iVOD / 160566

Field Value
IVOD_ID 160566
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160566
日期 2025-04-23
會議資料.會議代碼 委員會-11-3-20-9
會議資料.會議代碼:str 第11屆第3會期財政委員會第9次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 9
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第9次全體委員會議
影片種類 Clip
開始時間 2025-04-23T12:31:49+08:00
結束時間 2025-04-23T12:40:02+08:00
影片長度 00:08:13
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/27ac2f54fdf75cc0a2d07f6856a36580c0f390e692fb4f24ca7a32b531de3e8073918cfeb3a2548d5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 張啓楷
委員發言時間 12:31:49 - 12:40:02
會議時間 2025-04-23T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第9次全體委員會議(事由:一、審查「貨物稅條例」34案: (一) 本院委員葉元之等21人擬具「貨物稅條例刪除部分條文草案」案。 (二) 本院委員廖先翔等16人擬具「貨物稅條例刪除第八條條文草案」案。 (三) 本院台灣民眾黨黨團擬具「貨物稅條例第十一條、第十一條之一及第三十七條條文修正草案」案。 (四) 本院委員邱若華等20人擬具「貨物稅條例第十一條條文修正草案」案。 (五) 本院委員魯明哲等16人、委員顏寬恒等19人、委員羅廷瑋等16人、委員賴士葆等21人、委員邱鎮軍等22人、委員徐欣瑩等27人、委員翁曉玲等17人、委員羅明才等16人、委員郭國文等17人、委員王鴻薇等24人、委員廖偉翔等17人、委員許宇甄等21人、委員黃建賓等16人、委員林思銘等21人、委員萬美玲等16人分別擬具「貨物稅條例第十一條之一條文修正草案」等15案。 (六) 本院委員李坤城等24人擬具「貨物稅條例第十一條之一、第十二條之五及第十二條之六條文修正草案」案。 (七) 本院委員鄭天財Sra Kacaw等19人、委員林思銘等19人、委員涂權吉等17人、委員陳玉珍等19人、委員馬文君等18人、委員王世堅等19人、委員張智倫等25人、委員魯明哲等16人、委員王鴻薇等19人、委員楊瓊瓔等20人、委員邱鎮軍等24人、委員萬美玲等18人、委員廖偉翔等17人分別擬具「貨物稅條例第十二條條文修正草案」等13案。 (八) 本院委員邱鎮軍等19人擬具「貨物稅條例第十二條之三條文修正草案」案。 二、審查人民請願案有關「貨物稅條例」7案。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 15.06659375
transcript.pyannote[0].end 20.19659375
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 20.61846875
transcript.pyannote[1].end 20.95596875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 20.95596875
transcript.pyannote[2].end 20.97284375
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 20.97284375
transcript.pyannote[3].end 21.02346875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 21.02346875
transcript.pyannote[4].end 21.86721875
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 21.86721875
transcript.pyannote[5].end 22.06971875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 22.06971875
transcript.pyannote[6].end 22.08659375
transcript.pyannote[7].speaker SPEAKER_03
transcript.pyannote[7].start 24.16221875
transcript.pyannote[7].end 24.66846875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 30.37221875
transcript.pyannote[8].end 34.45596875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 35.55284375
transcript.pyannote[9].end 41.89784375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 42.37034375
transcript.pyannote[10].end 45.72846875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 46.40346875
transcript.pyannote[11].end 49.17096875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 49.60971875
transcript.pyannote[12].end 55.65096875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 56.62971875
transcript.pyannote[13].end 61.05096875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 61.72596875
transcript.pyannote[14].end 62.14784375
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 63.48096875
transcript.pyannote[15].end 66.26534375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 64.84784375
transcript.pyannote[16].end 67.96971875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 68.69534375
transcript.pyannote[17].end 71.88471875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 72.69471875
transcript.pyannote[18].end 73.92659375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 74.41596875
transcript.pyannote[19].end 77.52096875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 77.77409375
transcript.pyannote[20].end 79.30971875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 79.66409375
transcript.pyannote[21].end 80.17034375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 80.57534375
transcript.pyannote[22].end 82.85346875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 82.85346875
transcript.pyannote[23].end 82.88721875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 83.15721875
transcript.pyannote[24].end 83.29221875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 83.29221875
transcript.pyannote[25].end 83.84909375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 83.84909375
transcript.pyannote[26].end 83.89971875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 83.89971875
transcript.pyannote[27].end 83.91659375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 84.18659375
transcript.pyannote[28].end 84.20346875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 84.20346875
transcript.pyannote[29].end 84.35534375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 84.35534375
transcript.pyannote[30].end 84.45659375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 84.45659375
transcript.pyannote[31].end 84.49034375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 84.49034375
transcript.pyannote[32].end 84.52409375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 84.52409375
transcript.pyannote[33].end 84.67596875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 84.67596875
transcript.pyannote[34].end 84.69284375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 84.69284375
transcript.pyannote[35].end 84.70971875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 84.70971875
transcript.pyannote[36].end 85.51971875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 85.92471875
transcript.pyannote[37].end 96.33659375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 96.65721875
transcript.pyannote[38].end 98.96909375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 98.96909375
transcript.pyannote[39].end 101.93909375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 102.69846875
transcript.pyannote[40].end 110.08971875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 110.35971875
transcript.pyannote[41].end 111.03471875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 111.42284375
transcript.pyannote[42].end 113.66721875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 113.93721875
transcript.pyannote[43].end 114.91596875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 115.25346875
transcript.pyannote[44].end 116.56971875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 117.16034375
transcript.pyannote[45].end 119.05034375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 119.10096875
transcript.pyannote[46].end 120.83909375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 120.83909375
transcript.pyannote[47].end 120.85596875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 121.39596875
transcript.pyannote[48].end 121.42971875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 121.42971875
transcript.pyannote[49].end 121.71659375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 121.71659375
transcript.pyannote[50].end 122.00346875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 122.00346875
transcript.pyannote[51].end 122.23971875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 124.85534375
transcript.pyannote[52].end 135.55409375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 135.55409375
transcript.pyannote[53].end 137.30909375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 137.83221875
transcript.pyannote[54].end 147.29909375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 147.95721875
transcript.pyannote[55].end 149.71221875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 150.43784375
transcript.pyannote[56].end 153.49221875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 153.82971875
transcript.pyannote[57].end 154.43721875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 155.28096875
transcript.pyannote[58].end 156.63096875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 156.73221875
transcript.pyannote[59].end 157.91346875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 158.95971875
transcript.pyannote[60].end 161.74409375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 162.18284375
transcript.pyannote[61].end 165.69284375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 165.94596875
transcript.pyannote[62].end 168.74721875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 169.25346875
transcript.pyannote[63].end 170.13096875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 170.65409375
transcript.pyannote[64].end 171.51471875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 171.81846875
transcript.pyannote[65].end 173.67471875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 174.33284375
transcript.pyannote[66].end 176.02034375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 177.15096875
transcript.pyannote[67].end 178.01159375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 178.88909375
transcript.pyannote[68].end 179.20971875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 180.15471875
transcript.pyannote[69].end 180.99846875
transcript.pyannote[70].speaker SPEAKER_03
transcript.pyannote[70].start 180.89721875
transcript.pyannote[70].end 181.84221875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 182.24721875
transcript.pyannote[71].end 183.88409375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 184.32284375
transcript.pyannote[72].end 185.25096875
transcript.pyannote[73].speaker SPEAKER_03
transcript.pyannote[73].start 185.80784375
transcript.pyannote[73].end 192.16971875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 191.89971875
transcript.pyannote[74].end 193.51971875
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 193.24971875
transcript.pyannote[75].end 193.60409375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 193.70534375
transcript.pyannote[76].end 198.37971875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 199.02096875
transcript.pyannote[77].end 204.40409375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 204.87659375
transcript.pyannote[78].end 211.79534375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 212.21721875
transcript.pyannote[79].end 213.87096875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 214.64721875
transcript.pyannote[80].end 215.62596875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 216.65534375
transcript.pyannote[81].end 218.56221875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 219.40596875
transcript.pyannote[82].end 221.11034375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 222.81471875
transcript.pyannote[83].end 224.95784375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 225.29534375
transcript.pyannote[84].end 227.37096875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 228.13034375
transcript.pyannote[85].end 229.27784375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 229.81784375
transcript.pyannote[86].end 230.77971875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 231.30284375
transcript.pyannote[87].end 232.43346875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 233.54721875
transcript.pyannote[88].end 235.15034375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 235.80846875
transcript.pyannote[89].end 238.39034375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 239.33534375
transcript.pyannote[90].end 240.21284375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 241.49534375
transcript.pyannote[91].end 243.68909375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 244.33034375
transcript.pyannote[92].end 244.93784375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 246.45659375
transcript.pyannote[93].end 247.06409375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 249.51096875
transcript.pyannote[94].end 250.03409375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 250.65846875
transcript.pyannote[95].end 251.50221875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 251.63721875
transcript.pyannote[96].end 254.35409375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 254.69159375
transcript.pyannote[97].end 256.56471875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 256.95284375
transcript.pyannote[98].end 258.37034375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 258.80909375
transcript.pyannote[99].end 259.46721875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 260.17596875
transcript.pyannote[100].end 261.96471875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 263.77034375
transcript.pyannote[101].end 268.34346875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 268.61346875
transcript.pyannote[102].end 271.09409375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 271.49909375
transcript.pyannote[103].end 272.91659375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 273.49034375
transcript.pyannote[104].end 275.17784375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 275.86971875
transcript.pyannote[105].end 276.27471875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 277.16909375
transcript.pyannote[106].end 281.32034375
transcript.pyannote[107].speaker SPEAKER_03
transcript.pyannote[107].start 281.55659375
transcript.pyannote[107].end 282.01221875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 282.21471875
transcript.pyannote[108].end 283.61534375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 284.10471875
transcript.pyannote[109].end 285.11721875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 285.67409375
transcript.pyannote[110].end 286.85534375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 287.09159375
transcript.pyannote[111].end 290.36534375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 290.97284375
transcript.pyannote[112].end 291.88409375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 292.27221875
transcript.pyannote[113].end 293.21721875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 293.82471875
transcript.pyannote[114].end 294.58409375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 295.19159375
transcript.pyannote[115].end 295.42784375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 295.73159375
transcript.pyannote[116].end 296.23784375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 297.50346875
transcript.pyannote[117].end 297.85784375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 298.39784375
transcript.pyannote[118].end 301.89096875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 302.09346875
transcript.pyannote[119].end 309.41721875
transcript.pyannote[120].speaker SPEAKER_03
transcript.pyannote[120].start 310.10909375
transcript.pyannote[120].end 314.80034375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 315.27284375
transcript.pyannote[121].end 343.16721875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 343.58909375
transcript.pyannote[122].end 345.74909375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 345.90096875
transcript.pyannote[123].end 348.31409375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 348.88784375
transcript.pyannote[124].end 351.62159375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 352.85346875
transcript.pyannote[125].end 353.20784375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 353.64659375
transcript.pyannote[126].end 354.25409375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 354.50721875
transcript.pyannote[127].end 355.35096875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 356.59971875
transcript.pyannote[128].end 360.83534375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 361.29096875
transcript.pyannote[129].end 365.89784375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 366.60659375
transcript.pyannote[130].end 368.68221875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 369.30659375
transcript.pyannote[131].end 373.89659375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 374.33534375
transcript.pyannote[132].end 376.22534375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 376.36034375
transcript.pyannote[133].end 377.71034375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 379.31346875
transcript.pyannote[134].end 380.86596875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 381.42284375
transcript.pyannote[135].end 387.36284375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 387.75096875
transcript.pyannote[136].end 391.61534375
transcript.pyannote[137].speaker SPEAKER_03
transcript.pyannote[137].start 392.71221875
transcript.pyannote[137].end 399.63096875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 398.09534375
transcript.pyannote[138].end 403.39409375
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 403.24221875
transcript.pyannote[139].end 405.72284375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 404.11971875
transcript.pyannote[140].end 407.27534375
transcript.pyannote[141].speaker SPEAKER_03
transcript.pyannote[141].start 406.17846875
transcript.pyannote[141].end 407.51159375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 407.49471875
transcript.pyannote[142].end 411.96659375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 412.05096875
transcript.pyannote[143].end 413.43471875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 413.94096875
transcript.pyannote[144].end 428.20034375
transcript.pyannote[145].speaker SPEAKER_03
transcript.pyannote[145].start 416.94471875
transcript.pyannote[145].end 418.00784375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 428.48721875
transcript.pyannote[146].end 432.65534375
transcript.pyannote[147].speaker SPEAKER_03
transcript.pyannote[147].start 432.97596875
transcript.pyannote[147].end 445.96971875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 437.61659375
transcript.pyannote[148].end 456.02721875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 445.96971875
transcript.pyannote[149].end 448.06221875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 452.07846875
transcript.pyannote[150].end 452.12909375
transcript.pyannote[151].speaker SPEAKER_03
transcript.pyannote[151].start 452.12909375
transcript.pyannote[151].end 452.33159375
transcript.pyannote[152].speaker SPEAKER_03
transcript.pyannote[152].start 453.09096875
transcript.pyannote[152].end 453.64784375
transcript.pyannote[153].speaker SPEAKER_03
transcript.pyannote[153].start 454.59284375
transcript.pyannote[153].end 454.69409375
transcript.pyannote[154].speaker SPEAKER_03
transcript.pyannote[154].start 456.02721875
transcript.pyannote[154].end 456.06096875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 456.06096875
transcript.pyannote[155].end 456.46596875
transcript.pyannote[156].speaker SPEAKER_03
transcript.pyannote[156].start 456.63471875
transcript.pyannote[156].end 457.68096875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 457.76534375
transcript.pyannote[157].end 457.98471875
transcript.pyannote[158].speaker SPEAKER_03
transcript.pyannote[158].start 457.98471875
transcript.pyannote[158].end 458.01846875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 458.01846875
transcript.pyannote[159].end 458.03534375
transcript.pyannote[160].speaker SPEAKER_03
transcript.pyannote[160].start 458.03534375
transcript.pyannote[160].end 458.10284375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 458.08596875
transcript.pyannote[161].end 460.53284375
transcript.pyannote[162].speaker SPEAKER_03
transcript.pyannote[162].start 458.52471875
transcript.pyannote[162].end 459.21659375
transcript.pyannote[163].speaker SPEAKER_03
transcript.pyannote[163].start 460.07721875
transcript.pyannote[163].end 463.21596875
transcript.pyannote[164].speaker SPEAKER_03
transcript.pyannote[164].start 463.70534375
transcript.pyannote[164].end 463.87409375
transcript.pyannote[165].speaker SPEAKER_03
transcript.pyannote[165].start 464.88659375
transcript.pyannote[165].end 469.98284375
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 464.92034375
transcript.pyannote[166].end 469.44284375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 470.08409375
transcript.pyannote[167].end 480.79971875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 474.60659375
transcript.pyannote[168].end 474.70784375
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 474.91034375
transcript.pyannote[169].end 475.58534375
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 480.96846875
transcript.pyannote[170].end 484.81596875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 485.18721875
transcript.pyannote[171].end 489.79409375
transcript.pyannote[172].speaker SPEAKER_03
transcript.pyannote[172].start 488.84909375
transcript.pyannote[172].end 491.90346875
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 491.61659375
transcript.pyannote[173].end 492.81471875
transcript.whisperx[0].start 15.084
transcript.whisperx[0].end 16.905
transcript.whisperx[0].text 兩位好 兩位一定都有注意到川普公開說
transcript.whisperx[1].start 35.575
transcript.whisperx[1].end 61.807
transcript.whisperx[1].text 歐盟跟日本有八大非關稅的作弊手段我這個用得很重我們平常用的字眼叫做非關稅的貿易障礙嘛對不對他直接講說這是作弊這很顯然也會影響到我們台灣這段時間跟美國高關稅的談判兩位次長都有注意到對不對那剛剛有進一步去討論了裡面可能馬上影響到的就是貨物稅對不對
transcript.whisperx[2].start 66.121
transcript.whisperx[2].end 71.613
transcript.whisperx[2].text 那貨物稅目前我的了解就汽車啊價格一直居高不下
transcript.whisperx[3].start 72.728
transcript.whisperx[3].end 101.381
transcript.whisperx[3].text 很多民眾都抗議了財政部到目前好像都是講說是市場結果可是經濟部是贊成對不對那市長經濟部對於汽車的貨物稅降下來是持贊成的態度嗎這個部分民眾跟業者有一些的反應那至於說如何去進行與時俱進的調整我們會跟財政部一起來檢討這個非常重要你看川普已經明確點名了老蔣最近這一二十年來
transcript.whisperx[4].start 102.728
transcript.whisperx[4].end 122.086
transcript.whisperx[4].text 很多民眾跟立法院都在推動汽車貨物稅是要降的汽車那個價格真的太貴了而且保護的過頭了這次高關稅這個談判可能就是一個契機所以請經濟部你既然往這個方向在走在開會的時候不只建立財政部要往降這個汽車的貨物稅走好不好
transcript.whisperx[5].start 125.458
transcript.whisperx[5].end 152.539
transcript.whisperx[5].text 很多事情彷彿相扣委員這個指導的意見我們在內部評估或是相關的會議的話我們會妥善的來加以納入評估這千年的意義你看已經爭取了一二十年後來都被擋住可能這次就是一個歷史的契機可以把這個汽車的相關稅降下來我們來討論看看台灣的車價為什麼會拚高每次財政部都說它是市場結構公需其實
transcript.whisperx[6].start 155.322
transcript.whisperx[6].end 157.609
transcript.whisperx[6].text 最重要的關節在哪裡最重要的關鍵在哪裡
transcript.whisperx[7].start 159.629
transcript.whisperx[7].end 177.604
transcript.whisperx[7].text 萬萬稅嘛,就稅是出了問題嘛進口稅它基本上就是一個稅負的疊加至少42.5%起跳,我們看看咧它課幾種稅,而且大家知道嗎它是相乘的,一直乘上去第一個,進來要關稅對不對進來要關稅對不對要關稅嘛,進口關稅還要貨物稅,貨物稅現在多少
transcript.whisperx[8].start 186.131
transcript.whisperx[8].end 208.883
transcript.whisperx[8].text 後稅有兩種 一種是小客車2000cc以下25% 2000cc以上30%另外還有營業稅 營業稅因為每個都有繳 營業稅大家不要沒有意見現在大家有意見的 其實重點就是後稅我算給大家聽一下 大家看一下這個公式這樣算下來 用關稅1.175乘以後稅的1.25乘以營業稅的1.05你買不汽車啊
transcript.whisperx[9].start 214.69
transcript.whisperx[9].end 241.708
transcript.whisperx[9].text 本來一百塊的你要付到一百五十四塊就多了三分之一的價格出來這個稅不只太繁複的而且太多了你買進來之後要養這部車你還要牌照稅還要燃料稅還要強制保險全世界沒人像台灣這樣啦利用這個機會好好好好檢討一下我來做個比較各國進口車的這個關稅大家看一下
transcript.whisperx[10].start 244.383
transcript.whisperx[10].end 260.575
transcript.whisperx[10].text 美國 2.5%日本 日本本來這個後稅跟關稅本來是高的喔他慢慢慢慢降 他現在已經是0了新加坡也是0結果呢 我們有一個17.5%的關稅
transcript.whisperx[11].start 263.8
transcript.whisperx[11].end 275.967
transcript.whisperx[11].text 我們從2000年 2002年的時候我們關稅從60%降到30%2010年的時候又降 降到17.5%可是跟全世界比起來我們關稅已經太高了吧 對不對 次長
transcript.whisperx[12].start 277.239
transcript.whisperx[12].end 296.034
transcript.whisperx[12].text 現在更嚴重的是剛剛你剛才說的那個25%到30%的那個營業稅貨物稅那個加起來42.5%耶加上我剛剛講的營業稅你每買一部車進來就多加了三分之一的錢了那現在更嚴重的川普跟你講了這是一個作弊
transcript.whisperx[13].start 297.54
transcript.whisperx[13].end 308.029
transcript.whisperx[13].text 對不對所以利用這個時間點是不是好好去檢討一下可以嗎財政部可以利用這個機會好好去檢討一下把我們剛剛一直在強調的汽車的貨物稅 租賃的調降
transcript.whisperx[14].start 310.245
transcript.whisperx[14].end 327.943
transcript.whisperx[14].text 我們這次會配合那個對等關稅的談判會做一些因應的方案好 我最後做三個訴求因為那個主席已經舉起來了第一個這個是民眾也是包括中華經濟研究院他們的一個建議對貨物稅進行稅務透明跟公平化的這個檢視第二個
transcript.whisperx[15].start 329.344
transcript.whisperx[15].end 351.56
transcript.whisperx[15].text 用公共政策為名這個說客啊應該要有一個實際的數據第三個 要撤除錯誤的這個稅制才能夠真正減輕民眾的負擔其實啦 目前這個車價這麼高說來最大的是誰 就是消費者嘛好不好 包括中華經濟研究院都提醒了我們現在一直要加入這個CPTPP 對不對市長 兩位市長 我們要加入
transcript.whisperx[16].start 356.633
transcript.whisperx[16].end 377.35
transcript.whisperx[16].text 那明明確切就要求要調降我們進口的關稅進口車的關稅嘛對不對結果你說要加入CPTPP結果你那個汽車的關稅又不降你這不是自打嘴巴嗎前後就矛盾啊所以國際的歧視本來就要做還有照顧我們國內的這個消費者請好好趕快去討論好不好好那能不能在一個禮拜內
transcript.whisperx[17].start 379.706
transcript.whisperx[17].end 391.319
transcript.whisperx[17].text 這個應該是財政部的事吧對不對那個經濟部比較沒有意見要講吧還是兩個這樣好不好經濟部跟財政部一個禮拜內都給我一份關於我們的汽車貨物稅有沒有可能逐年調降的一個報告
transcript.whisperx[18].start 392.899
transcript.whisperx[18].end 413.211
transcript.whisperx[18].text 報告委員我們可不可以給我們長一點的時間因為我們現在這個部分有些事情我們還不方便在一個禮拜啦我跟你講為什麼要一個禮拜因為你馬上就要去談判了這個應該是你們的必考題市長聽我講聽我講這應該是去跟美國跟川普談判的必考題他已經講到清楚八大八大作弊裡面的
transcript.whisperx[19].start 414.211
transcript.whisperx[19].end 432.481
transcript.whisperx[19].text 裡面很重要一項就是這個啊你沒有準備你怎麼去談判所以這變成你一個籌碼嘛你把它準備好不只給本席給立法院你們帶去美國的時候也講我們在這個汽車的貨物稅我們要適度的降低啊你不用一次全部都取消啊可是這跟日本一樣啊你適度每一年逐步的把它下降啊
transcript.whisperx[20].start 433.318
transcript.whisperx[20].end 457.533
transcript.whisperx[20].text 因為這個畢竟還在談判的過程很多事情我們現在不適合他當作他的機密所以先不要給他這是你該做的事情吧時間可以了時間已經給你五分鐘了跟他多久主席你認為他應該多久給我這個報告這個要尊重他好不好因為這個要拿去跟美國談判你現在叫他拿出來不好啦真的不好
transcript.whisperx[21].start 458.315
transcript.whisperx[21].end 463.151
transcript.whisperx[21].text 不過你要有準備啦 那是必考題嘛我們如果有結果的時候 我們一定會跟委員報告的
transcript.whisperx[22].start 465.075
transcript.whisperx[22].end 491.751
transcript.whisperx[22].text 沒有錯啦 好啦 那一個月給我報告啦你一個月一定有談判了吧 對不對不好啦 不好啦沒有沒有 先這樣子啦 抱歉抱歉 我要講一下 主席已經主席這麼資深 有重量級已經站起來了 我沒有在講了時間已經拖很久了你第一個 你要跟全國的民眾引諾說你已經開始在檢討 因為這是必考題嘛你不可能 不可能不做研究 不做報告這個原理嘛 對不對那第二個 就是你們談判到一個階段你們要趕快把這個動態給大家看沒問題 我們如果可以對外說明的時候我們一定會對外說明的OK 好 謝謝