iVOD / 160792

Field Value
IVOD_ID 160792
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160792
日期 2025-04-30
會議資料.會議代碼 委員會-11-3-20-10
會議資料.會議代碼:str 第11屆第3會期財政委員會第10次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 10
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第10次全體委員會議
影片種類 Clip
開始時間 2025-04-30T11:16:12+08:00
結束時間 2025-04-30T11:28:59+08:00
影片長度 00:12:47
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/b6da7da99b942369396a651cafd4e845693dd611367b4dddd78ea87b1712f8822f53a3f22e0942d75ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 羅明才
委員發言時間 11:16:12 - 11:28:59
會議時間 2025-04-30T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第10次全體委員會議(事由:審查「保險法」15案: 一、行政院函請審議、本院委員蔡其昌等19人、委員羅廷瑋等16人、委員王世堅等18人、委員徐富癸等16人、委員蔡其昌等19人、委員蔡易餘等18人、委員林思銘等18人分別擬具「保險法部分條文修正草案」等8案。【後3案如經院會復議,本次會議不予審查】 二、本院委員鍾佳濱等21人擬具「保險法增訂第一百二十三條之一條文草案」案。 三、本院台灣民眾黨黨團、委員陳超明等16人、委員羅智強等19人、委員李坤城等23人、委員賴瑞隆等17人、委員王美惠等17人分別擬具「保險法增訂第一百七十四條之二及第一百七十四條之三條文草案」等6案。 【4月30日及5月1日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.08159375
transcript.pyannote[0].end 1.49909375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 1.97159375
transcript.pyannote[1].end 3.23721875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 3.65909375
transcript.pyannote[2].end 4.16534375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 4.68846875
transcript.pyannote[3].end 5.59971875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 8.72159375
transcript.pyannote[4].end 9.19409375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 9.68346875
transcript.pyannote[5].end 16.88909375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 17.09159375
transcript.pyannote[6].end 18.12096875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 18.57659375
transcript.pyannote[7].end 19.50471875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 19.89284375
transcript.pyannote[8].end 20.55096875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 20.92221875
transcript.pyannote[9].end 26.92971875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 26.94659375
transcript.pyannote[10].end 26.98034375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 27.19971875
transcript.pyannote[11].end 31.48596875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 31.73909375
transcript.pyannote[12].end 46.90971875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 47.33159375
transcript.pyannote[13].end 47.82096875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 47.92221875
transcript.pyannote[14].end 51.98909375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 52.24221875
transcript.pyannote[15].end 53.86221875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 54.87471875
transcript.pyannote[16].end 56.14034375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 56.41034375
transcript.pyannote[17].end 58.41846875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 58.95846875
transcript.pyannote[18].end 60.78096875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 61.55721875
transcript.pyannote[19].end 62.62034375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 63.39659375
transcript.pyannote[20].end 64.08846875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 64.57784375
transcript.pyannote[21].end 65.42159375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 66.14721875
transcript.pyannote[22].end 71.10846875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 71.49659375
transcript.pyannote[23].end 73.42034375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 73.42034375
transcript.pyannote[24].end 73.43721875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 73.94346875
transcript.pyannote[25].end 73.96034375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 73.96034375
transcript.pyannote[26].end 106.52909375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 106.90034375
transcript.pyannote[27].end 113.12721875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 113.56596875
transcript.pyannote[28].end 124.29846875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 124.45034375
transcript.pyannote[29].end 131.04846875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 131.47034375
transcript.pyannote[30].end 146.74221875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 148.09221875
transcript.pyannote[31].end 149.39159375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 149.76284375
transcript.pyannote[32].end 152.41221875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 153.10409375
transcript.pyannote[33].end 154.43721875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 154.69034375
transcript.pyannote[34].end 157.64346875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 158.70659375
transcript.pyannote[35].end 171.95346875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 172.24034375
transcript.pyannote[36].end 176.37471875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 176.76284375
transcript.pyannote[37].end 178.55159375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 179.04096875
transcript.pyannote[38].end 199.03784375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 199.03784375
transcript.pyannote[39].end 218.05596875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 218.30909375
transcript.pyannote[40].end 221.85284375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 222.39284375
transcript.pyannote[41].end 225.83534375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 225.85221875
transcript.pyannote[42].end 233.83409375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 234.30659375
transcript.pyannote[43].end 235.01534375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 235.25159375
transcript.pyannote[44].end 236.31471875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 237.17534375
transcript.pyannote[45].end 238.18784375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 238.44096875
transcript.pyannote[46].end 245.46096875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 246.08534375
transcript.pyannote[47].end 248.09346875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 248.78534375
transcript.pyannote[48].end 249.32534375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 249.69659375
transcript.pyannote[49].end 250.35471875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 250.74284375
transcript.pyannote[50].end 252.09284375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 252.22784375
transcript.pyannote[51].end 253.61159375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 254.03346875
transcript.pyannote[52].end 255.43409375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 255.83909375
transcript.pyannote[53].end 259.66971875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 260.51346875
transcript.pyannote[54].end 266.36909375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 267.34784375
transcript.pyannote[55].end 269.62596875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 270.57096875
transcript.pyannote[56].end 271.11096875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 271.73534375
transcript.pyannote[57].end 272.78159375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 273.32159375
transcript.pyannote[58].end 275.12721875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 275.65034375
transcript.pyannote[59].end 276.52784375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 277.18596875
transcript.pyannote[60].end 278.35034375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 279.09284375
transcript.pyannote[61].end 280.45971875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 281.21909375
transcript.pyannote[62].end 281.59034375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 281.84346875
transcript.pyannote[63].end 283.05846875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 283.66596875
transcript.pyannote[64].end 284.22284375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 284.56034375
transcript.pyannote[65].end 285.50534375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 286.16346875
transcript.pyannote[66].end 287.02409375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 287.27721875
transcript.pyannote[67].end 287.95221875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 288.79596875
transcript.pyannote[68].end 289.35284375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 289.70721875
transcript.pyannote[69].end 293.82471875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 294.14534375
transcript.pyannote[70].end 294.97221875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 294.97221875
transcript.pyannote[71].end 309.06284375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 309.19784375
transcript.pyannote[72].end 310.58159375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 311.10471875
transcript.pyannote[73].end 351.68909375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 351.84096875
transcript.pyannote[74].end 358.65846875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 358.91159375
transcript.pyannote[75].end 366.13409375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 366.50534375
transcript.pyannote[76].end 368.81721875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 369.37409375
transcript.pyannote[77].end 370.03221875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 370.63971875
transcript.pyannote[78].end 375.31409375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 375.55034375
transcript.pyannote[79].end 388.03784375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 388.03784375
transcript.pyannote[80].end 395.61471875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 395.71596875
transcript.pyannote[81].end 395.73284375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 395.73284375
transcript.pyannote[82].end 400.03596875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 398.90534375
transcript.pyannote[83].end 400.64346875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 400.10346875
transcript.pyannote[84].end 400.13721875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 400.20471875
transcript.pyannote[85].end 412.96221875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 402.61784375
transcript.pyannote[86].end 402.92159375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 412.08471875
transcript.pyannote[87].end 416.77596875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 417.45096875
transcript.pyannote[88].end 428.26784375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 428.26784375
transcript.pyannote[89].end 434.69721875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 435.13596875
transcript.pyannote[90].end 437.86971875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 437.02596875
transcript.pyannote[91].end 439.18596875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 438.69659375
transcript.pyannote[92].end 448.02846875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 448.02846875
transcript.pyannote[93].end 454.76159375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 454.64346875
transcript.pyannote[94].end 465.79784375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 464.19471875
transcript.pyannote[95].end 477.30659375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 468.63284375
transcript.pyannote[96].end 469.94909375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 477.30659375
transcript.pyannote[97].end 485.06909375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 485.50784375
transcript.pyannote[98].end 500.86409375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 501.20159375
transcript.pyannote[99].end 507.22596875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 506.68596875
transcript.pyannote[100].end 509.20034375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 509.52096875
transcript.pyannote[101].end 514.24596875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 512.98034375
transcript.pyannote[102].end 516.38909375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 516.96284375
transcript.pyannote[103].end 519.54471875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 520.54034375
transcript.pyannote[104].end 523.12221875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 523.20659375
transcript.pyannote[105].end 524.03346875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 524.03346875
transcript.pyannote[106].end 524.62409375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 524.62409375
transcript.pyannote[107].end 530.58096875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 531.07034375
transcript.pyannote[108].end 532.36971875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 533.16284375
transcript.pyannote[109].end 542.03909375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 542.03909375
transcript.pyannote[110].end 551.11784375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 551.11784375
transcript.pyannote[111].end 555.03284375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 554.35784375
transcript.pyannote[112].end 554.99909375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 555.03284375
transcript.pyannote[113].end 556.31534375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 556.88909375
transcript.pyannote[114].end 556.90596875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 556.90596875
transcript.pyannote[115].end 563.28471875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 563.63909375
transcript.pyannote[116].end 564.28034375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 564.61784375
transcript.pyannote[117].end 575.70471875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 575.43471875
transcript.pyannote[118].end 581.05409375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 581.35784375
transcript.pyannote[119].end 590.01471875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 583.63596875
transcript.pyannote[120].end 583.73721875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 590.06534375
transcript.pyannote[121].end 596.32596875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 595.70159375
transcript.pyannote[122].end 603.93659375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 604.24034375
transcript.pyannote[123].end 607.98659375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 608.66159375
transcript.pyannote[124].end 611.73284375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 611.91846875
transcript.pyannote[125].end 614.24721875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 614.66909375
transcript.pyannote[126].end 620.44034375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 620.69346875
transcript.pyannote[127].end 631.89846875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 631.93221875
transcript.pyannote[128].end 670.86284375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 659.52284375
transcript.pyannote[129].end 661.86846875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 670.89659375
transcript.pyannote[130].end 670.94721875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 670.94721875
transcript.pyannote[131].end 670.99784375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 670.99784375
transcript.pyannote[132].end 671.14971875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 671.14971875
transcript.pyannote[133].end 671.18346875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 671.18346875
transcript.pyannote[134].end 671.21721875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 671.21721875
transcript.pyannote[135].end 673.09034375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 673.09034375
transcript.pyannote[136].end 673.10721875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 673.10721875
transcript.pyannote[137].end 673.15784375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 673.15784375
transcript.pyannote[138].end 678.52409375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 678.64221875
transcript.pyannote[139].end 681.96659375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 681.32534375
transcript.pyannote[140].end 683.67096875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 683.68784375
transcript.pyannote[141].end 685.88159375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 686.62409375
transcript.pyannote[142].end 688.63221875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 686.69159375
transcript.pyannote[143].end 687.11346875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 688.63221875
transcript.pyannote[144].end 688.71659375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 689.17221875
transcript.pyannote[145].end 697.05284375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 697.40721875
transcript.pyannote[146].end 698.38596875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 698.45346875
transcript.pyannote[147].end 698.79096875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 698.97659375
transcript.pyannote[148].end 699.31409375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 699.34784375
transcript.pyannote[149].end 699.41534375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 699.41534375
transcript.pyannote[150].end 700.02284375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 700.02284375
transcript.pyannote[151].end 700.56284375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 701.45721875
transcript.pyannote[152].end 705.76034375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 705.97971875
transcript.pyannote[153].end 713.99534375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 713.99534375
transcript.pyannote[154].end 722.65221875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 723.04034375
transcript.pyannote[155].end 729.58784375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 729.68909375
transcript.pyannote[156].end 730.17846875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 730.78596875
transcript.pyannote[157].end 738.09284375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 735.07221875
transcript.pyannote[158].end 735.69659375
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 738.58221875
transcript.pyannote[159].end 740.77596875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 740.50596875
transcript.pyannote[160].end 740.62409375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 740.77596875
transcript.pyannote[161].end 741.63659375
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 741.63659375
transcript.pyannote[162].end 741.75471875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 741.80534375
transcript.pyannote[163].end 744.72471875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 743.45909375
transcript.pyannote[164].end 744.70784375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 744.72471875
transcript.pyannote[165].end 756.68909375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 755.28846875
transcript.pyannote[166].end 755.52471875
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 756.90846875
transcript.pyannote[167].end 761.39721875
transcript.whisperx[0].start 0.35
transcript.whisperx[0].end 4.019
transcript.whisperx[0].text 主席可不可以請彭主委請彭主委
transcript.whisperx[1].start 9.978
transcript.whisperx[1].end 30.827
transcript.whisperx[1].text 您想想所有的銀行、證券、保險事實上最重要的是安定要穩定那自從美國川普上任一百天以來可以說是世界上史料上從來未見的上沖下洗
transcript.whisperx[2].start 31.84
transcript.whisperx[2].end 53.516
transcript.whisperx[2].text 那對於未來目前大概他是講說未來的90天的關稅的問題不曉得主委面對台灣整個股市最近的發展有沒有信心那兩萬點到底站得住站不住因為大家都在看日均量
transcript.whisperx[3].start 54.946
transcript.whisperx[3].end 65.032
transcript.whisperx[3].text 最近有一些萎縮的情況兩千多億三千億跟過去以往五千億五千多億
transcript.whisperx[4].start 66.272
transcript.whisperx[4].end 88.429
transcript.whisperx[4].text 已經越走越遠了這個也是不是代表一個整個股市熊市的來臨我想委員這樣講我有些是認同有些沒那麼認同第一個就是我們確實從4月2號開始其實我們除了有兩天因為那個量超過6000億接下來大概就維持在2000再3000億左右
transcript.whisperx[5].start 92.532
transcript.whisperx[5].end 112.748
transcript.whisperx[5].text 那確實比去年的我們的日均量比如說是有比較低我想這也是反映了市場對未來不確定性的一些的一致性的看法雖然剛剛委員提到就是說我們現在台股現在這兩天重新回到了所謂的兩萬點的這樣一個心理的一個關卡不過
transcript.whisperx[6].start 113.669
transcript.whisperx[6].end 128.678
transcript.whisperx[6].text 我們站在一個資本市場的主管機關的角度我們還是一樣我們在在乎的是市場機制能不能充分的發揮能不能是一個沒有能夠去除一些非理性的行為這部分我們是在對這個看法
transcript.whisperx[7].start 129.518
transcript.whisperx[7].end 157.455
transcript.whisperx[7].text 當然我們也看到就是台灣的產業在過去一年包括這個最近揭露這一季的報告我想大家都看到了其實我覺得台灣有很強的基本面的支撐所以剛剛那個委員說對未來台灣資本市場我們還是深具信心所以不論是滿漢全席甚至什麼排骨麵炸醬麵金管會所維持永遠就是基本面
transcript.whisperx[8].start 159.246
transcript.whisperx[8].end 160.067
transcript.whisperx[8].text 我們從我們最近揭露的一個財報數字這一季
transcript.whisperx[9].start 176.9
transcript.whisperx[9].end 202.29
transcript.whisperx[9].text 所有的營收跟獲利都創下非常好的成績剛才委員講說基本面我覺得如果說講個開玩笑基本面是外面資本因為所有的消息面最後還是會回歸到基本面沒有基本面的支撐其實我覺得資本市場是沒有基礎所以我覺得這還是非常重要既然基本面是如此的重要
transcript.whisperx[10].start 202.89
transcript.whisperx[10].end 220.384
transcript.whisperx[10].text 那本席有提了一個就是保險法第146條知事的修正條文那很可惜就這一次在整個修法當中好像沒有列入進去那事實上如果這個有關所有保險業的資金
transcript.whisperx[11].start 222.692
transcript.whisperx[11].end 234.601
transcript.whisperx[11].text 當初我就未雨綢繆希望說台灣受險也好 產險也好投資海外的部分應該要多多來關心關愛台灣的
transcript.whisperx[12].start 237.219
transcript.whisperx[12].end 265.87
transcript.whisperx[12].text 企業的發展特別是剛剛主委的一席話更印證了很多的上市公司保險公司不見得要投資海外最近整個售險公司的淨值嚴重的下滑大概慘跌超過2200億以上看到現在整個大環境的變化保險業大概面臨了一個三大危機
transcript.whisperx[13].start 267.401
transcript.whisperx[13].end 286.776
transcript.whisperx[13].text 第一個,美國股市下跌第二,美國公債嚴重發生變化第三個,台幣的匯率不斷的升值面對這樣的情況現在在下個月,就是五月
transcript.whisperx[14].start 287.335
transcript.whisperx[14].end 310.147
transcript.whisperx[14].text 那請問五月整個授權的它的淨值比會不會嚴重再往下掉我想這個淨值比啊它是根基於我們的IFRS財報的數字財報它的基本原則就是充分的反映當下所有的資訊來得快去得也快所以各位看到第一季
transcript.whisperx[15].start 311.167
transcript.whisperx[15].end 329.417
transcript.whisperx[15].text 它會比較大的下滑剛好去年的基期是最高的那當然這個因為我們的淨值的波動直接反映了這些數字其實從長遠的角度來看不見得代表就是一個趨勢的確定我想這是也要再三的說明不過
transcript.whisperx[16].start 330.177
transcript.whisperx[16].end 348.485
transcript.whisperx[16].text 任何一個的巨大的波動都是一個很重要關注的點所以剛剛有委員關心過我們有沒有針對這些東西做一些推演那當然是我們日常監獄的一部分剛剛委員用三大危機來形容我會覺得比較好是三大挑戰因為其實壽險業擁有這麼大的龐大資產
transcript.whisperx[17].start 351.986
transcript.whisperx[17].end 368.228
transcript.whisperx[17].text 然後有這麼多的海外的投資那當然是他過去的很多歷史因素的造成那當然他就會受到股價匯率跟利率的影響這個影響是中性的有時候好有時候不好比如說也許我們的匯率台幣漲
transcript.whisperx[18].start 369.549
transcript.whisperx[18].end 395.408
transcript.whisperx[18].text 對我們的那個那個債務工具評價會下跌但是呢帶動的利率下跌它的評價又會上升相對的未來我們接軌以後負債也會隨著利率而同步的波動其實這很多的是很複雜我們隨時來關注這件事情所以請教一下現在國內所有的產險、售險總市值大概是多少
transcript.whisperx[19].start 395.948
transcript.whisperx[19].end 415.505
transcript.whisperx[19].text 市值我沒有這個數字因為我們其實現在大部分都沒有上市櫃現在已經成長到大概37兆左右因為我們現在大部分的保險公司很多是在金控下面他不上市了所以沒有我們只有少數公司單獨是在上市所以市值比較可能沒辦法看出他們真正的下市我們看到最近這個剛剛有說三大挑戰的
transcript.whisperx[20].start 417.483
transcript.whisperx[20].end 419.426
transcript.whisperx[20].text 過去我們有一家正在做增資改善計畫中哪一家
transcript.whisperx[21].start 435.807
transcript.whisperx[21].end 453.082
transcript.whisperx[21].text 我們就不要這邊單獨講一下另外低於300以下還有哪幾家300的數字因為這是動態的啦我待會請同仁稍微提供一下我再跟委員報告即便是動態啦那我們就是從3月底好了
transcript.whisperx[22].start 453.842
transcript.whisperx[22].end 466.192
transcript.whisperx[22].text 這個資料都有不過我們法定的這些的減核點是6月30號那一點跟12月31號那一天那其他他們算的只是他們內部參考用的所以每個月變動的情況你們數字上應該都有所以這些涉險公司面臨了很多爭執的壓力
transcript.whisperx[23].start 473.437
transcript.whisperx[23].end 499.123
transcript.whisperx[23].text 大概今年預估會有幾家壽險公司需要增值現在我們如果從我們最新一季的資本市足率來看的話現在沒有立即上面這些的問題但是呢國際的金融情況隨時在變化假如持續下去的話我們保險法的增值不是說一碰到那個比如說不到200或不到3%就要增值不是這樣因為那個是波動很大我們會連續觀察兩期還有就是它
transcript.whisperx[24].start 501.263
transcript.whisperx[24].end 530.163
transcript.whisperx[24].text 我們分成四級來管理比如資本不足 嚴重不足 顯著不足所以最近會不會有發生接管的問題那當然這個是我覺得現階段沒有這樣考慮保險安定基金現在有多少如果上次我沒記錯大概大概現在430幾億400多億的話夠不夠那個沒關係因為我們所有的這個未來他都有一些的籌資就是說安定基金他會
transcript.whisperx[25].start 531.478
transcript.whisperx[25].end 551.507
transcript.whisperx[25].text 這個逐步在累積依保險法的規定它未來可以有譬如說可以借款可以做其他的方式來籌資倒不是說一定要用這個錢做一個基礎啦是 我們看到整個壽險公司海外的投資比越來越高現在投資海外大概有多少的金額現在大概是60%左右總資產裡面大概60%
transcript.whisperx[26].start 557.226
transcript.whisperx[26].end 578.893
transcript.whisperx[26].text 這個比例是相當高的而且授權公司大概很多都是大多數押債美國公債或者是美國的一些其他公司債大概押債美國公債的部分統計大概有多少其實授權公司買美國公債不多大概佔5700
transcript.whisperx[27].start 581.454
transcript.whisperx[27].end 607.727
transcript.whisperx[27].text 五十幾億左右對但整個它將近美國投資將近比如說將近接近九兆多其實不算高那個比例他們主要受險公司他投資比較多的是在公司債這些比較評級比較高的公司金管會會不會要求他們為了風險的考量美元可能會繼續貶啊而且不是貶而已啊是大貶啊我們看到
transcript.whisperx[28].start 609.541
transcript.whisperx[28].end 631.5
transcript.whisperx[28].text 台幣對美元的匯率最近台幣不斷的升值因為美國給全世界每個國家都很大的壓力所以面對這個情況經營管會會不會道德勸說要求他們在投資美國公債或是美國公司債方面要審慎的考量
transcript.whisperx[29].start 632.16
transcript.whisperx[29].end 659.003
transcript.whisperx[29].text 當然我們對於國外投資啊他們大概都有一定的這個這個方法跟管控的工具剛剛我們報告為什麼他們要買這些投資平級的公司債而且長期我有看過那數據他們的比重是分配在20年左右的常債身上他們買這個比例不是為了交易他是為了要持續的獲得報酬跟他的負債做對應就是利息啦
transcript.whisperx[30].start 659.723
transcript.whisperx[30].end 685.697
transcript.whisperx[30].text 所以說這些短期的波動對他實質的經營跟流動性而言是沒有太顯著影響只是說會計的評價部分會比較大的波動主委可是川普他說建議說100年那個利息就先免掉啊這我們的評估應該是針對政府跟政府之間啦對民間的部分第一個大概大陸嘛那還有日本嘛台灣外匯存底也非常多啊
transcript.whisperx[31].start 686.656
transcript.whisperx[31].end 700.338
transcript.whisperx[31].text 我們買了92%的公債但是那是政府的部分我們剛剛提到我們的授請公司是這些民間公司購買美國公債的部分其實比例相對是比較低的啦那還是希望
transcript.whisperx[32].start 701.496
transcript.whisperx[32].end 729.048
transcript.whisperx[32].text 主委這邊可以多多勸說台灣的基本面那麼好的話可不可以讓這些受險公司的資金趕快回流台灣做公共建設也好做長照也好這是我們努力的方向就是我們在跟國發會推動那個兆元投資我們希望說我們各個部會能夠多多提供很好的投資標的讓我們台灣所收到的保費能夠投資在台灣這是我們努力的方向這半年來有回來的嗎
transcript.whisperx[33].start 731.194
transcript.whisperx[33].end 755.368
transcript.whisperx[33].text 就是我們對新錢的部分我們鼓勵他留在台灣每年的話會增加差不多大概是1.5到2.5兆之間的新錢今年有投資台灣嗎我們鼓勵他們這樣做還沒開始還是要有標的才是最重要的加強力度那今天的部分討論的我還希望說站在民眾深斗小民的立場多多為他們的權益來著想我們當然謝謝
transcript.whisperx[34].start 757.31
transcript.whisperx[34].end 760.418
transcript.whisperx[34].text 好 謝謝 謝謝明財接著請李坤城委員質詢