iVOD / 160724

Field Value
IVOD_ID 160724
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160724
日期 2025-04-29
會議資料.會議代碼 院會-11-3-9
會議資料.會議代碼:str 第11屆第3會期第9次會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 9
會議資料.種類 院會
會議資料.標題 第11屆第3會期第9次會議
影片種類 Clip
開始時間 2025-04-29T10:21:21+08:00
結束時間 2025-04-29T10:51:50+08:00
影片長度 00:30:29
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/5e3950a5df8d034b95334e8f413d81ac066821ab1e45083e8c72a8809be13c3973c3e5e214b715b05ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 牛煦庭
委員發言時間 10:21:21 - 10:51:50
會議時間 2025-04-29T09:00:00+08:00
會議名稱 第11屆第3會期第9次會議(事由:一、對行政院院長提出施政方針及施政報告繼續質詢。二、4月25日上午9時至10時為國是論壇時間。三、4月29日下午2時15分至2時30分為處理臨時提案時間。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 3.00096875
transcript.pyannote[0].end 4.97534375
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 5.31284375
transcript.pyannote[1].end 6.71346875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 16.87221875
transcript.pyannote[2].end 50.97659375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 54.46971875
transcript.pyannote[3].end 54.87471875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 54.94221875
transcript.pyannote[4].end 55.02659375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 55.02659375
transcript.pyannote[5].end 55.38096875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 55.38096875
transcript.pyannote[6].end 55.39784375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 58.43534375
transcript.pyannote[7].end 59.21159375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 59.41409375
transcript.pyannote[8].end 61.50659375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 62.02971875
transcript.pyannote[9].end 67.66596875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 68.20596875
transcript.pyannote[10].end 72.50909375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 73.11659375
transcript.pyannote[11].end 75.73221875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 75.86721875
transcript.pyannote[12].end 78.02721875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 78.61784375
transcript.pyannote[13].end 84.16971875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 85.57034375
transcript.pyannote[14].end 85.94159375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 86.68409375
transcript.pyannote[15].end 99.08721875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 99.30659375
transcript.pyannote[16].end 101.78721875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 102.32721875
transcript.pyannote[17].end 104.09909375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 104.35221875
transcript.pyannote[18].end 105.73596875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 106.42784375
transcript.pyannote[19].end 109.39784375
transcript.pyannote[20].speaker SPEAKER_03
transcript.pyannote[20].start 109.80284375
transcript.pyannote[20].end 112.51971875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 109.88721875
transcript.pyannote[21].end 110.10659375
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 112.99221875
transcript.pyannote[22].end 115.64159375
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 115.94534375
transcript.pyannote[23].end 117.34596875
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 117.48096875
transcript.pyannote[24].end 124.97346875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 121.24409375
transcript.pyannote[25].end 121.41284375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 124.97346875
transcript.pyannote[26].end 127.26846875
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 128.31471875
transcript.pyannote[27].end 133.47846875
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 133.64721875
transcript.pyannote[28].end 136.09409375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 134.64284375
transcript.pyannote[29].end 135.28409375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 136.93784375
transcript.pyannote[30].end 138.25409375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 138.60846875
transcript.pyannote[31].end 140.75159375
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 139.24971875
transcript.pyannote[32].end 152.96909375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 140.88659375
transcript.pyannote[33].end 141.84846875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 150.04971875
transcript.pyannote[34].end 151.19721875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 152.96909375
transcript.pyannote[35].end 158.58846875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 158.84159375
transcript.pyannote[36].end 159.17909375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 159.46596875
transcript.pyannote[37].end 161.25471875
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 161.55846875
transcript.pyannote[38].end 161.82846875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 162.36846875
transcript.pyannote[39].end 163.02659375
transcript.pyannote[40].speaker SPEAKER_03
transcript.pyannote[40].start 163.36409375
transcript.pyannote[40].end 163.61721875
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 164.30909375
transcript.pyannote[41].end 168.10596875
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 168.59534375
transcript.pyannote[42].end 172.34159375
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 172.71284375
transcript.pyannote[43].end 174.26534375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 174.26534375
transcript.pyannote[44].end 191.41034375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 191.79846875
transcript.pyannote[45].end 195.56159375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 196.30409375
transcript.pyannote[46].end 197.45159375
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 198.00846875
transcript.pyannote[47].end 203.15534375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 202.21034375
transcript.pyannote[48].end 203.34096875
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 203.34096875
transcript.pyannote[49].end 203.79659375
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 203.88096875
transcript.pyannote[50].end 206.26034375
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 206.51346875
transcript.pyannote[51].end 208.58909375
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 208.87596875
transcript.pyannote[52].end 210.98534375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 211.37346875
transcript.pyannote[53].end 211.74471875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 211.96409375
transcript.pyannote[54].end 213.92159375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 214.03971875
transcript.pyannote[55].end 227.32034375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 227.50596875
transcript.pyannote[56].end 261.76221875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 250.84409375
transcript.pyannote[57].end 250.86096875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 262.48784375
transcript.pyannote[58].end 267.98909375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 268.22534375
transcript.pyannote[59].end 270.75659375
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 271.26284375
transcript.pyannote[60].end 272.66346875
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 273.65909375
transcript.pyannote[61].end 276.07221875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 275.38034375
transcript.pyannote[62].end 276.39284375
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 276.84846875
transcript.pyannote[63].end 277.23659375
transcript.pyannote[64].speaker SPEAKER_03
transcript.pyannote[64].start 277.92846875
transcript.pyannote[64].end 279.61596875
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 279.68346875
transcript.pyannote[65].end 282.50159375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 282.50159375
transcript.pyannote[66].end 282.51846875
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 283.44659375
transcript.pyannote[67].end 283.75034375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 283.75034375
transcript.pyannote[68].end 283.76721875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 285.03284375
transcript.pyannote[69].end 288.61034375
transcript.pyannote[70].speaker SPEAKER_03
transcript.pyannote[70].start 289.15034375
transcript.pyannote[70].end 289.77471875
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 290.06159375
transcript.pyannote[71].end 291.37784375
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 291.64784375
transcript.pyannote[72].end 292.69409375
transcript.pyannote[73].speaker SPEAKER_03
transcript.pyannote[73].start 293.01471875
transcript.pyannote[73].end 295.12409375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 293.97659375
transcript.pyannote[74].end 297.41909375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 297.60471875
transcript.pyannote[75].end 302.73471875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 302.80221875
transcript.pyannote[76].end 311.40846875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 311.77971875
transcript.pyannote[77].end 314.46284375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 314.73284375
transcript.pyannote[78].end 318.68159375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 319.28909375
transcript.pyannote[79].end 330.59534375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 330.93284375
transcript.pyannote[80].end 353.39346875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 334.76346875
transcript.pyannote[81].end 335.70846875
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 353.68034375
transcript.pyannote[82].end 356.75159375
transcript.pyannote[83].speaker SPEAKER_03
transcript.pyannote[83].start 357.07221875
transcript.pyannote[83].end 358.05096875
transcript.pyannote[84].speaker SPEAKER_03
transcript.pyannote[84].start 358.45596875
transcript.pyannote[84].end 360.86909375
transcript.pyannote[85].speaker SPEAKER_03
transcript.pyannote[85].start 361.52721875
transcript.pyannote[85].end 365.86409375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 363.72096875
transcript.pyannote[86].end 363.77159375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 363.77159375
transcript.pyannote[87].end 364.19346875
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 366.06659375
transcript.pyannote[88].end 367.90596875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 368.34471875
transcript.pyannote[89].end 371.61846875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 372.52971875
transcript.pyannote[90].end 374.11596875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 374.31846875
transcript.pyannote[91].end 375.78659375
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 376.78221875
transcript.pyannote[92].end 381.55784375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 381.01784375
transcript.pyannote[93].end 381.42284375
transcript.pyannote[94].speaker SPEAKER_03
transcript.pyannote[94].start 382.90784375
transcript.pyannote[94].end 382.94159375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 382.94159375
transcript.pyannote[95].end 382.95846875
transcript.pyannote[96].speaker SPEAKER_03
transcript.pyannote[96].start 382.95846875
transcript.pyannote[96].end 383.04284375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 383.04284375
transcript.pyannote[97].end 383.38034375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 383.63346875
transcript.pyannote[98].end 425.24721875
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 383.70096875
transcript.pyannote[99].end 385.59096875
transcript.pyannote[100].speaker SPEAKER_03
transcript.pyannote[100].start 425.60159375
transcript.pyannote[100].end 429.43221875
transcript.pyannote[101].speaker SPEAKER_03
transcript.pyannote[101].start 429.55034375
transcript.pyannote[101].end 430.51221875
transcript.pyannote[102].speaker SPEAKER_03
transcript.pyannote[102].start 431.10284375
transcript.pyannote[102].end 432.89159375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 433.36409375
transcript.pyannote[103].end 435.28784375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 435.45659375
transcript.pyannote[104].end 439.23659375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 439.57409375
transcript.pyannote[105].end 468.10971875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 468.51471875
transcript.pyannote[106].end 470.70846875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 470.97846875
transcript.pyannote[107].end 489.06846875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 489.87846875
transcript.pyannote[108].end 493.54034375
transcript.pyannote[109].speaker SPEAKER_03
transcript.pyannote[109].start 490.11471875
transcript.pyannote[109].end 490.35096875
transcript.pyannote[110].speaker SPEAKER_03
transcript.pyannote[110].start 493.10159375
transcript.pyannote[110].end 493.57409375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 493.57409375
transcript.pyannote[111].end 493.79346875
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 493.79346875
transcript.pyannote[112].end 494.26596875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 494.83971875
transcript.pyannote[113].end 496.25721875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 496.47659375
transcript.pyannote[114].end 500.08784375
transcript.pyannote[115].speaker SPEAKER_03
transcript.pyannote[115].start 500.37471875
transcript.pyannote[115].end 502.36596875
transcript.pyannote[116].speaker SPEAKER_03
transcript.pyannote[116].start 502.61909375
transcript.pyannote[116].end 503.88471875
transcript.pyannote[117].speaker SPEAKER_03
transcript.pyannote[117].start 504.08721875
transcript.pyannote[117].end 506.75346875
transcript.pyannote[118].speaker SPEAKER_03
transcript.pyannote[118].start 507.37784375
transcript.pyannote[118].end 509.03159375
transcript.pyannote[119].speaker SPEAKER_03
transcript.pyannote[119].start 509.47034375
transcript.pyannote[119].end 513.90846875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 513.03096875
transcript.pyannote[120].end 520.03409375
transcript.pyannote[121].speaker SPEAKER_03
transcript.pyannote[121].start 519.69659375
transcript.pyannote[121].end 520.00034375
transcript.pyannote[122].speaker SPEAKER_03
transcript.pyannote[122].start 520.03409375
transcript.pyannote[122].end 520.05096875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 520.05096875
transcript.pyannote[123].end 520.48971875
transcript.pyannote[124].speaker SPEAKER_03
transcript.pyannote[124].start 520.48971875
transcript.pyannote[124].end 521.58659375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 522.04221875
transcript.pyannote[125].end 528.69096875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 528.96096875
transcript.pyannote[126].end 532.15034375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 532.57221875
transcript.pyannote[127].end 534.86721875
transcript.pyannote[128].speaker SPEAKER_03
transcript.pyannote[128].start 535.12034375
transcript.pyannote[128].end 537.49971875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 536.67284375
transcript.pyannote[129].end 552.16409375
transcript.pyannote[130].speaker SPEAKER_03
transcript.pyannote[130].start 537.78659375
transcript.pyannote[130].end 538.03971875
transcript.pyannote[131].speaker SPEAKER_03
transcript.pyannote[131].start 539.64284375
transcript.pyannote[131].end 541.22909375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 552.70409375
transcript.pyannote[132].end 553.42971875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 553.93596875
transcript.pyannote[133].end 564.90471875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 554.00346875
transcript.pyannote[134].end 555.35346875
transcript.pyannote[135].speaker SPEAKER_03
transcript.pyannote[135].start 555.35346875
transcript.pyannote[135].end 555.38721875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 565.12409375
transcript.pyannote[136].end 569.08971875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 569.51159375
transcript.pyannote[137].end 574.35471875
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 574.70909375
transcript.pyannote[138].end 576.22784375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 576.29534375
transcript.pyannote[139].end 583.06221875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 580.96971875
transcript.pyannote[140].end 606.36659375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 606.70409375
transcript.pyannote[141].end 607.32846875
transcript.pyannote[142].speaker SPEAKER_03
transcript.pyannote[142].start 606.75471875
transcript.pyannote[142].end 608.96534375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 608.96534375
transcript.pyannote[143].end 641.16284375
transcript.pyannote[144].speaker SPEAKER_03
transcript.pyannote[144].start 610.60221875
transcript.pyannote[144].end 611.36159375
transcript.pyannote[145].speaker SPEAKER_03
transcript.pyannote[145].start 640.63971875
transcript.pyannote[145].end 643.82909375
transcript.pyannote[146].speaker SPEAKER_03
transcript.pyannote[146].start 643.89659375
transcript.pyannote[146].end 644.31846875
transcript.pyannote[147].speaker SPEAKER_03
transcript.pyannote[147].start 644.58846875
transcript.pyannote[147].end 645.33096875
transcript.pyannote[148].speaker SPEAKER_03
transcript.pyannote[148].start 645.38159375
transcript.pyannote[148].end 646.39409375
transcript.pyannote[149].speaker SPEAKER_03
transcript.pyannote[149].start 646.66409375
transcript.pyannote[149].end 648.89159375
transcript.pyannote[150].speaker SPEAKER_03
transcript.pyannote[150].start 649.06034375
transcript.pyannote[150].end 652.45221875
transcript.pyannote[151].speaker SPEAKER_03
transcript.pyannote[151].start 652.85721875
transcript.pyannote[151].end 656.09721875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 654.64596875
transcript.pyannote[152].end 655.48971875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 656.09721875
transcript.pyannote[153].end 659.75909375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 659.18534375
transcript.pyannote[154].end 664.55159375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 663.79221875
transcript.pyannote[155].end 666.15471875
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 664.95659375
transcript.pyannote[156].end 668.73659375
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 668.71971875
transcript.pyannote[157].end 681.12284375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 672.17909375
transcript.pyannote[158].end 677.05596875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 682.15221875
transcript.pyannote[159].end 686.87721875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 687.31596875
transcript.pyannote[160].end 688.56471875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 688.98659375
transcript.pyannote[161].end 692.02409375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 692.49659375
transcript.pyannote[162].end 694.16721875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 694.53846875
transcript.pyannote[163].end 697.35659375
transcript.pyannote[164].speaker SPEAKER_03
transcript.pyannote[164].start 697.84596875
transcript.pyannote[164].end 700.56284375
transcript.pyannote[165].speaker SPEAKER_03
transcript.pyannote[165].start 700.76534375
transcript.pyannote[165].end 701.89596875
transcript.pyannote[166].speaker SPEAKER_03
transcript.pyannote[166].start 702.85784375
transcript.pyannote[166].end 705.50721875
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 704.19096875
transcript.pyannote[167].end 712.10534375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 713.08409375
transcript.pyannote[168].end 727.19159375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 728.00159375
transcript.pyannote[169].end 730.34721875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 730.73534375
transcript.pyannote[170].end 731.41034375
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 731.49471875
transcript.pyannote[171].end 731.52846875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 731.52846875
transcript.pyannote[172].end 733.30034375
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 731.61284375
transcript.pyannote[173].end 731.91659375
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 733.60409375
transcript.pyannote[174].end 737.99159375
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 733.70534375
transcript.pyannote[175].end 734.05971875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 735.64596875
transcript.pyannote[176].end 747.84659375
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 748.03221875
transcript.pyannote[177].end 758.39346875
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 758.71409375
transcript.pyannote[178].end 761.95409375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 762.13971875
transcript.pyannote[179].end 768.68721875
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 767.70846875
transcript.pyannote[180].end 777.69846875
transcript.pyannote[181].speaker SPEAKER_03
transcript.pyannote[181].start 777.69846875
transcript.pyannote[181].end 778.35659375
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 778.35659375
transcript.pyannote[182].end 782.22096875
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 782.33909375
transcript.pyannote[183].end 783.09846875
transcript.pyannote[184].speaker SPEAKER_03
transcript.pyannote[184].start 782.47409375
transcript.pyannote[184].end 783.06471875
transcript.pyannote[185].speaker SPEAKER_03
transcript.pyannote[185].start 783.46971875
transcript.pyannote[185].end 784.87034375
transcript.pyannote[186].speaker SPEAKER_03
transcript.pyannote[186].start 785.83221875
transcript.pyannote[186].end 788.97096875
transcript.pyannote[187].speaker SPEAKER_03
transcript.pyannote[187].start 789.30846875
transcript.pyannote[187].end 791.43471875
transcript.pyannote[188].speaker SPEAKER_03
transcript.pyannote[188].start 791.53596875
transcript.pyannote[188].end 795.97409375
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 795.97409375
transcript.pyannote[189].end 798.55596875
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 799.31534375
transcript.pyannote[190].end 801.64409375
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 801.64409375
transcript.pyannote[191].end 802.23471875
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 802.80846875
transcript.pyannote[192].end 815.48159375
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 814.78971875
transcript.pyannote[193].end 823.85159375
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 824.66159375
transcript.pyannote[194].end 826.93971875
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 827.31096875
transcript.pyannote[195].end 834.78659375
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 834.98909375
transcript.pyannote[196].end 839.15721875
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 839.47784375
transcript.pyannote[197].end 844.70909375
transcript.pyannote[198].speaker SPEAKER_03
transcript.pyannote[198].start 844.89471875
transcript.pyannote[198].end 849.02909375
transcript.pyannote[199].speaker SPEAKER_03
transcript.pyannote[199].start 849.11346875
transcript.pyannote[199].end 851.22284375
transcript.pyannote[200].speaker SPEAKER_03
transcript.pyannote[200].start 851.23971875
transcript.pyannote[200].end 851.84721875
transcript.pyannote[201].speaker SPEAKER_03
transcript.pyannote[201].start 852.11721875
transcript.pyannote[201].end 853.77096875
transcript.pyannote[202].speaker SPEAKER_03
transcript.pyannote[202].start 853.95659375
transcript.pyannote[202].end 856.45409375
transcript.pyannote[203].speaker SPEAKER_03
transcript.pyannote[203].start 856.50471875
transcript.pyannote[203].end 858.37784375
transcript.pyannote[204].speaker SPEAKER_03
transcript.pyannote[204].start 858.63096875
transcript.pyannote[204].end 862.68096875
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 862.15784375
transcript.pyannote[205].end 864.75659375
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 864.95909375
transcript.pyannote[206].end 866.52846875
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 868.92471875
transcript.pyannote[207].end 875.82659375
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 875.82659375
transcript.pyannote[208].end 883.43721875
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 876.11346875
transcript.pyannote[209].end 879.43784375
transcript.pyannote[210].speaker SPEAKER_02
transcript.pyannote[210].start 883.58909375
transcript.pyannote[210].end 905.96534375
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 906.31971875
transcript.pyannote[211].end 910.55534375
transcript.pyannote[212].speaker SPEAKER_03
transcript.pyannote[212].start 911.63534375
transcript.pyannote[212].end 911.93909375
transcript.pyannote[213].speaker SPEAKER_03
transcript.pyannote[213].start 912.02346875
transcript.pyannote[213].end 915.70221875
transcript.pyannote[214].speaker SPEAKER_03
transcript.pyannote[214].start 915.98909375
transcript.pyannote[214].end 918.45284375
transcript.pyannote[215].speaker SPEAKER_03
transcript.pyannote[215].start 918.79034375
transcript.pyannote[215].end 920.68034375
transcript.pyannote[216].speaker SPEAKER_03
transcript.pyannote[216].start 921.49034375
transcript.pyannote[216].end 922.33409375
transcript.pyannote[217].speaker SPEAKER_03
transcript.pyannote[217].start 923.31284375
transcript.pyannote[217].end 926.97471875
transcript.pyannote[218].speaker SPEAKER_02
transcript.pyannote[218].start 926.97471875
transcript.pyannote[218].end 977.36346875
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 978.44346875
transcript.pyannote[219].end 982.69596875
transcript.pyannote[220].speaker SPEAKER_02
transcript.pyannote[220].start 983.01659375
transcript.pyannote[220].end 984.82221875
transcript.pyannote[221].speaker SPEAKER_02
transcript.pyannote[221].start 985.24409375
transcript.pyannote[221].end 990.61034375
transcript.pyannote[222].speaker SPEAKER_02
transcript.pyannote[222].start 990.99846875
transcript.pyannote[222].end 991.85909375
transcript.pyannote[223].speaker SPEAKER_02
transcript.pyannote[223].start 992.43284375
transcript.pyannote[223].end 992.85471875
transcript.pyannote[224].speaker SPEAKER_02
transcript.pyannote[224].start 993.39471875
transcript.pyannote[224].end 994.40721875
transcript.pyannote[225].speaker SPEAKER_02
transcript.pyannote[225].start 994.91346875
transcript.pyannote[225].end 995.89221875
transcript.pyannote[226].speaker SPEAKER_02
transcript.pyannote[226].start 996.22971875
transcript.pyannote[226].end 997.00596875
transcript.pyannote[227].speaker SPEAKER_02
transcript.pyannote[227].start 997.71471875
transcript.pyannote[227].end 998.42346875
transcript.pyannote[228].speaker SPEAKER_02
transcript.pyannote[228].start 998.94659375
transcript.pyannote[228].end 1005.74721875
transcript.pyannote[229].speaker SPEAKER_02
transcript.pyannote[229].start 1006.05096875
transcript.pyannote[229].end 1008.12659375
transcript.pyannote[230].speaker SPEAKER_02
transcript.pyannote[230].start 1008.36284375
transcript.pyannote[230].end 1009.29096875
transcript.pyannote[231].speaker SPEAKER_02
transcript.pyannote[231].start 1009.89846875
transcript.pyannote[231].end 1011.72096875
transcript.pyannote[232].speaker SPEAKER_01
transcript.pyannote[232].start 1012.42971875
transcript.pyannote[232].end 1027.12784375
transcript.pyannote[233].speaker SPEAKER_02
transcript.pyannote[233].start 1026.50346875
transcript.pyannote[233].end 1029.97971875
transcript.pyannote[234].speaker SPEAKER_01
transcript.pyannote[234].start 1029.97971875
transcript.pyannote[234].end 1038.41721875
transcript.pyannote[235].speaker SPEAKER_02
transcript.pyannote[235].start 1038.31596875
transcript.pyannote[235].end 1042.90596875
transcript.pyannote[236].speaker SPEAKER_01
transcript.pyannote[236].start 1041.21846875
transcript.pyannote[236].end 1046.11221875
transcript.pyannote[237].speaker SPEAKER_02
transcript.pyannote[237].start 1046.33159375
transcript.pyannote[237].end 1053.72284375
transcript.pyannote[238].speaker SPEAKER_01
transcript.pyannote[238].start 1052.30534375
transcript.pyannote[238].end 1069.07909375
transcript.pyannote[239].speaker SPEAKER_02
transcript.pyannote[239].start 1053.75659375
transcript.pyannote[239].end 1053.79034375
transcript.pyannote[240].speaker SPEAKER_02
transcript.pyannote[240].start 1054.46534375
transcript.pyannote[240].end 1054.49909375
transcript.pyannote[241].speaker SPEAKER_02
transcript.pyannote[241].start 1069.60221875
transcript.pyannote[241].end 1087.03409375
transcript.pyannote[242].speaker SPEAKER_02
transcript.pyannote[242].start 1087.25346875
transcript.pyannote[242].end 1109.98409375
transcript.pyannote[243].speaker SPEAKER_03
transcript.pyannote[243].start 1109.79846875
transcript.pyannote[243].end 1110.30471875
transcript.pyannote[244].speaker SPEAKER_02
transcript.pyannote[244].start 1110.00096875
transcript.pyannote[244].end 1110.05159375
transcript.pyannote[245].speaker SPEAKER_02
transcript.pyannote[245].start 1110.30471875
transcript.pyannote[245].end 1110.32159375
transcript.pyannote[246].speaker SPEAKER_03
transcript.pyannote[246].start 1110.32159375
transcript.pyannote[246].end 1120.26096875
transcript.pyannote[247].speaker SPEAKER_03
transcript.pyannote[247].start 1120.48034375
transcript.pyannote[247].end 1135.09409375
transcript.pyannote[248].speaker SPEAKER_00
transcript.pyannote[248].start 1127.73659375
transcript.pyannote[248].end 1127.97284375
transcript.pyannote[249].speaker SPEAKER_02
transcript.pyannote[249].start 1127.97284375
transcript.pyannote[249].end 1128.19221875
transcript.pyannote[250].speaker SPEAKER_02
transcript.pyannote[250].start 1128.39471875
transcript.pyannote[250].end 1128.88409375
transcript.pyannote[251].speaker SPEAKER_02
transcript.pyannote[251].start 1131.19596875
transcript.pyannote[251].end 1132.14096875
transcript.pyannote[252].speaker SPEAKER_02
transcript.pyannote[252].start 1132.24221875
transcript.pyannote[252].end 1133.08596875
transcript.pyannote[253].speaker SPEAKER_02
transcript.pyannote[253].start 1134.60471875
transcript.pyannote[253].end 1140.29159375
transcript.pyannote[254].speaker SPEAKER_02
transcript.pyannote[254].start 1140.39284375
transcript.pyannote[254].end 1142.73846875
transcript.pyannote[255].speaker SPEAKER_02
transcript.pyannote[255].start 1143.27846875
transcript.pyannote[255].end 1144.56096875
transcript.pyannote[256].speaker SPEAKER_02
transcript.pyannote[256].start 1145.01659375
transcript.pyannote[256].end 1145.72534375
transcript.pyannote[257].speaker SPEAKER_02
transcript.pyannote[257].start 1146.34971875
transcript.pyannote[257].end 1147.73346875
transcript.pyannote[258].speaker SPEAKER_02
transcript.pyannote[258].start 1148.15534375
transcript.pyannote[258].end 1157.38596875
transcript.pyannote[259].speaker SPEAKER_03
transcript.pyannote[259].start 1157.13284375
transcript.pyannote[259].end 1157.89221875
transcript.pyannote[260].speaker SPEAKER_02
transcript.pyannote[260].start 1157.89221875
transcript.pyannote[260].end 1157.92596875
transcript.pyannote[261].speaker SPEAKER_03
transcript.pyannote[261].start 1157.92596875
transcript.pyannote[261].end 1160.23784375
transcript.pyannote[262].speaker SPEAKER_03
transcript.pyannote[262].start 1160.89596875
transcript.pyannote[262].end 1161.68909375
transcript.pyannote[263].speaker SPEAKER_02
transcript.pyannote[263].start 1162.17846875
transcript.pyannote[263].end 1172.65784375
transcript.pyannote[264].speaker SPEAKER_01
transcript.pyannote[264].start 1173.04596875
transcript.pyannote[264].end 1178.24346875
transcript.pyannote[265].speaker SPEAKER_01
transcript.pyannote[265].start 1178.61471875
transcript.pyannote[265].end 1182.63096875
transcript.pyannote[266].speaker SPEAKER_01
transcript.pyannote[266].start 1182.88409375
transcript.pyannote[266].end 1186.51221875
transcript.pyannote[267].speaker SPEAKER_01
transcript.pyannote[267].start 1186.74846875
transcript.pyannote[267].end 1198.42596875
transcript.pyannote[268].speaker SPEAKER_02
transcript.pyannote[268].start 1196.73846875
transcript.pyannote[268].end 1221.47721875
transcript.pyannote[269].speaker SPEAKER_02
transcript.pyannote[269].start 1221.76409375
transcript.pyannote[269].end 1236.31034375
transcript.pyannote[270].speaker SPEAKER_02
transcript.pyannote[270].start 1236.79971875
transcript.pyannote[270].end 1236.86721875
transcript.pyannote[271].speaker SPEAKER_02
transcript.pyannote[271].start 1237.45784375
transcript.pyannote[271].end 1243.66784375
transcript.pyannote[272].speaker SPEAKER_03
transcript.pyannote[272].start 1241.30534375
transcript.pyannote[272].end 1243.38096875
transcript.pyannote[273].speaker SPEAKER_03
transcript.pyannote[273].start 1243.66784375
transcript.pyannote[273].end 1246.80659375
transcript.pyannote[274].speaker SPEAKER_02
transcript.pyannote[274].start 1246.80659375
transcript.pyannote[274].end 1255.48034375
transcript.pyannote[275].speaker SPEAKER_03
transcript.pyannote[275].start 1255.02471875
transcript.pyannote[275].end 1264.01909375
transcript.pyannote[276].speaker SPEAKER_02
transcript.pyannote[276].start 1264.01909375
transcript.pyannote[276].end 1278.07596875
transcript.pyannote[277].speaker SPEAKER_02
transcript.pyannote[277].start 1278.85221875
transcript.pyannote[277].end 1303.82721875
transcript.pyannote[278].speaker SPEAKER_02
transcript.pyannote[278].start 1304.13096875
transcript.pyannote[278].end 1314.69471875
transcript.pyannote[279].speaker SPEAKER_03
transcript.pyannote[279].start 1313.26034375
transcript.pyannote[279].end 1315.63971875
transcript.pyannote[280].speaker SPEAKER_03
transcript.pyannote[280].start 1315.96034375
transcript.pyannote[280].end 1319.97659375
transcript.pyannote[281].speaker SPEAKER_02
transcript.pyannote[281].start 1316.01096875
transcript.pyannote[281].end 1316.97284375
transcript.pyannote[282].speaker SPEAKER_02
transcript.pyannote[282].start 1319.97659375
transcript.pyannote[282].end 1320.04409375
transcript.pyannote[283].speaker SPEAKER_03
transcript.pyannote[283].start 1320.04409375
transcript.pyannote[283].end 1320.06096875
transcript.pyannote[284].speaker SPEAKER_02
transcript.pyannote[284].start 1320.06096875
transcript.pyannote[284].end 1320.39846875
transcript.pyannote[285].speaker SPEAKER_03
transcript.pyannote[285].start 1320.09471875
transcript.pyannote[285].end 1320.36471875
transcript.pyannote[286].speaker SPEAKER_03
transcript.pyannote[286].start 1320.39846875
transcript.pyannote[286].end 1320.73596875
transcript.pyannote[287].speaker SPEAKER_02
transcript.pyannote[287].start 1320.73596875
transcript.pyannote[287].end 1331.65409375
transcript.pyannote[288].speaker SPEAKER_02
transcript.pyannote[288].start 1331.83971875
transcript.pyannote[288].end 1333.18971875
transcript.pyannote[289].speaker SPEAKER_03
transcript.pyannote[289].start 1331.90721875
transcript.pyannote[289].end 1336.86846875
transcript.pyannote[290].speaker SPEAKER_02
transcript.pyannote[290].start 1337.23971875
transcript.pyannote[290].end 1341.66096875
transcript.pyannote[291].speaker SPEAKER_03
transcript.pyannote[291].start 1340.32784375
transcript.pyannote[291].end 1345.00221875
transcript.pyannote[292].speaker SPEAKER_02
transcript.pyannote[292].start 1345.40721875
transcript.pyannote[292].end 1360.96596875
transcript.pyannote[293].speaker SPEAKER_02
transcript.pyannote[293].start 1361.26971875
transcript.pyannote[293].end 1377.13221875
transcript.pyannote[294].speaker SPEAKER_02
transcript.pyannote[294].start 1377.40221875
transcript.pyannote[294].end 1386.41346875
transcript.pyannote[295].speaker SPEAKER_02
transcript.pyannote[295].start 1386.80159375
transcript.pyannote[295].end 1392.16784375
transcript.pyannote[296].speaker SPEAKER_03
transcript.pyannote[296].start 1392.64034375
transcript.pyannote[296].end 1392.97784375
transcript.pyannote[297].speaker SPEAKER_03
transcript.pyannote[297].start 1393.38284375
transcript.pyannote[297].end 1397.39909375
transcript.pyannote[298].speaker SPEAKER_02
transcript.pyannote[298].start 1396.01534375
transcript.pyannote[298].end 1397.38221875
transcript.pyannote[299].speaker SPEAKER_02
transcript.pyannote[299].start 1397.39909375
transcript.pyannote[299].end 1399.52534375
transcript.pyannote[300].speaker SPEAKER_02
transcript.pyannote[300].start 1400.63909375
transcript.pyannote[300].end 1411.20284375
transcript.pyannote[301].speaker SPEAKER_02
transcript.pyannote[301].start 1411.62471875
transcript.pyannote[301].end 1415.77596875
transcript.pyannote[302].speaker SPEAKER_02
transcript.pyannote[302].start 1416.92346875
transcript.pyannote[302].end 1418.13846875
transcript.pyannote[303].speaker SPEAKER_02
transcript.pyannote[303].start 1418.35784375
transcript.pyannote[303].end 1425.22596875
transcript.pyannote[304].speaker SPEAKER_02
transcript.pyannote[304].start 1425.88409375
transcript.pyannote[304].end 1429.02284375
transcript.pyannote[305].speaker SPEAKER_03
transcript.pyannote[305].start 1427.09909375
transcript.pyannote[305].end 1427.72346875
transcript.pyannote[306].speaker SPEAKER_03
transcript.pyannote[306].start 1429.02284375
transcript.pyannote[306].end 1429.63034375
transcript.pyannote[307].speaker SPEAKER_02
transcript.pyannote[307].start 1429.63034375
transcript.pyannote[307].end 1430.84534375
transcript.pyannote[308].speaker SPEAKER_03
transcript.pyannote[308].start 1429.74846875
transcript.pyannote[308].end 1431.55409375
transcript.pyannote[309].speaker SPEAKER_02
transcript.pyannote[309].start 1431.45284375
transcript.pyannote[309].end 1432.95471875
transcript.pyannote[310].speaker SPEAKER_02
transcript.pyannote[310].start 1433.30909375
transcript.pyannote[310].end 1434.01784375
transcript.pyannote[311].speaker SPEAKER_02
transcript.pyannote[311].start 1434.33846875
transcript.pyannote[311].end 1435.36784375
transcript.pyannote[312].speaker SPEAKER_02
transcript.pyannote[312].start 1435.50284375
transcript.pyannote[312].end 1437.15659375
transcript.pyannote[313].speaker SPEAKER_02
transcript.pyannote[313].start 1437.74721875
transcript.pyannote[313].end 1438.60784375
transcript.pyannote[314].speaker SPEAKER_02
transcript.pyannote[314].start 1438.91159375
transcript.pyannote[314].end 1446.87659375
transcript.pyannote[315].speaker SPEAKER_02
transcript.pyannote[315].start 1447.43346875
transcript.pyannote[315].end 1455.38159375
transcript.pyannote[316].speaker SPEAKER_02
transcript.pyannote[316].start 1456.30971875
transcript.pyannote[316].end 1457.15346875
transcript.pyannote[317].speaker SPEAKER_03
transcript.pyannote[317].start 1457.15346875
transcript.pyannote[317].end 1457.17034375
transcript.pyannote[318].speaker SPEAKER_03
transcript.pyannote[318].start 1458.85784375
transcript.pyannote[318].end 1461.30471875
transcript.pyannote[319].speaker SPEAKER_03
transcript.pyannote[319].start 1461.64221875
transcript.pyannote[319].end 1461.74346875
transcript.pyannote[320].speaker SPEAKER_03
transcript.pyannote[320].start 1462.51971875
transcript.pyannote[320].end 1462.53659375
transcript.pyannote[321].speaker SPEAKER_02
transcript.pyannote[321].start 1462.53659375
transcript.pyannote[321].end 1462.60409375
transcript.pyannote[322].speaker SPEAKER_03
transcript.pyannote[322].start 1462.60409375
transcript.pyannote[322].end 1464.51096875
transcript.pyannote[323].speaker SPEAKER_02
transcript.pyannote[323].start 1464.51096875
transcript.pyannote[323].end 1464.52784375
transcript.pyannote[324].speaker SPEAKER_03
transcript.pyannote[324].start 1465.37159375
transcript.pyannote[324].end 1466.90721875
transcript.pyannote[325].speaker SPEAKER_03
transcript.pyannote[325].start 1467.58221875
transcript.pyannote[325].end 1472.37471875
transcript.pyannote[326].speaker SPEAKER_03
transcript.pyannote[326].start 1473.35346875
transcript.pyannote[326].end 1474.90596875
transcript.pyannote[327].speaker SPEAKER_03
transcript.pyannote[327].start 1475.20971875
transcript.pyannote[327].end 1478.06159375
transcript.pyannote[328].speaker SPEAKER_02
transcript.pyannote[328].start 1478.06159375
transcript.pyannote[328].end 1478.09534375
transcript.pyannote[329].speaker SPEAKER_03
transcript.pyannote[329].start 1478.36534375
transcript.pyannote[329].end 1478.97284375
transcript.pyannote[330].speaker SPEAKER_02
transcript.pyannote[330].start 1478.97284375
transcript.pyannote[330].end 1482.56721875
transcript.pyannote[331].speaker SPEAKER_02
transcript.pyannote[331].start 1483.15784375
transcript.pyannote[331].end 1490.12721875
transcript.pyannote[332].speaker SPEAKER_02
transcript.pyannote[332].start 1490.32971875
transcript.pyannote[332].end 1495.27409375
transcript.pyannote[333].speaker SPEAKER_02
transcript.pyannote[333].start 1495.40909375
transcript.pyannote[333].end 1507.47471875
transcript.pyannote[334].speaker SPEAKER_02
transcript.pyannote[334].start 1508.06534375
transcript.pyannote[334].end 1514.83221875
transcript.pyannote[335].speaker SPEAKER_02
transcript.pyannote[335].start 1515.25409375
transcript.pyannote[335].end 1518.88221875
transcript.pyannote[336].speaker SPEAKER_02
transcript.pyannote[336].start 1519.50659375
transcript.pyannote[336].end 1527.42096875
transcript.pyannote[337].speaker SPEAKER_02
transcript.pyannote[337].start 1527.64034375
transcript.pyannote[337].end 1530.03659375
transcript.pyannote[338].speaker SPEAKER_02
transcript.pyannote[338].start 1530.40784375
transcript.pyannote[338].end 1531.43721875
transcript.pyannote[339].speaker SPEAKER_02
transcript.pyannote[339].start 1532.09534375
transcript.pyannote[339].end 1533.76596875
transcript.pyannote[340].speaker SPEAKER_02
transcript.pyannote[340].start 1534.35659375
transcript.pyannote[340].end 1536.93846875
transcript.pyannote[341].speaker SPEAKER_02
transcript.pyannote[341].start 1537.47846875
transcript.pyannote[341].end 1538.76096875
transcript.pyannote[342].speaker SPEAKER_02
transcript.pyannote[342].start 1539.36846875
transcript.pyannote[342].end 1552.78409375
transcript.pyannote[343].speaker SPEAKER_03
transcript.pyannote[343].start 1553.50971875
transcript.pyannote[343].end 1554.47159375
transcript.pyannote[344].speaker SPEAKER_02
transcript.pyannote[344].start 1553.96534375
transcript.pyannote[344].end 1555.29846875
transcript.pyannote[345].speaker SPEAKER_03
transcript.pyannote[345].start 1556.88471875
transcript.pyannote[345].end 1558.97721875
transcript.pyannote[346].speaker SPEAKER_02
transcript.pyannote[346].start 1558.97721875
transcript.pyannote[346].end 1559.98971875
transcript.pyannote[347].speaker SPEAKER_03
transcript.pyannote[347].start 1559.07846875
transcript.pyannote[347].end 1560.31034375
transcript.pyannote[348].speaker SPEAKER_03
transcript.pyannote[348].start 1560.66471875
transcript.pyannote[348].end 1560.68159375
transcript.pyannote[349].speaker SPEAKER_02
transcript.pyannote[349].start 1560.68159375
transcript.pyannote[349].end 1563.71909375
transcript.pyannote[350].speaker SPEAKER_02
transcript.pyannote[350].start 1563.95534375
transcript.pyannote[350].end 1567.16159375
transcript.pyannote[351].speaker SPEAKER_02
transcript.pyannote[351].start 1567.44846875
transcript.pyannote[351].end 1579.27784375
transcript.pyannote[352].speaker SPEAKER_02
transcript.pyannote[352].start 1579.58159375
transcript.pyannote[352].end 1580.42534375
transcript.pyannote[353].speaker SPEAKER_02
transcript.pyannote[353].start 1580.76284375
transcript.pyannote[353].end 1585.87596875
transcript.pyannote[354].speaker SPEAKER_03
transcript.pyannote[354].start 1586.61846875
transcript.pyannote[354].end 1588.66034375
transcript.pyannote[355].speaker SPEAKER_03
transcript.pyannote[355].start 1589.30159375
transcript.pyannote[355].end 1589.70659375
transcript.pyannote[356].speaker SPEAKER_03
transcript.pyannote[356].start 1589.82471875
transcript.pyannote[356].end 1592.42346875
transcript.pyannote[357].speaker SPEAKER_03
transcript.pyannote[357].start 1592.87909375
transcript.pyannote[357].end 1595.54534375
transcript.pyannote[358].speaker SPEAKER_03
transcript.pyannote[358].start 1595.71409375
transcript.pyannote[358].end 1596.65909375
transcript.pyannote[359].speaker SPEAKER_03
transcript.pyannote[359].start 1596.91221875
transcript.pyannote[359].end 1600.57409375
transcript.pyannote[360].speaker SPEAKER_02
transcript.pyannote[360].start 1598.80221875
transcript.pyannote[360].end 1606.54784375
transcript.pyannote[361].speaker SPEAKER_02
transcript.pyannote[361].start 1606.66596875
transcript.pyannote[361].end 1608.01596875
transcript.pyannote[362].speaker SPEAKER_03
transcript.pyannote[362].start 1607.37471875
transcript.pyannote[362].end 1607.94846875
transcript.pyannote[363].speaker SPEAKER_03
transcript.pyannote[363].start 1608.01596875
transcript.pyannote[363].end 1616.75721875
transcript.pyannote[364].speaker SPEAKER_02
transcript.pyannote[364].start 1608.92721875
transcript.pyannote[364].end 1610.41221875
transcript.pyannote[365].speaker SPEAKER_02
transcript.pyannote[365].start 1614.91784375
transcript.pyannote[365].end 1616.89221875
transcript.pyannote[366].speaker SPEAKER_03
transcript.pyannote[366].start 1616.89221875
transcript.pyannote[366].end 1616.97659375
transcript.pyannote[367].speaker SPEAKER_02
transcript.pyannote[367].start 1616.97659375
transcript.pyannote[367].end 1617.12846875
transcript.pyannote[368].speaker SPEAKER_03
transcript.pyannote[368].start 1617.12846875
transcript.pyannote[368].end 1617.36471875
transcript.pyannote[369].speaker SPEAKER_02
transcript.pyannote[369].start 1617.36471875
transcript.pyannote[369].end 1619.77784375
transcript.pyannote[370].speaker SPEAKER_02
transcript.pyannote[370].start 1619.86221875
transcript.pyannote[370].end 1621.07721875
transcript.pyannote[371].speaker SPEAKER_02
transcript.pyannote[371].start 1621.29659375
transcript.pyannote[371].end 1623.13596875
transcript.pyannote[372].speaker SPEAKER_03
transcript.pyannote[372].start 1623.32159375
transcript.pyannote[372].end 1623.33846875
transcript.pyannote[373].speaker SPEAKER_02
transcript.pyannote[373].start 1623.33846875
transcript.pyannote[373].end 1623.59159375
transcript.pyannote[374].speaker SPEAKER_03
transcript.pyannote[374].start 1624.33409375
transcript.pyannote[374].end 1625.65034375
transcript.pyannote[375].speaker SPEAKER_03
transcript.pyannote[375].start 1625.80221875
transcript.pyannote[375].end 1626.69659375
transcript.pyannote[376].speaker SPEAKER_02
transcript.pyannote[376].start 1625.97096875
transcript.pyannote[376].end 1628.72159375
transcript.pyannote[377].speaker SPEAKER_03
transcript.pyannote[377].start 1627.06784375
transcript.pyannote[377].end 1627.65846875
transcript.pyannote[378].speaker SPEAKER_03
transcript.pyannote[378].start 1627.86096875
transcript.pyannote[378].end 1629.21096875
transcript.pyannote[379].speaker SPEAKER_03
transcript.pyannote[379].start 1629.63284375
transcript.pyannote[379].end 1632.01221875
transcript.pyannote[380].speaker SPEAKER_02
transcript.pyannote[380].start 1630.30784375
transcript.pyannote[380].end 1630.49346875
transcript.pyannote[381].speaker SPEAKER_02
transcript.pyannote[381].start 1632.01221875
transcript.pyannote[381].end 1633.93596875
transcript.pyannote[382].speaker SPEAKER_02
transcript.pyannote[382].start 1633.96971875
transcript.pyannote[382].end 1636.06221875
transcript.pyannote[383].speaker SPEAKER_02
transcript.pyannote[383].start 1636.87221875
transcript.pyannote[383].end 1638.17159375
transcript.pyannote[384].speaker SPEAKER_03
transcript.pyannote[384].start 1638.27284375
transcript.pyannote[384].end 1640.43284375
transcript.pyannote[385].speaker SPEAKER_02
transcript.pyannote[385].start 1638.96471875
transcript.pyannote[385].end 1640.11221875
transcript.pyannote[386].speaker SPEAKER_01
transcript.pyannote[386].start 1640.11221875
transcript.pyannote[386].end 1640.14596875
transcript.pyannote[387].speaker SPEAKER_03
transcript.pyannote[387].start 1640.85471875
transcript.pyannote[387].end 1645.86659375
transcript.pyannote[388].speaker SPEAKER_03
transcript.pyannote[388].start 1646.18721875
transcript.pyannote[388].end 1649.46096875
transcript.pyannote[389].speaker SPEAKER_03
transcript.pyannote[389].start 1649.64659375
transcript.pyannote[389].end 1651.09784375
transcript.pyannote[390].speaker SPEAKER_02
transcript.pyannote[390].start 1651.63784375
transcript.pyannote[390].end 1657.08846875
transcript.pyannote[391].speaker SPEAKER_02
transcript.pyannote[391].start 1657.20659375
transcript.pyannote[391].end 1658.70846875
transcript.pyannote[392].speaker SPEAKER_02
transcript.pyannote[392].start 1658.75909375
transcript.pyannote[392].end 1667.12909375
transcript.pyannote[393].speaker SPEAKER_02
transcript.pyannote[393].start 1667.43284375
transcript.pyannote[393].end 1681.87784375
transcript.pyannote[394].speaker SPEAKER_02
transcript.pyannote[394].start 1682.28284375
transcript.pyannote[394].end 1686.87284375
transcript.pyannote[395].speaker SPEAKER_02
transcript.pyannote[395].start 1686.95721875
transcript.pyannote[395].end 1699.71471875
transcript.pyannote[396].speaker SPEAKER_02
transcript.pyannote[396].start 1700.05221875
transcript.pyannote[396].end 1709.56971875
transcript.pyannote[397].speaker SPEAKER_02
transcript.pyannote[397].start 1709.89034375
transcript.pyannote[397].end 1710.86909375
transcript.pyannote[398].speaker SPEAKER_02
transcript.pyannote[398].start 1711.47659375
transcript.pyannote[398].end 1712.94471875
transcript.pyannote[399].speaker SPEAKER_02
transcript.pyannote[399].start 1714.48034375
transcript.pyannote[399].end 1726.59659375
transcript.pyannote[400].speaker SPEAKER_02
transcript.pyannote[400].start 1726.79909375
transcript.pyannote[400].end 1740.56909375
transcript.pyannote[401].speaker SPEAKER_02
transcript.pyannote[401].start 1741.41284375
transcript.pyannote[401].end 1755.03096875
transcript.pyannote[402].speaker SPEAKER_02
transcript.pyannote[402].start 1755.30096875
transcript.pyannote[402].end 1766.25284375
transcript.pyannote[403].speaker SPEAKER_02
transcript.pyannote[403].start 1767.21471875
transcript.pyannote[403].end 1801.38659375
transcript.pyannote[404].speaker SPEAKER_03
transcript.pyannote[404].start 1799.76659375
transcript.pyannote[404].end 1811.68034375
transcript.pyannote[405].speaker SPEAKER_02
transcript.pyannote[405].start 1803.98534375
transcript.pyannote[405].end 1804.39034375
transcript.pyannote[406].speaker SPEAKER_02
transcript.pyannote[406].start 1805.03159375
transcript.pyannote[406].end 1805.89221875
transcript.pyannote[407].speaker SPEAKER_02
transcript.pyannote[407].start 1811.98409375
transcript.pyannote[407].end 1815.29159375
transcript.pyannote[408].speaker SPEAKER_03
transcript.pyannote[408].start 1815.29159375
transcript.pyannote[408].end 1816.05096875
transcript.pyannote[409].speaker SPEAKER_03
transcript.pyannote[409].start 1818.26159375
transcript.pyannote[409].end 1821.80534375
transcript.pyannote[410].speaker SPEAKER_03
transcript.pyannote[410].start 1821.94034375
transcript.pyannote[410].end 1824.28596875
transcript.pyannote[411].speaker SPEAKER_03
transcript.pyannote[411].start 1825.53471875
transcript.pyannote[411].end 1829.60159375
transcript.pyannote[412].speaker SPEAKER_03
transcript.pyannote[412].start 1829.93909375
transcript.pyannote[412].end 1829.95596875
transcript.whisperx[0].start 3.052
transcript.whisperx[0].end 6.058
transcript.whisperx[0].text 好 謝謝主席 卓院長有請麻煩再請卓院長備詢
transcript.whisperx[1].start 19.03
transcript.whisperx[1].end 40.263
transcript.whisperx[1].text 大部分人都非常關心美國的關稅戰還有後續的一些影響所以今天本席就用這樣子的一個題目希望跟行政院進行深切的政策對話我們都非常清楚跟美國的一場談判是免不了的那我們在談判的最簡單的概念裡面知己知彼才有辦法創造真正的談判雙贏如果不知彼此
transcript.whisperx[2].start 40.765
transcript.whisperx[2].end 50.956
transcript.whisperx[2].text 不知道對手在幹嘛 也不知道自己在做什麼做了哪些準備 那恐怕會禍國殃民啊所以今天就用這個題目來跟卓院長來進行施政的總質詢我們先看一支影片欸 對不起台灣
transcript.whisperx[3].start 62.251
transcript.whisperx[3].end 62.431
transcript.whisperx[3].text 余董
transcript.whisperx[4].start 86.718
transcript.whisperx[4].end 111.597
transcript.whisperx[4].text 他這樣的說法,川普曾經說,說台灣偷走了晶片的製造業然後在關稅之後,他羞辱全世界的國家說大家都要kiss his ass,大家跪著來求他談判,說大家都拜託他院長,我們是其中一個拜託他急著要談判的人嗎?我們是那個kiss his ass的國家嗎?我想我們都一樣,我們絕對不會承認
transcript.whisperx[5].start 113.015
transcript.whisperx[5].end 135.003
transcript.whisperx[5].text 台灣偷走了任何國家的高科技產品我們是靠我們國家自己的產業高科技人才研發 努力生產製造這個院長你都講過所以川普這樣子的言論算不算羞辱台灣他是對全世界講 我說他現在這次的這個官司只有一套公式 一個計算 一個結果對大家都是同樣的說法
transcript.whisperx[6].start 136.994
transcript.whisperx[6].end 161.611
transcript.whisperx[6].text 我們絕不接受對不對這樣的指控這樣子的關稅絕不接受我們偷走高科技晶片的這個說法那我們現在是爭取最佳的時間用我們備妥的方案去跟美國做談判這個是基於雙方互惠對等等一下我們會討論你在談判之前我們要了解對手所以我們先從美國開始談起院長知不知道什麼叫海湖莊園協議是請你說明一下就是
transcript.whisperx[7].start 164.746
transcript.whisperx[7].end 189.728
transcript.whisperx[7].text 像之前的那個廣場協議一樣他想創造一個讓世界的匯率等等都在那個地方做成一個讓給世界各國施壓還不錯 講得出廣場協議剛好我們前行政院長陳聰寫了一篇文章寫得非常清楚海湖創權協議是這個川普身邊的經濟戰略顧問寫出來一套試圖創造重構全球貿易體制的這樣一個經濟戰略那看起來川普也正在努力的去實踐這樣一個經濟戰略那麼
transcript.whisperx[8].start 191.83
transcript.whisperx[8].end 206.068
transcript.whisperx[8].text 你覺得海湖專業協裡面美國啊川普他希望達成哪些目標在這樣的架構之下他應該如果直接的講他應該要減少美國的貿易赤字貿易逆差減少貿易逆差還有勒減少貿易赤字貿易逆差然後造成
transcript.whisperx[9].start 206.707
transcript.whisperx[9].end 226.67
transcript.whisperx[9].text 排除這些非關稅貿易障礙等等讓美國的工業能夠再起來所以製造業回流嘛對不對好大概有回答到一些方向我們公布一下答案大概上來講川普對於全世界釋放的訊號關稅其實只是手段而已嘛他今天去提高關稅只是目標是要逼所有的國家跟他談判而已但他真實要的東西恐怕不見得是關稅
transcript.whisperx[10].start 227.591
transcript.whisperx[10].end 253.974
transcript.whisperx[10].text 對不對 他真實要的東西其實是要 你剛剛有講廣場協議嘛他真實要的是美元貶值嘛因為他希望重塑他製造業的競爭力他希望企業回到美國 製造業回流美國所以有企業赴美還有很重要一個 剛剛沒有談到他美國現在正在面臨非常嚴重的國債危機每一年聯邦政府光是要付美債的利息基本上就把聯邦政府的支出吃掉了一大塊最後一塊是剛剛提到的這樣子的一個貿易逆差
transcript.whisperx[11].start 254.754
transcript.whisperx[11].end 283.594
transcript.whisperx[11].text 這個是川普要的東西這幾項好 院長應該心裡大概也有譜嘛那美國現在面對的壓力是什麼就我們現在跟他談判啊我們主要知道他的弱點是什麼他的壓力是什麼院長你知不知道美國現在川普他推行這一套經濟戰略他面對的阻力跟壓力是什麼就是他的這個債務非常的高國家的債務非常的高債對不對對還有咧當然剛剛提到的貿易逆差他認為世界各國對他是不公平的貿易還有嗎
transcript.whisperx[12].start 285.063
transcript.whisperx[12].end 288.347
transcript.whisperx[12].text 我們都希望院長多講一點 以你對美國 你的對手他可能會有什麼弱點
transcript.whisperx[13].start 290.134
transcript.whisperx[13].end 317.717
transcript.whisperx[13].text 把他這個製造產業能夠回到美國來就是他要的東西好沒關係因為時間有限我們就不...這重點也不是考試是對談嘛川普政府面對壓力第一個他有任期限制嘛對不對他剩下第二任他能不能他會不會顛覆他的秩序那是另外一回事但是他的任期限制他的時間壓力是很大的對不對這個我沒有講錯吧院長他有任期壓力第二個他國內有沒有通膨的問題啊他現在下關稅的重手等等是不是反過來加劇他國內的通膨
transcript.whisperx[14].start 319.358
transcript.whisperx[14].end 347.512
transcript.whisperx[14].text 第三他要求要重新整理這個世界的貿易產業鏈要求要回流你覺得他美國國內的企業不生氣嗎為什麼他在半導體前面對中國大陸課這麼兇的關稅後來突然間豁免了難道蘋果公司 Google等等的大企業不給他施壓嗎所以美國國內的企業會不會給他施壓其實也會嘛那最後國際的建制嘛他現在要預約WTO要跟全世界一起開戰全世界各地也都給他施壓所以我今天談這個的院長其實美國不是沒有壓力啊
transcript.whisperx[15].start 347.952
transcript.whisperx[15].end 375.645
transcript.whisperx[15].text 我們的對手不是沒有弱點嗎這樣子的概念院長會不會反對還是院長同意這樣的說法每個國家都會面臨他不同國內國際上的壓力那他想主導那主導的過程當中他也必須付出一些跟其他國家交涉的過程的代價所以國內的壓力也會形同再增加起來所以川普也不是沒有弱點不是沒有壓力對不對好那我再往下問現在我們要講台美要談判對不對美國對台灣的依賴有哪些
transcript.whisperx[16].start 377.694
transcript.whisperx[16].end 400.251
transcript.whisperx[16].text 我們的製造 高科技的製造業高科技製造 半導體產業嘛 對不對 還有嗎半導體產業 製通 製通機業 大部分基本上就是這一塊嘛時間有限啦 我也就不多考驗你了半導體產業嘛 對不對我們的高科 整條不只是半導體其他的科技製造的關鍵供應的零組件嘛這個也是台灣的談判優勢嘛還有地緣政治的佈局啊 對不對人家總不會真的就放棄
transcript.whisperx[17].start 401.311
transcript.whisperx[17].end 430.272
transcript.whisperx[17].text 這個台灣所謂的第一島鏈對不對這是你們常講的但我們今天重點是經濟喔川普對台灣其實是有依賴的那我剛剛談川普要什麼川普的壓力是什麼川普對台灣的依賴是什麼其實都可以都可以講出一些蛛絲馬跡對不對那我現在問的這第一個問題啊那台美關係的時候我們是不是要一邊倒啊我們有沒有必要對美國對川普言聽計從我們有沒有必要kiss his ass有必要嗎我們沒有必要言聽計從我們是站在國家最大的利益爭取國家
transcript.whisperx[18].start 431.239
transcript.whisperx[18].end 431.762
transcript.whisperx[18].text 利益跟產業的國際競爭力
transcript.whisperx[19].start 433.41
transcript.whisperx[19].end 462.44
transcript.whisperx[19].text 所以沒有一定要言聽計從對不對這我要提醒沒關係我們接著我們還要往下談這個問題但是我要提醒院長其實現在社會上普遍出現非常焦慮的氣氛因為從尤其是台積電移到美國去之後大家說有必要這樣子嗎為什麼我們就對他言聽計從了呢現在院長嘴巴裡講出來我們不必要言聽計從可是目前為止的所作所為都有一點言聽計從的感覺這我們待會再詳細來說明好對美國的基本概念我覺得院長還算是回答得出來這我覺得還是不錯的
transcript.whisperx[20].start 463.28
transcript.whisperx[20].end 488.715
transcript.whisperx[20].text 那我們要回到國內我們講知己知彼我們要了解國內的狀況我們在跟台美談判之前我們總要了解國內的產業可能遇到的衝擊人家的弱點我們要掌握我們的弱點人家衝擊的時候我們也要做提早的布局跟因應我請問院長你大概了解川普可能會開始實踐海湖莊園協議開始動關稅大刀逼我們談判的時間是什麼時候
transcript.whisperx[21].start 489.946
transcript.whisperx[21].end 506.324
transcript.whisperx[21].text 你們整個行政團隊最早掌握可能發生這個事跟我們的談判時間不是談判的時間是川普上台之後你們就掌握他可能會做這件事了嗎我們在11月就成立了台美經貿的專案小組就掌握他可能會有任何的變動
transcript.whisperx[22].start 507.421
transcript.whisperx[22].end 534.119
transcript.whisperx[22].text 就掌握可能的任何的變動掌握他可能會變動但是沒有辦法掌握他確實的變動沒有辦法掌握數字這個我不怪你們因為川普本來就是變來變去的一個人但是你們11月去年的11月就準備了是嗎大選之前對美國大選之前我們現在看在新聞媒體或是看政府的作為你都可以看到是川普公布了32%的關稅之後然後你經濟部開始連續的座談後面開了幾場會談了一些什麼事情能不能簡單的說明一下
transcript.whisperx[23].start 535.16
transcript.whisperx[23].end 551.435
transcript.whisperx[23].text 我們談了十幾場十幾場對不對總統跟我分開分開嘛到各個縣市去坐談這個本席了解但我要問的是你如果是去年11月就已經組織好了相關的小組從去年11月到今年4月他發布之前也有你們談了幾場開了哪些會可以補充說明嗎
transcript.whisperx[24].start 555.474
transcript.whisperx[24].end 573.521
transcript.whisperx[24].text 我們都有談我們在這個對幾個我們推估的這個產業可能會他上來以後會有一些需求的產業我們都有做這個評估也跟每個業者做這個訪談都有座談也有我之前還跟這個
transcript.whisperx[25].start 574.801
transcript.whisperx[25].end 592.47
transcript.whisperx[25].text 那個工業總會啊工業總會底下它有一百多個這個各個的百工百業我們都分別來做的今天在這個質詢的現場你不一定馬上找得出數字但是我希望你會後要提供一下就是說你從去年11月你組織完之後你都做了一些什麼樣的事情
transcript.whisperx[26].start 592.89
transcript.whisperx[26].end 608.483
transcript.whisperx[26].text 因為大家現在看到的是四月他公布關稅之後然後才開始出現了大量的座談然後這些座談的內容是我聽一聽產業的意見你們有沒有什麼問題跟困境需要政府解決的我覺得這樣子的強度是不夠的院長我們在過年期間都談過
transcript.whisperx[27].start 609.264
transcript.whisperx[27].end 628.907
transcript.whisperx[27].text 好 很好大家期待的其實是在關稅這件事情公布有可能公布的時候你就先了解企業可能的衝擊然後在公布之後其實企業界 產業界期待的是政府帶著明確的方案也就是這個譽如大家的兵推跟預期有這樣的結果所以我們今天是帶著這樣的方案然後再跟企業界來做會商
transcript.whisperx[28].start 630.068
transcript.whisperx[28].end 652.083
transcript.whisperx[28].text 應該說我們要看到的是這樣的事但是以目前為止大家揭露的都是我們現在看到的比如說你到桃園到其他地方也都是我們現在衝擊來了我們聽一聽大家的意見我覺得這恐怕就有失先機了像我本人我現在記得我跟ICT產業也談過跟中小企業也談過好幾次而且我們去到工商團體跟他們做當面的會談商總工總我們都去過
transcript.whisperx[29].start 653.464
transcript.whisperx[29].end 679.804
transcript.whisperx[29].text 不能去的地方更多啦提供相關的資料因為馬上我們要討論接下來的我們會給你一份一個表我們在什麼時候跟誰談我們把那個表再送給委員參考這個是我們都試射後面大家討論比如說紓困的啊解決衝擊的預算要怎麼樣討論很重要的事情那我要再問院長部長也可以隨時支援台灣的產業危機真的是有關稅嗎
transcript.whisperx[30].start 682.199
transcript.whisperx[30].end 701.382
transcript.whisperx[30].text 我們剛剛前面談美國對不對談海湖狀元協議其實關稅比較像他的手段嘛我的目標是要逼談判嘛對不對那既然要逼談判美國真正要的恐怕不是關稅的收入而已嘛那美國真正要台灣真正會遇到衝擊的是哪些事情我們還可能必須進行一些必要的採購或是投資貿易
transcript.whisperx[31].start 702.878
transcript.whisperx[31].end 727.289
transcript.whisperx[31].text 投資貿易 採購是小 政府支出多一點大家商量一下怎麼辦共體時間就是了 可是投資貿易是一個 還有嗎我們當然這其中一個他比較關心的命題他希望是要解決美國的生產空洞化其實台灣跟美國在高科技的產業關鍵科技產業其實我們都是互補的
transcript.whisperx[32].start 728.052
transcript.whisperx[32].end 747.068
transcript.whisperx[32].text 美國他比較注重在研究但是我們強項是製造嘛對不對他現在講說製造要回流剛剛院長講說要投資我們台灣很強的是在開發跟製造所以我們可以協助他他美國想要發展的適合在美國發展的產業
transcript.whisperx[33].start 748.309
transcript.whisperx[33].end 769.205
transcript.whisperx[33].text 因為美國其實科技的含量非常的高他們在未來的製造裡面他們著重兩個現象一個現象就是他要大量使用機器人第二個驅動機器人的生成式AI這兩個關鍵變數是美國現在最關注的我們現在要談的是台灣內部的問題剛剛院長有講到一個概念就是他希望我們擴大對美的投資
transcript.whisperx[34].start 774.469
transcript.whisperx[34].end 798.279
transcript.whisperx[34].text 擴大對美的投資換言來講就是希望我們的產業到美國去設廠對不對這其中一個其實就是設廠所以對台灣來講它算不算產業外移的危機潛在危機我們要求產業第一個一定要保持台灣這裡的領先地位第二個絕對不能產業空洞化一定要跟流台灣用台灣plus的方式台灣加一這一題先在這邊我等一下會追問第二個除了產業外移之外還有沒有別的危機
transcript.whisperx[35].start 799.515
transcript.whisperx[35].end 805.397
transcript.whisperx[35].text 對我們的出口導向製造業會造成衝擊的我們產業升級我們產業必須要升級面對未來在未來的這個競爭的環境裡面趁著這一波然後讓我們的這個傳統產業讓我們過去在產業我剛剛講產業這一塊我後面再講嘛產業外營講對了這是一個我們會遇到的衝擊嘛第二個是什麼我直接公布答案因為時間啊台幣的升值啊
transcript.whisperx[36].start 825.427
transcript.whisperx[36].end 853.357
transcript.whisperx[36].text 對不對剛剛院長一開始回答這個海湖專業協議他是不是第一個提到廣場協議廣場協議是什麼當初就要求日本要求德國對美元大幅的升值嘛是不是就立刻對於日本跟當初的德國的國內的製造業造成衝擊今天如果他想要複製當初的廣場協議我們台幣未來會不會有大幅升值的壓力雖然我們長期看台幣是呈現一個比較穩定的狀態 長期啦但是我們現在心裡有準備未來的匯率應該也是一個重大的挑戰
transcript.whisperx[37].start 854.037
transcript.whisperx[37].end 866.418
transcript.whisperx[37].text 因為這就是委員所說的將來匯率包括股匯市等等的調整都是一個必須去面臨的一個重大問題院長你知道川普曾經講過最誇張的版本一美元對多少台幣你知道嗎
transcript.whisperx[38].start 868.991
transcript.whisperx[38].end 883.03
transcript.whisperx[38].text 有啦 當然他不是在正式的文書上但是他在訪談什麼談話性節目講1比13.3如果一美元對13.3台幣市場的產業會發生什麼事股市分析師告訴委員的啦股市分析師唯恐天下不亂
transcript.whisperx[39].start 883.991
transcript.whisperx[39].end 907.308
transcript.whisperx[39].text 那當然嘛 這是川普講過了嘛 對不對那 但是 我只是講當然不可能到1比13.3如果1比13.3 台灣的產業就完蛋了 對不對但是我想問的是我想問的是 如川普想要讓美元貶值想要讓台幣升值的趨勢是確定的嘛他也會用盡一些手段去做這個事嘛那請問我們的政府針對匯率升值對於產業的衝擊有沒有兵推比如說 1比301比28 1比26 有沒有可能
transcript.whisperx[40].start 911.596
transcript.whisperx[40].end 921.731
transcript.whisperx[40].text 我想央行長期在掌握台灣匯率的這個狀態底下他是有各方面的一個研判都有的只是現在我們沒有在告訴國人
transcript.whisperx[41].start 923.339
transcript.whisperx[41].end 940.581
transcript.whisperx[41].text 最不好的狀況出現的時候是不是怎麼樣因為還不到那個時期那到目前為止這樣總質詢應該是有意義的嘛因為我本席今天就要提醒你嘛美國真的要的是第一個要我們的產業外移嘛第二個他接下來要打的就是貨幣戰嘛他會希望台幣大量升值那麼這兩件事情都會對於我們這種出口導向的製造業造成衝擊嘛
transcript.whisperx[42].start 942.203
transcript.whisperx[42].end 958.939
transcript.whisperx[42].text 舉一個例子來講這段時間大家在討論關稅衝擊天下雜誌做了一個報導海嘯第一排很不幸本席的選區桃園龜山跟蘆竹伺服器產業PCB產業他當然就第一時間受到了衝擊我有細看他的內容
transcript.whisperx[43].start 959.62
transcript.whisperx[43].end 977.225
transcript.whisperx[43].text 他講得很清楚他說我們到關稅第一時間到還好為什麼因為剛性需求嘛剛剛這個兩位回答的時候都有講彼此之間產業有互補美國對我們是有需求的所以關稅的衝擊相對來講沒有像其他傳統產業這麼大但是擔心未來的不確定性什麼叫不確定性呢
transcript.whisperx[44].start 978.496
transcript.whisperx[44].end 996.631
transcript.whisperx[44].text 即便他們嘴巴上講關稅沒有衝擊沒有什麼事但是不也都佈局了到美國去設廠的準備嗎比如說我們的伺服器大廠比如說廣達比如說PCB大廠新興電子等等他們有沒有思考在美國開始設廠恐怕是有的吧這個我們的政府對於這些企業啊外移美國
transcript.whisperx[45].start 997.779
transcript.whisperx[45].end 1011.432
transcript.whisperx[45].text 有沒有掌握我們回到一個簡單一點的問題比如說以台積電來講台積電是大家比較熟的例子台積電去美國設廠對不對有多少家它的上下游供應鏈會跟著去的這個政府有沒有清楚的跟大家報告
transcript.whisperx[46].start 1012.786
transcript.whisperx[46].end 1037.876
transcript.whisperx[46].text 報告委員 這個部分我們都有做一些分析那台積電到美國去以台積電現在目前生產的量事實上沒有辦法誘使供應鏈移動到美國去你的答案是沒有是不是 其他人都不會走不是 我跟你講 以目前是沒有辦法因為這麼少的量嘛除非台積電把六個廠都蓋好以後供應鏈可能才會過去
transcript.whisperx[47].start 1039.276
transcript.whisperx[47].end 1056.973
transcript.whisperx[47].text 他最終的目標不就是要求你會蓋好嗎所以那個時候不是現在嘛那個可能是要七八年以後的事情所以請問政府對於這樣子這台積電只是半導體產業鏈嘛我剛剛講PCB可能也要外流這個伺服器他可能也會有外流ICT的部分我跟委員報告他們本來就在美國也有廠
transcript.whisperx[48].start 1057.734
transcript.whisperx[48].end 1086.824
transcript.whisperx[48].text 對啊 那麼現在因為現在這個情勢以後呢他們可能會調整調整在美國的那個地方他可能就美國的需求啊他可能會擴大就是這樣對啊 那他擴大的層面我們都擔心台積電的事情其實叫破窗嘛也就是說去了第一個之後大家就發現這個大事已定然後慢慢慢慢一步一步台灣的產業就被掏空掉這是普遍產業界的焦慮也是我們的焦慮我跟中小企業座談的時候他們講得很清楚啊他們說大的企業可以去設廠我中小企業走不了啊
transcript.whisperx[49].start 1087.384
transcript.whisperx[49].end 1100.558
transcript.whisperx[49].text 所以這衍生出來兩個問題第一個到底多少產業鏈會跟著外移對於我們的產值跟就業機會衝擊是什麼這我希望行政院要做好準備第二那些走不了的人他的訂單他本來習慣的產業會受到衝擊那個狀況我們要怎麼因應
transcript.whisperx[50].start 1104.202
transcript.whisperx[50].end 1130.558
transcript.whisperx[50].text 我覺得這個是除了百分之幾的關稅以外我們政府現在沒有在這部分多加做但這個是產業界最焦慮的事跟一些化學原料業者有做過相關的討論台積電過去了他們要不要過去剛剛部長說的量還沒有大的時候他們當然沒有去的這個必要但量大的時候他們要考慮因為如果不去的話會那邊另外扶植一個跟他競爭的槍門產業所以他們也會做考慮但不是現在就在發生
transcript.whisperx[51].start 1131.198
transcript.whisperx[51].end 1159.958
transcript.whisperx[51].text 但是你現在就要先預作準備我們都有跟他們談過這樣類似的問題還有一樣 我一樣譬如說談PCB也好或者是談伺服器產業就是我選區裡面的產業我剛剛為什麼要特別去提台幣匯率的問題它如果升到1比30 1比28我們有多少家產業要關門打烊這個政府有沒有掌握你們有沒有針對匯率上升因為川普逼你做這個事嘛你有沒有針對這樣做兵棋推演匯率上升的兵棋推演有沒有相關的數字可以跟人民做報告匯率的變化 央行是固定時間都有一個
transcript.whisperx[52].start 1162.234
transcript.whisperx[52].end 1176.689
transcript.whisperx[52].text 對 央行會針對匯率的這個出入他有一套匯率但關鍵是你要延伸到產業衝擊嘛因為我們是出口導向經濟體啊 對不對那這一部分的產業衝擊的評估在哪裡呢我們這樣 報告委員齁 我想這一次的這個關稅對這個產業的這個評估大概是這樣子影響的產業大概是5%
transcript.whisperx[53].start 1183.475
transcript.whisperx[53].end 1202.9
transcript.whisperx[53].text 那影響我們大概12.5萬的就業人口那大概我們會說他的影響程度大概在3到14%因為這個還沒有敲定但是我們是用32%關稅的這樣的一個部長你剛好讓我順利銜接到下一個問題就是說你針對關稅已經做了清楚的涉算這個本席知道
transcript.whisperx[54].start 1203.3
transcript.whisperx[54].end 1221.282
transcript.whisperx[54].text 但我第三個要提醒你的我剛剛提醒兩個除了產業空洞化的兵推匯率上升的兵推之外你現在啊我們賴慶忍總統對外講我們要從零關稅的角度來跟美國談判然後你對內又講說我們針對被關稅衝擊的產業做了若干的紓困這兩件事情其實是有點矛盾的
transcript.whisperx[55].start 1221.863
transcript.whisperx[55].end 1233.348
transcript.whisperx[55].text 院長你聽得懂我的意思嗎比如說你這本裡面都講說被課了32%的關稅等等的產業受到衝擊所以我要針對這些產業設計一些政策補助的機制讓它減緩衝擊可是我們的總統對外又講我們未來要跟他談零關稅
transcript.whisperx[56].start 1237.563
transcript.whisperx[56].end 1262.435
transcript.whisperx[56].text 零關稅造成的結果跟32%關稅造成的結果其實完全不同的兩個產業的類別嘛 對不對所以我們爭取好的談判結果希望造成衝擊降低啊所以我現在擔心的事情就是說賴總統對外是一種這樣子的一個說法可是你對內的配套措施包含我剛剛講的好像沒有對在一起啊我們第一時間就是把產業支持把它做出來讓產業安心再來備妥談判的方案那現在就準備隨時啟動談判
transcript.whisperx[57].start 1264.156
transcript.whisperx[57].end 1274.812
transcript.whisperx[57].text 我舉個例子,你在這本裡面提到比如農業來講,你提到的是毛豆、鬼頭刀、蝴蝶籃、茶葉,對不對?因為那是我們出口到美國的,他客關稅衝擊,所以我們要救他們可是如果賴清德總統談的零關稅,請問對農業的衝擊是什麼?是豬肉、是稻米嘛
transcript.whisperx[58].start 1278.888
transcript.whisperx[58].end 1301.757
transcript.whisperx[58].text 所以就變成你下資源的地方跟真的需要人可能會不一樣這個是本席要嚴肅提醒的未來這當然是881變931後來會變成4100億這我們在這邊不多談但是在野各黨為什麼都強烈的要求所謂的衝擊評估報告不只是針對32%的關稅而是我剛剛提的國內也許是匯率上升的兵推產業外移的等等它都是川普帶來經濟衝擊的可能衝擊層面嘛
transcript.whisperx[59].start 1304.238
transcript.whisperx[59].end 1319.068
transcript.whisperx[59].text 我希望接下來我們在審查這個特別條例或者是在審查相關預算的時候我們能夠看到更深更廣而且佈局更遠的衝擊評估這個行政院弄得出來嗎衝擊評估報告都有衝擊評估裡面數字都有就是從10到25 25加N因為我不是講幾%關稅的衝擊是我剛剛講的川普真實要的台幣上升之後的衝擊嘛匯率上升的衝擊嘛這個產業外移的衝擊嘛
transcript.whisperx[60].start 1332.237
transcript.whisperx[60].end 1360.474
transcript.whisperx[60].text 這個等到談判到一定的差異程度的時候我們就會重新再來核算一次所以這個資料我希望在特別勞力審查的時候大家都要充分來討論你要廣大各方一些好嗎讓談判進行到一定的這個程度的時候才有具體的數字再來我們馬上可能就要上門談判雖然這也算是本席的一點專業啦國際政治經濟學嘛談判策略的選擇啦大概就談判的學理來講大概有幾種做法就你如果在乎實質目標跟你是不是在乎我跟談判對象的關係嘛大概分成四種
transcript.whisperx[61].start 1361.554
transcript.whisperx[61].end 1376.694
transcript.whisperx[61].text 結果如果我又在乎談判的目標我們的國家利益又在乎跟對手的關係我要採取叫合作型策略又稱雙贏談判如果我不太在乎我跟我對手的關係跟他吵架也沒有關係就像現在草野吵架也沒關係叫做競爭型策略叫分配式談判
transcript.whisperx[62].start 1377.515
transcript.whisperx[62].end 1399.264
transcript.whisperx[62].text 如果我們很在乎他的關係以至於我們可以犧牲自己的國家利益叫做包容型談判就是說我就讓步嘛那最後一個是我既不在乎我的利益我也不在乎跟對方的關係那我就乾脆跟他別談了請問我們現在跟美國應該是採取哪樣的策略我主張我們應該採取合作又競爭的方式合作型的談判對不對希望追求雙贏對不對好 很好
transcript.whisperx[63].start 1400.714
transcript.whisperx[63].end 1425.04
transcript.whisperx[63].text 追求雙贏 我剛剛講我要反應基層的質疑跟懷疑我們現在表面上你嘴巴上講我們要追求雙贏可是我們的每一個動作我們都在做包容型策略他要我們台積電投資我們就去了他要我們降關稅我們就馬上說零關稅我不曾看過這個賴清德領導的政府對美國提出具體的要求也不曾看過他明確的拒絕美國的不合理要求
transcript.whisperx[64].start 1426.119
transcript.whisperx[64].end 1455.235
transcript.whisperx[64].text 現在實務的狀況是這樣 但沒關係因為這個在進行中如何達成所謂的合作型談判敢開口 敢拒絕嘛必要的時候你必須強硬嘛這個才是談判啊你如果一昧的讓步那你就是包容型談判你就是為了關係你什麼都不要嘛我現在不希望未來台美談判變成這樣那敢開口敢拒絕 院長我們走到一個具體的例子嘛 對不對我們的中華民國政府過去的歷史我們可曾經有對美強硬的時刻
transcript.whisperx[65].start 1456.325
transcript.whisperx[65].end 1472.051
transcript.whisperx[65].text 你可不可以舉幾個例子我們對美最強硬的時刻就是他跟我們斷交的時候民進黨執政任內有沒有對美強硬的時刻有啊我們在21世紀貿易上映的時候有很多過程我們也很堅持我們國內的這個國家的環境
transcript.whisperx[66].start 1475.305
transcript.whisperx[66].end 1489.833
transcript.whisperx[66].text 跟我們這個勞工的環境我們也有所堅持的不過到最後結論是談出了萊豬開放這樣不算強硬我舉個例子給你看啦這對美強硬的例子有而且就在你曾經民進黨政府裡面他是彭少傑以前的公民會的副主委
transcript.whisperx[67].start 1490.473
transcript.whisperx[67].end 1500.838
transcript.whisperx[67].text 在他的任內他就操辦一個非常重要的事情就是高通的反壟斷的案件高通透過這種不合理的這種獨家採購等等的一些技術設計意圖壟斷市場這當然衝擊到我們國內產業所以我們當初公平會就從嚴處理罰他234億台幣的罰單
transcript.whisperx[68].start 1508.221
transcript.whisperx[68].end 1529.907
transcript.whisperx[68].text 他當初開這張罰單的時候壓力很大你覺得AIT不施點壓嗎你覺得民進黨當初的內閣不給他一點壓力嗎但是他頂住這樣的壓力就堅持槓子投我非得罰他不可結果罰完之後發生什麼事情當然就是一樣要訴訟和解最後達成的協議是高通要投資台灣7億美金最後高通投資多少14億美金400多億台幣
transcript.whisperx[69].start 1532.168
transcript.whisperx[69].end 1552.509
transcript.whisperx[69].text 所以你要講對美強硬不只是有潛力而且有成果而且還在你民進黨任內我們今天要對美談判然後大家追求雙贏我們要敢開口要敢提要求可是院長如果你都舉不出幾個我們曾經對美強硬而且取得成果這樣子的一個例子的話那這樣難道沒有一點準備不足嗎院長你怎麼評價彭少傑
transcript.whisperx[70].start 1557.086
transcript.whisperx[70].end 1585.609
transcript.whisperx[70].text 當初這個例子我們都依稀記得都記得對不對這我給他最高度的評價即便大家政黨不同啊因為人家捍衛國家利益嘛然後他的強硬有沒有成果有成果我們回到我們剛剛討論的的幾個問題對不對從最開始我們講說我們不能對川普對不對他羞辱我們不能什麼話都不說嘛我們也談了美國對我們其實是有依賴的嘛我們也談了國內產業的焦慮嘛對不對所以其實啊我們有沒有對美強硬的底氣啊院長
transcript.whisperx[71].start 1586.687
transcript.whisperx[71].end 1608.017
transcript.whisperx[71].text 我們會堅持國家最大的利益這樣在這個談判桌要上桌之前我們想營造一個比較和緩的談判的環境所以不會像中國大陸跟美國現在兩個這樣劍拔路上所以你們不會採取競爭型的策略我也就藉這樣機會提醒不見得要這麼快很多人都講趕快談 趕快談趕快談真的好嗎 院長不見得喔我們只希望我們在
transcript.whisperx[72].start 1608.837
transcript.whisperx[72].end 1635.916
transcript.whisperx[72].text 準備好了再談比較重要吧而且談判的結果 我們不要高於我們競爭國家我們時間越來越少了 一分鐘的時間我們現在馬上要對美國談判啦我們會提哪些要求 或者是我們會拒絕哪些不合理的要求 院長提哪些要求啊對啊 人家要我們調整配合他 我們也可以提要求啊我們會希望他豁免我們的對等關稅啊豁免對等關稅 對不對那你會拒絕他什麼不合理條件
transcript.whisperx[73].start 1637.009
transcript.whisperx[73].end 1649.253
transcript.whisperx[73].text 還是人家要你照單全收因為他寫出的對等關稅非關稅貿易障礙跟出國管制這個都是談判的內容非關稅貿易障礙對我們來講我們必須調整一些國內的消費市場的結構
transcript.whisperx[74].start 1651.687
transcript.whisperx[74].end 1676.565
transcript.whisperx[74].text 然後本席在裡面具體提出要求我們要求我們的政府談判嚴守幾個原則嚴守產業外移你當然要盡量保護產業在台灣國內不要人家要什麼你都通通去啦台積電不能變成破口你不能讓大家跟著去第二要嚴守國內的就業機會我為什麼要守住台灣產業在國內因為我不能造成勞工的衝擊不能造成失業的危機第三我要求你嚴守匯率政策
transcript.whisperx[75].start 1677.125
transcript.whisperx[75].end 1698.802
transcript.whisperx[75].text 因為我們是小型開放經濟體是出口導向製造業是我們的命脈我們匯率政策沒有嚴守美國現在是就在指控他說你搞不好會操控匯率對不對但是這條線我們不能放你不能因為他恐嚇你一下你連這條線都放掉萬一台幣大幅升值到時候造成出口產業的衝擊最後要求你嚴守食品安全農業的權益也是很重要我剛剛為什麼舉農業的例子因為農業最簡單
transcript.whisperx[76].start 1700.143
transcript.whisperx[76].end 1712.036
transcript.whisperx[76].text 他的受害範圍不一樣什麼飛機改食品這個萊豬的標示當然要嚴守這幾條線我是要求政府談判絕對不能放手的很多人都在講這個談判
transcript.whisperx[77].start 1714.694
transcript.whisperx[77].end 1739.731
transcript.whisperx[77].text 很多人都講說我們只要質疑政府的談判策略現在就被扣以美論的大帽子但是我要用最後一點點時間提醒國際談判是雙城賽局你對外談判你對內要溝通內部的壓力跟強硬是你對外談判的籌碼所以今天本席作為在野黨的立法委員我一定盡言則我不知道這會不會是最後一次我跟卓院長的總質詢但是我非常確定面對像川普這樣的對手我堅持而且我堅決要求政府必須強硬以對
transcript.whisperx[78].start 1741.585
transcript.whisperx[78].end 1765.52
transcript.whisperx[78].text 為什麼?因為我要避免這個瘋子對台灣軟土生絕我們要守住台灣的產業,要守住台灣的就業守住台灣的人才,守住台灣社會的安定巴西的通過經濟互惠法要求談判一定要對等,授權政府報復那就是人家朝野一致,強硬對外的一種具體的做法我希望這樣子的精神能夠被政府借盡院長最後一點點時間了
transcript.whisperx[79].start 1767.284
transcript.whisperx[79].end 1786.367
transcript.whisperx[79].text 我們現在看到的是政府對內要求盲信相信政府就好了沒事通通都好對外一味盲從趕快修正你還有時間我剛剛講了不一定急著談判但是絕對對內不能要求盲信對外不能要求盲從因為知己知彼啊談判才會雙贏啊萬一不知己不知彼啊
transcript.whisperx[80].start 1786.727
transcript.whisperx[80].end 1815.057
transcript.whisperx[80].text 才會禍國殃民如果我們在這下談判沒有談好沒有守住中華民國的國家利益那才是真正的賣台行為院長這樣今天苦口婆心講了這麼多希望可以給我們的談判團隊多一點啟發爭取國家利益維持產業國際競爭力是我們談判的主手國家利益寸土不讓我們對內聽取產業的聲音今天國會殿堂上的每一句話都能在談判上發揮效果那是最好的談判的結果整個社會都在看希望院長好好加油謝謝謝謝委員 謝謝
transcript.whisperx[81].start 1818.969
transcript.whisperx[81].end 1829.247
transcript.whisperx[81].text 謝謝牛許廷委員精彩絕倫的質詢謝謝左院長經濟部的備詢謝謝抱怨我們一層二樓旁聽的有新北市南山