IVOD_ID |
160561 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/160561 |
日期 |
2025-04-23 |
會議資料.會議代碼 |
委員會-11-3-26-7 |
會議資料.會議代碼:str |
第11屆第3會期社會福利及衛生環境委員會第7次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
7 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第3會期社會福利及衛生環境委員會第7次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-04-23T12:17:18+08:00 |
結束時間 |
2025-04-23T12:25:15+08:00 |
影片長度 |
00:07:57 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/27ac2f54fdf75cc01f9ca4c5aad485214d63fb5309bb2e63ca7a32b531de3e80ea8a73a6fda787c85ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
鍾佳濱 |
委員發言時間 |
12:17:18 - 12:25:15 |
會議時間 |
2025-04-23T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期社會福利及衛生環境委員會第7次全體委員會議(事由:邀請衛生福利部部長、財政部次長就「國家社會福利政策財源檢討及偏鄉兒童發展篩檢執行情形」進行專題報告,並備質詢。
【4月23日及24日二天一次會】) |
transcript.pyannote[0].speaker |
SPEAKER_02 |
transcript.pyannote[0].start |
12.31596875 |
transcript.pyannote[0].end |
17.73284375 |
transcript.pyannote[1].speaker |
SPEAKER_02 |
transcript.pyannote[1].start |
18.13784375 |
transcript.pyannote[1].end |
24.19596875 |
transcript.pyannote[2].speaker |
SPEAKER_02 |
transcript.pyannote[2].start |
26.92971875 |
transcript.pyannote[2].end |
27.35159375 |
transcript.pyannote[3].speaker |
SPEAKER_02 |
transcript.pyannote[3].start |
28.27971875 |
transcript.pyannote[3].end |
29.52846875 |
transcript.pyannote[4].speaker |
SPEAKER_02 |
transcript.pyannote[4].start |
31.03034375 |
transcript.pyannote[4].end |
31.60409375 |
transcript.pyannote[5].speaker |
SPEAKER_02 |
transcript.pyannote[5].start |
32.49846875 |
transcript.pyannote[5].end |
41.30721875 |
transcript.pyannote[6].speaker |
SPEAKER_02 |
transcript.pyannote[6].start |
41.34096875 |
transcript.pyannote[6].end |
45.52596875 |
transcript.pyannote[7].speaker |
SPEAKER_02 |
transcript.pyannote[7].start |
46.52159375 |
transcript.pyannote[7].end |
50.70659375 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
47.88846875 |
transcript.pyannote[8].end |
48.07409375 |
transcript.pyannote[9].speaker |
SPEAKER_02 |
transcript.pyannote[9].start |
50.84159375 |
transcript.pyannote[9].end |
53.38971875 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
53.38971875 |
transcript.pyannote[10].end |
53.59221875 |
transcript.pyannote[11].speaker |
SPEAKER_02 |
transcript.pyannote[11].start |
53.59221875 |
transcript.pyannote[11].end |
58.99221875 |
transcript.pyannote[12].speaker |
SPEAKER_02 |
transcript.pyannote[12].start |
59.22846875 |
transcript.pyannote[12].end |
62.75534375 |
transcript.pyannote[13].speaker |
SPEAKER_02 |
transcript.pyannote[13].start |
63.36284375 |
transcript.pyannote[13].end |
69.15096875 |
transcript.pyannote[14].speaker |
SPEAKER_02 |
transcript.pyannote[14].start |
69.43784375 |
transcript.pyannote[14].end |
70.66971875 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
70.78784375 |
transcript.pyannote[15].end |
71.10846875 |
transcript.pyannote[16].speaker |
SPEAKER_02 |
transcript.pyannote[16].start |
71.14221875 |
transcript.pyannote[16].end |
73.75784375 |
transcript.pyannote[17].speaker |
SPEAKER_02 |
transcript.pyannote[17].start |
74.16284375 |
transcript.pyannote[17].end |
80.18721875 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
80.18721875 |
transcript.pyannote[18].end |
80.54159375 |
transcript.pyannote[19].speaker |
SPEAKER_02 |
transcript.pyannote[19].start |
80.54159375 |
transcript.pyannote[19].end |
83.78159375 |
transcript.pyannote[20].speaker |
SPEAKER_02 |
transcript.pyannote[20].start |
84.54096875 |
transcript.pyannote[20].end |
91.51034375 |
transcript.pyannote[21].speaker |
SPEAKER_02 |
transcript.pyannote[21].start |
92.11784375 |
transcript.pyannote[21].end |
94.68284375 |
transcript.pyannote[22].speaker |
SPEAKER_02 |
transcript.pyannote[22].start |
95.30721875 |
transcript.pyannote[22].end |
99.18846875 |
transcript.pyannote[23].speaker |
SPEAKER_02 |
transcript.pyannote[23].start |
99.61034375 |
transcript.pyannote[23].end |
101.88846875 |
transcript.pyannote[24].speaker |
SPEAKER_02 |
transcript.pyannote[24].start |
101.92221875 |
transcript.pyannote[24].end |
107.65971875 |
transcript.pyannote[25].speaker |
SPEAKER_02 |
transcript.pyannote[25].start |
108.08159375 |
transcript.pyannote[25].end |
109.38096875 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
110.34284375 |
transcript.pyannote[26].end |
125.74971875 |
transcript.pyannote[27].speaker |
SPEAKER_02 |
transcript.pyannote[27].start |
111.82784375 |
transcript.pyannote[27].end |
112.58721875 |
transcript.pyannote[28].speaker |
SPEAKER_02 |
transcript.pyannote[28].start |
118.34159375 |
transcript.pyannote[28].end |
120.19784375 |
transcript.pyannote[29].speaker |
SPEAKER_02 |
transcript.pyannote[29].start |
123.47159375 |
transcript.pyannote[29].end |
138.00096875 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
127.87596875 |
transcript.pyannote[30].end |
128.77034375 |
transcript.pyannote[31].speaker |
SPEAKER_02 |
transcript.pyannote[31].start |
138.38909375 |
transcript.pyannote[31].end |
143.23221875 |
transcript.pyannote[32].speaker |
SPEAKER_02 |
transcript.pyannote[32].start |
143.35034375 |
transcript.pyannote[32].end |
150.72471875 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
151.16346875 |
transcript.pyannote[33].end |
153.15471875 |
transcript.pyannote[34].speaker |
SPEAKER_02 |
transcript.pyannote[34].start |
152.81721875 |
transcript.pyannote[34].end |
154.85909375 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
154.85909375 |
transcript.pyannote[35].end |
155.06159375 |
transcript.pyannote[36].speaker |
SPEAKER_02 |
transcript.pyannote[36].start |
155.06159375 |
transcript.pyannote[36].end |
155.21346875 |
transcript.pyannote[37].speaker |
SPEAKER_02 |
transcript.pyannote[37].start |
155.23034375 |
transcript.pyannote[37].end |
155.92221875 |
transcript.pyannote[38].speaker |
SPEAKER_02 |
transcript.pyannote[38].start |
156.79971875 |
transcript.pyannote[38].end |
158.41971875 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
157.15409375 |
transcript.pyannote[39].end |
157.17096875 |
transcript.pyannote[40].speaker |
SPEAKER_02 |
transcript.pyannote[40].start |
159.38159375 |
transcript.pyannote[40].end |
160.96784375 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
159.48284375 |
transcript.pyannote[41].end |
161.71034375 |
transcript.pyannote[42].speaker |
SPEAKER_02 |
transcript.pyannote[42].start |
161.52471875 |
transcript.pyannote[42].end |
167.29596875 |
transcript.pyannote[43].speaker |
SPEAKER_02 |
transcript.pyannote[43].start |
167.36346875 |
transcript.pyannote[43].end |
170.70471875 |
transcript.pyannote[44].speaker |
SPEAKER_02 |
transcript.pyannote[44].start |
171.53159375 |
transcript.pyannote[44].end |
172.18971875 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
173.45534375 |
transcript.pyannote[45].end |
174.06284375 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
174.29909375 |
transcript.pyannote[46].end |
186.19596875 |
transcript.pyannote[47].speaker |
SPEAKER_02 |
transcript.pyannote[47].start |
178.87221875 |
transcript.pyannote[47].end |
179.26034375 |
transcript.pyannote[48].speaker |
SPEAKER_02 |
transcript.pyannote[48].start |
179.74971875 |
transcript.pyannote[48].end |
183.29346875 |
transcript.pyannote[49].speaker |
SPEAKER_02 |
transcript.pyannote[49].start |
186.19596875 |
transcript.pyannote[49].end |
189.35159375 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
189.35159375 |
transcript.pyannote[50].end |
192.35534375 |
transcript.pyannote[51].speaker |
SPEAKER_02 |
transcript.pyannote[51].start |
191.08971875 |
transcript.pyannote[51].end |
196.38846875 |
transcript.pyannote[52].speaker |
SPEAKER_02 |
transcript.pyannote[52].start |
196.52346875 |
transcript.pyannote[52].end |
199.40909375 |
transcript.pyannote[53].speaker |
SPEAKER_02 |
transcript.pyannote[53].start |
199.69596875 |
transcript.pyannote[53].end |
201.29909375 |
transcript.pyannote[54].speaker |
SPEAKER_02 |
transcript.pyannote[54].start |
201.65346875 |
transcript.pyannote[54].end |
203.42534375 |
transcript.pyannote[55].speaker |
SPEAKER_02 |
transcript.pyannote[55].start |
203.84721875 |
transcript.pyannote[55].end |
204.52221875 |
transcript.pyannote[56].speaker |
SPEAKER_02 |
transcript.pyannote[56].start |
205.31534375 |
transcript.pyannote[56].end |
206.10846875 |
transcript.pyannote[57].speaker |
SPEAKER_02 |
transcript.pyannote[57].start |
207.52596875 |
transcript.pyannote[57].end |
208.21784375 |
transcript.pyannote[58].speaker |
SPEAKER_02 |
transcript.pyannote[58].start |
208.48784375 |
transcript.pyannote[58].end |
208.87596875 |
transcript.pyannote[59].speaker |
SPEAKER_02 |
transcript.pyannote[59].start |
209.07846875 |
transcript.pyannote[59].end |
210.27659375 |
transcript.pyannote[60].speaker |
SPEAKER_02 |
transcript.pyannote[60].start |
210.61409375 |
transcript.pyannote[60].end |
211.86284375 |
transcript.pyannote[61].speaker |
SPEAKER_02 |
transcript.pyannote[61].start |
212.18346875 |
transcript.pyannote[61].end |
216.23346875 |
transcript.pyannote[62].speaker |
SPEAKER_02 |
transcript.pyannote[62].start |
217.00971875 |
transcript.pyannote[62].end |
219.03471875 |
transcript.pyannote[63].speaker |
SPEAKER_02 |
transcript.pyannote[63].start |
219.62534375 |
transcript.pyannote[63].end |
220.90784375 |
transcript.pyannote[64].speaker |
SPEAKER_02 |
transcript.pyannote[64].start |
221.78534375 |
transcript.pyannote[64].end |
222.71346875 |
transcript.pyannote[65].speaker |
SPEAKER_02 |
transcript.pyannote[65].start |
223.11846875 |
transcript.pyannote[65].end |
226.78034375 |
transcript.pyannote[66].speaker |
SPEAKER_02 |
transcript.pyannote[66].start |
227.15159375 |
transcript.pyannote[66].end |
232.33221875 |
transcript.pyannote[67].speaker |
SPEAKER_02 |
transcript.pyannote[67].start |
232.46721875 |
transcript.pyannote[67].end |
235.31909375 |
transcript.pyannote[68].speaker |
SPEAKER_02 |
transcript.pyannote[68].start |
235.82534375 |
transcript.pyannote[68].end |
237.98534375 |
transcript.pyannote[69].speaker |
SPEAKER_02 |
transcript.pyannote[69].start |
238.35659375 |
transcript.pyannote[69].end |
240.65159375 |
transcript.pyannote[70].speaker |
SPEAKER_02 |
transcript.pyannote[70].start |
241.07346875 |
transcript.pyannote[70].end |
242.98034375 |
transcript.pyannote[71].speaker |
SPEAKER_02 |
transcript.pyannote[71].start |
243.18284375 |
transcript.pyannote[71].end |
245.52846875 |
transcript.pyannote[72].speaker |
SPEAKER_02 |
transcript.pyannote[72].start |
247.82346875 |
transcript.pyannote[72].end |
252.46409375 |
transcript.pyannote[73].speaker |
SPEAKER_02 |
transcript.pyannote[73].start |
253.29096875 |
transcript.pyannote[73].end |
257.69534375 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
258.16784375 |
transcript.pyannote[74].end |
259.26471875 |
transcript.pyannote[75].speaker |
SPEAKER_02 |
transcript.pyannote[75].start |
259.26471875 |
transcript.pyannote[75].end |
261.62721875 |
transcript.pyannote[76].speaker |
SPEAKER_02 |
transcript.pyannote[76].start |
262.13346875 |
transcript.pyannote[76].end |
264.79971875 |
transcript.pyannote[77].speaker |
SPEAKER_02 |
transcript.pyannote[77].start |
265.50846875 |
transcript.pyannote[77].end |
268.74846875 |
transcript.pyannote[78].speaker |
SPEAKER_02 |
transcript.pyannote[78].start |
269.45721875 |
transcript.pyannote[78].end |
271.02659375 |
transcript.pyannote[79].speaker |
SPEAKER_02 |
transcript.pyannote[79].start |
271.06034375 |
transcript.pyannote[79].end |
273.32159375 |
transcript.pyannote[80].speaker |
SPEAKER_02 |
transcript.pyannote[80].start |
273.72659375 |
transcript.pyannote[80].end |
275.27909375 |
transcript.pyannote[81].speaker |
SPEAKER_02 |
transcript.pyannote[81].start |
275.71784375 |
transcript.pyannote[81].end |
279.53159375 |
transcript.pyannote[82].speaker |
SPEAKER_02 |
transcript.pyannote[82].start |
279.85221875 |
transcript.pyannote[82].end |
280.39221875 |
transcript.pyannote[83].speaker |
SPEAKER_02 |
transcript.pyannote[83].start |
280.96596875 |
transcript.pyannote[83].end |
285.21846875 |
transcript.pyannote[84].speaker |
SPEAKER_02 |
transcript.pyannote[84].start |
285.45471875 |
transcript.pyannote[84].end |
287.74971875 |
transcript.pyannote[85].speaker |
SPEAKER_02 |
transcript.pyannote[85].start |
288.50909375 |
transcript.pyannote[85].end |
297.84096875 |
transcript.pyannote[86].speaker |
SPEAKER_02 |
transcript.pyannote[86].start |
298.12784375 |
transcript.pyannote[86].end |
301.03034375 |
transcript.pyannote[87].speaker |
SPEAKER_02 |
transcript.pyannote[87].start |
301.30034375 |
transcript.pyannote[87].end |
308.38784375 |
transcript.pyannote[88].speaker |
SPEAKER_02 |
transcript.pyannote[88].start |
308.92784375 |
transcript.pyannote[88].end |
313.85534375 |
transcript.pyannote[89].speaker |
SPEAKER_02 |
transcript.pyannote[89].start |
314.22659375 |
transcript.pyannote[89].end |
318.64784375 |
transcript.pyannote[90].speaker |
SPEAKER_02 |
transcript.pyannote[90].start |
318.71534375 |
transcript.pyannote[90].end |
333.39659375 |
transcript.pyannote[91].speaker |
SPEAKER_02 |
transcript.pyannote[91].start |
333.85221875 |
transcript.pyannote[91].end |
335.96159375 |
transcript.pyannote[92].speaker |
SPEAKER_02 |
transcript.pyannote[92].start |
336.07971875 |
transcript.pyannote[92].end |
340.53471875 |
transcript.pyannote[93].speaker |
SPEAKER_02 |
transcript.pyannote[93].start |
340.99034375 |
transcript.pyannote[93].end |
342.82971875 |
transcript.pyannote[94].speaker |
SPEAKER_02 |
transcript.pyannote[94].start |
342.93096875 |
transcript.pyannote[94].end |
347.13284375 |
transcript.pyannote[95].speaker |
SPEAKER_02 |
transcript.pyannote[95].start |
347.21721875 |
transcript.pyannote[95].end |
348.17909375 |
transcript.pyannote[96].speaker |
SPEAKER_02 |
transcript.pyannote[96].start |
348.66846875 |
transcript.pyannote[96].end |
350.01846875 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
351.03096875 |
transcript.pyannote[97].end |
354.50721875 |
transcript.pyannote[98].speaker |
SPEAKER_01 |
transcript.pyannote[98].start |
354.86159375 |
transcript.pyannote[98].end |
359.04659375 |
transcript.pyannote[99].speaker |
SPEAKER_02 |
transcript.pyannote[99].start |
358.86096875 |
transcript.pyannote[99].end |
358.92846875 |
transcript.pyannote[100].speaker |
SPEAKER_02 |
transcript.pyannote[100].start |
358.99596875 |
transcript.pyannote[100].end |
359.02971875 |
transcript.pyannote[101].speaker |
SPEAKER_02 |
transcript.pyannote[101].start |
359.04659375 |
transcript.pyannote[101].end |
370.69034375 |
transcript.pyannote[102].speaker |
SPEAKER_02 |
transcript.pyannote[102].start |
371.07846875 |
transcript.pyannote[102].end |
378.19971875 |
transcript.pyannote[103].speaker |
SPEAKER_02 |
transcript.pyannote[103].start |
378.80721875 |
transcript.pyannote[103].end |
382.46909375 |
transcript.pyannote[104].speaker |
SPEAKER_02 |
transcript.pyannote[104].start |
382.63784375 |
transcript.pyannote[104].end |
385.16909375 |
transcript.pyannote[105].speaker |
SPEAKER_02 |
transcript.pyannote[105].start |
385.62471875 |
transcript.pyannote[105].end |
396.44159375 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
398.04471875 |
transcript.pyannote[106].end |
401.50409375 |
transcript.pyannote[107].speaker |
SPEAKER_02 |
transcript.pyannote[107].start |
401.35221875 |
transcript.pyannote[107].end |
403.61346875 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
403.61346875 |
transcript.pyannote[108].end |
404.06909375 |
transcript.pyannote[109].speaker |
SPEAKER_02 |
transcript.pyannote[109].start |
403.63034375 |
transcript.pyannote[109].end |
410.22846875 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
410.22846875 |
transcript.pyannote[110].end |
410.70096875 |
transcript.pyannote[111].speaker |
SPEAKER_02 |
transcript.pyannote[111].start |
410.78534375 |
transcript.pyannote[111].end |
413.46846875 |
transcript.pyannote[112].speaker |
SPEAKER_02 |
transcript.pyannote[112].start |
413.82284375 |
transcript.pyannote[112].end |
415.69596875 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
416.86034375 |
transcript.pyannote[113].end |
420.08346875 |
transcript.pyannote[114].speaker |
SPEAKER_02 |
transcript.pyannote[114].start |
419.34096875 |
transcript.pyannote[114].end |
419.40846875 |
transcript.pyannote[115].speaker |
SPEAKER_02 |
transcript.pyannote[115].start |
420.08346875 |
transcript.pyannote[115].end |
420.15096875 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
420.15096875 |
transcript.pyannote[116].end |
420.20159375 |
transcript.pyannote[117].speaker |
SPEAKER_02 |
transcript.pyannote[117].start |
420.20159375 |
transcript.pyannote[117].end |
420.62346875 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
420.23534375 |
transcript.pyannote[118].end |
420.97784375 |
transcript.pyannote[119].speaker |
SPEAKER_02 |
transcript.pyannote[119].start |
420.97784375 |
transcript.pyannote[119].end |
421.07909375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
421.07909375 |
transcript.pyannote[120].end |
421.24784375 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
421.33221875 |
transcript.pyannote[121].end |
439.32096875 |
transcript.pyannote[122].speaker |
SPEAKER_02 |
transcript.pyannote[122].start |
438.03846875 |
transcript.pyannote[122].end |
440.29971875 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
440.38409375 |
transcript.pyannote[123].end |
452.33159375 |
transcript.pyannote[124].speaker |
SPEAKER_02 |
transcript.pyannote[124].start |
442.02096875 |
transcript.pyannote[124].end |
442.35846875 |
transcript.pyannote[125].speaker |
SPEAKER_02 |
transcript.pyannote[125].start |
451.30221875 |
transcript.pyannote[125].end |
460.95471875 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
462.01784375 |
transcript.pyannote[126].end |
466.21971875 |
transcript.pyannote[127].speaker |
SPEAKER_02 |
transcript.pyannote[127].start |
464.59971875 |
transcript.pyannote[127].end |
467.72159375 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
466.70909375 |
transcript.pyannote[128].end |
468.39659375 |
transcript.pyannote[129].speaker |
SPEAKER_02 |
transcript.pyannote[129].start |
468.39659375 |
transcript.pyannote[129].end |
471.72096875 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
470.32034375 |
transcript.pyannote[130].end |
470.72534375 |
transcript.pyannote[131].speaker |
SPEAKER_02 |
transcript.pyannote[131].start |
471.94034375 |
transcript.pyannote[131].end |
473.35784375 |
transcript.pyannote[132].speaker |
SPEAKER_02 |
transcript.pyannote[132].start |
473.81346875 |
transcript.pyannote[132].end |
474.72471875 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
475.01159375 |
transcript.pyannote[133].end |
475.26471875 |
transcript.whisperx[0].start |
12.478 |
transcript.whisperx[0].end |
24.007 |
transcript.whisperx[0].text |
主席 在場的委員先進 列席的政府機關首長官員 會長 工作夥伴媒體記者女士先生有請衛福部的邱部長 還有健保署的陳副署長這個聲音比較大一點 |
transcript.whisperx[1].start |
31.078 |
transcript.whisperx[1].end |
45.059 |
transcript.whisperx[1].text |
委員好部長好 副署長好今天我的題目是公司協力打造第二層健保政策保險的模式來發展合宜的商保來往下看是部長你了解商業醫療保險和全民健康保險有什麼不同嗎 |
transcript.whisperx[2].start |
46.567 |
transcript.whisperx[2].end |
62.49 |
transcript.whisperx[2].text |
我這就秀出來了啦 直接講啦商業保險是自願投保全民健保因為社會保險強制投保那保費的話呢 商業保險按照你的體礦跟你的保額所欠的保額去決定保費但是我們的健保呢 按照你國民的收入去核算 對不對 |
transcript.whisperx[3].start |
63.43 |
transcript.whisperx[3].end |
79.347 |
transcript.whisperx[3].text |
是嗎那幾戶的方式商業保險是現金幾戶通常是這樣但是我們的健保是醫療跟醫療服務啦那會不會理賠商業保險用保單約定嘛那我們的健保是不是就按照健保的規定要要不要幾戶啊這個是由健保來規定對嗎處長都點頭了目前的爭議在這裡目前爭議的商業保險廠出什麼 |
transcript.whisperx[4].start |
84.588 |
transcript.whisperx[4].end |
106.889 |
transcript.whisperx[4].text |
癌症醫療因為技術進步已經要住院醫療的現在門診就可以處理了所以呢產生爭議癌症險他說你沒有住院我不給付是不是這樣子那另外一個就是什麼全民健保遇到什麼問題罕見疾病很多的罕見疾病他也是人民啊我沒有強制投保沒有說弱體不保啊那他要得到醫療給付要很貴怎麼辦部長要怎麼解決 |
transcript.whisperx[5].start |
110.387 |
transcript.whisperx[5].end |
137.363 |
transcript.whisperx[5].text |
好 謝謝委員關心簡單講好 簡單講就是說在罕病的話我們在健保的總合裡面有一塊保證金另外今年政府又特別撥出20億很好但是不管怎麼講你還是從健保的大餅來拿出來嘛對不對但是我們來思考一下有些罕病他是希望能夠有一個強化型的健保就是說商業保險跟全民健保怎麼讓來完善國人健康保障我們看有一個倡議 |
transcript.whisperx[6].start |
138.704 |
transcript.whisperx[6].end |
155.583 |
transcript.whisperx[6].text |
這個呢叫做商保結合健保的優點什麼呢這是一個新聞他說專家建議商保協同健保設第二層健保類似汽車強制險什麼是第二層健保部長了解嗎我當然了解好來請來我們看下一頁來是不是這樣子您簡單說一下是不是這樣 |
transcript.whisperx[7].start |
159.54 |
transcript.whisperx[7].end |
189.123 |
transcript.whisperx[7].text |
全民健保健保協同商保是核心正目對不對但是呢健保協同商保是第二層志願參加它是一個強化醫療保險至於其他的額外保障你商務保險個人自費參加是不是這樣子那怎麼推動包委員齁我們健保署已經要請已經去研究 請國衛院研究這個我剛剛那個圖就是國衛院提供的報告啦那國衛院也提出來但是他有提出幾個問題要去克服啦好那因為我來自財政委員會我跟你講商業保險的思維啦 |
transcript.whisperx[8].start |
189.623 |
transcript.whisperx[8].end |
216.055 |
transcript.whisperx[8].text |
這個可能要委員 在財政部委員幫忙商業保險它很簡單 你期待多少保額你有多少負擔保費的能力讓你的健康條件怎麼樣然後就會制定一個保單 對不對但是健保不給付的部分民眾都可以買到商業保險嗎往下看 有一個問題弱體拒保 對不對弱體的體況不好 商業保險不敢保啊就算保費再高 保額再低 還不敢保啊 為什麼因為保費要精算 |
transcript.whisperx[9].start |
217.082 |
transcript.whisperx[9].end |
245.265 |
transcript.whisperx[9].text |
通常商業保險最擔心的是什麼因為資訊不對等保險被被保險人保護他知道他的狀況可是保險公司不知道啊所以他要精算費率的時候呢他就要怎麼樣他目前收取的保費當中四成是屬於行政這些支出核保用金六成才是用在理賠上面所以如何降低管銷成本讓這個被保險人他的透明化才能達到降低保費的效果你同意嗎 |
transcript.whisperx[10].start |
247.87 |
transcript.whisperx[10].end |
268.351 |
transcript.whisperx[10].text |
商保如果要降低保費要避免弱體拒保是不是要有這些條件盡量把保費用在理賠上盡量壓縮行政的開銷是不是這樣子當然能夠這樣最好好那我們看有沒有參考模式有往下看學生餐廳保險是一個很參考的例子教育部主辦的這個保險公司呢每年來就是他會定期來招標 |
transcript.whisperx[11].start |
269.505 |
transcript.whisperx[11].end |
287.532 |
transcript.whisperx[11].text |
不會賺但也不會賠 為什麼因為學籍管理是學校在處理不分年齡性別單一費率學校幫學生處理這些行政費用所以學生團體保險沒有什麼太多的行政開銷也沒有什麼管銷費用全部都是給學生的保費支出 |
transcript.whisperx[12].start |
288.604 |
transcript.whisperx[12].end |
308.164 |
transcript.whisperx[12].text |
汽車強制險因為車籍管理在交通部監理站車主的年齡跟差別有個大數據庫所以保險公司在制定保單的時候他是差別費率可是呢他可以很清楚的抓到他的損率部長損率知道啦齁所以目前有人主張這個比較接近商標我們來推第二層的健保往下看 |
transcript.whisperx[13].start |
308.985 |
transcript.whisperx[13].end |
329.815 |
transcript.whisperx[13].text |
所以健保協同商保怎麼運作第一一定要財務平衡不然商業保險不做第二政府要進行風險評估跟精算因為資料在政府手上第三算出來的保費要比商業保險低人民才願意參加經過政府評估每位可參加國民的體礦後他讓他去選擇他適合他體礦去找出他的保額跟保費是他能負擔的 |
transcript.whisperx[14].start |
333.917 |
transcript.whisperx[14].end |
346.781 |
transcript.whisperx[14].text |
而且政府因為資料沒有外洩通通是去識別化保險公司也不會拿到我們人民的健康資料但是又能充分的理解這個被保險人的風險狀況部長覺得這樣有沒有可能 |
transcript.whisperx[15].start |
351.772 |
transcript.whisperx[15].end |
378.006 |
transcript.whisperx[15].text |
當然這個委員質疑得非常好而且提出具體的方案那這個部分可能要金管會多多幫忙是的 因為現在有財政部今天金管會來 因為不是這個題目所以政府來核算精確度 因為政府有數據但是業界有人員 現在保險成員 保金保貸加起來包括銀行的理專有30萬人行政成本 保費的收入不用去支付這些管銷費用保費降低 被保險人就受益 往下看 |
transcript.whisperx[16].start |
378.886 |
transcript.whisperx[16].end |
395.86 |
transcript.whisperx[16].text |
所以我是主張說未來我們全民健保就像一艘郵輪我們的經濟艙就是全民健保豪商艙豪金艙就是民辦公營的自費保險商業保險要做頭等艙你要付那個錢是你的事情但是大家都能上船同時抵達終點你支持這樣的一個制度設計嗎 |
transcript.whisperx[17].start |
398.589 |
transcript.whisperx[17].end |
415.016 |
transcript.whisperx[17].text |
我們其實這個已經演繹很久了啦是 所以該是行動的時候對不對好 我給你一個機會來往下看請衛福部就健保協同商保的部分如果提供協助你提一個報告給我可以嗎好 沒問題好 那如果現在商業保險公司他們要來倡議第二層健保你要不要繼續參與 |
transcript.whisperx[18].start |
421.457 |
transcript.whisperx[18].end |
439.97 |
transcript.whisperx[18].text |
我們跟委員報告謝謝委員關心那商保協同健保事實上現在兩個模式一個就是委員提到的新加坡模式是第二層健保健保作為底第二層商保作為另外一個模式加拿大模式所以這兩個是稍微不一樣那衛福部呢其實已經就這個委託國會院就如同委員了解那出來這是哪個模式是新加坡模式嗎 |
transcript.whisperx[19].start |
440.85 |
transcript.whisperx[19].end |
460.038 |
transcript.whisperx[19].text |
第二層健保是新加坡公司但新加坡公司還有一個配套是他還有一個medifund每一個人還有一個自己的健保基金這跟現在的健保制度還是略有不同所以跟委員報告已經討論到這裡了所以如果未來商業保險公司或這些同業公會他們要發起來參與用商保跟健保來協同打造第二層健保會不會支持 會不會參加 會不會 |
transcript.whisperx[20].start |
462.386 |
transcript.whisperx[20].end |
466.888 |
transcript.whisperx[20].text |
抱著開放的心情的各種樂觀其成 積極參與 可以嗎 部長樂觀其成 積極參與到時候邀請你來 你要來喔好 謝謝 |