IVOD_ID |
160534 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/160534 |
日期 |
2025-04-23 |
會議資料.會議代碼 |
委員會-11-3-20-9 |
會議資料.會議代碼:str |
第11屆第3會期財政委員會第9次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
9 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
20 |
會議資料.委員會代碼:str[0] |
財政委員會 |
會議資料.標題 |
第11屆第3會期財政委員會第9次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-04-23T11:45:51+08:00 |
結束時間 |
2025-04-23T11:57:36+08:00 |
影片長度 |
00:11:45 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/27ac2f54fdf75cc0a080648d90611ccac0f390e692fb4f249a3354dc8dbd3a6275f58bd84367980c5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
王世堅 |
委員發言時間 |
11:45:51 - 11:57:36 |
會議時間 |
2025-04-23T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期財政委員會第9次全體委員會議(事由:一、審查「貨物稅條例」34案:
(一) 本院委員葉元之等21人擬具「貨物稅條例刪除部分條文草案」案。
(二) 本院委員廖先翔等16人擬具「貨物稅條例刪除第八條條文草案」案。
(三) 本院台灣民眾黨黨團擬具「貨物稅條例第十一條、第十一條之一及第三十七條條文修正草案」案。
(四) 本院委員邱若華等20人擬具「貨物稅條例第十一條條文修正草案」案。
(五) 本院委員魯明哲等16人、委員顏寬恒等19人、委員羅廷瑋等16人、委員賴士葆等21人、委員邱鎮軍等22人、委員徐欣瑩等27人、委員翁曉玲等17人、委員羅明才等16人、委員郭國文等17人、委員王鴻薇等24人、委員廖偉翔等17人、委員許宇甄等21人、委員黃建賓等16人、委員林思銘等21人、委員萬美玲等16人分別擬具「貨物稅條例第十一條之一條文修正草案」等15案。
(六) 本院委員李坤城等24人擬具「貨物稅條例第十一條之一、第十二條之五及第十二條之六條文修正草案」案。
(七) 本院委員鄭天財Sra Kacaw等19人、委員林思銘等19人、委員涂權吉等17人、委員陳玉珍等19人、委員馬文君等18人、委員王世堅等19人、委員張智倫等25人、委員魯明哲等16人、委員王鴻薇等19人、委員楊瓊瓔等20人、委員邱鎮軍等24人、委員萬美玲等18人、委員廖偉翔等17人分別擬具「貨物稅條例第十二條條文修正草案」等13案。
(八) 本院委員邱鎮軍等19人擬具「貨物稅條例第十二條之三條文修正草案」案。
二、審查人民請願案有關「貨物稅條例」7案。) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
8.40096875 |
transcript.pyannote[0].end |
10.00409375 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
10.29096875 |
transcript.pyannote[1].end |
12.82221875 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
16.41659375 |
transcript.pyannote[2].end |
23.68971875 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
23.95971875 |
transcript.pyannote[3].end |
42.72471875 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
43.02846875 |
transcript.pyannote[4].end |
48.12471875 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
48.88409375 |
transcript.pyannote[5].end |
51.63471875 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
51.97221875 |
transcript.pyannote[6].end |
74.23034375 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
74.82096875 |
transcript.pyannote[7].end |
78.24659375 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
78.65159375 |
transcript.pyannote[8].end |
81.73971875 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
82.48221875 |
transcript.pyannote[9].end |
94.71659375 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
95.25659375 |
transcript.pyannote[10].end |
95.77971875 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
96.87659375 |
transcript.pyannote[11].end |
98.41221875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
98.85096875 |
transcript.pyannote[12].end |
102.69846875 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
103.20471875 |
transcript.pyannote[13].end |
107.87909375 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
108.35159375 |
transcript.pyannote[14].end |
120.02909375 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
120.14721875 |
transcript.pyannote[15].end |
121.81784375 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
122.37471875 |
transcript.pyannote[16].end |
124.21409375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
125.20971875 |
transcript.pyannote[17].end |
125.96909375 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
127.15034375 |
transcript.pyannote[18].end |
127.47096875 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
127.97721875 |
transcript.pyannote[19].end |
129.34409375 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
129.83346875 |
transcript.pyannote[20].end |
130.44096875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
130.96409375 |
transcript.pyannote[21].end |
133.78221875 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
134.18721875 |
transcript.pyannote[22].end |
134.67659375 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
135.36846875 |
transcript.pyannote[23].end |
136.09409375 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
136.90409375 |
transcript.pyannote[24].end |
137.08971875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
137.56221875 |
transcript.pyannote[25].end |
139.45221875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
140.09346875 |
transcript.pyannote[26].end |
140.63346875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
142.52346875 |
transcript.pyannote[27].end |
145.47659375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
145.89846875 |
transcript.pyannote[28].end |
155.83784375 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
156.68159375 |
transcript.pyannote[29].end |
165.01784375 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
165.42284375 |
transcript.pyannote[30].end |
173.89409375 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
174.18096875 |
transcript.pyannote[31].end |
191.84909375 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
192.86159375 |
transcript.pyannote[32].end |
194.02596875 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
194.73471875 |
transcript.pyannote[33].end |
195.44346875 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
195.66284375 |
transcript.pyannote[34].end |
196.25346875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
196.50659375 |
transcript.pyannote[35].end |
198.05909375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
198.26159375 |
transcript.pyannote[36].end |
201.26534375 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
202.29471875 |
transcript.pyannote[37].end |
203.03721875 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
203.76284375 |
transcript.pyannote[38].end |
215.81159375 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
216.14909375 |
transcript.pyannote[39].end |
219.89534375 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
220.41846875 |
transcript.pyannote[40].end |
221.65034375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
222.54471875 |
transcript.pyannote[41].end |
225.16034375 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
225.32909375 |
transcript.pyannote[42].end |
230.91471875 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
231.57284375 |
transcript.pyannote[43].end |
232.36596875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
232.92284375 |
transcript.pyannote[44].end |
241.74846875 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
242.37284375 |
transcript.pyannote[45].end |
248.65034375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
249.10596875 |
transcript.pyannote[46].end |
251.46846875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
252.19409375 |
transcript.pyannote[47].end |
256.61534375 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
256.93596875 |
transcript.pyannote[48].end |
269.45721875 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
269.74409375 |
transcript.pyannote[49].end |
270.31784375 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
271.04346875 |
transcript.pyannote[50].end |
277.50659375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
277.81034375 |
transcript.pyannote[51].end |
280.02096875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
281.45534375 |
transcript.pyannote[52].end |
282.41721875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
283.31159375 |
transcript.pyannote[53].end |
284.13846875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
284.45909375 |
transcript.pyannote[54].end |
285.57284375 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
286.26471875 |
transcript.pyannote[55].end |
291.63096875 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
291.81659375 |
transcript.pyannote[56].end |
300.79409375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
301.65471875 |
transcript.pyannote[57].end |
303.05534375 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
303.13971875 |
transcript.pyannote[58].end |
317.80409375 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
318.42846875 |
transcript.pyannote[59].end |
324.09846875 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
324.45284375 |
transcript.pyannote[60].end |
326.10659375 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
326.88284375 |
transcript.pyannote[61].end |
331.94534375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
332.72159375 |
transcript.pyannote[62].end |
339.69096875 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
340.46721875 |
transcript.pyannote[63].end |
344.36534375 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
345.09096875 |
transcript.pyannote[64].end |
354.94596875 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
356.00909375 |
transcript.pyannote[65].end |
359.09721875 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
359.56971875 |
transcript.pyannote[66].end |
360.70034375 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
361.47659375 |
transcript.pyannote[67].end |
368.71596875 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
369.39096875 |
transcript.pyannote[68].end |
371.95596875 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
372.74909375 |
transcript.pyannote[69].end |
386.73846875 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
387.12659375 |
transcript.pyannote[70].end |
389.10096875 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
389.50596875 |
transcript.pyannote[71].end |
390.67034375 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
390.85596875 |
transcript.pyannote[72].end |
391.51409375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
392.88096875 |
transcript.pyannote[73].end |
395.90159375 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
396.62721875 |
transcript.pyannote[74].end |
398.19659375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
398.53409375 |
transcript.pyannote[75].end |
401.23409375 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
402.80346875 |
transcript.pyannote[76].end |
408.60846875 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
409.45221875 |
transcript.pyannote[77].end |
416.43846875 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
417.41721875 |
transcript.pyannote[78].end |
421.66971875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
422.19284375 |
transcript.pyannote[79].end |
423.01971875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
423.45846875 |
transcript.pyannote[80].end |
429.21284375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
429.38159375 |
transcript.pyannote[81].end |
430.96784375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
432.41909375 |
transcript.pyannote[82].end |
434.19096875 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
434.78159375 |
transcript.pyannote[83].end |
440.99159375 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
441.70034375 |
transcript.pyannote[84].end |
446.94846875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
447.40409375 |
transcript.pyannote[85].end |
451.03221875 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
452.34846875 |
transcript.pyannote[86].end |
459.67221875 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
460.58346875 |
transcript.pyannote[87].end |
461.15721875 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
461.39346875 |
transcript.pyannote[88].end |
464.90346875 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
465.25784375 |
transcript.pyannote[89].end |
472.21034375 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
472.44659375 |
transcript.pyannote[90].end |
485.79471875 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
485.99721875 |
transcript.pyannote[91].end |
488.89971875 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
489.55784375 |
transcript.pyannote[92].end |
496.05471875 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
496.47659375 |
transcript.pyannote[93].end |
502.11284375 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
502.46721875 |
transcript.pyannote[94].end |
502.82159375 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
503.10846875 |
transcript.pyannote[95].end |
511.56284375 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
512.10284375 |
transcript.pyannote[96].end |
516.40596875 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
516.99659375 |
transcript.pyannote[97].end |
521.90721875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
522.37971875 |
transcript.pyannote[98].end |
525.14721875 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
525.40034375 |
transcript.pyannote[99].end |
528.64034375 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
528.67409375 |
transcript.pyannote[100].end |
532.57221875 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
533.33159375 |
transcript.pyannote[101].end |
534.61409375 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
535.10346875 |
transcript.pyannote[102].end |
535.62659375 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
536.28471875 |
transcript.pyannote[103].end |
537.61784375 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
538.30971875 |
transcript.pyannote[104].end |
541.53284375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
542.37659375 |
transcript.pyannote[105].end |
544.92471875 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
545.32971875 |
transcript.pyannote[106].end |
546.37596875 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
546.83159375 |
transcript.pyannote[107].end |
551.03346875 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
551.45534375 |
transcript.pyannote[108].end |
552.94034375 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
553.49721875 |
transcript.pyannote[109].end |
555.38721875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
556.28159375 |
transcript.pyannote[110].end |
556.87221875 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
557.17596875 |
transcript.pyannote[111].end |
559.87596875 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
560.78721875 |
transcript.pyannote[112].end |
562.81221875 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
562.93034375 |
transcript.pyannote[113].end |
577.61159375 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
578.96159375 |
transcript.pyannote[114].end |
582.11721875 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
583.14659375 |
transcript.pyannote[115].end |
587.93909375 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
588.42846875 |
transcript.pyannote[116].end |
591.97221875 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
592.29284375 |
transcript.pyannote[117].end |
592.86659375 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
593.25471875 |
transcript.pyannote[118].end |
595.07721875 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
595.75221875 |
transcript.pyannote[119].end |
598.60409375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
598.94159375 |
transcript.pyannote[120].end |
609.60659375 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
611.10846875 |
transcript.pyannote[121].end |
614.78721875 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
615.09096875 |
transcript.pyannote[122].end |
627.78096875 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
628.27034375 |
transcript.pyannote[123].end |
632.87721875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
633.43409375 |
transcript.pyannote[124].end |
634.05846875 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
634.90221875 |
transcript.pyannote[125].end |
635.56034375 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
635.94846875 |
transcript.pyannote[126].end |
636.97784375 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
637.41659375 |
transcript.pyannote[127].end |
657.59909375 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
658.64534375 |
transcript.pyannote[128].end |
698.70659375 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
692.63159375 |
transcript.pyannote[129].end |
693.17159375 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
704.39346875 |
transcript.pyannote[130].end |
704.62971875 |
transcript.whisperx[0].start |
9.071 |
transcript.whisperx[0].end |
12.394 |
transcript.whisperx[0].text |
謝謝主席 我請李次長請李次長 |
transcript.whisperx[1].start |
17.889 |
transcript.whisperx[1].end |
39.429 |
transcript.whisperx[1].text |
市長其實這個議題今天討論的這個議題我在去年五月的時候這個質詢針對我們國家現在還有很多不合時的稅制包括娛樂稅、印花稅、汽車關稅、保健品關稅尤其我們今天要談到的機車貨物稅和汽車貨物稅 |
transcript.whisperx[2].start |
43.132 |
transcript.whisperx[2].end |
47.623 |
transcript.whisperx[2].text |
那這些不合時宜的稅制我們去年五月到現在將近一年 |
transcript.whisperx[3].start |
48.942 |
transcript.whisperx[3].end |
73.243 |
transcript.whisperx[3].text |
那麼我認為財政部啊就誠如我上次跟莊部長質詢的我四個字形容爆產守缺啦沒有針對這些不合時宜的稅制我們來做應該要做的調整或者我們以其他更進一步的世界各國先進國家都在採行的綠色稅制 |
transcript.whisperx[4].start |
75.155 |
transcript.whisperx[4].end |
95.41 |
transcript.whisperx[4].text |
來做替代要與時俱進但是我們卻抱殘手缺那麼在這一次美國的這個關稅風暴當中我們總統府也已經正式公開表達了就說我們國家要排除非 |
transcript.whisperx[5].start |
97.746 |
transcript.whisperx[5].end |
123.934 |
transcript.whisperx[5].text |
關稅貿易障礙排除非關稅貿易障礙這已經把我們這一次應對以及我們要符合先進國家世界潮流這個不應該有的這些非關稅貿易障礙那非關稅貿易障礙很多啊包括政府不公平的補貼包括其他稅賦這些都非常清楚的而機車 |
transcript.whisperx[6].start |
127.179 |
transcript.whisperx[6].end |
153.275 |
transcript.whisperx[6].text |
的貨物稅以及最重要汽車關稅 汽車貨物稅這個都是不當的其他稅負那麼我們統計了OECD的國家他們貨物稅平均稅率大概在2.6%啦而我們國家竟然高達8.2% |
transcript.whisperx[7].start |
156.758 |
transcript.whisperx[7].end |
173.509 |
transcript.whisperx[7].text |
那我就針對我今天提案的降低機車貨物稅 汽車貨物稅這一點來說你們根本一年來的對我的答覆就是說 機車貨物稅有助於減少空氣污染 |
transcript.whisperx[8].start |
174.429 |
transcript.whisperx[8].end |
202.837 |
transcript.whisperx[8].text |
難道說你們對於這個淘汰對於機車太舊換新有免除四千元降低四千元貨物稅已經有這麼說了那你們說購買電動機車也免徵貨物稅等等等可是那個次長是這個說污染的部分環境部已經有說空污費了不是嗎所以 |
transcript.whisperx[9].start |
203.86 |
transcript.whisperx[9].end |
228.194 |
transcript.whisperx[9].text |
如果環境部收了空污費我們還針對機車說我收你貨物稅就是為了要減少你這個移動污染源那這個不但我講現在連審計部給你們的這個答覆都很清楚的說這個叫做一頭牛扒兩層皮這個叫做重複課稅不是這樣嗎 |
transcript.whisperx[10].start |
232.998 |
transcript.whisperx[10].end |
251.199 |
transcript.whisperx[10].text |
然後你們說對於太舊換新的部分你們降低了4000元的貨物稅但是對於年輕朋友們手夠足啊他沒有舊的車去太舊啊他剛出入社會他買了 |
transcript.whisperx[11].start |
253.874 |
transcript.whisperx[11].end |
279.827 |
transcript.whisperx[11].text |
這個機車那還要還是一樣要這麼高的貨物稅這非常不公平然後這麼多年來你們也一直都說啊這個機車是那個移動的污染源雖然我覺得這個是環境部該管這個我們財政部一直強調這一點有點撈過界啦不過我也是要必須跟你澄清一下 |
transcript.whisperx[12].start |
281.573 |
transcript.whisperx[12].end |
298.917 |
transcript.whisperx[12].text |
事實上現在在我們政府要求之下我們現在的7騎的燃油機車7騎的燃油機車喔它這個空污排放量的乙金啊跟電動機車幾乎啊 |
transcript.whisperx[13].start |
301.721 |
transcript.whisperx[13].end |
320.954 |
transcript.whisperx[13].text |
沒有高出多少我們就以非甲烷的碳氫化合物跟氮氧化合物這兩項是最大的那麼這兩項在氮氧化合物的部分它只佔每一公里排放的只是0.0094克 |
transcript.whisperx[14].start |
327.867 |
transcript.whisperx[14].end |
352.743 |
transcript.whisperx[14].text |
這個只略高於電動機車的0.0073那另外非甲烷碳氫類這一部分的化合物也是0.0126當然這有高於電動機車0.0002但是幾乎啊幾乎它造成的污染已經不是那麼大而且這個大數字的統計裡面機車 |
transcript.whisperx[15].start |
356.038 |
transcript.whisperx[15].end |
366.39 |
transcript.whisperx[15].text |
他排放PM2.5的部分他只佔總體污染總體所有污染源裡面他只佔4.9%到5.6%4.9%到5.6%還是包括 |
transcript.whisperx[16].start |
372.817 |
transcript.whisperx[16].end |
400.416 |
transcript.whisperx[16].text |
包括過去的二行程機車沒有被汰換的包括四行程機車包括在內所以他如果只佔4.9%到5.6%竟然還比餐飲業餐飲業排放的污染還高過機車其他各個行業我就不一一舉啦這些很多包括電力業包括大貨車 |
transcript.whisperx[17].start |
403.104 |
transcript.whisperx[17].end |
427.182 |
transcript.whisperx[17].text |
包括金屬製造業等等排放的污染都遠高於機車啊那麼我們機車貨物稅之高高達17%竟然也比比它更污染的大貨車大客車都還要高你對大貨車大客車你也增15%而已啊結果對於機車我們特別 |
transcript.whisperx[18].start |
432.455 |
transcript.whisperx[18].end |
459.429 |
transcript.whisperx[18].text |
特別增他特別高而機車現在已經在我們台灣社會不但早就不是奢侈品這是絕大多數家家戶戶所需要的不僅是家戶的交通工具而且是很多民眾他上下班他去工作甚至他的生財工具一樣你沒看那麼多Uber Eats的富邦大 |
transcript.whisperx[19].start |
461.741 |
transcript.whisperx[19].end |
488.539 |
transcript.whisperx[19].text |
這很重要的 送貨的工具啦結果我們對它課這麼高的貨物稅所以我今天才會提案說這一個貨物稅要大幅的降低我講的算客氣的我不是說那一下子就把它取消我說那你至少降到百分之五那這個降到百分之五現在目前你剛剛講的我們財政部我們財政部最重視污染不是嗎 |
transcript.whisperx[20].start |
489.64 |
transcript.whisperx[20].end |
509.145 |
transcript.whisperx[20].text |
我們財政部動不動就是說這個它是移動污染源我剛剛就舉例給你聽啦事實上它並沒有造成那麼大的污染在七期的燃油車的部分那反而如果我們大幅的把機車貨物稅由17%降到5%可以減掉每一部新機車可以減掉7000到12000 |
transcript.whisperx[21].start |
517.113 |
transcript.whisperx[21].end |
541.112 |
transcript.whisperx[21].text |
那大幅的降低民眾購買機車的成本這樣才能夠有效的汰換老舊車輛尤其老舊的部分四行程的還有二行程的還那麼多二行程一部造成的污染等同19部四行程 |
transcript.whisperx[22].start |
543.059 |
transcript.whisperx[22].end |
559.432 |
transcript.whisperx[22].text |
這個試算我不相信你也看過那更何況跟四騎五騎六騎現在已經七騎燃油車相比那那個造成的污染一部老舊機車等於一百部的七騎燃油車 |
transcript.whisperx[23].start |
560.848 |
transcript.whisperx[23].end |
581.904 |
transcript.whisperx[23].text |
好啦那我剛剛為什麼你們一直說那我電動機車已經零貨物稅啦那個部長你也知道現在電動機車的慘況嘛電動機車當然好多原因造成現在這麼慘啦他過去特有的這個品牌在政府保護之下 |
transcript.whisperx[24].start |
583.266 |
transcript.whisperx[24].end |
607.974 |
transcript.whisperx[24].text |
我們要購買電動機車政府的政策那麼有補助大幅度的補助當然有奶水在他當然就做得好現在補助減了你看他現在我們每一年每一年增加87萬輛的機車他竟然衰退到這個佔有率他只佔7.9萬 |
transcript.whisperx[25].start |
611.659 |
transcript.whisperx[25].end |
633.821 |
transcript.whisperx[25].text |
這一個機車的那個市場那當然很多原因啦這個是他們要去加強的部分啦他月費高維修費高他嫌民眾騎得太窮這整種都是原因但是那個最後那個主席抱歉我最後一分鐘跟他講一下今天共同 |
transcript.whisperx[26].start |
636.587 |
transcript.whisperx[26].end |
651.137 |
transcript.whisperx[26].text |
參與的這個經濟部過去那個次長你跟部長講一下他過去說上位政策經濟部訂的但是人家經濟部今天說他今天說啦他今天說這個民眾跟產業都反映汽機車貨物稅造成車價過高所以他說應該適度調降貨物稅 |
transcript.whisperx[27].start |
658.963 |
transcript.whisperx[27].end |
680.984 |
transcript.whisperx[27].text |
可以使國產車、進口車立即降價減輕消費者負擔也使產業復甦這一個部分經濟部你們所謂的上位政策制定者他今天的答覆他今天的報告是這個樣子所以應該要順應我們這幾位立委所提的大幅的降低17%的機車貨物稅降到5% |
transcript.whisperx[28].start |
685.128 |
transcript.whisperx[28].end |
695.826 |
transcript.whisperx[28].text |
這是我今天提案的要求好 還有很多我下次再跟你談後那個就是不當的貨物稅的其他部分好 謝謝委員的諮詢現在請陳玉珍委員諮詢 請 |