iVOD / 160732

Field Value
IVOD_ID 160732
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160732
日期 2025-04-29
會議資料.會議代碼 院會-11-3-9
會議資料.會議代碼:str 第11屆第3會期第9次會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 9
會議資料.種類 院會
會議資料.標題 第11屆第3會期第9次會議
影片種類 Clip
開始時間 2025-04-29T14:31:20+08:00
結束時間 2025-04-29T14:47:09+08:00
影片長度 00:15:49
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5e3950a5df8d034bd8e502b7310f85d5066821ab1e45083e07d926e96d12bddf9b03abd11ba7a7725ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 許宇甄
委員發言時間 14:31:20 - 14:47:09
會議時間 2025-04-29T09:00:00+08:00
會議名稱 第11屆第3會期第9次會議(事由:一、對行政院院長提出施政方針及施政報告繼續質詢。二、4月25日上午9時至10時為國是論壇時間。三、4月29日下午2時15分至2時30分為處理臨時提案時間。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 2.39346875
transcript.pyannote[0].end 5.39721875
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 5.80221875
transcript.pyannote[1].end 7.35471875
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 19.74096875
transcript.pyannote[2].end 20.50034375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 20.50034375
transcript.pyannote[3].end 32.53221875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 32.88659375
transcript.pyannote[4].end 40.17659375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 40.36221875
transcript.pyannote[5].end 46.01534375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 46.15034375
transcript.pyannote[6].end 52.14096875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 52.46159375
transcript.pyannote[7].end 56.32596875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 56.64659375
transcript.pyannote[8].end 62.70471875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 63.05909375
transcript.pyannote[9].end 68.39159375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 68.94846875
transcript.pyannote[10].end 70.41659375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 71.12534375
transcript.pyannote[11].end 78.87096875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 79.14096875
transcript.pyannote[12].end 87.98346875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 88.43909375
transcript.pyannote[13].end 89.18159375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 89.45159375
transcript.pyannote[14].end 96.13409375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 97.41659375
transcript.pyannote[15].end 166.68846875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 97.43346875
transcript.pyannote[16].end 98.49659375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 166.89096875
transcript.pyannote[17].end 171.07596875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 171.32909375
transcript.pyannote[18].end 173.25284375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 173.79284375
transcript.pyannote[19].end 183.81659375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 176.84721875
transcript.pyannote[20].end 177.42096875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 183.68159375
transcript.pyannote[21].end 189.06471875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 184.44096875
transcript.pyannote[22].end 186.29721875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 186.83721875
transcript.pyannote[23].end 189.70596875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 189.09846875
transcript.pyannote[24].end 189.19971875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 190.00971875
transcript.pyannote[25].end 197.92409375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 191.56221875
transcript.pyannote[26].end 191.88284375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 198.32909375
transcript.pyannote[27].end 198.66659375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 199.02096875
transcript.pyannote[28].end 200.53971875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 200.65784375
transcript.pyannote[29].end 201.34971875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 201.73784375
transcript.pyannote[30].end 202.90221875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 203.47596875
transcript.pyannote[31].end 204.70784375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 205.04534375
transcript.pyannote[32].end 207.96471875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 207.96471875
transcript.pyannote[33].end 208.03221875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 208.03221875
transcript.pyannote[34].end 208.16721875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 208.16721875
transcript.pyannote[35].end 212.30159375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 208.23471875
transcript.pyannote[36].end 209.70284375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 211.05284375
transcript.pyannote[37].end 215.62596875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 216.11534375
transcript.pyannote[38].end 235.03221875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 216.82409375
transcript.pyannote[39].end 221.26221875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 223.77659375
transcript.pyannote[40].end 225.80159375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 226.44284375
transcript.pyannote[41].end 228.83909375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 235.03221875
transcript.pyannote[42].end 250.97909375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 249.25784375
transcript.pyannote[43].end 249.29159375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 249.37596875
transcript.pyannote[44].end 249.49409375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 251.41784375
transcript.pyannote[45].end 268.22534375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 260.04096875
transcript.pyannote[46].end 260.96909375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 260.96909375
transcript.pyannote[47].end 263.01096875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 268.54596875
transcript.pyannote[48].end 270.40221875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 268.93409375
transcript.pyannote[49].end 277.69221875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 274.62096875
transcript.pyannote[50].end 280.47659375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 281.03346875
transcript.pyannote[51].end 289.36971875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 284.83034375
transcript.pyannote[52].end 287.44596875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 289.36971875
transcript.pyannote[53].end 296.62596875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 289.40346875
transcript.pyannote[54].end 289.67346875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 298.27971875
transcript.pyannote[55].end 305.48534375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 302.09346875
transcript.pyannote[56].end 302.44784375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 303.81471875
transcript.pyannote[57].end 318.41159375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 318.81659375
transcript.pyannote[58].end 322.71471875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 322.84971875
transcript.pyannote[59].end 324.92534375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 322.86659375
transcript.pyannote[60].end 331.00034375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 331.00034375
transcript.pyannote[61].end 341.32784375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 335.55659375
transcript.pyannote[62].end 340.85534375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 341.54721875
transcript.pyannote[63].end 341.66534375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 341.66534375
transcript.pyannote[64].end 341.80034375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 342.03659375
transcript.pyannote[65].end 342.05346875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 342.05346875
transcript.pyannote[66].end 342.96471875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 342.96471875
transcript.pyannote[67].end 343.03221875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 343.03221875
transcript.pyannote[68].end 343.18409375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 343.18409375
transcript.pyannote[69].end 343.48784375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 343.48784375
transcript.pyannote[70].end 343.85909375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 343.85909375
transcript.pyannote[71].end 344.02784375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 344.02784375
transcript.pyannote[72].end 344.36534375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 344.36534375
transcript.pyannote[73].end 354.18659375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 349.03971875
transcript.pyannote[74].end 349.34346875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 353.76471875
transcript.pyannote[75].end 354.01784375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 354.18659375
transcript.pyannote[76].end 354.72659375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 354.72659375
transcript.pyannote[77].end 354.86159375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 354.86159375
transcript.pyannote[78].end 355.06409375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 355.06409375
transcript.pyannote[79].end 355.14846875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 355.14846875
transcript.pyannote[80].end 355.82346875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 355.82346875
transcript.pyannote[81].end 359.21534375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 359.75534375
transcript.pyannote[82].end 372.44534375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 364.56471875
transcript.pyannote[83].end 365.08784375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 366.25221875
transcript.pyannote[84].end 367.83846875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 367.93971875
transcript.pyannote[85].end 368.42909375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 368.98596875
transcript.pyannote[86].end 378.73971875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 373.64346875
transcript.pyannote[87].end 373.94721875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 377.67659375
transcript.pyannote[88].end 382.46909375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 382.04721875
transcript.pyannote[89].end 405.41909375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 396.37409375
transcript.pyannote[90].end 396.39096875
transcript.pyannote[91].speaker SPEAKER_03
transcript.pyannote[91].start 396.39096875
transcript.pyannote[91].end 397.26846875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 398.28096875
transcript.pyannote[92].end 399.61409375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 400.13721875
transcript.pyannote[93].end 400.99784375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 401.04846875
transcript.pyannote[94].end 401.26784375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 405.45284375
transcript.pyannote[95].end 405.87471875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 405.87471875
transcript.pyannote[96].end 452.93909375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 454.37346875
transcript.pyannote[97].end 454.55909375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 454.86284375
transcript.pyannote[98].end 463.48596875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 461.68034375
transcript.pyannote[99].end 463.55346875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 463.55346875
transcript.pyannote[100].end 463.67159375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 463.67159375
transcript.pyannote[101].end 463.68846875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 465.02159375
transcript.pyannote[102].end 466.06784375
transcript.pyannote[103].speaker SPEAKER_03
transcript.pyannote[103].start 466.06784375
transcript.pyannote[103].end 471.23159375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 466.94534375
transcript.pyannote[104].end 468.78471875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 470.20221875
transcript.pyannote[105].end 474.06659375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 471.23159375
transcript.pyannote[106].end 471.24846875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 474.06659375
transcript.pyannote[107].end 474.13409375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 474.13409375
transcript.pyannote[108].end 474.97784375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 474.38721875
transcript.pyannote[109].end 474.40409375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 474.42096875
transcript.pyannote[110].end 479.26409375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 474.99471875
transcript.pyannote[111].end 475.11284375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 475.41659375
transcript.pyannote[112].end 475.73721875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 479.65221875
transcript.pyannote[113].end 483.49971875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 480.02346875
transcript.pyannote[114].end 480.59721875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 482.94284375
transcript.pyannote[115].end 483.58409375
transcript.pyannote[116].speaker SPEAKER_03
transcript.pyannote[116].start 483.49971875
transcript.pyannote[116].end 483.53346875
transcript.pyannote[117].speaker SPEAKER_03
transcript.pyannote[117].start 483.58409375
transcript.pyannote[117].end 483.63471875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 483.63471875
transcript.pyannote[118].end 483.97221875
transcript.pyannote[119].speaker SPEAKER_03
transcript.pyannote[119].start 483.97221875
transcript.pyannote[119].end 484.02284375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 484.02284375
transcript.pyannote[120].end 484.96784375
transcript.pyannote[121].speaker SPEAKER_03
transcript.pyannote[121].start 484.96784375
transcript.pyannote[121].end 485.03534375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 485.03534375
transcript.pyannote[122].end 485.60909375
transcript.pyannote[123].speaker SPEAKER_03
transcript.pyannote[123].start 485.23784375
transcript.pyannote[123].end 485.33909375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 485.94659375
transcript.pyannote[124].end 491.41409375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 492.03846875
transcript.pyannote[125].end 493.70909375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 493.92846875
transcript.pyannote[126].end 494.87346875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 494.87346875
transcript.pyannote[127].end 508.62659375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 496.64534375
transcript.pyannote[128].end 499.83471875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 500.61096875
transcript.pyannote[129].end 501.31971875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 501.91034375
transcript.pyannote[130].end 501.97784375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 505.84221875
transcript.pyannote[131].end 509.55471875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 509.89221875
transcript.pyannote[132].end 512.06909375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 512.10284375
transcript.pyannote[133].end 512.32221875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 512.74409375
transcript.pyannote[134].end 517.41846875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 515.68034375
transcript.pyannote[135].end 529.80471875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 518.92034375
transcript.pyannote[136].end 519.98346875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 528.45471875
transcript.pyannote[137].end 532.15034375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 530.12534375
transcript.pyannote[138].end 531.17159375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 532.33596875
transcript.pyannote[139].end 540.97596875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 536.63909375
transcript.pyannote[140].end 537.06096875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 538.14096875
transcript.pyannote[141].end 539.55846875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 540.97596875
transcript.pyannote[142].end 544.13159375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 542.05596875
transcript.pyannote[143].end 546.39284375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 544.30034375
transcript.pyannote[144].end 548.43471875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 548.43471875
transcript.pyannote[145].end 548.63721875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 548.63721875
transcript.pyannote[146].end 548.67096875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 548.67096875
transcript.pyannote[147].end 556.41659375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 548.68784375
transcript.pyannote[148].end 549.78471875
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 549.97034375
transcript.pyannote[149].end 550.42596875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 553.54784375
transcript.pyannote[150].end 553.66596875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 553.69971875
transcript.pyannote[151].end 553.96971875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 554.29034375
transcript.pyannote[152].end 556.45034375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 556.45034375
transcript.pyannote[153].end 556.97346875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 556.97346875
transcript.pyannote[154].end 565.32659375
transcript.pyannote[155].speaker SPEAKER_03
transcript.pyannote[155].start 566.50784375
transcript.pyannote[155].end 568.02659375
transcript.pyannote[156].speaker SPEAKER_03
transcript.pyannote[156].start 568.21221875
transcript.pyannote[156].end 571.33409375
transcript.pyannote[157].speaker SPEAKER_03
transcript.pyannote[157].start 571.50284375
transcript.pyannote[157].end 572.22846875
transcript.pyannote[158].speaker SPEAKER_03
transcript.pyannote[158].start 572.32971875
transcript.pyannote[158].end 579.92346875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 574.00034375
transcript.pyannote[159].end 574.03409375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 574.03409375
transcript.pyannote[160].end 574.32096875
transcript.pyannote[161].speaker SPEAKER_03
transcript.pyannote[161].start 580.17659375
transcript.pyannote[161].end 581.15534375
transcript.pyannote[162].speaker SPEAKER_03
transcript.pyannote[162].start 581.37471875
transcript.pyannote[162].end 587.26409375
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 584.83409375
transcript.pyannote[163].end 591.17909375
transcript.pyannote[164].speaker SPEAKER_03
transcript.pyannote[164].start 589.17096875
transcript.pyannote[164].end 603.58221875
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 599.27909375
transcript.pyannote[165].end 601.06784375
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 603.58221875
transcript.pyannote[166].end 608.23971875
transcript.pyannote[167].speaker SPEAKER_03
transcript.pyannote[167].start 606.50159375
transcript.pyannote[167].end 607.95284375
transcript.pyannote[168].speaker SPEAKER_03
transcript.pyannote[168].start 607.96971875
transcript.pyannote[168].end 607.98659375
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 608.34096875
transcript.pyannote[169].end 608.39159375
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 608.47596875
transcript.pyannote[170].end 608.54346875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 608.76284375
transcript.pyannote[171].end 614.02784375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 610.02846875
transcript.pyannote[172].end 611.31096875
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 614.02784375
transcript.pyannote[173].end 623.96721875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 619.52909375
transcript.pyannote[174].end 619.73159375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 623.96721875
transcript.pyannote[175].end 646.37721875
transcript.pyannote[176].speaker SPEAKER_03
transcript.pyannote[176].start 646.44471875
transcript.pyannote[176].end 654.81471875
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 649.16159375
transcript.pyannote[177].end 649.24596875
transcript.pyannote[178].speaker SPEAKER_03
transcript.pyannote[178].start 655.28721875
transcript.pyannote[178].end 658.24034375
transcript.pyannote[179].speaker SPEAKER_03
transcript.pyannote[179].start 658.54409375
transcript.pyannote[179].end 662.08784375
transcript.pyannote[180].speaker SPEAKER_03
transcript.pyannote[180].start 662.29034375
transcript.pyannote[180].end 665.71596875
transcript.pyannote[181].speaker SPEAKER_03
transcript.pyannote[181].start 666.12096875
transcript.pyannote[181].end 684.22784375
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 683.06346875
transcript.pyannote[182].end 731.61284375
transcript.pyannote[183].speaker SPEAKER_03
transcript.pyannote[183].start 690.79221875
transcript.pyannote[183].end 691.97346875
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 691.97346875
transcript.pyannote[184].end 692.02409375
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 698.21721875
transcript.pyannote[185].end 698.72346875
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 700.34346875
transcript.pyannote[186].end 700.47846875
transcript.pyannote[187].speaker SPEAKER_03
transcript.pyannote[187].start 731.78159375
transcript.pyannote[187].end 744.10034375
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 737.90721875
transcript.pyannote[188].end 738.34596875
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 742.09221875
transcript.pyannote[189].end 745.82159375
transcript.pyannote[190].speaker SPEAKER_03
transcript.pyannote[190].start 745.19721875
transcript.pyannote[190].end 752.36909375
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 751.35659375
transcript.pyannote[191].end 751.62659375
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 752.55471875
transcript.pyannote[192].end 771.92721875
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 770.62784375
transcript.pyannote[193].end 774.74534375
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 774.57659375
transcript.pyannote[194].end 775.30221875
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 775.30221875
transcript.pyannote[195].end 775.50471875
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 775.50471875
transcript.pyannote[196].end 777.04034375
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 776.78721875
transcript.pyannote[197].end 813.70971875
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 814.06409375
transcript.pyannote[198].end 817.08471875
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 817.08471875
transcript.pyannote[199].end 824.98221875
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 819.90284375
transcript.pyannote[200].end 820.66221875
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 824.54346875
transcript.pyannote[201].end 828.39096875
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 826.53471875
transcript.pyannote[202].end 827.74971875
transcript.pyannote[203].speaker SPEAKER_01
transcript.pyannote[203].start 828.74534375
transcript.pyannote[203].end 830.29784375
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 830.29784375
transcript.pyannote[204].end 872.23221875
transcript.pyannote[205].speaker SPEAKER_03
transcript.pyannote[205].start 868.48596875
transcript.pyannote[205].end 869.32971875
transcript.pyannote[206].speaker SPEAKER_03
transcript.pyannote[206].start 871.47284375
transcript.pyannote[206].end 877.09221875
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 875.35409375
transcript.pyannote[207].end 878.30721875
transcript.pyannote[208].speaker SPEAKER_03
transcript.pyannote[208].start 877.31159375
transcript.pyannote[208].end 878.99909375
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 878.96534375
transcript.pyannote[209].end 883.13346875
transcript.pyannote[210].speaker SPEAKER_03
transcript.pyannote[210].start 883.84221875
transcript.pyannote[210].end 885.85034375
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 885.37784375
transcript.pyannote[211].end 908.15909375
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 908.36159375
transcript.pyannote[212].end 912.63096875
transcript.pyannote[213].speaker SPEAKER_02
transcript.pyannote[213].start 913.03596875
transcript.pyannote[213].end 923.92034375
transcript.pyannote[214].speaker SPEAKER_01
transcript.pyannote[214].start 939.36096875
transcript.pyannote[214].end 943.73159375
transcript.pyannote[215].speaker SPEAKER_01
transcript.pyannote[215].start 944.45721875
transcript.pyannote[215].end 947.32596875
transcript.pyannote[216].speaker SPEAKER_01
transcript.pyannote[216].start 947.68034375
transcript.pyannote[216].end 948.96284375
transcript.whisperx[0].start 2.915
transcript.whisperx[0].end 6.879
transcript.whisperx[0].text 謝謝院長我們請卓榮泰卓院長麻煩請卓院長備詢學員好院長好我想要請教院長因為針對美國川普的這個關稅戰
transcript.whisperx[1].start 28.727
transcript.whisperx[1].end 55.607
transcript.whisperx[1].text 所以我們提出了4100億的這樣的一個特別條例不過我想針對這個部分其實世界各國不管是日本各國其實都把這樣的一個關稅戰視為國難而且都用很高度的危機意識去做這樣的因應所以也希望我們的賴政府能夠把這個關稅戰放在第一位因為這是我們所有的民眾都非常關注而且非常擔憂的
transcript.whisperx[2].start 56.748
transcript.whisperx[2].end 75.859
transcript.whisperx[2].text 也希望不要再把那些大罷免、大搜索、大收押都一直在阻撓大家因為其實我想關稅占比大罷免來說重要得多那其實根據中央銀行的這個114年的3月底就我國的外匯存體達到5780億美元
transcript.whisperx[3].start 79.241
transcript.whisperx[3].end 95.18
transcript.whisperx[3].text 那楊總裁日前在立法院備詢的時候有提到說我們的外匯存底有5780億有八成是用來購買美債那因為央行每年其實提供不少盈餘繳庫所以院長可以看一下這個表格那我們是不是請楊總裁好嗎
transcript.whisperx[4].start 97.458
transcript.whisperx[4].end 118.786
transcript.whisperx[4].text 我們央行一年繳庫大概是兩千億元左右那央行在一百一十二年度的利息收入有四千三百五十六億元其中很高的比例是來自於美債的一個利息那因為外傳美國可能會提出海湖莊園協議要求盟友將手上的美債能夠轉換成
transcript.whisperx[5].start 120.426
transcript.whisperx[5].end 143.241
transcript.whisperx[5].text 長期債長年的甚至高達100年的這樣的一個臨時的債券而且不可轉讓以減輕美國36.7兆美元的債務這是根據4月27號的這個美國國債中的一個宣布目前美債已經它的來到了36.7兆美元那這個舉動形同就是美債倒債
transcript.whisperx[6].start 144.862
transcript.whisperx[6].end 168.975
transcript.whisperx[6].text 將會讓我們央行的利息的收入會大幅的減少也會影響央行每年繳庫的金額也會嚴重的衝擊政府財政的收入所以如果美債會轉為臨時債券的話也將會引發全球的一個金融危機那所以央行預計今年要繳交的兩千億的這個國庫股息的這個紅利如果未來真的美債轉為臨時債券的話我國要怎麼樣因應請教楊總裁是
transcript.whisperx[7].start 175.558
transcript.whisperx[7].end 202.598
transcript.whisperx[7].text 剛剛委員是說如果他這樣子做的話這是一個假設的問題我們一定要先想在前面不可以等到發生的時候才來做因應不過我想就是說因為我們每年都會跟美國的財政部我們都會跟他溝通我們溝通的我們據我們了解
transcript.whisperx[8].start 203.519
transcript.whisperx[8].end 215.064
transcript.whisperx[8].text 美國財政部呢沒有這樣的一個議題所以不會未來有這種臨時再見也不會長年期的我們現在所據我們了解是他沒有這個議題
transcript.whisperx[9].start 216.158
transcript.whisperx[9].end 234.588
transcript.whisperx[9].text 他沒有這樣 那如果剛剛有請教 請教楊總裁假設發生了這樣的事情的話財務的缺口要如何彌補我們總是要想在前面我們總不能等發生了就像在川普宣布32%的關稅之前沒有人想到會宣布32%的關稅院長還認為只有10%我想是這樣子就是說目前目前這個關稅的議題就把它搞得
transcript.whisperx[10].start 244.233
transcript.whisperx[10].end 267.91
transcript.whisperx[10].text 他的金融市場不只是他的金融市場全球的金融市場就秩序大亂那所以呢也就是說那如果說如果又是如果啦如果說他這個出來的話呢那我在想他一定會我相信他會再評估一下他的成本跟效益的分析啦
transcript.whisperx[11].start 269.61
transcript.whisperx[11].end 286.253
transcript.whisperx[11].text 我覺得你應該這次要去美國談判才對因為其實你都可以想到川普應該怎樣川普可能怎樣我剛剛也是跟委員在報告我就說我們跟美國財政部的溝通是很順暢的那據我們了解現在是沒有這個問題總裁請問一下如果你們模擬就是我們美債的利息0到4%對國庫收益的衝擊
transcript.whisperx[12].start 298.534
transcript.whisperx[12].end 322.264
transcript.whisperx[12].text 0到4%也就是說現在大概是3%、4%嘛那未來也有可能0%你有沒有引領過相關的存錢我跟委員報告啦我們的外匯存底呢如果我們握有的這個債券到期的時候呢我們會有兩個想法第一個想法呢我們就是說是繼續另外一個想法呢就是說我們會轉轉到其他的去
transcript.whisperx[13].start 322.924
transcript.whisperx[13].end 337.716
transcript.whisperx[13].text 我們現在有80%的美債那你有沒有想過未來你剛講的兩種想法另外一個要轉到哪裡去我想就很多的必備就不是只有美債當然所以目前你會想什麼歐債還是日幣還是歐元我們到時候我們會做決定
transcript.whisperx[14].start 344.981
transcript.whisperx[14].end 359.023
transcript.whisperx[14].text 對 那所以現在我們八成的美債喔可以說比例非常的高那當然我覺得我們應該一個避險的方式就是應該有多元的一個投資計畫我們本來就有多元的投資計畫是 那所以說針對這個部分是不是已經啟動了
transcript.whisperx[15].start 360.018
transcript.whisperx[15].end 367.043
transcript.whisperx[15].text 我剛剛已經講了嘛我們一開我們就到齊的時候我們都會做決定所以總裁都已經準備好了就對了那當然當然就是說我們現在國債出來將來降到0%或者是說1% 2% 3% 4%你們都已經有衝擊的一個這樣的一個評估了嗎我想我們都會有因應的一個計畫希望針對這個部分因為其實這是攸關我們國家非常重要的一個稅收嘛因為兩千億的這個這樣子的一個
transcript.whisperx[16].start 389.958
transcript.whisperx[16].end 418.326
transcript.whisperx[16].text 一個腳褲的一個紅利我覺得這個對我們的整個的財政的編輯會非常的重要所以只能麻煩我們總裁要好好的來去針對這個部分來應對那另外就是美國財政部也在最近發布一個匯率的報告根據其判定的匯率操縱國的三大標準那請兩位可以看一下就是我國對美的貿易順差高達739億美元所以已經來到了
transcript.whisperx[17].start 419.066
transcript.whisperx[17].end 438.016
transcript.whisperx[17].text 這個第一個它的標準匯率操縱國第二個就是我們經常這樣的順差佔GDP的比重達14.3%所以已經這個列入第二項的這樣子的一個匯率操縱國的一個標準所以我們已經有兩項可能極有可能被辦入匯率操縱國或觀察名單
transcript.whisperx[18].start 439.697
transcript.whisperx[18].end 463.374
transcript.whisperx[18].text 那這個標籤對於台美經貿造成重大的不利的影響也會加劇川普32%高關稅的壓力所以請問院長行政院是不是已經掌握了美國的貿易報告草案的相關資訊這個匯率報告是不是針對這個吧我也跟那個委員報告所以院長您有掌握了嗎
transcript.whisperx[19].start 465.083
transcript.whisperx[19].end 493.163
transcript.whisperx[19].text 院長有掌握了嗎總裁經常會固定時間跟我們報告國際的情勢跟國內的匯率狀況對那針對這個部分這個美國的匯率報告的草案相關資訊這個平常都是中央銀行在跟美國財政部來談的對所以我說你跟院長報告的時候我現在是請教院長院長知不知道最新的狀況先請這個總裁來說是我到目前為止呢我們台灣呢就只有第一項跟第二項
transcript.whisperx[20].start 494.042
transcript.whisperx[20].end 511.88
transcript.whisperx[20].text 第三項沒有所以我剛才講的就是這樣嘛就是兩項第三項當然是沒有我剛才講的就是兩項我的意思是說你們是不是有已經做好了相關的因應然後已經展開跟美方溝通跟說明的作業有有有好那怎麼怎麼因應呢
transcript.whisperx[21].start 512.833
transcript.whisperx[21].end 531.594
transcript.whisperx[21].text 就是沒有嘛 就是沒有三項嘛兩項啊 我一開始就說我們就是違反兩項嘛所以但是三項違反兩項就已經很嚴重了耶就在你在談判的過程中他們其實就是會針對這個高關稅的壓力給我們這樣子的一個很重要的一個指標了嘛我跟委員報告
transcript.whisperx[22].start 532.455
transcript.whisperx[22].end 546.631
transcript.whisperx[22].text 就是說高關稅的談判跟匯率的談判呢他是分開的他現在美國希望我們要匯率要升台幣要升值嘛沒有沒有沒有這回事沒有這回事所以總裁您保證
transcript.whisperx[23].start 547.352
transcript.whisperx[23].end 565.046
transcript.whisperx[23].text 他們不會希望台幣要升值沒有這回事包括現在我們所知道的他跟日本的談判他也沒有說他要所以總裁你可以保證如果如果如果說他們有希望我們台幣要升值的話那你是不是有明確的一個匯率的穩定策略
transcript.whisperx[24].start 566.807
transcript.whisperx[24].end 583.1
transcript.whisperx[24].text 這個跟委員報告在跟美方的談判一個很重要的關鍵就是降低互相貿易的逆差就是你說的第一項這一項我們也在極力的用採購用投資用其他的方式也包括排除一些貿易非關稅的貿易障礙
transcript.whisperx[25].start 586.461
transcript.whisperx[25].end 606.846
transcript.whisperx[25].text 如果我們能夠把關稅貿易的逆差能夠降低的話我們相信各種壓力是減少的同時總裁已經講到了未來匯率可能會有一些波動但現在沒有發生任何的狀況也就是說美方沒有要求台幣要升值沒有
transcript.whisperx[26].start 608.846
transcript.whisperx[26].end 623.544
transcript.whisperx[26].text 如果假設有一天他們要求台幣升值的話你們也已經有了穩定的這個匯率的一個策略嗎我想新台幣的匯率一直以來都是非常穩定的在所有的主要的幣別裡面新台幣的匯率都很穩定
transcript.whisperx[27].start 624.065
transcript.whisperx[27].end 645.659
transcript.whisperx[27].text 那針對這個部分也希望總裁這邊能夠好好的來去因應未來可能發生的一個匯率戰的狀況那另外就是針對我們4100億的特別預算當中目前看起來只有930億會用於產業支持跟內需擴張是不是夠注意因應產業的這個需求幫助他們渡過難關
transcript.whisperx[28].start 647.48
transcript.whisperx[28].end 674.397
transcript.whisperx[28].text 930億當然是對直接產業支持剛剛委員也提到其他國家也有相關的對產業支持因應這次美國關稅我們兩個部分第一個我們這個特別條例不單只針對美國關稅而是因應整個國際情勢再來其他國家也對能源做了相當的補修補貼的狀況包括日本他對汽油就補貼了每公升10塊錢的日元所以我們也對能源做補貼
transcript.whisperx[29].start 675.157
transcript.whisperx[29].end 692.964
transcript.whisperx[29].text 其他他們對電對石油也做了補貼我相信我們這一千億的對台電的挹注也是對產業直接的幫忙其實我們這次叫特別條例所以主要是針對美國這個關稅的部分所以我們現在看到是930億那您講的4100億的特別預算全數用在
transcript.whisperx[30].start 697.726
transcript.whisperx[30].end 708.078
transcript.whisperx[30].text 稅計剩餘不舉債您有提到嗎是的那請您看一下我們在114年度的預算書所示我國的112年度的稅計剩餘的淨餘數只有158億3900萬元
transcript.whisperx[31].start 712.822
transcript.whisperx[31].end 717.565
transcript.whisperx[31].text 113年度中央可以分配的金額就是有關我們超徵的這5283億中央可以分配的是3549億所以兩者相加是3707億元離4100億還差了將近400億元請問院長這個差額要如何不舉債
transcript.whisperx[32].start 732.393
transcript.whisperx[32].end 751.993
transcript.whisperx[32].text 詳細的計算方式其實今年我們扣掉地方的我們的稅計剩餘中央只有37533753我們還要還債還要做其他的我們還有1641我們是累計以前各年度以及今年我們還有其他的請主席講說明我們合計才是夠的
transcript.whisperx[33].start 752.794
transcript.whisperx[33].end 771.75
transcript.whisperx[33].text 委員我跟您報告一下因為我們113年本來要動資那個累積剩餘那個部分有846然後我們還有追加預算1000億的一個那個台電的部分還有當年度114年500億的一個剩餘然後這個本是還要加上我們113年所以這個4100億就是確定可以不舉債是嗎是
transcript.whisperx[34].start 777.275
transcript.whisperx[34].end 796.932
transcript.whisperx[34].text 那我想再請教一下院長就是依照預算法啦就是我們的這個這次的特別預算只能有國家經濟重大變故就是符合這項規定的就表格上的第三項那其餘六項的預算其實都可以在年度的預算之邊列之印那我手上這本是我們114年度的總預算籌編的一個原則
transcript.whisperx[35].start 800.655
transcript.whisperx[35].end 828.17
transcript.whisperx[35].text 那在去年的4月29號我們就已經把114年度的籌編預算的原則已經訂定出來那今年度為什麼到現在還沒有115年度的籌編預算的原則我們目前正在加緊腳步在做什麼時候會出來因為去年的此時已經有啦那現在在籌編115年度的預算應該是要有一個籌編的原則不是嗎是是是已經在加緊腳步在做了
transcript.whisperx[36].start 830.316
transcript.whisperx[36].end 852.551
transcript.whisperx[36].text 因為其實我們看到的這幾項很多其實都可以放在115年度的預算編列其實不用再特別預算所以如果特別預算這樣一直被服編亂編的話其實是要規避我們的監督還是說要把它流用到其他的項目所以我覺得這個部分行政院這樣子開後門這個案例成章的做法我覺得非常的不適合
transcript.whisperx[37].start 853.191
transcript.whisperx[37].end 878.048
transcript.whisperx[37].text 既然覺得有需要的比如說像不管撥補健保高教人才的培訓社會關懷撥補勞保你就可以編載115年度的預算就可以而真正我們看到因應高關稅的就是產業支持跟擴大內需的930億我們還是希望特別預算不要用這樣的一個方式關稅之後關稅調整之後我們不希望增加民眾的負擔因為時間有限我最後還有一個問題想請教一下院長你有沒有在對統一發票
transcript.whisperx[38].start 884.172
transcript.whisperx[38].end 898.679
transcript.whisperx[38].text 我們可以看一下因為我們現在財政部有一個這樣子的圖在他的財政部的官網上面說我們因為3.18.5億所以剝奪了民眾的一個小確幸影響了民眾對獎的便利可是實際上在我們的相關規定裡面
transcript.whisperx[39].start 908.484
transcript.whisperx[39].end 923.36
transcript.whisperx[39].text 加值型及非加值型營業稅法第50%條規定法定的支出可以排除統刪所以根本不會影響到獎金根本不會影響到獎金所以請內政部不要再用這種方式造謠
transcript.whisperx[40].start 939.44
transcript.whisperx[40].end 948.811
transcript.whisperx[40].text 谢谢徐毅臻委员的质询谢谢卓院长各部会所长的备询谢谢报言会我们财政组织质询已经询答完毕我们现在休息
gazette.lineno 21
gazette.blocks[0][0] 許委員宇甄:(14時31分)謝謝院長,請卓榮泰卓院長。
gazette.blocks[1][0] 主席:麻煩請卓院長備詢。
gazette.blocks[2][0] 卓院長榮泰:許委員好。
gazette.blocks[3][0] 許委員宇甄:院長好。我想要請教院長,針對美國川普的關稅戰,我們提出了4,100億的特別條例。不過我想針對這個部分,其實世界各國,包括日本在內,都把這樣一個關稅戰視為國難,而且都用很高度的危機意識去因應,所以也希望賴政府能夠把這個關稅戰放在第一位,因為這是所有民眾都非常關注而且非常擔憂的,也希望不要再一直用那些大罷免、大搜索、大收押來阻撓大家,因為關稅戰其實比大罷免重要得多。
gazette.blocks[3][1] 根據中央銀行114年3月底的數據,我國的外匯存底達到5,780億美元,楊總裁日前在立法院備詢的時候有提到,我們的外匯存底5,780億美元有八成是用來購買美債。央行每年提供不少盈餘繳庫,請院長看一下本席出示的這份表格。是不是請楊總裁,好嗎?
gazette.blocks[4][0] 主席:麻煩請中央銀行備詢。
gazette.blocks[5][0] 許委員宇甄:央行一年繳庫大概是2,000億元左右,央行112年度的利息收入有4,356億元,其中很高比例是來自美債的利息。因為外傳美國可能會提出海湖莊園協議,要求盟友將手上的美債轉換成長期債,甚至是長達100年的零息債券而且不可轉讓,以減輕美國36.7兆美元的債務,這是根據4月27日美國國債鐘宣告的數據,目前美債已經來到36.7兆美元。這個舉動形同就是美債倒債,將會讓央行的利息收入大幅減少,也會影響央行每年繳庫的金額,並嚴重衝擊政府的財政收入,如果美債轉為零息債券,也將會引發全球金融危機。央行預計今年要繳交國庫的2,000億元利息紅利,如果未來美債真的轉為零息債券的話,我國要怎麼樣因應?請教楊總裁。
gazette.blocks[6][0] 楊總裁金龍:剛剛委員是說「如果」,如果他這樣子做的話,這是一個假設的問題……
gazette.blocks[7][0] 許委員宇甄:我們一定要先想在前面啊!不可以等到發生的時候才來因應。
gazette.blocks[8][0] 楊總裁金龍:當然、當然。不過我們每年都會跟美國財政部溝通,據我們瞭解,美國財政部沒有這樣的議題。
gazette.blocks[9][0] 許委員宇甄:所以未來不會有這種零息債券,也不會是長年期的,甚至長達100年的……
gazette.blocks[10][0] 楊總裁金龍:現在據我們了解,他沒有這個議題。
gazette.blocks[11][0] 許委員宇甄:他沒有這樣?如果……
gazette.blocks[12][0] 楊總裁金龍:又是如果嘛!
gazette.blocks[13][0] 許委員宇甄:剛剛有請教楊總裁,假設發生了這樣的事情,財務的缺口要如何彌補?我們總是要想在前面,我們總不能等發生了,就像在川普宣布32%的關稅之前,沒有人想到會宣布32%的關稅,院長也認為只有10%。
gazette.blocks[14][0] 楊總裁金龍:我想是這樣子,目前這個關稅的議題就把金融市場搞得大亂,不只是他的金融市場,全球的金融市場都秩序大亂,所以也就是如果他這個出來的話,這又是如果的情況,那麼我在想他一定會……
gazette.blocks[15][0] 許委員宇甄:我們總是要有各項因應的策略嘛!
gazette.blocks[16][0] 楊總裁金龍:我相信他會再評估一下他的成本跟效益的分析,也就是他的成本……
gazette.blocks[17][0] 許委員宇甄:總裁,我覺得你應該這次要去美國談判才對,因為你都可以想到川普應該怎樣、川普可能怎樣。
gazette.blocks[18][0] 楊總裁金龍:沒有、沒有,我剛剛也是跟委員報告,我們跟美國財政部的溝通是很順暢的,據我們了解,現在是沒有這個議題。
gazette.blocks[19][0] 許委員宇甄:好。總裁,請問一下你們有沒有模擬美債的利息0%到4%對國庫收益的衝擊?
gazette.blocks[20][0] 楊總裁金龍:0%到4%?
gazette.blocks[21][0] 許委員宇甄:對,現在大概是3%、4%,未來也有可能0%,你有沒有研擬過相關的衝擊?
gazette.blocks[22][0] 楊總裁金龍:我跟委員報告,如果我們的外匯存底握有的債券到期的時候,我們會有兩個想法,第一個想法是我們會繼續;另外一個想法就是我們會轉去其他的。
gazette.blocks[23][0] 許委員宇甄:我們現在有80%的美債嘛。
gazette.blocks[24][0] 楊總裁金龍:是。
gazette.blocks[25][0] 許委員宇甄:你剛剛講的兩種想法,另外一個想法,你有沒有想過未來要轉到哪裡去?
gazette.blocks[26][0] 楊總裁金龍:我想有很多的幣別,不是只有美債嘛!
gazette.blocks[27][0] 許委員宇甄:當然,所以目前你會轉什麼?
gazette.blocks[28][0] 楊總裁金龍:是啦!所以我們要轉到哪裡,到那時候我們會決定。
gazette.blocks[29][0] 許委員宇甄:歐債、日幣,還是歐元?
gazette.blocks[30][0] 楊總裁金龍:到時候我們會決定。
gazette.blocks[31][0] 許委員宇甄:現在我們有八成的美債,可以說比例非常的高,當然我覺得我們應該有一個避險的方式,就是應該有多元的投資計畫。
gazette.blocks[32][0] 楊總裁金龍:我們本來就有多元的投資計畫。
gazette.blocks[33][0] 許委員宇甄:是,所以針對這個部分,是不是已經啟動了?
gazette.blocks[34][0] 楊總裁金龍:我剛剛已經講了,到期的時候,我們都會決定。
gazette.blocks[35][0] 許委員宇甄:所以總裁都已經準備好了就對了?
gazette.blocks[36][0] 楊總裁金龍:當然、當然!不是說……
gazette.blocks[37][0] 許委員宇甄:美債將來降到0%或者是1%、2%、3%、4%,你們都已經有這樣的衝擊評估了嗎?
gazette.blocks[38][0] 楊總裁金龍:我想我們都會有因應的計畫。
gazette.blocks[39][0] 許委員宇甄:針對這個部分,其實這是攸關我們國家非常重要的稅收,因為有2,000億繳庫的紅利,我覺得這會造成我們整個財政衝擊,這非常的重要。
gazette.blocks[40][0] 楊總裁金龍:是,沒有錯。
gazette.blocks[41][0] 許委員宇甄:所以只能麻煩總裁要好好的針對這個部分來應對。
gazette.blocks[42][0] 楊總裁金龍:好,沒有問題。
gazette.blocks[43][0] 許委員宇甄:另外,美國財政部也在最近發布一個匯率的報告,根據其判定的匯率操縱國三大標準,請兩位可以看一下,就是我國對美的貿易順差高達739億美元,已經來到了第一個標準匯率操縱國的標準;第二個,我們經常帳的順差占GDP的比重達14.3%,所以已經列入第二項匯率操縱國的標準。我們已經有兩項極有可能將被列入匯率操縱國或觀察名單,這個標籤對於臺美經貿造成重大的不利影響,也會加劇川普32%高關稅的壓力,所以請問院長,行政院是不是已經掌握了美國的貿易報告草案相關資訊?
gazette.blocks[44][0] 楊總裁金龍:這個匯率報告,是不是?針對這個,我也跟委員報告……
gazette.blocks[45][0] 許委員宇甄:所以院長有掌握了嗎?院長有掌握了嗎?
gazette.blocks[46][0] 卓院長榮泰:總裁經常會固定時間跟我報告國際的情勢跟國內的匯率狀況。
gazette.blocks[47][0] 許委員宇甄:對,那麼針對這個部分,美國的匯率報告的草案相關資訊,您已經……
gazette.blocks[48][0] 楊總裁金龍:這個平常都是中央銀行跟美國財政部談的。
gazette.blocks[49][0] 許委員宇甄:對,我說你跟院長報告,所以我現在是請教院長,院長知不知道?
gazette.blocks[50][0] 卓院長榮泰:最新的狀況,先請總裁來說明。
gazette.blocks[51][0] 楊總裁金龍:是,到目前為止,臺灣就只有第一項跟第二項,第三項沒有。
gazette.blocks[52][0] 許委員宇甄:對,所以剛剛我講的就是這樣,就是兩項,第三項當然是沒有。
gazette.blocks[53][0] 楊總裁金龍:是,所以到目前為止就是這樣。
gazette.blocks[54][0] 許委員宇甄:我剛講的就是兩項。我的意思是,你們是不是已經做好了相關的因應,然後已經展開跟美方溝通及說明的作業?
gazette.blocks[55][0] 楊總裁金龍:有、有。
gazette.blocks[56][0] 許委員宇甄:好,怎麼因應呢?
gazette.blocks[57][0] 楊總裁金龍:就是沒有嘛!就是沒有三項嘛!只有兩項。
gazette.blocks[58][0] 許委員宇甄:兩項啊!我一開始就說我們違反兩項嘛!
gazette.blocks[59][0] 楊總裁金龍:是啊!
gazette.blocks[60][0] 許委員宇甄:但是三項違反兩項就已經很嚴重了,在談判的過程中,他們其實就是會針對這個非常重要的指標給我們高關稅的壓力嘛!
gazette.blocks[61][0] 楊總裁金龍:不會!不會!我跟委員報告,高關稅談判跟匯率談判是分開的……
gazette.blocks[62][0] 許委員宇甄:現在美國是希望我們匯率要升、臺幣要升值嘛!
gazette.blocks[63][0] 楊總裁金龍:沒有、沒有,沒有這回事、沒有這回事。
gazette.blocks[64][0] 許委員宇甄:沒有這回事?總裁保證他們不會希望臺幣要升值?
gazette.blocks[65][0] 楊總裁金龍:沒有這回事,包括現在我們所知道他跟日本的談判,也沒有說要日圓升值。
gazette.blocks[66][0] 許委員宇甄:所以總裁可以保證,如果他們有希望臺幣升值,你是不是有一個明確的匯率穩定策略?
gazette.blocks[67][0] 卓院長榮泰:這個跟委員報告,跟美方談判一個很重要的關鍵,就是降低互相貿易的逆差,這是你所謂的第一項;這一項我們也極力用採購、投資及其他方式,包括排除一些非關稅貿易障礙,如果這個能夠到談判的程度……
gazette.blocks[68][0] 許委員宇甄:希望千萬不能把農漁民的權益……
gazette.blocks[69][0] 卓院長榮泰:這個我們很堅持,如果我們能夠把貿易逆差降低,相形之下各種壓力是減少的,同時總裁已經講到了,未來匯率可能會有一些波動,但現在沒有發生任何狀況。
gazette.blocks[70][0] 許委員宇甄:也就是美方沒有要求臺幣要升值?
gazette.blocks[71][0] 楊總裁金龍:沒有、沒有,絕對沒有。
gazette.blocks[72][0] 卓院長榮泰:目前沒有。
gazette.blocks[73][0] 許委員宇甄:如果、假設有一天……
gazette.blocks[74][0] 楊總裁金龍:又是如果啊!
gazette.blocks[75][0] 許委員宇甄:他們要求臺幣升值的話,你們也已經有了穩定的匯率策略嗎?
gazette.blocks[76][0] 楊總裁金龍:新臺幣匯率一直以來都是非常穩定的,在所有主要幣別裡面,新臺幣的匯率都很穩定。
gazette.blocks[77][0] 許委員宇甄:好,針對這個部分,也希望總裁能夠好好因應未來可能發生匯率戰的狀況。
gazette.blocks[78][0] 楊總裁金龍:好,謝謝。
gazette.blocks[79][0] 許委員宇甄:另外,針對4,100億的特別預算,目前看起來只有930億會用於產業支持跟內需擴張,是不是足以因應產業的需求,幫助他們度過難關?
gazette.blocks[80][0] 卓院長榮泰:930億當然是直接對產業的支持,剛剛委員也提到,其他國家也有相關的對產業支持,以因應這次美國的關稅,我們有兩個部分,第一個,這個特別條例不單只針對美國關稅,而是因應整個國際情勢。再來,其他國家也對能源做了相當的補貼,包括日本是每公升汽油補貼10塊日圓,所以我們也對能源補貼,另外他們對其他的電、石油也都做了補貼,所以我相信我們這1,000億對台電的挹注,也是對產業直接的幫忙。
gazette.blocks[81][0] 許委員宇甄:對啦!其實我們這次叫特別條例,主要是針對美國關稅的部分,現在看到的是930億,那您講的4,100億特別預算,全數是用歲計賸餘,不舉債……
gazette.blocks[82][0] 卓院長榮泰:是的。
gazette.blocks[83][0] 許委員宇甄:您有提到嘛!
gazette.blocks[84][0] 卓院長榮泰:是的。
gazette.blocks[85][0] 許委員宇甄:好,請您看一下,根據114年度預算書所示,我國112年度歲計賸餘的淨餘數只有158億3,900萬元;113年度中央可以分配的金額,就是有關超徵的這5,283億,中央可以分配的是3,549億,兩者相加是3,707億元,離4,100億還差了將近400億元,請問院長,這個差額要如何不舉債?
gazette.blocks[86][0] 卓院長榮泰:詳細的計算方式,其實今年扣掉地方的,我們的歲計賸餘,中央只有3,753億,這3,753億要還債,還要做其他的用途,真的可以用的只有1,641億……
gazette.blocks[87][0] 許委員宇甄:所以你這4,100億要如何不舉債?
gazette.blocks[88][0] 卓院長榮泰:還有1,641億,我們是累計以前各年度以及今年還有其他的部分,合計起來是夠的,請主計長說明。
gazette.blocks[89][0] 陳主計長淑姿:委員,我跟您報告一下,113年我們本來要動支累計賸餘的部分是846億,然後還有追加預算1,000億台電的部分,還有當年度114年500億的賸餘,這個本身還加上我們113年現在……
gazette.blocks[90][0] 許委員宇甄:所以這個4,100億就是確定可以不舉債,是嗎?
gazette.blocks[91][0] 陳主計長淑姿:是,完全可以用累計賸餘。
gazette.blocks[92][0] 許委員宇甄:好,那我再請教院長,依照預算法規定,這次編列特別預算只能是國家經濟重大變故,就是符合這項規定,也就是表格上的第三項,其餘六項預算其實都可以在年度預算編列支應。我手上這本是114年度總預算籌編原則,去年4月29號我們就已經把114年度籌編預算的原則訂定出來,為什麼今年到現在還沒有115年度的籌編預算原則?
gazette.blocks[93][0] 陳主計長淑姿:我們目前正在加緊腳步在做。
gazette.blocks[94][0] 許委員宇甄:什麼時候會出來?因為去年的此時已經有了,那現在在籌編115年度的預算,應該是要有這樣籌編的原則,不是嗎?
gazette.blocks[95][0] 陳主計長淑姿:是。
gazette.blocks[96][0] 卓院長榮泰:會有的。
gazette.blocks[97][0] 陳主計長淑姿:已經加緊腳步在做了。
gazette.blocks[98][0] 許委員宇甄:什麼時候會出來?
gazette.blocks[99][0] 陳主計長淑姿:應該最慢一個禮拜。
gazette.blocks[100][0] 許委員宇甄:因為我們看到的這幾項,很多其實都可以放在115年度的預算編列,不用編在特別預算。如果特別預算一直被浮編、亂編的話,其實是要規避我們的監督,還是說要把它流用到其他的項目?我覺得這個部分行政院這樣子開後門、暗渡陳倉的作法非常不適合,既然覺得有需要,比如像撥補健保、高教人才的培訓、社會關懷、撥補勞保,你編在115年度的預算就可以,而我們看到真正因應高關稅的,就是產業支持跟擴大內需的930億……
gazette.blocks[101][0] 卓院長榮泰:這個也是因為……
gazette.blocks[102][0] 許委員宇甄:我們還是希望特別預算不要用這樣的方式……
gazette.blocks[103][0] 卓院長榮泰:關稅調整之後,我們不希望增加民眾的負擔,以及對高等學校有一些補助。
gazette.blocks[104][0] 許委員宇甄:因為我時間有限,我最後還有一個問題想請教一下院長,你有沒有在對統一發票?
gazette.blocks[105][0] 卓院長榮泰:以前有,現在沒有……
gazette.blocks[106][0] 許委員宇甄:好,我們可以看一下,因為現在有一個這樣子的圖在財政部的官網上面,說因為刪減18.5億,所以剝奪了民眾的小確幸,影響了民眾兌獎的便利。可是實際上在相關規定裡面,即加值型及非加值型營業稅法第五十八條規定,法定的支出可以排除統刪,所以根本不會影響到獎金,請財政部不要再用這種方式造謠。
gazette.blocks[107][0] 莊部長翠雲:委員,不是造謠,確實刪了18.5億。
gazette.blocks[108][0] 許委員宇甄:法定支出其實是可以排除統刪的。
gazette.blocks[109][0] 莊部長翠雲:沒有,它是在委辦費裡面。
gazette.blocks[110][0] 卓院長榮泰:在委辦費裡面,財政部已經說明很多次了,請委員支持,謝謝。
gazette.blocks[111][0] 主席:謝謝許宇甄委員的質詢,謝謝卓院長跟部會首長的備詢,謝謝。
gazette.blocks[111][1] 報告院會,財政組之質詢已經詢答完畢,現在休息5分鐘,休息之後進行教育及文化組之質詢。現在休息。
gazette.blocks[111][2] 休息(14時47分)
gazette.blocks[111][3] 繼續開會(14時52分)
gazette.agenda.page_end 195
gazette.agenda.meet_id 院會-11-3-9
gazette.agenda.speakers[0] 韓國瑜
gazette.agenda.speakers[1] 廖偉翔
gazette.agenda.speakers[2] 顏寬恒
gazette.agenda.speakers[3] 李彥秀
gazette.agenda.speakers[4] 陳玉珍
gazette.agenda.speakers[5] 馬文君
gazette.agenda.speakers[6] 伍麗華Saidhai‧Tahovecahe
gazette.agenda.speakers[7] 牛煦庭
gazette.agenda.speakers[8] 黃珊珊
gazette.agenda.speakers[9] 鍾佳濱
gazette.agenda.speakers[10] 吳秉叡
gazette.agenda.speakers[11] 沈發惠
gazette.agenda.speakers[12] 許宇甄
gazette.agenda.speakers[13] 李昆澤
gazette.agenda.speakers[14] 林思銘
gazette.agenda.speakers[15] 葛如鈞
gazette.agenda.speakers[16] 許智傑
gazette.agenda.speakers[17] 林倩綺
gazette.agenda.speakers[18] 蔡其昌
gazette.agenda.speakers[19] 吳沛憶
gazette.agenda.speakers[20] 李坤城
gazette.agenda.speakers[21] 丁學忠
gazette.agenda.speakers[22] 劉書彬
gazette.agenda.page_start 99
gazette.agenda.meetingDate[0] 2025-04-29
gazette.agenda.gazette_id 1143901
gazette.agenda.agenda_lcidc_ids[0] 1143901_00004
gazette.agenda.agenda_lcidc_ids[1] 1143901_00005
gazette.agenda.meet_name 立法院第11屆第3會期第9次會議紀錄
gazette.agenda.content 施政質詢 對行政院院長提出施政方針及施政報告繼續質詢─ 繼續質詢─
gazette.agenda.agenda_id 1143901_00004