iVOD / 160534

Field Value
IVOD_ID 160534
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160534
日期 2025-04-23
會議資料.會議代碼 委員會-11-3-20-9
會議資料.會議代碼:str 第11屆第3會期財政委員會第9次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 9
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第9次全體委員會議
影片種類 Clip
開始時間 2025-04-23T11:45:51+08:00
結束時間 2025-04-23T11:57:36+08:00
影片長度 00:11:45
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/27ac2f54fdf75cc0a080648d90611ccac0f390e692fb4f249a3354dc8dbd3a6275f58bd84367980c5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 王世堅
委員發言時間 11:45:51 - 11:57:36
會議時間 2025-04-23T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第9次全體委員會議(事由:一、審查「貨物稅條例」34案: (一) 本院委員葉元之等21人擬具「貨物稅條例刪除部分條文草案」案。 (二) 本院委員廖先翔等16人擬具「貨物稅條例刪除第八條條文草案」案。 (三) 本院台灣民眾黨黨團擬具「貨物稅條例第十一條、第十一條之一及第三十七條條文修正草案」案。 (四) 本院委員邱若華等20人擬具「貨物稅條例第十一條條文修正草案」案。 (五) 本院委員魯明哲等16人、委員顏寬恒等19人、委員羅廷瑋等16人、委員賴士葆等21人、委員邱鎮軍等22人、委員徐欣瑩等27人、委員翁曉玲等17人、委員羅明才等16人、委員郭國文等17人、委員王鴻薇等24人、委員廖偉翔等17人、委員許宇甄等21人、委員黃建賓等16人、委員林思銘等21人、委員萬美玲等16人分別擬具「貨物稅條例第十一條之一條文修正草案」等15案。 (六) 本院委員李坤城等24人擬具「貨物稅條例第十一條之一、第十二條之五及第十二條之六條文修正草案」案。 (七) 本院委員鄭天財Sra Kacaw等19人、委員林思銘等19人、委員涂權吉等17人、委員陳玉珍等19人、委員馬文君等18人、委員王世堅等19人、委員張智倫等25人、委員魯明哲等16人、委員王鴻薇等19人、委員楊瓊瓔等20人、委員邱鎮軍等24人、委員萬美玲等18人、委員廖偉翔等17人分別擬具「貨物稅條例第十二條條文修正草案」等13案。 (八) 本院委員邱鎮軍等19人擬具「貨物稅條例第十二條之三條文修正草案」案。 二、審查人民請願案有關「貨物稅條例」7案。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 8.40096875
transcript.pyannote[0].end 10.00409375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 10.29096875
transcript.pyannote[1].end 12.82221875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 16.41659375
transcript.pyannote[2].end 23.68971875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 23.95971875
transcript.pyannote[3].end 42.72471875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 43.02846875
transcript.pyannote[4].end 48.12471875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 48.88409375
transcript.pyannote[5].end 51.63471875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 51.97221875
transcript.pyannote[6].end 74.23034375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 74.82096875
transcript.pyannote[7].end 78.24659375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 78.65159375
transcript.pyannote[8].end 81.73971875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 82.48221875
transcript.pyannote[9].end 94.71659375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 95.25659375
transcript.pyannote[10].end 95.77971875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 96.87659375
transcript.pyannote[11].end 98.41221875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 98.85096875
transcript.pyannote[12].end 102.69846875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 103.20471875
transcript.pyannote[13].end 107.87909375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 108.35159375
transcript.pyannote[14].end 120.02909375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 120.14721875
transcript.pyannote[15].end 121.81784375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 122.37471875
transcript.pyannote[16].end 124.21409375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 125.20971875
transcript.pyannote[17].end 125.96909375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 127.15034375
transcript.pyannote[18].end 127.47096875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 127.97721875
transcript.pyannote[19].end 129.34409375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 129.83346875
transcript.pyannote[20].end 130.44096875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 130.96409375
transcript.pyannote[21].end 133.78221875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 134.18721875
transcript.pyannote[22].end 134.67659375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 135.36846875
transcript.pyannote[23].end 136.09409375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 136.90409375
transcript.pyannote[24].end 137.08971875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 137.56221875
transcript.pyannote[25].end 139.45221875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 140.09346875
transcript.pyannote[26].end 140.63346875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 142.52346875
transcript.pyannote[27].end 145.47659375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 145.89846875
transcript.pyannote[28].end 155.83784375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 156.68159375
transcript.pyannote[29].end 165.01784375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 165.42284375
transcript.pyannote[30].end 173.89409375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 174.18096875
transcript.pyannote[31].end 191.84909375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 192.86159375
transcript.pyannote[32].end 194.02596875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 194.73471875
transcript.pyannote[33].end 195.44346875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 195.66284375
transcript.pyannote[34].end 196.25346875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 196.50659375
transcript.pyannote[35].end 198.05909375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 198.26159375
transcript.pyannote[36].end 201.26534375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 202.29471875
transcript.pyannote[37].end 203.03721875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 203.76284375
transcript.pyannote[38].end 215.81159375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 216.14909375
transcript.pyannote[39].end 219.89534375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 220.41846875
transcript.pyannote[40].end 221.65034375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 222.54471875
transcript.pyannote[41].end 225.16034375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 225.32909375
transcript.pyannote[42].end 230.91471875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 231.57284375
transcript.pyannote[43].end 232.36596875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 232.92284375
transcript.pyannote[44].end 241.74846875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 242.37284375
transcript.pyannote[45].end 248.65034375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 249.10596875
transcript.pyannote[46].end 251.46846875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 252.19409375
transcript.pyannote[47].end 256.61534375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 256.93596875
transcript.pyannote[48].end 269.45721875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 269.74409375
transcript.pyannote[49].end 270.31784375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 271.04346875
transcript.pyannote[50].end 277.50659375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 277.81034375
transcript.pyannote[51].end 280.02096875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 281.45534375
transcript.pyannote[52].end 282.41721875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 283.31159375
transcript.pyannote[53].end 284.13846875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 284.45909375
transcript.pyannote[54].end 285.57284375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 286.26471875
transcript.pyannote[55].end 291.63096875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 291.81659375
transcript.pyannote[56].end 300.79409375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 301.65471875
transcript.pyannote[57].end 303.05534375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 303.13971875
transcript.pyannote[58].end 317.80409375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 318.42846875
transcript.pyannote[59].end 324.09846875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 324.45284375
transcript.pyannote[60].end 326.10659375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 326.88284375
transcript.pyannote[61].end 331.94534375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 332.72159375
transcript.pyannote[62].end 339.69096875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 340.46721875
transcript.pyannote[63].end 344.36534375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 345.09096875
transcript.pyannote[64].end 354.94596875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 356.00909375
transcript.pyannote[65].end 359.09721875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 359.56971875
transcript.pyannote[66].end 360.70034375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 361.47659375
transcript.pyannote[67].end 368.71596875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 369.39096875
transcript.pyannote[68].end 371.95596875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 372.74909375
transcript.pyannote[69].end 386.73846875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 387.12659375
transcript.pyannote[70].end 389.10096875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 389.50596875
transcript.pyannote[71].end 390.67034375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 390.85596875
transcript.pyannote[72].end 391.51409375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 392.88096875
transcript.pyannote[73].end 395.90159375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 396.62721875
transcript.pyannote[74].end 398.19659375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 398.53409375
transcript.pyannote[75].end 401.23409375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 402.80346875
transcript.pyannote[76].end 408.60846875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 409.45221875
transcript.pyannote[77].end 416.43846875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 417.41721875
transcript.pyannote[78].end 421.66971875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 422.19284375
transcript.pyannote[79].end 423.01971875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 423.45846875
transcript.pyannote[80].end 429.21284375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 429.38159375
transcript.pyannote[81].end 430.96784375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 432.41909375
transcript.pyannote[82].end 434.19096875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 434.78159375
transcript.pyannote[83].end 440.99159375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 441.70034375
transcript.pyannote[84].end 446.94846875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 447.40409375
transcript.pyannote[85].end 451.03221875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 452.34846875
transcript.pyannote[86].end 459.67221875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 460.58346875
transcript.pyannote[87].end 461.15721875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 461.39346875
transcript.pyannote[88].end 464.90346875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 465.25784375
transcript.pyannote[89].end 472.21034375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 472.44659375
transcript.pyannote[90].end 485.79471875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 485.99721875
transcript.pyannote[91].end 488.89971875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 489.55784375
transcript.pyannote[92].end 496.05471875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 496.47659375
transcript.pyannote[93].end 502.11284375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 502.46721875
transcript.pyannote[94].end 502.82159375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 503.10846875
transcript.pyannote[95].end 511.56284375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 512.10284375
transcript.pyannote[96].end 516.40596875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 516.99659375
transcript.pyannote[97].end 521.90721875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 522.37971875
transcript.pyannote[98].end 525.14721875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 525.40034375
transcript.pyannote[99].end 528.64034375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 528.67409375
transcript.pyannote[100].end 532.57221875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 533.33159375
transcript.pyannote[101].end 534.61409375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 535.10346875
transcript.pyannote[102].end 535.62659375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 536.28471875
transcript.pyannote[103].end 537.61784375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 538.30971875
transcript.pyannote[104].end 541.53284375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 542.37659375
transcript.pyannote[105].end 544.92471875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 545.32971875
transcript.pyannote[106].end 546.37596875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 546.83159375
transcript.pyannote[107].end 551.03346875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 551.45534375
transcript.pyannote[108].end 552.94034375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 553.49721875
transcript.pyannote[109].end 555.38721875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 556.28159375
transcript.pyannote[110].end 556.87221875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 557.17596875
transcript.pyannote[111].end 559.87596875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 560.78721875
transcript.pyannote[112].end 562.81221875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 562.93034375
transcript.pyannote[113].end 577.61159375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 578.96159375
transcript.pyannote[114].end 582.11721875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 583.14659375
transcript.pyannote[115].end 587.93909375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 588.42846875
transcript.pyannote[116].end 591.97221875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 592.29284375
transcript.pyannote[117].end 592.86659375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 593.25471875
transcript.pyannote[118].end 595.07721875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 595.75221875
transcript.pyannote[119].end 598.60409375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 598.94159375
transcript.pyannote[120].end 609.60659375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 611.10846875
transcript.pyannote[121].end 614.78721875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 615.09096875
transcript.pyannote[122].end 627.78096875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 628.27034375
transcript.pyannote[123].end 632.87721875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 633.43409375
transcript.pyannote[124].end 634.05846875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 634.90221875
transcript.pyannote[125].end 635.56034375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 635.94846875
transcript.pyannote[126].end 636.97784375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 637.41659375
transcript.pyannote[127].end 657.59909375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 658.64534375
transcript.pyannote[128].end 698.70659375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 692.63159375
transcript.pyannote[129].end 693.17159375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 704.39346875
transcript.pyannote[130].end 704.62971875
transcript.whisperx[0].start 9.071
transcript.whisperx[0].end 12.394
transcript.whisperx[0].text 謝謝主席 我請李次長請李次長
transcript.whisperx[1].start 17.889
transcript.whisperx[1].end 39.429
transcript.whisperx[1].text 市長其實這個議題今天討論的這個議題我在去年五月的時候這個質詢針對我們國家現在還有很多不合時的稅制包括娛樂稅、印花稅、汽車關稅、保健品關稅尤其我們今天要談到的機車貨物稅和汽車貨物稅
transcript.whisperx[2].start 43.132
transcript.whisperx[2].end 47.623
transcript.whisperx[2].text 那這些不合時宜的稅制我們去年五月到現在將近一年
transcript.whisperx[3].start 48.942
transcript.whisperx[3].end 73.243
transcript.whisperx[3].text 那麼我認為財政部啊就誠如我上次跟莊部長質詢的我四個字形容爆產守缺啦沒有針對這些不合時宜的稅制我們來做應該要做的調整或者我們以其他更進一步的世界各國先進國家都在採行的綠色稅制
transcript.whisperx[4].start 75.155
transcript.whisperx[4].end 95.41
transcript.whisperx[4].text 來做替代要與時俱進但是我們卻抱殘手缺那麼在這一次美國的這個關稅風暴當中我們總統府也已經正式公開表達了就說我們國家要排除非
transcript.whisperx[5].start 97.746
transcript.whisperx[5].end 123.934
transcript.whisperx[5].text 關稅貿易障礙排除非關稅貿易障礙這已經把我們這一次應對以及我們要符合先進國家世界潮流這個不應該有的這些非關稅貿易障礙那非關稅貿易障礙很多啊包括政府不公平的補貼包括其他稅賦這些都非常清楚的而機車
transcript.whisperx[6].start 127.179
transcript.whisperx[6].end 153.275
transcript.whisperx[6].text 的貨物稅以及最重要汽車關稅 汽車貨物稅這個都是不當的其他稅負那麼我們統計了OECD的國家他們貨物稅平均稅率大概在2.6%啦而我們國家竟然高達8.2%
transcript.whisperx[7].start 156.758
transcript.whisperx[7].end 173.509
transcript.whisperx[7].text 那我就針對我今天提案的降低機車貨物稅 汽車貨物稅這一點來說你們根本一年來的對我的答覆就是說 機車貨物稅有助於減少空氣污染
transcript.whisperx[8].start 174.429
transcript.whisperx[8].end 202.837
transcript.whisperx[8].text 難道說你們對於這個淘汰對於機車太舊換新有免除四千元降低四千元貨物稅已經有這麼說了那你們說購買電動機車也免徵貨物稅等等等可是那個次長是這個說污染的部分環境部已經有說空污費了不是嗎所以
transcript.whisperx[9].start 203.86
transcript.whisperx[9].end 228.194
transcript.whisperx[9].text 如果環境部收了空污費我們還針對機車說我收你貨物稅就是為了要減少你這個移動污染源那這個不但我講現在連審計部給你們的這個答覆都很清楚的說這個叫做一頭牛扒兩層皮這個叫做重複課稅不是這樣嗎
transcript.whisperx[10].start 232.998
transcript.whisperx[10].end 251.199
transcript.whisperx[10].text 然後你們說對於太舊換新的部分你們降低了4000元的貨物稅但是對於年輕朋友們手夠足啊他沒有舊的車去太舊啊他剛出入社會他買了
transcript.whisperx[11].start 253.874
transcript.whisperx[11].end 279.827
transcript.whisperx[11].text 這個機車那還要還是一樣要這麼高的貨物稅這非常不公平然後這麼多年來你們也一直都說啊這個機車是那個移動的污染源雖然我覺得這個是環境部該管這個我們財政部一直強調這一點有點撈過界啦不過我也是要必須跟你澄清一下
transcript.whisperx[12].start 281.573
transcript.whisperx[12].end 298.917
transcript.whisperx[12].text 事實上現在在我們政府要求之下我們現在的7騎的燃油機車7騎的燃油機車喔它這個空污排放量的乙金啊跟電動機車幾乎啊
transcript.whisperx[13].start 301.721
transcript.whisperx[13].end 320.954
transcript.whisperx[13].text 沒有高出多少我們就以非甲烷的碳氫化合物跟氮氧化合物這兩項是最大的那麼這兩項在氮氧化合物的部分它只佔每一公里排放的只是0.0094克
transcript.whisperx[14].start 327.867
transcript.whisperx[14].end 352.743
transcript.whisperx[14].text 這個只略高於電動機車的0.0073那另外非甲烷碳氫類這一部分的化合物也是0.0126當然這有高於電動機車0.0002但是幾乎啊幾乎它造成的污染已經不是那麼大而且這個大數字的統計裡面機車
transcript.whisperx[15].start 356.038
transcript.whisperx[15].end 366.39
transcript.whisperx[15].text 他排放PM2.5的部分他只佔總體污染總體所有污染源裡面他只佔4.9%到5.6%4.9%到5.6%還是包括
transcript.whisperx[16].start 372.817
transcript.whisperx[16].end 400.416
transcript.whisperx[16].text 包括過去的二行程機車沒有被汰換的包括四行程機車包括在內所以他如果只佔4.9%到5.6%竟然還比餐飲業餐飲業排放的污染還高過機車其他各個行業我就不一一舉啦這些很多包括電力業包括大貨車
transcript.whisperx[17].start 403.104
transcript.whisperx[17].end 427.182
transcript.whisperx[17].text 包括金屬製造業等等排放的污染都遠高於機車啊那麼我們機車貨物稅之高高達17%竟然也比比它更污染的大貨車大客車都還要高你對大貨車大客車你也增15%而已啊結果對於機車我們特別
transcript.whisperx[18].start 432.455
transcript.whisperx[18].end 459.429
transcript.whisperx[18].text 特別增他特別高而機車現在已經在我們台灣社會不但早就不是奢侈品這是絕大多數家家戶戶所需要的不僅是家戶的交通工具而且是很多民眾他上下班他去工作甚至他的生財工具一樣你沒看那麼多Uber Eats的富邦大
transcript.whisperx[19].start 461.741
transcript.whisperx[19].end 488.539
transcript.whisperx[19].text 這很重要的 送貨的工具啦結果我們對它課這麼高的貨物稅所以我今天才會提案說這一個貨物稅要大幅的降低我講的算客氣的我不是說那一下子就把它取消我說那你至少降到百分之五那這個降到百分之五現在目前你剛剛講的我們財政部我們財政部最重視污染不是嗎
transcript.whisperx[20].start 489.64
transcript.whisperx[20].end 509.145
transcript.whisperx[20].text 我們財政部動不動就是說這個它是移動污染源我剛剛就舉例給你聽啦事實上它並沒有造成那麼大的污染在七期的燃油車的部分那反而如果我們大幅的把機車貨物稅由17%降到5%可以減掉每一部新機車可以減掉7000到12000
transcript.whisperx[21].start 517.113
transcript.whisperx[21].end 541.112
transcript.whisperx[21].text 那大幅的降低民眾購買機車的成本這樣才能夠有效的汰換老舊車輛尤其老舊的部分四行程的還有二行程的還那麼多二行程一部造成的污染等同19部四行程
transcript.whisperx[22].start 543.059
transcript.whisperx[22].end 559.432
transcript.whisperx[22].text 這個試算我不相信你也看過那更何況跟四騎五騎六騎現在已經七騎燃油車相比那那個造成的污染一部老舊機車等於一百部的七騎燃油車
transcript.whisperx[23].start 560.848
transcript.whisperx[23].end 581.904
transcript.whisperx[23].text 好啦那我剛剛為什麼你們一直說那我電動機車已經零貨物稅啦那個部長你也知道現在電動機車的慘況嘛電動機車當然好多原因造成現在這麼慘啦他過去特有的這個品牌在政府保護之下
transcript.whisperx[24].start 583.266
transcript.whisperx[24].end 607.974
transcript.whisperx[24].text 我們要購買電動機車政府的政策那麼有補助大幅度的補助當然有奶水在他當然就做得好現在補助減了你看他現在我們每一年每一年增加87萬輛的機車他竟然衰退到這個佔有率他只佔7.9萬
transcript.whisperx[25].start 611.659
transcript.whisperx[25].end 633.821
transcript.whisperx[25].text 這一個機車的那個市場那當然很多原因啦這個是他們要去加強的部分啦他月費高維修費高他嫌民眾騎得太窮這整種都是原因但是那個最後那個主席抱歉我最後一分鐘跟他講一下今天共同
transcript.whisperx[26].start 636.587
transcript.whisperx[26].end 651.137
transcript.whisperx[26].text 參與的這個經濟部過去那個次長你跟部長講一下他過去說上位政策經濟部訂的但是人家經濟部今天說他今天說啦他今天說這個民眾跟產業都反映汽機車貨物稅造成車價過高所以他說應該適度調降貨物稅
transcript.whisperx[27].start 658.963
transcript.whisperx[27].end 680.984
transcript.whisperx[27].text 可以使國產車、進口車立即降價減輕消費者負擔也使產業復甦這一個部分經濟部你們所謂的上位政策制定者他今天的答覆他今天的報告是這個樣子所以應該要順應我們這幾位立委所提的大幅的降低17%的機車貨物稅降到5%
transcript.whisperx[28].start 685.128
transcript.whisperx[28].end 695.826
transcript.whisperx[28].text 這是我今天提案的要求好 還有很多我下次再跟你談後那個就是不當的貨物稅的其他部分好 謝謝委員的諮詢現在請陳玉珍委員諮詢 請