyannote[175].end 789.10596875
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 789.52784375
transcript.pyannote[176].end 796.95284375
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 797.25659375
transcript.pyannote[177].end 798.04971875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 798.67409375
transcript.pyannote[178].end 801.08721875
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 801.22221875
transcript.pyannote[179].end 805.50846875
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 805.69409375
transcript.pyannote[180].end 807.22971875
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 808.00596875
transcript.pyannote[181].end 808.66409375
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 809.45721875
transcript.pyannote[182].end 810.41909375
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 810.72284375
transcript.pyannote[183].end 823.39596875
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 824.47596875
transcript.pyannote[184].end 826.68659375
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 827.68221875
transcript.pyannote[185].end 828.42471875
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 830.01096875
transcript.pyannote[186].end 831.37784375
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 832.12034375
transcript.pyannote[187].end 833.67284375
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 833.92596875
transcript.pyannote[188].end 834.82034375
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 836.55846875
transcript.pyannote[189].end 838.51596875
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 838.73534375
transcript.pyannote[190].end 840.42284375
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 840.72659375
transcript.pyannote[191].end 842.49846875
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 843.32534375
transcript.pyannote[192].end 844.21971875
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 845.14784375
transcript.pyannote[193].end 846.27846875
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 847.35846875
transcript.pyannote[194].end 848.23596875
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 848.77596875
transcript.pyannote[195].end 850.09221875
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 852.43784375
transcript.pyannote[196].end 853.11284375
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 853.53471875
transcript.pyannote[197].end 877.36221875
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 877.78409375
transcript.pyannote[198].end 879.04971875
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 879.91034375
transcript.pyannote[199].end 880.29846875
transcript.pyannote[200].speaker SPEAKER_02
transcript.pyannote[200].start 880.41659375
transcript.pyannote[200].end 882.17159375
transcript.pyannote[201].speaker SPEAKER_02
transcript.pyannote[201].start 882.81284375
transcript.pyannote[201].end 884.16284375
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 884.48346875
transcript.pyannote[202].end 885.29346875
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 885.86721875
transcript.pyannote[203].end 887.43659375
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 887.70659375
transcript.pyannote[204].end 889.57971875
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 891.50346875
transcript.pyannote[205].end 892.85346875
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 893.41034375
transcript.pyannote[206].end 897.03846875
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 897.29159375
transcript.pyannote[207].end 905.00346875
transcript.pyannote[208].speaker SPEAKER_02
transcript.pyannote[208].start 905.64471875
transcript.pyannote[208].end 907.73721875
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 906.62346875
transcript.pyannote[209].end 907.70346875
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 907.73721875
transcript.pyannote[210].end 910.97721875
transcript.whisperx[0].start 0.885
transcript.whisperx[0].end 25.574
transcript.whisperx[0].text 好 謝謝主席 有請部長有請洪部長部長好 部長辛苦了明天就是五一勞動節也是部長就任以來第一個勞動節那部長還記得接下來部長一職的時候那卓院長有給你三個主要的任務 部長還記得吧記得就這三個嘛 我就不再贅述了那請問有達標嗎
transcript.whisperx[1].start 29.489
transcript.whisperx[1].end 38.883
transcript.whisperx[1].text 這幾個月我們很努力希望往這些方向去邁進你沒有回答我,你沒有答標但我知道你很努力,我沒有說你不努力我們盡力做
transcript.whisperx[2].start 41.257
transcript.whisperx[2].end 67.481
transcript.whisperx[2].text 好啦第一點就是紅部長接任的所要任務就在後續處理上我想部長也展現了十足的行動力跟決心嘛穩定這整個勞動部這我必須要肯定啦但第二點勞動部是為了健全友善合理的持長讓所有的勞工在安全的環境中為國家為人民為社會來做做全力的這樣的一個付出嘛那我就要請部長來看這個相關的數據重大旨在什麼人數
transcript.whisperx[3].start 72.794
transcript.whisperx[3].end 94.674
transcript.whisperx[3].text 108就316然後109 313其實每每講到這個數據其實坦白講是很沉痛那10278這個是疫情的時候然後11就開始在往上提升但是那113又降下來287那114年截至目前為止4月是70個人你們有講說應該會比往前年度更少有把握嗎
transcript.whisperx[4].start 98.137
transcript.whisperx[4].end 112.306
transcript.whisperx[4].text 比前一年會更少有把握嗎因為當然今年到現在到4月坦白說我們不用把握這兩個字我覺得我們會盡我們所能努力做但是都不讓你看喔我想這一個每一個死亡人數都代表一個
transcript.whisperx[5].start 113.868
transcript.whisperx[5].end 133.241
transcript.whisperx[5].text 一個讓人家非常傷心難過的一個家庭然後南東木市去年把把這個營造營造業墜落打幾年那目標是比往前一年要減少30%的這個墜落之災然後結果到去年9月光營造業就墜落66人也是這個
transcript.whisperx[6].start 142.502
transcript.whisperx[6].end 158.515
transcript.whisperx[6].text 全年度更高達148人整個打擊計畫是提早破功的那當時何前部長還講說要達到這個目標確實有困難你們自己訂目標你們自己訂了叫做營造業最弱打擊年結果跟我講說困難對外講說困難我為什麼要提醒這個事情你們還有另外一個目標2030年植栽要減半對不對
transcript.whisperx[7].start 171.605
transcript.whisperx[7].end 195.248
transcript.whisperx[7].text 會不會現在提早破功會不會就像何前部長講的現在要提早跟我講說困難我們這些目標其實坦白說都是當初定定是要我覺得包括是定一個我覺得希望能夠更符合而且更進步的目標那2030的這個目標我想我們現在是我還是會說我們必須全力以赴
transcript.whisperx[8].start 196.329
transcript.whisperx[8].end 224.566
transcript.whisperx[8].text 我知道剛剛你也答詢說當然目標除此之外還要好的方法嘛對不對那這個方法非常重要但是你們的方法不能只有剩下只有修治安法嘛是因為剛剛很多委員的垂詢嘛很多的面向但是我坦白講我看部長跟署長還有甚至於那個國土署的副總統在答詢的時候好像公共工程比較可以去去test到那其他四部門的幾乎根本就是無從著力嘛
transcript.whisperx[9].start 225.27
transcript.whisperx[9].end 243.104
transcript.whisperx[9].text 那等於你把這個目標整體掛在一起這邊完全沒有辦法有任何的有效方法去做處理甚至連方法都沒有的情況之下那你當然不可能去達標啊你不可能去達標怎麼會設定2030年要減半這個就很矛盾嘛 很衝突嘛
transcript.whisperx[10].start 243.991
transcript.whisperx[10].end 270.447
transcript.whisperx[10].text 而且我剛剛在廁所遇到署長跟署長講說這個報告是誰寫的你們要公布這個報告署長跟我講說是他寫的然後整體focus還是在營造這個換籌當然有講說整體比例還有個2%等等等數之類但是那個樣態真的非常多我們雲林連飼料廠就可以墜落然後死傷嚴重
transcript.whisperx[11].start 273.134
transcript.whisperx[11].end 294.515
transcript.whisperx[11].text 不只啦 剛剛林委員特別提到這個冷氣的施工人員也不只啊 也廣告業者啊反正怎麼講 那個樣態面向是非常非常多當然你可以講比例啦營造業的比例 建商的比例是最高的 是沒錯
transcript.whisperx[12].start 295.083
transcript.whisperx[12].end 323.433
transcript.whisperx[12].text 但是不能因為這個最高的其他的我們就忽略嘛各位可以看你把這個主要的這個這個類別可以把它降下來當然有效的會去呈現在你想要達到這個目標啦這也是也不為過嘛這是方式之一嘛但是你看喔我們113年可以降到287是什麼原因就你們要知道啊主要是什麼原因回到剛才那個表格
transcript.whisperx[13].start 324.612
transcript.whisperx[13].end 325.605
transcript.whisperx[13].text 結果中到13死亡人數
transcript.whisperx[14].start 328.134
transcript.whisperx[14].end 355.15
transcript.whisperx[14].text 跟委員報告我們不會只有說這個在治安法修法前我們還是有很多這個減災的策略在推動包括加強勞檢或是說這個辦理相關的第一場作業的工作我知道啦 知道這個都有在做啦但是做得到不到位嘛是不是有需要再做快速的調整嘛是不是要擴及的面向擴及的職業肥是不是要再增加嘛 對不對這剛才部長也都有答覆嘛
transcript.whisperx[15].start 355.35
transcript.whisperx[15].end 359.09
transcript.whisperx[15].text 那我先請教醫生為什麼你們可以撿到287?主要原因是什麼?
transcript.whisperx[16].start 361.246
transcript.whisperx[16].end 387.74
transcript.whisperx[16].text 其實還有一部分就勞檢以外其實各部會一起幫忙也是蠻重要的剛剛委員有提到我們不管是交通部、內政部、經濟部這個部分我們都一起來合作怎麼樣去大家所管的事業裡面去將要求這個防稅的一個處理所以這個部分跟委員報我們的面向應該是蠻多面向的那至於說287人的部分應該是營造業有檢疫部分
transcript.whisperx[17].start 388.92
transcript.whisperx[17].end 402.468
transcript.whisperx[17].text 為什麼營造業會減一部分主要的原因剛剛我也知道我們在去年就是營造業的最多打擊年所以我們是動用的是營造業的最多打擊還是中央政策打防你看啦自己有把這個目標降下來不曉得什麼原因降下來我就覺得會
transcript.whisperx[18].start 419.421
transcript.whisperx[18].end 432.734
transcript.whisperx[18].text 這樣你們的方法是很自己都沒有把握的方法然後去形成一個方法然後再請教你為什麼可以降下來又講得不是很精準你們這個方法顯然就不是還有一個好方法
transcript.whisperx[19].start 433.291
transcript.whisperx[19].end 445.176
transcript.whisperx[19].text 跟委員說明我同意委員剛才說就是說這不是只是修法的問題因為土法不足以自行所以我們其實可能也看到這裡面會有很多是法規的落實的程度的問題那
transcript.whisperx[20].start 448.058
transcript.whisperx[20].end 462.81
transcript.whisperx[20].text 這也包括比方說這段時間跟署裡面我們一直在檢討跟討論剛才說停復工的這個做法裡面是不是有更多如果未來要復工的話他必須要擔負起更多比方說他是一個系統性的改善
transcript.whisperx[21].start 463.49
transcript.whisperx[21].end 490.964
transcript.whisperx[21].text 所以這是在做法上面如果被停工的廠商他就要擔負起更高的成本才能夠復工的話他也會更加的小心我們也在這個方面去做檢討所以幾個部分我們都在檢討希望能夠更加的落實這些相關的法規部長你答問我這是剛剛李委員問的另外一個問題當然停工的樣態狀況是不一啦不可能說去取得一個平均值嘛所以剛剛你們沒辦法回答我也能夠理解嘛
transcript.whisperx[22].start 491.364
transcript.whisperx[22].end 510.831
transcript.whisperx[22].text 我現在講的說,你113可以降到287,主要原因是什麼?你這樣打護我,雖然這樣打護我是很沒有把握的打護,也是自己沒有去掌握嘛。去年雖然沒有這個疫情啦,但央行有祭出這史上最狠的打房政策啦。讓房地產的市場又有了改變嘛,可以看一下。
transcript.whisperx[23].start 513.692
transcript.whisperx[23].end 537.399
transcript.whisperx[23].text 然後今年狀況也沒有改變手機在全國的新屋推有327萬件是歷史的新低啦其實今年4月齁 職災死亡人數是70人責任署目前是有樂觀推估啦今年職災死亡人數有機會再減少這是你們的資料喔但是我現在最擔心的一個狀況等到黃石祐回溫 加班趕工的亂象會不會再全部出現就跟剛才111年的時候
transcript.whisperx[24].start 540.161
transcript.whisperx[24].end 549.388
transcript.whisperx[24].text 又到最高的這樣的一個是不是最高我也不曉得所以當建商業者只顧著把落後的進度再補回來會不會又牢計法、治安法又放在一邊
transcript.whisperx[25].start 550.39
transcript.whisperx[25].end 573.857
transcript.whisperx[25].text 那職災人數就再往上回升這確實是我們要非常小心的一個因素所以部長這個絕對要去考量到我們勞工部部長指揮今年的職災人數應該會再下降那如果真的是明年的市場上的回溫你要如何防禦相關的業者把勞工的命當成耗材再使用
transcript.whisperx[26].start 574.697
transcript.whisperx[26].end 591.849
transcript.whisperx[26].text 跟我們說明我們當然不會把勞工的命當耗材但是我們確實有三餐我們是說你老實說相關的一些業者嘛因為他要刮工嘛 手工對 沒錯我們確實看到當業者越趕工的狀況的時候其實他的相關的這個安全衛生其實做的就會這個
transcript.whisperx[27].start 593.51
transcript.whisperx[27].end 620.789
transcript.whisperx[27].text 可能常常就會出漏所以跟趕工跟工程這個工地的趕工的這個狀態其實是有一些相關的這也是我們要非常非常小心我們也在跟治安署其實在討論這部分必須面對跟如果有這個狀況的話我們就要更強力的方式下場去介入好我最後一個問題當然不是只有歇華還有是要做勞動檢查嘛是對不對那可以看一下3月27 治安省你們自己換了新聞治安署北中南同步勞檢全台開滑1223萬
transcript.whisperx[28].start 623.868
transcript.whisperx[28].end 651.146
transcript.whisperx[28].text 然後在這次的327大老前 差了82個工地總計違反256項 列定停工28處董事長今天我就不再贅述了看起來好像划得很重 你再看力竊的這個划款這是113年 329 1040 你還沒有破前年再來就變成936 再來就變成985 再來就往下降了這是什麼數字
transcript.whisperx[29].start 654.022
transcript.whisperx[29].end 674.97
transcript.whisperx[29].text 就是說如果今天治安署的全國勞檢有效你要去怎麼解釋去年11月的774萬今年怎麼結果反而反彈到又回到去年同期的1000多萬那你治安署跟六都的勞政機關去勞檢請教一下那一般縣市勒是完全不干他們的事情
transcript.whisperx[30].start 677.487
transcript.whisperx[30].end 704.769
transcript.whisperx[30].text 跟委員報告那個整個罰款的金額他是因為那一次的整個全國的檢查的工地工地數你們哪一次不是全國的檢查是由首長帶隊跟當地的主管機關一起有首長帶隊跟當地的主管機關就會把這個罰款金額查獲的委員勞檢的件數提高只要不是首長不是各縣市的主管就是要偏低
transcript.whisperx[31].start 706.189
transcript.whisperx[31].end 734.623
transcript.whisperx[31].text 這是什麼邏輯跟委員不是這個意思是說剛剛委員現在秀的這個部分是我們有這個帶隊去做的這個同步勞檢那實際上我們去年整個勞檢裁罰金額也達到五億元不是說這個是當天這個是當天我們的首長帶隊的時候那一天統計出來的數字那你回答我到底還不是一樣只要當天是首長帶隊的那一天的比例就是偏高
transcript.whisperx[32].start 736.38
transcript.whisperx[32].end 764.322
transcript.whisperx[32].text 只要不是首長帶隊的就不是這種就不是這種金額嗎你要打我應該是這樣嗎我聽懂委員的意思我是覺得說第一個這些相關的數字並不是說一定要罰到什麼一定要罰到上千萬或者是什麼你這個東西作為標準並不是用這個來作為要求那首長帶隊去勞檢這比較代表的是要表達一個對於這個工地勞安狀況的重視它的意義比較是在這個地方
transcript.whisperx[33].start 764.662
transcript.whisperx[33].end 786.903
transcript.whisperx[33].text 倒不是說一定說我們只要首長帶隊這就一定要罰到上千萬其實倒也不是這個意思可是我覺得表達重視那最重要的事情還是是這個勞動檢查能不能落實到每一天然後把該檢查的部分給檢查出來該罰的部分要罰出來我覺得這部分才是我覺得這是我們要去努力的目標好 我要突顯這個問題是因為3月19號我也在這個委員會質詢
transcript.whisperx[34].start 789.608
transcript.whisperx[34].end 806.728
transcript.whisperx[34].text 我一直提醒勞檢人力是不足然後勞檢不是只有你勞動部跟六都一般縣市勒?是一般縣市勒?也有不足的問題我的母縣、孕育縣你知道嗎剛剛在提到最弱的可以看一下110人就10個人
transcript.whisperx[35].start 809.525
transcript.whisperx[35].end 821.19
transcript.whisperx[35].text 三人是墜落的什麼業務代查啦齁112人9人有6人墜落5人是營造1人是製造113人12人5人墜落2人是營造3人是製造這是近8年最高的其中一個是飼料廠飼料廠喔另外一個是在食品廠然後你們的報告是說他因為中毒
transcript.whisperx[36].start 836.598
transcript.whisperx[36].end 850.007
transcript.whisperx[36].text 它是墜落 它是滑落到那個有早期的地方它如果今天不掉下去沒有這回事啊它也不會中毒啊那這個歸類在墜落還是歸類在中毒但是你們把它歸類在中毒
transcript.whisperx[37].start 852.452
transcript.whisperx[37].end 878.614
transcript.whisperx[37].text 不是這樣啊所以我就跟你講這種墜落在工地的範疇裡面在它實際上在操作的範圍裡面它的墜落的樣態絕對不只營造業啦很多很多的業別沒什麼樣態不一樣我希望你們的你們那個報告可能要再要再詳細精準一些好不好那我當然我還是會強調說回歸到營造業當然它的比例是最高的我們的方法如果用對
transcript.whisperx[38].start 879.946
transcript.whisperx[38].end 889.378
transcript.whisperx[38].text 它可以讓整體的墜落導致死亡人數下降對你整體要達到這個目標當然有幫助嘛但是你也不能輸其他的業別啊
transcript.whisperx[39].start 891.547
transcript.whisperx[39].end 900.618
transcript.whisperx[39].text 我們要表達是這樣子嗎是不是請在一個詳細的一個各個樣態各個評估的這樣的狀態的資料給委內做一個參考還有方法應對的方法謝謝