IVOD_ID |
160533 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/160533 |
日期 |
2025-04-23 |
會議資料.會議代碼 |
委員會-11-3-20-9 |
會議資料.會議代碼:str |
第11屆第3會期財政委員會第9次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
9 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
20 |
會議資料.委員會代碼:str[0] |
財政委員會 |
會議資料.標題 |
第11屆第3會期財政委員會第9次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-04-23T11:36:44+08:00 |
結束時間 |
2025-04-23T11:45:45+08:00 |
影片長度 |
00:09:01 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/27ac2f54fdf75cc00e07de40dbe986b9c0f390e692fb4f249a3354dc8dbd3a620e1c0bc9da77201c5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
林思銘 |
委員發言時間 |
11:36:44 - 11:45:45 |
會議時間 |
2025-04-23T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期財政委員會第9次全體委員會議(事由:一、審查「貨物稅條例」34案:
(一) 本院委員葉元之等21人擬具「貨物稅條例刪除部分條文草案」案。
(二) 本院委員廖先翔等16人擬具「貨物稅條例刪除第八條條文草案」案。
(三) 本院台灣民眾黨黨團擬具「貨物稅條例第十一條、第十一條之一及第三十七條條文修正草案」案。
(四) 本院委員邱若華等20人擬具「貨物稅條例第十一條條文修正草案」案。
(五) 本院委員魯明哲等16人、委員顏寬恒等19人、委員羅廷瑋等16人、委員賴士葆等21人、委員邱鎮軍等22人、委員徐欣瑩等27人、委員翁曉玲等17人、委員羅明才等16人、委員郭國文等17人、委員王鴻薇等24人、委員廖偉翔等17人、委員許宇甄等21人、委員黃建賓等16人、委員林思銘等21人、委員萬美玲等16人分別擬具「貨物稅條例第十一條之一條文修正草案」等15案。
(六) 本院委員李坤城等24人擬具「貨物稅條例第十一條之一、第十二條之五及第十二條之六條文修正草案」案。
(七) 本院委員鄭天財Sra Kacaw等19人、委員林思銘等19人、委員涂權吉等17人、委員陳玉珍等19人、委員馬文君等18人、委員王世堅等19人、委員張智倫等25人、委員魯明哲等16人、委員王鴻薇等19人、委員楊瓊瓔等20人、委員邱鎮軍等24人、委員萬美玲等18人、委員廖偉翔等17人分別擬具「貨物稅條例第十二條條文修正草案」等13案。
(八) 本院委員邱鎮軍等19人擬具「貨物稅條例第十二條之三條文修正草案」案。
二、審查人民請願案有關「貨物稅條例」7案。) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
0.16596875 |
transcript.pyannote[0].end |
0.70596875 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
1.33034375 |
transcript.pyannote[1].end |
2.84909375 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
3.40596875 |
transcript.pyannote[2].end |
3.64221875 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
3.69284375 |
transcript.pyannote[3].end |
3.72659375 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
3.72659375 |
transcript.pyannote[4].end |
4.30034375 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
7.77659375 |
transcript.pyannote[5].end |
8.28284375 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
8.28284375 |
transcript.pyannote[6].end |
8.31659375 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
8.45159375 |
transcript.pyannote[7].end |
17.76659375 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
18.52596875 |
transcript.pyannote[8].end |
24.66846875 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
25.07346875 |
transcript.pyannote[9].end |
29.73096875 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
30.70971875 |
transcript.pyannote[10].end |
33.46034375 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
33.24096875 |
transcript.pyannote[11].end |
33.69659375 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
33.69659375 |
transcript.pyannote[12].end |
34.48971875 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
34.50659375 |
transcript.pyannote[13].end |
34.54034375 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
34.54034375 |
transcript.pyannote[14].end |
35.16471875 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
35.19846875 |
transcript.pyannote[15].end |
37.89846875 |
transcript.pyannote[16].speaker |
SPEAKER_01 |
transcript.pyannote[16].start |
35.24909375 |
transcript.pyannote[16].end |
36.04221875 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
37.07159375 |
transcript.pyannote[17].end |
37.40909375 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
37.84784375 |
transcript.pyannote[18].end |
38.65784375 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
39.16409375 |
transcript.pyannote[19].end |
42.47159375 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
42.60659375 |
transcript.pyannote[20].end |
44.66534375 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
45.07034375 |
transcript.pyannote[21].end |
46.62284375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
45.08721875 |
transcript.pyannote[22].end |
45.86346875 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
46.80846875 |
transcript.pyannote[23].end |
57.06846875 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
57.06846875 |
transcript.pyannote[24].end |
57.47346875 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
58.24971875 |
transcript.pyannote[25].end |
71.66534375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
66.75471875 |
transcript.pyannote[26].end |
71.12534375 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
71.88471875 |
transcript.pyannote[27].end |
72.23909375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
72.79596875 |
transcript.pyannote[28].end |
83.47784375 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
83.54534375 |
transcript.pyannote[29].end |
84.15284375 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
84.23721875 |
transcript.pyannote[30].end |
90.86909375 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
86.12721875 |
transcript.pyannote[31].end |
86.61659375 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
90.02534375 |
transcript.pyannote[32].end |
90.17721875 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
90.97034375 |
transcript.pyannote[33].end |
91.49346875 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
91.20659375 |
transcript.pyannote[34].end |
98.49659375 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
98.39534375 |
transcript.pyannote[35].end |
116.26596875 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
113.16096875 |
transcript.pyannote[36].end |
124.21409375 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
117.09284375 |
transcript.pyannote[37].end |
117.46409375 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
124.50096875 |
transcript.pyannote[38].end |
135.48659375 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
135.60471875 |
transcript.pyannote[39].end |
136.04346875 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
136.21221875 |
transcript.pyannote[40].end |
148.09221875 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
146.70846875 |
transcript.pyannote[41].end |
150.25221875 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
149.39159375 |
transcript.pyannote[42].end |
151.75409375 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
150.64034375 |
transcript.pyannote[43].end |
160.61346875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
160.78221875 |
transcript.pyannote[44].end |
168.19034375 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
162.92534375 |
transcript.pyannote[45].end |
164.03909375 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
165.47346875 |
transcript.pyannote[46].end |
186.07784375 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
170.72159375 |
transcript.pyannote[47].end |
171.24471875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
172.13909375 |
transcript.pyannote[48].end |
173.18534375 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
177.99471875 |
transcript.pyannote[49].end |
179.14221875 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
186.36471875 |
transcript.pyannote[50].end |
199.61159375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
200.50596875 |
transcript.pyannote[51].end |
206.81721875 |
transcript.pyannote[52].speaker |
SPEAKER_01 |
transcript.pyannote[52].start |
200.65784375 |
transcript.pyannote[52].end |
201.99096875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
207.23909375 |
transcript.pyannote[53].end |
222.08909375 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
217.31346875 |
transcript.pyannote[54].end |
217.80284375 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
218.86596875 |
transcript.pyannote[55].end |
221.36346875 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
221.66721875 |
transcript.pyannote[56].end |
237.58034375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
229.71659375 |
transcript.pyannote[57].end |
229.93596875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
232.90596875 |
transcript.pyannote[58].end |
233.63159375 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
235.74096875 |
transcript.pyannote[59].end |
236.61846875 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
237.52971875 |
transcript.pyannote[60].end |
238.05284375 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
238.15409375 |
transcript.pyannote[61].end |
242.17034375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
243.09846875 |
transcript.pyannote[62].end |
249.78096875 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
244.65096875 |
transcript.pyannote[63].end |
246.30471875 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
250.20284375 |
transcript.pyannote[64].end |
277.23659375 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
277.74284375 |
transcript.pyannote[65].end |
278.89034375 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
279.75096875 |
transcript.pyannote[66].end |
280.79721875 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
280.96596875 |
transcript.pyannote[67].end |
283.36221875 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
283.75034375 |
transcript.pyannote[68].end |
288.39096875 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
289.08284375 |
transcript.pyannote[69].end |
290.58471875 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
289.48784375 |
transcript.pyannote[70].end |
290.71971875 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
290.92221875 |
transcript.pyannote[71].end |
294.49971875 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
294.73596875 |
transcript.pyannote[72].end |
301.35096875 |
transcript.pyannote[73].speaker |
SPEAKER_01 |
transcript.pyannote[73].start |
302.16096875 |
transcript.pyannote[73].end |
312.50534375 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
312.18471875 |
transcript.pyannote[74].end |
312.69096875 |
transcript.pyannote[75].speaker |
SPEAKER_01 |
transcript.pyannote[75].start |
312.69096875 |
transcript.pyannote[75].end |
317.51721875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
315.44159375 |
transcript.pyannote[76].end |
324.13221875 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
319.45784375 |
transcript.pyannote[77].end |
319.96409375 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
320.90909375 |
transcript.pyannote[78].end |
321.34784375 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
322.54596875 |
transcript.pyannote[79].end |
331.32096875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
325.06034375 |
transcript.pyannote[80].end |
325.07721875 |
transcript.pyannote[81].speaker |
SPEAKER_01 |
transcript.pyannote[81].start |
331.65846875 |
transcript.pyannote[81].end |
343.82534375 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
344.07846875 |
transcript.pyannote[82].end |
345.14159375 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
345.54659375 |
transcript.pyannote[83].end |
345.61409375 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
346.00221875 |
transcript.pyannote[84].end |
349.22534375 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
349.73159375 |
transcript.pyannote[85].end |
356.02596875 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
356.17784375 |
transcript.pyannote[86].end |
356.22846875 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
356.56596875 |
transcript.pyannote[87].end |
359.31659375 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
359.50221875 |
transcript.pyannote[88].end |
360.59909375 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
361.59471875 |
transcript.pyannote[89].end |
365.79659375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
366.37034375 |
transcript.pyannote[90].end |
368.22659375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
369.01971875 |
transcript.pyannote[91].end |
376.14096875 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
376.34346875 |
transcript.pyannote[92].end |
386.04659375 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
382.67159375 |
transcript.pyannote[93].end |
383.14409375 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
383.38034375 |
transcript.pyannote[94].end |
387.12659375 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
386.83971875 |
transcript.pyannote[95].end |
387.24471875 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
387.58221875 |
transcript.pyannote[96].end |
395.27721875 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
395.58096875 |
transcript.pyannote[97].end |
396.23909375 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
396.47534375 |
transcript.pyannote[98].end |
404.15346875 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
399.88409375 |
transcript.pyannote[99].end |
400.25534375 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
400.98096875 |
transcript.pyannote[100].end |
405.08159375 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
404.77784375 |
transcript.pyannote[101].end |
408.64221875 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
406.41471875 |
transcript.pyannote[102].end |
406.71846875 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
408.32159375 |
transcript.pyannote[103].end |
413.53596875 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
414.26159375 |
transcript.pyannote[104].end |
429.02721875 |
transcript.pyannote[105].speaker |
SPEAKER_01 |
transcript.pyannote[105].start |
430.46159375 |
transcript.pyannote[105].end |
431.42346875 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
430.54596875 |
transcript.pyannote[106].end |
430.96784375 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
431.37284375 |
transcript.pyannote[107].end |
461.96721875 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
454.05284375 |
transcript.pyannote[108].end |
454.79534375 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
461.57909375 |
transcript.pyannote[109].end |
471.24846875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
463.26659375 |
transcript.pyannote[110].end |
464.24534375 |
transcript.pyannote[111].speaker |
SPEAKER_01 |
transcript.pyannote[111].start |
471.58596875 |
transcript.pyannote[111].end |
474.67409375 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
475.19721875 |
transcript.pyannote[112].end |
476.56409375 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
476.80034375 |
transcript.pyannote[113].end |
479.87159375 |
transcript.pyannote[114].speaker |
SPEAKER_01 |
transcript.pyannote[114].start |
480.22596875 |
transcript.pyannote[114].end |
483.92159375 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
484.36034375 |
transcript.pyannote[115].end |
489.15284375 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
489.65909375 |
transcript.pyannote[116].end |
512.42346875 |
transcript.pyannote[117].speaker |
SPEAKER_01 |
transcript.pyannote[117].start |
513.52034375 |
transcript.pyannote[117].end |
514.53284375 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
514.68471875 |
transcript.pyannote[118].end |
520.13534375 |
transcript.pyannote[119].speaker |
SPEAKER_01 |
transcript.pyannote[119].start |
520.33784375 |
transcript.pyannote[119].end |
530.80034375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
527.61096875 |
transcript.pyannote[120].end |
528.53909375 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
530.24346875 |
transcript.pyannote[121].end |
531.30659375 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
532.52159375 |
transcript.pyannote[122].end |
532.87596875 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
533.02784375 |
transcript.pyannote[123].end |
534.61409375 |
transcript.pyannote[124].speaker |
SPEAKER_01 |
transcript.pyannote[124].start |
534.78284375 |
transcript.pyannote[124].end |
535.12034375 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
535.60971875 |
transcript.pyannote[125].end |
537.16221875 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
538.44471875 |
transcript.pyannote[126].end |
538.56284375 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
538.88346875 |
transcript.pyannote[127].end |
541.17846875 |
transcript.whisperx[0].start |
10.151 |
transcript.whisperx[0].end |
27.134 |
transcript.whisperx[0].text |
行政院在4月21號公布最新的881對等關稅的支持方案財政部把一般企業利息減收的上限從500萬降為100萬中小企業的部分就從600萬降為125萬 |
transcript.whisperx[1].start |
30.885 |
transcript.whisperx[1].end |
56.75 |
transcript.whisperx[1].text |
當然也有同步放寬申請的門檻是沒錯吧對目前我們核定的方案是這樣市長我想請問財政部做這樣的改變的原因是什麼主因是什麼為什麼做這樣的改變其實主要就是希望能夠普及讓所有的中小企業大家都可以來普及適用不要變成是集中在少數的企業這樣子是 |
transcript.whisperx[2].start |
58.308 |
transcript.whisperx[2].end |
83.155 |
transcript.whisperx[2].text |
那這樣子做的話財政部估計對於國內的產業的衝擊可能達多少家的一般企業還有我們對我們中小企業的影響會有幾家依照那個行政院的初估還包含經濟部好像我看媒體報導是一萬兩千家左右一萬兩千家左右市長 |
transcript.whisperx[3].start |
84.508 |
transcript.whisperx[3].end |
112.664 |
transcript.whisperx[3].text |
是 我這樣要求是不是可以請財政部把更多詳實的資訊公佈出來讓我們不管是我們委員或者是我們國人或者企業主更多的人知道這樣的資訊其實我們現在都已經把這些我們所有在這次對應這個對等關稅的相關的政策包含金融的支持包含租稅的協助還有就是包含行政成本的 |
transcript.whisperx[4].start |
112.984 |
transcript.whisperx[4].end |
134.554 |
transcript.whisperx[4].text |
行政流程的減收我們在官網上面公佈我現在的疑問是說因為你突然間政策改變你突然把利息的減收上限我們的一般企業跟中小企業一下子從500萬降為100中小企業從600降到120萬所以這樣的政策改變你有做過評估嗎 |
transcript.whisperx[5].start |
136.675 |
transcript.whisperx[5].end |
158.454 |
transcript.whisperx[5].text |
這個其實因為我們目前去各區座談好像看起來那個金融支持的部分我們現在提出來的這個方案好像業者並沒有特別覺得說因為你是同步有放寬申請的門檻但是利息的減收上限卻這樣子突然做調整所以有很多的企業主跟我講說為什麼會突然做這樣的一個改變 |
transcript.whisperx[6].start |
161.316 |
transcript.whisperx[6].end |
184.83 |
transcript.whisperx[6].text |
應該是有做過一些評估啦不過我想這部分我們可以再另外看事情我想還是要很審慎資訊要更多元的告訴我們的更多的資訊告訴我們相關的國人不要說只有隨便的我想到什麼就隨便的調整不會不會打算說特別條例通過了然後我們再來追加預算另外這個 |
transcript.whisperx[7].start |
186.671 |
transcript.whisperx[7].end |
199.363 |
transcript.whisperx[7].text |
財政部是否認為對等關稅還在談所以我們我國要調降汽車的關稅局貨物稅還在研擬一切以考量國家的最大利益為主 |
transcript.whisperx[8].start |
203.571 |
transcript.whisperx[8].end |
215.499 |
transcript.whisperx[8].text |
目前我們對等關稅 汽車的關稅跟貨物稅可能是一個談判的重點所以我們是希望讓我們有一個未來談判的籌碼 暫時看看未來的方向 |
transcript.whisperx[9].start |
221.863 |
transcript.whisperx[9].end |
241.8 |
transcript.whisperx[9].text |
我看那個行政院他的一個說明是說我們這個要等到對等關稅談判就剛才市長講的談判的結果了那考量國家的最大利益再來做一個這個決定要不要調降我們汽車的貨物稅是的那所以請問市長所謂最大的利益是什麼 |
transcript.whisperx[10].start |
243.297 |
transcript.whisperx[10].end |
259.814 |
transcript.whisperx[10].text |
最大利益當然就是希望他的對等關稅不要增加讓我們的對等關稅可以降到最低當然這個是大家期待的但是我個人是認為因為如果說我們這個所謂的最大利益當然是我們剛才您講的啦 |
transcript.whisperx[11].start |
260.194 |
transcript.whisperx[11].end |
283.053 |
transcript.whisperx[11].text |
但是我們對於貨物稅尤其是汽車的貨物稅是繼續的課徵25%到30%的這個貨物稅是不管未來關稅的談判結果是怎麼樣那這個貨物稅它的一個要不要調降那你都不去管你認為說這個還是維持25% 30%這個是我們對於我們調降汽車貨物稅的最大利益嗎 |
transcript.whisperx[12].start |
289.384 |
transcript.whisperx[12].end |
300.67 |
transcript.whisperx[12].text |
這是最大利益嗎?是 報告委員 其實基本上我們會配合這次的對等關係的談判然後跟產業主管機關一起來做相關的評估 |
transcript.whisperx[13].start |
302.602 |
transcript.whisperx[13].end |
327.098 |
transcript.whisperx[13].text |
所以其實市長我個人是認為當然您一直提到說這是要把這個汽車的貨物稅要不要調降是我們作為我們關稅談判的一個籌碼是的我們財政部的看法是這樣目前我們是暫時不要就是先把我們可能的方向讓那個先做最後的決定我想我們經貿辦在4月11號才跟美方這個視訊會議完畢談完關稅的問題 |
transcript.whisperx[14].start |
331.761 |
transcript.whisperx[14].end |
359.738 |
transcript.whisperx[14].text |
但是我們又講說我們後續的調降稅制還是要在研擬所以現在我們的狀況是否已經變成說我們的貨物稅的調降在研擬中人民是否只能繼續的繳稅中你一直要等到關稅的談判的結果再來做貨物稅的調降的一個決定所以未來不管你關稅談判的結果如果說 |
transcript.whisperx[15].start |
361.633 |
transcript.whisperx[15].end |
367.823 |
transcript.whisperx[15].text |
不是達到我們預期的一個效果但是我們貨物稅還是那麼高你都完全不思考去調降嗎 |
transcript.whisperx[16].start |
369.897 |
transcript.whisperx[16].end |
387.872 |
transcript.whisperx[16].text |
報委我想這部分我們會列為即使就是將來看看對等關係談判的結果怎麼樣然後我們再看我們怎麼樣做相關對國內民生利益最大的考量優惠的考量市長我給你一個建議給財政部一個建議其實我想現在財政部是認為說調降關稅跟獲利稅應連動處理你們的態度好像是這樣是不是 |
transcript.whisperx[17].start |
396.963 |
transcript.whisperx[17].end |
402.505 |
transcript.whisperx[17].text |
應該是說看看經貿談判因為他們談判的時候care的部分就是它是一個進口汽車會連動的事情因為進口汽車它會有關稅有貨物稅但是其實市長其實我個人認為 |
transcript.whisperx[18].start |
414.67 |
transcript.whisperx[18].end |
428.645 |
transcript.whisperx[18].text |
調整汽車的貨物稅跟零組件的關稅這應該同步規劃這你應該早就在這個關稅談判之前你要做規劃而不是等到美國逼到我們門口你才倉促的要做出反應啊 |
transcript.whisperx[19].start |
430.629 |
transcript.whisperx[19].end |
453.656 |
transcript.whisperx[19].text |
市長你怎麼看因為貨物稅這件事情它本身它是一個國內外不管是進口車或者是國內產製的車它都是一樣的課稅標準所以而且它基本上課稅的影響不是只有針對單一國家它是所有的不管是從美國、日本、歐洲進來的都會一樣課稅的待遇 |
transcript.whisperx[20].start |
454.176 |
transcript.whisperx[20].end |
474.408 |
transcript.whisperx[20].text |
所以在做評估的時候我們還是要做一個比較通盤的演繹跟產業主管機關一起來做相關的考慮市長你講的我們都了解但是我們現在就看到行政院口口聲聲或者是談判代表都說我們要基於我們最大的利益但是是什麼我們人民我們真的都不知道 |
transcript.whisperx[21].start |
475.288 |
transcript.whisperx[21].end |
488.4 |
transcript.whisperx[21].text |
所以我理解國際談判的空間要有彈性的空間但是所有的資訊只有特定的人士才知情啊人民跟國會完全就是被排除的一個狀況 |
transcript.whisperx[22].start |
491.002 |
transcript.whisperx[22].end |
519.945 |
transcript.whisperx[22].text |
所以這樣是不恰當的啦我是認為不恰當的所以我認為說行政院或者財政部你應該定期向國會來報告台美關稅談判的進度說服改革要開誠布公而不是行政的一個完全就是黑箱作業更不是只有跟財團對話市長您認為呢我想基本上我們可以對外說明的時候我們一定會對外說明的 |
transcript.whisperx[23].start |
520.413 |
transcript.whisperx[23].end |
530.344 |
transcript.whisperx[23].text |
是 我覺得還是要把所有的相關的資訊 談判的一個大概的進度還是要跟我們來說明還是要跟國會來做報告以上謝謝委員 謝謝好 謝謝林志明委員 謝謝接著我們請王世堅委員我們11點50開放會場用餐了 |