IVOD_ID |
160523 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/160523 |
日期 |
2025-04-23 |
會議資料.會議代碼 |
委員會-11-3-19-10 |
會議資料.會議代碼:str |
第11屆第3會期經濟委員會第10次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
10 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.標題 |
第11屆第3會期經濟委員會第10次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-04-23T11:22:59+08:00 |
結束時間 |
2025-04-23T11:34:31+08:00 |
影片長度 |
00:11:32 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/27ac2f54fdf75cc07be1526c7c61d45d7fe8c6252e35fc4a9a3354dc8dbd3a622bf7ee431a5d15725ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
邱志偉 |
委員發言時間 |
11:22:59 - 11:34:31 |
會議時間 |
2025-04-23T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期經濟委員會第10次全體委員會議(事由:邀請經濟部部長、國家發展委員會主任委員及衛生福利部首長就「美國實施進口產品國安調查對我國產業之影響及因應之道」進行報告,並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
8.35034375 |
transcript.pyannote[0].end |
11.38784375 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
11.99534375 |
transcript.pyannote[1].end |
13.73346875 |
transcript.pyannote[2].speaker |
SPEAKER_02 |
transcript.pyannote[2].start |
12.07971875 |
transcript.pyannote[2].end |
12.72096875 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
14.35784375 |
transcript.pyannote[3].end |
16.02846875 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
19.97721875 |
transcript.pyannote[4].end |
29.49471875 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
29.76471875 |
transcript.pyannote[5].end |
32.53221875 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
32.73471875 |
transcript.pyannote[6].end |
34.23659375 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
34.40534375 |
transcript.pyannote[7].end |
34.86096875 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
35.16471875 |
transcript.pyannote[8].end |
37.57784375 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
38.20221875 |
transcript.pyannote[9].end |
45.77909375 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
46.01534375 |
transcript.pyannote[10].end |
50.26784375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
50.87534375 |
transcript.pyannote[11].end |
52.12409375 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
52.49534375 |
transcript.pyannote[12].end |
54.58784375 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
54.79034375 |
transcript.pyannote[13].end |
55.34721875 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
55.78596875 |
transcript.pyannote[14].end |
56.56221875 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
56.88284375 |
transcript.pyannote[15].end |
58.51971875 |
transcript.pyannote[16].speaker |
SPEAKER_01 |
transcript.pyannote[16].start |
59.19471875 |
transcript.pyannote[16].end |
61.01721875 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
61.06784375 |
transcript.pyannote[17].end |
61.89471875 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
62.13096875 |
transcript.pyannote[18].end |
62.73846875 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
63.80159375 |
transcript.pyannote[19].end |
64.98284375 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
65.42159375 |
transcript.pyannote[20].end |
67.39596875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
66.34971875 |
transcript.pyannote[21].end |
77.30159375 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
74.83784375 |
transcript.pyannote[22].end |
74.85471875 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
76.28909375 |
transcript.pyannote[23].end |
78.04409375 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
78.16221875 |
transcript.pyannote[24].end |
80.30534375 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
80.79471875 |
transcript.pyannote[25].end |
83.54534375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
84.38909375 |
transcript.pyannote[26].end |
85.62096875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
86.31284375 |
transcript.pyannote[27].end |
90.19409375 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
89.21534375 |
transcript.pyannote[28].end |
90.17721875 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
90.19409375 |
transcript.pyannote[29].end |
94.90221875 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
94.96971875 |
transcript.pyannote[30].end |
95.07096875 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
95.08784375 |
transcript.pyannote[31].end |
98.63159375 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
98.47971875 |
transcript.pyannote[32].end |
104.89221875 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
104.89221875 |
transcript.pyannote[33].end |
104.90909375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
105.28034375 |
transcript.pyannote[34].end |
115.65846875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
115.92846875 |
transcript.pyannote[35].end |
116.83971875 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
118.45971875 |
transcript.pyannote[36].end |
118.47659375 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
118.47659375 |
transcript.pyannote[37].end |
125.36159375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
122.96534375 |
transcript.pyannote[38].end |
126.79596875 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
125.85096875 |
transcript.pyannote[39].end |
136.60034375 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
127.04909375 |
transcript.pyannote[40].end |
128.34846875 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
136.44846875 |
transcript.pyannote[41].end |
151.97346875 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
151.97346875 |
transcript.pyannote[42].end |
162.70596875 |
transcript.pyannote[43].speaker |
SPEAKER_02 |
transcript.pyannote[43].start |
154.90971875 |
transcript.pyannote[43].end |
155.14596875 |
transcript.pyannote[44].speaker |
SPEAKER_01 |
transcript.pyannote[44].start |
162.94221875 |
transcript.pyannote[44].end |
164.20784375 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
164.79846875 |
transcript.pyannote[45].end |
168.42659375 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
169.23659375 |
transcript.pyannote[46].end |
175.93596875 |
transcript.pyannote[47].speaker |
SPEAKER_01 |
transcript.pyannote[47].start |
176.29034375 |
transcript.pyannote[47].end |
177.18471875 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
178.58534375 |
transcript.pyannote[48].end |
179.17596875 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
179.85096875 |
transcript.pyannote[49].end |
190.16159375 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
190.66784375 |
transcript.pyannote[50].end |
192.08534375 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
192.45659375 |
transcript.pyannote[51].end |
193.51971875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
193.75596875 |
transcript.pyannote[52].end |
193.77284375 |
transcript.pyannote[53].speaker |
SPEAKER_01 |
transcript.pyannote[53].start |
193.77284375 |
transcript.pyannote[53].end |
193.78971875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
193.78971875 |
transcript.pyannote[54].end |
194.44784375 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
194.44784375 |
transcript.pyannote[55].end |
196.86096875 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
197.29971875 |
transcript.pyannote[56].end |
199.54409375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
197.31659375 |
transcript.pyannote[57].end |
219.28784375 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
218.19096875 |
transcript.pyannote[58].end |
226.42596875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
223.15221875 |
transcript.pyannote[59].end |
223.54034375 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
226.62846875 |
transcript.pyannote[60].end |
231.13409375 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
226.76346875 |
transcript.pyannote[61].end |
226.98284375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
229.78409375 |
transcript.pyannote[62].end |
238.96409375 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
236.60159375 |
transcript.pyannote[63].end |
237.10784375 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
239.35221875 |
transcript.pyannote[64].end |
240.04409375 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
240.11159375 |
transcript.pyannote[65].end |
242.67659375 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
241.10721875 |
transcript.pyannote[66].end |
241.52909375 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
242.67659375 |
transcript.pyannote[67].end |
246.13596875 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
244.31346875 |
transcript.pyannote[68].end |
246.05159375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
246.06846875 |
transcript.pyannote[69].end |
246.08534375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
246.10221875 |
transcript.pyannote[70].end |
246.47346875 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
246.15284375 |
transcript.pyannote[71].end |
246.18659375 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
246.47346875 |
transcript.pyannote[72].end |
246.50721875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
246.50721875 |
transcript.pyannote[73].end |
246.57471875 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
246.57471875 |
transcript.pyannote[74].end |
254.84346875 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
246.62534375 |
transcript.pyannote[75].end |
247.58721875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
252.26159375 |
transcript.pyannote[76].end |
252.70034375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
254.84346875 |
transcript.pyannote[77].end |
261.81284375 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
258.43784375 |
transcript.pyannote[78].end |
258.99471875 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
260.37846875 |
transcript.pyannote[79].end |
263.95596875 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
264.12471875 |
transcript.pyannote[80].end |
264.20909375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
264.20909375 |
transcript.pyannote[81].end |
267.01034375 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
266.04846875 |
transcript.pyannote[82].end |
266.99346875 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
267.01034375 |
transcript.pyannote[83].end |
267.02721875 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
267.02721875 |
transcript.pyannote[84].end |
276.54471875 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
268.09034375 |
transcript.pyannote[85].end |
270.04784375 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
270.13221875 |
transcript.pyannote[86].end |
270.19971875 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
270.21659375 |
transcript.pyannote[87].end |
270.41909375 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
271.07721875 |
transcript.pyannote[88].end |
271.71846875 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
273.27096875 |
transcript.pyannote[89].end |
273.59159375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
276.54471875 |
transcript.pyannote[90].end |
276.88221875 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
277.28721875 |
transcript.pyannote[91].end |
284.88096875 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
285.20159375 |
transcript.pyannote[92].end |
286.70346875 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
286.70346875 |
transcript.pyannote[93].end |
289.48784375 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
289.55534375 |
transcript.pyannote[94].end |
292.33971875 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
292.79534375 |
transcript.pyannote[95].end |
298.56659375 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
299.35971875 |
transcript.pyannote[96].end |
305.28284375 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
305.92409375 |
transcript.pyannote[97].end |
306.75096875 |
transcript.pyannote[98].speaker |
SPEAKER_01 |
transcript.pyannote[98].start |
306.90284375 |
transcript.pyannote[98].end |
306.97034375 |
transcript.pyannote[99].speaker |
SPEAKER_02 |
transcript.pyannote[99].start |
306.97034375 |
transcript.pyannote[99].end |
307.57784375 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
307.57784375 |
transcript.pyannote[100].end |
307.59471875 |
transcript.pyannote[101].speaker |
SPEAKER_02 |
transcript.pyannote[101].start |
307.59471875 |
transcript.pyannote[101].end |
309.07971875 |
transcript.pyannote[102].speaker |
SPEAKER_02 |
transcript.pyannote[102].start |
309.48471875 |
transcript.pyannote[102].end |
314.36159375 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
314.36159375 |
transcript.pyannote[103].end |
314.61471875 |
transcript.pyannote[104].speaker |
SPEAKER_02 |
transcript.pyannote[104].start |
314.61471875 |
transcript.pyannote[104].end |
317.12909375 |
transcript.pyannote[105].speaker |
SPEAKER_01 |
transcript.pyannote[105].start |
316.53846875 |
transcript.pyannote[105].end |
316.90971875 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
317.39909375 |
transcript.pyannote[106].end |
317.41596875 |
transcript.pyannote[107].speaker |
SPEAKER_02 |
transcript.pyannote[107].start |
317.41596875 |
transcript.pyannote[107].end |
317.66909375 |
transcript.pyannote[108].speaker |
SPEAKER_02 |
transcript.pyannote[108].start |
318.19221875 |
transcript.pyannote[108].end |
319.42409375 |
transcript.pyannote[109].speaker |
SPEAKER_02 |
transcript.pyannote[109].start |
320.06534375 |
transcript.pyannote[109].end |
329.65034375 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
321.88784375 |
transcript.pyannote[110].end |
323.10284375 |
transcript.pyannote[111].speaker |
SPEAKER_02 |
transcript.pyannote[111].start |
329.81909375 |
transcript.pyannote[111].end |
336.28221875 |
transcript.pyannote[112].speaker |
SPEAKER_02 |
transcript.pyannote[112].start |
336.95721875 |
transcript.pyannote[112].end |
338.50971875 |
transcript.pyannote[113].speaker |
SPEAKER_02 |
transcript.pyannote[113].start |
339.11721875 |
transcript.pyannote[113].end |
341.17596875 |
transcript.pyannote[114].speaker |
SPEAKER_02 |
transcript.pyannote[114].start |
341.63159375 |
transcript.pyannote[114].end |
349.69784375 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
347.35221875 |
transcript.pyannote[115].end |
347.92596875 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
348.83721875 |
transcript.pyannote[116].end |
363.45096875 |
transcript.pyannote[117].speaker |
SPEAKER_02 |
transcript.pyannote[117].start |
354.52409375 |
transcript.pyannote[117].end |
355.13159375 |
transcript.pyannote[118].speaker |
SPEAKER_02 |
transcript.pyannote[118].start |
355.97534375 |
transcript.pyannote[118].end |
356.78534375 |
transcript.pyannote[119].speaker |
SPEAKER_01 |
transcript.pyannote[119].start |
363.87284375 |
transcript.pyannote[119].end |
365.12159375 |
transcript.pyannote[120].speaker |
SPEAKER_01 |
transcript.pyannote[120].start |
365.56034375 |
transcript.pyannote[120].end |
370.75784375 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
371.24721875 |
transcript.pyannote[121].end |
375.97221875 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
376.36034375 |
transcript.pyannote[122].end |
380.12346875 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
380.81534375 |
transcript.pyannote[123].end |
381.84471875 |
transcript.pyannote[124].speaker |
SPEAKER_01 |
transcript.pyannote[124].start |
382.06409375 |
transcript.pyannote[124].end |
393.47159375 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
393.85971875 |
transcript.pyannote[125].end |
394.53471875 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
395.24346875 |
transcript.pyannote[126].end |
404.18721875 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
404.79471875 |
transcript.pyannote[127].end |
408.08534375 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
408.18659375 |
transcript.pyannote[128].end |
409.57034375 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
409.62096875 |
transcript.pyannote[129].end |
410.61659375 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
411.22409375 |
transcript.pyannote[130].end |
424.96034375 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
424.97721875 |
transcript.pyannote[131].end |
429.11159375 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
429.68534375 |
transcript.pyannote[132].end |
433.38096875 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
433.85346875 |
transcript.pyannote[133].end |
445.54784375 |
transcript.pyannote[134].speaker |
SPEAKER_01 |
transcript.pyannote[134].start |
444.65346875 |
transcript.pyannote[134].end |
448.77096875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
448.77096875 |
transcript.pyannote[135].end |
449.15909375 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
449.49659375 |
transcript.pyannote[136].end |
450.71159375 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
450.71159375 |
transcript.pyannote[137].end |
450.94784375 |
transcript.pyannote[138].speaker |
SPEAKER_01 |
transcript.pyannote[138].start |
450.94784375 |
transcript.pyannote[138].end |
455.09909375 |
transcript.pyannote[139].speaker |
SPEAKER_01 |
transcript.pyannote[139].start |
455.60534375 |
transcript.pyannote[139].end |
461.02221875 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
460.65096875 |
transcript.pyannote[140].end |
476.10846875 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
476.31096875 |
transcript.pyannote[141].end |
476.96909375 |
transcript.pyannote[142].speaker |
SPEAKER_01 |
transcript.pyannote[142].start |
476.96909375 |
transcript.pyannote[142].end |
488.61284375 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
480.56346875 |
transcript.pyannote[143].end |
480.59721875 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
481.71096875 |
transcript.pyannote[144].end |
483.16221875 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
488.93346875 |
transcript.pyannote[145].end |
492.66284375 |
transcript.pyannote[146].speaker |
SPEAKER_01 |
transcript.pyannote[146].start |
493.79346875 |
transcript.pyannote[146].end |
494.77221875 |
transcript.pyannote[147].speaker |
SPEAKER_01 |
transcript.pyannote[147].start |
494.89034375 |
transcript.pyannote[147].end |
496.24034375 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
495.66659375 |
transcript.pyannote[148].end |
498.28221875 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
498.97409375 |
transcript.pyannote[149].end |
502.33221875 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
503.76659375 |
transcript.pyannote[150].end |
525.14721875 |
transcript.pyannote[151].speaker |
SPEAKER_01 |
transcript.pyannote[151].start |
522.83534375 |
transcript.pyannote[151].end |
527.39159375 |
transcript.pyannote[152].speaker |
SPEAKER_01 |
transcript.pyannote[152].start |
528.35346875 |
transcript.pyannote[152].end |
538.02284375 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
538.02284375 |
transcript.pyannote[153].end |
541.95471875 |
transcript.pyannote[154].speaker |
SPEAKER_01 |
transcript.pyannote[154].start |
540.25034375 |
transcript.pyannote[154].end |
540.46971875 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
542.32596875 |
transcript.pyannote[155].end |
546.88221875 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
547.52346875 |
transcript.pyannote[156].end |
566.37284375 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
565.90034375 |
transcript.pyannote[157].end |
571.51971875 |
transcript.pyannote[158].speaker |
SPEAKER_01 |
transcript.pyannote[158].start |
571.82346875 |
transcript.pyannote[158].end |
573.79784375 |
transcript.pyannote[159].speaker |
SPEAKER_01 |
transcript.pyannote[159].start |
574.40534375 |
transcript.pyannote[159].end |
575.50221875 |
transcript.pyannote[160].speaker |
SPEAKER_01 |
transcript.pyannote[160].start |
576.48096875 |
transcript.pyannote[160].end |
577.69596875 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
577.81409375 |
transcript.pyannote[161].end |
579.38346875 |
transcript.pyannote[162].speaker |
SPEAKER_01 |
transcript.pyannote[162].start |
578.64096875 |
transcript.pyannote[162].end |
579.07971875 |
transcript.pyannote[163].speaker |
SPEAKER_00 |
transcript.pyannote[163].start |
579.56909375 |
transcript.pyannote[163].end |
581.44221875 |
transcript.pyannote[164].speaker |
SPEAKER_01 |
transcript.pyannote[164].start |
580.68284375 |
transcript.pyannote[164].end |
581.45909375 |
transcript.pyannote[165].speaker |
SPEAKER_00 |
transcript.pyannote[165].start |
581.45909375 |
transcript.pyannote[165].end |
584.56409375 |
transcript.pyannote[166].speaker |
SPEAKER_01 |
transcript.pyannote[166].start |
583.36596875 |
transcript.pyannote[166].end |
583.48409375 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
585.57659375 |
transcript.pyannote[167].end |
588.41159375 |
transcript.pyannote[168].speaker |
SPEAKER_01 |
transcript.pyannote[168].start |
587.65221875 |
transcript.pyannote[168].end |
592.34346875 |
transcript.pyannote[169].speaker |
SPEAKER_00 |
transcript.pyannote[169].start |
591.38159375 |
transcript.pyannote[169].end |
599.00909375 |
transcript.pyannote[170].speaker |
SPEAKER_01 |
transcript.pyannote[170].start |
596.29221875 |
transcript.pyannote[170].end |
597.57471875 |
transcript.pyannote[171].speaker |
SPEAKER_01 |
transcript.pyannote[171].start |
598.24971875 |
transcript.pyannote[171].end |
610.83846875 |
transcript.pyannote[172].speaker |
SPEAKER_00 |
transcript.pyannote[172].start |
610.26471875 |
transcript.pyannote[172].end |
613.79159375 |
transcript.pyannote[173].speaker |
SPEAKER_01 |
transcript.pyannote[173].start |
614.68596875 |
transcript.pyannote[173].end |
616.77846875 |
transcript.pyannote[174].speaker |
SPEAKER_00 |
transcript.pyannote[174].start |
618.01034375 |
transcript.pyannote[174].end |
636.18471875 |
transcript.pyannote[175].speaker |
SPEAKER_01 |
transcript.pyannote[175].start |
618.16221875 |
transcript.pyannote[175].end |
619.24221875 |
transcript.pyannote[176].speaker |
SPEAKER_01 |
transcript.pyannote[176].start |
635.29034375 |
transcript.pyannote[176].end |
643.76159375 |
transcript.pyannote[177].speaker |
SPEAKER_00 |
transcript.pyannote[177].start |
640.42034375 |
transcript.pyannote[177].end |
642.00659375 |
transcript.pyannote[178].speaker |
SPEAKER_01 |
transcript.pyannote[178].start |
644.65596875 |
transcript.pyannote[178].end |
648.14909375 |
transcript.pyannote[179].speaker |
SPEAKER_00 |
transcript.pyannote[179].start |
648.14909375 |
transcript.pyannote[179].end |
648.62159375 |
transcript.pyannote[180].speaker |
SPEAKER_01 |
transcript.pyannote[180].start |
648.43596875 |
transcript.pyannote[180].end |
651.79409375 |
transcript.pyannote[181].speaker |
SPEAKER_00 |
transcript.pyannote[181].start |
648.87471875 |
transcript.pyannote[181].end |
650.19096875 |
transcript.pyannote[182].speaker |
SPEAKER_00 |
transcript.pyannote[182].start |
651.45659375 |
transcript.pyannote[182].end |
652.35096875 |
transcript.pyannote[183].speaker |
SPEAKER_01 |
transcript.pyannote[183].start |
652.24971875 |
transcript.pyannote[183].end |
656.92409375 |
transcript.pyannote[184].speaker |
SPEAKER_01 |
transcript.pyannote[184].start |
657.00846875 |
transcript.pyannote[184].end |
660.60284375 |
transcript.pyannote[185].speaker |
SPEAKER_00 |
transcript.pyannote[185].start |
659.69159375 |
transcript.pyannote[185].end |
672.43221875 |
transcript.pyannote[186].speaker |
SPEAKER_01 |
transcript.pyannote[186].start |
671.47034375 |
transcript.pyannote[186].end |
685.29096875 |
transcript.pyannote[187].speaker |
SPEAKER_00 |
transcript.pyannote[187].start |
674.18721875 |
transcript.pyannote[187].end |
675.63846875 |
transcript.pyannote[188].speaker |
SPEAKER_00 |
transcript.pyannote[188].start |
681.32534375 |
transcript.pyannote[188].end |
682.10159375 |
transcript.pyannote[189].speaker |
SPEAKER_00 |
transcript.pyannote[189].start |
684.73409375 |
transcript.pyannote[189].end |
685.25721875 |
transcript.pyannote[190].speaker |
SPEAKER_00 |
transcript.pyannote[190].start |
685.29096875 |
transcript.pyannote[190].end |
691.07909375 |
transcript.pyannote[191].speaker |
SPEAKER_01 |
transcript.pyannote[191].start |
686.52284375 |
transcript.pyannote[191].end |
687.11346875 |
transcript.pyannote[192].speaker |
SPEAKER_01 |
transcript.pyannote[192].start |
690.31971875 |
transcript.pyannote[192].end |
691.01159375 |
transcript.pyannote[193].speaker |
SPEAKER_01 |
transcript.pyannote[193].start |
691.07909375 |
transcript.pyannote[193].end |
691.26471875 |
transcript.pyannote[194].speaker |
SPEAKER_00 |
transcript.pyannote[194].start |
691.60221875 |
transcript.pyannote[194].end |
691.97346875 |
transcript.pyannote[195].speaker |
SPEAKER_01 |
transcript.pyannote[195].start |
691.97346875 |
transcript.pyannote[195].end |
692.59784375 |
transcript.whisperx[0].start |
8.736 |
transcript.whisperx[0].end |
36.827 |
transcript.whisperx[0].text |
謝謝主席 是不是有請經濟部郭部長國安會高副主委好 部長跟高副主委委員好部長您好 部長第一個問題請教就是說881對受到關稅影響的這個製造業我們提供政府的協助嘛那你要通過特別條例特別條例之後這個政策上路你要產生效果會有一定的時限 |
transcript.whisperx[1].start |
38.308 |
transcript.whisperx[1].end |
62.674 |
transcript.whisperx[1].text |
那有沒有考慮說我們最實質的這個對中小企業跟傳統製造業受到關稅影響的這些產業最實質的幫助而且立即生效了就針對他們成本降低啦成本降低齁 兄弟接著就說水田的經驗有可能嗎水田齁 佔人的成本是多少而已這樣嗎你說比方說啦齁 比較耗能 |
transcript.whisperx[2].start |
63.874 |
transcript.whisperx[2].end |
71.663 |
transcript.whisperx[2].text |
金屬扣件 他們有可能是這麼做的嗎所以我們這樣是用這個EXCO就是節能減碳的方法 但是那個會有點久 第二 沒沒沒第二喔 這個骨的褻皮 骨的褻心喔 |
transcript.whisperx[3].start |
84.814 |
transcript.whisperx[3].end |
98.683 |
transcript.whisperx[3].text |
這個太舊煥新我們有這種的這個比較嚴格的標準你可以分不同的類別譬如說你現在已經產生虧損了產生虧損你就降低它的減免 它的稅墊報告員 我的部分我們現在做到你剛才所質詢的我為材料 |
transcript.whisperx[4].start |
105.627 |
transcript.whisperx[4].end |
113.576 |
transcript.whisperx[4].text |
有它的銀行有它的這個設備這三個構面來降低它的成本所以我現在知道我們要統購之後來發給他們 |
transcript.whisperx[5].start |
118.493 |
transcript.whisperx[5].end |
128.224 |
transcript.whisperx[5].text |
對於他們來說這個受衝擊最大的就是傳統製造業所以我們有一些是比較耗水耗電比較耗水耗電的我說這個你要索賀要怎麼讓他們解決藍莓之急水電的經驗是可以讓他們馬上把成本降低 |
transcript.whisperx[6].start |
135.512 |
transcript.whisperx[6].end |
152.726 |
transcript.whisperx[6].text |
你也可以輸課一下對 它是舊的設備才會這樣子但是那個是耗能的我們認為它可以趁這個機會我們有其他的這個預算可以幫助它太舊換新對 這邊開啟它主連 它用的水跟電就更加舊講到這個問題我繼續來請教對中小企業轉型你說那個簡簡單單是轉型嘛是轉型轉型你看你4月4號的發布的版本 |
transcript.whisperx[7].start |
165.456 |
transcript.whisperx[7].end |
192.576 |
transcript.whisperx[7].text |
這個基本上是由以小代大以大代小以大代小那你4月20新的版本卻把這個門檻就把它提高你看這個所以這是不是能夠增加補助的資金跟項目那你現在這一次的880億裡面對於這些傳統製造業它的補助的條件跟資格也比較嚴格一點 |
transcript.whisperx[8].start |
193.817 |
transcript.whisperx[8].end |
209.943 |
transcript.whisperx[8].text |
所以這部份是不是你會再去處理看看這個我們是從寬從簡從速的處理所以那個部分只要它能夠檢據有事實我們就認定所以報告委員如果你的這個譬如說有發現有這樣的這個我們的 |
transcript.whisperx[9].start |
213.024 |
transcript.whisperx[9].end |
225.933 |
transcript.whisperx[9].text |
同仁對這方面認知不夠那有造成困擾的話麻煩你通知我們我們都可以馬上去你四月七日提出的方案你還有以大帶小的方式把沒有輸美實際的業者也一併大陸補助範圍 |
transcript.whisperx[10].start |
228.675 |
transcript.whisperx[10].end |
253.011 |
transcript.whisperx[10].text |
那現在你4月21號就把這個罰除掉你無需不需要有疏寧包括你是間接疏寧的我們都承認但是你4月21號把這個取消了喔沒關係啦我都從觀認定啦因為在這裡會有人問啊市委先生你說可以現在說不行不需要在臥底上面可能要去跟齁跟一些中產企業他們有出了他有一些認知上的不同喔但是現在已經變成更嚴格了 |
transcript.whisperx[11].start |
254.952 |
transcript.whisperx[11].end |
270.619 |
transcript.whisperx[11].text |
我們會 他如果有問題他可以打電話到我們的Code Center或者是我們的馬上辦服務中心他們都不打給你們 都直接打給我是喔 你就要叫他們打給我們啦那委員造成你的困擾比較不好意思但是我們馬上辦服務中心喔 最多一天啦最多一天一定回答他的問題 |
transcript.whisperx[12].start |
278.002 |
transcript.whisperx[12].end |
298.153 |
transcript.whisperx[12].text |
國發會的報告裡面對鋼鐵跟鋁材啊他說這個對我國是相對有利啦齁你那個報告是這樣寫齁對 其實我們也是參考經濟部的報告因為之前我直接問產發署署長 邱署長你山葉你比較了解那個傳統山葉那個真的是對台灣相對有利嗎 |
transcript.whisperx[13].start |
299.958 |
transcript.whisperx[13].end |
318.859 |
transcript.whisperx[13].text |
你那個鋼鐵跟鋁材包括下游的金屬扣減也是呢?這是相對的因為我們在川普1.0的時候對鋼鋁已經課徵國安關稅但是那時候有10個國家被豁免台灣沒有被豁免 |
transcript.whisperx[14].start |
320.12 |
transcript.whisperx[14].end |
329.384 |
transcript.whisperx[14].text |
可是這一次川普2.0的時候,他把這10個國家全部都拉進來,變成大家拉平,大家保證有講過啊,我們台灣不敢緊張啊,我們大家要把他拍白啊,這次我們覺得鋼鋁把他拍白,我們台灣等到相對有利。鋼鐵工業也是這麼認為嗎?這個是我們問過業者以後, |
transcript.whisperx[15].start |
341.707 |
transcript.whisperx[15].end |
362.887 |
transcript.whisperx[15].text |
就一路這樣我們這樣從北到南這樣去問業者大家業者是認為說只要給我們公平的這個競爭的機會這個我們是有機會所以整個鋼鐵跟鋁材的產業是有相對有利的相對川普1.0的時候是有10個國家豁免相對有利我們要講清楚這樣比較了解下一個議題就是說關於半導體半導體這個可能部長最清楚 |
transcript.whisperx[16].start |
363.948 |
transcript.whisperx[16].end |
379.495 |
transcript.whisperx[16].text |
就我們並沒有針對這個企業來協助有一個系統性的來模擬美國國安的調查機制美國國安調查機制有它的程序有很多他們在貿易談判有很多的業者全部都參與 |
transcript.whisperx[17].start |
381.085 |
transcript.whisperx[17].end |
407.583 |
transcript.whisperx[17].text |
譬如說有一些媒體做一個很詳細的報導就是說他在跟各國在針對貿易在談判的時候有很多的這個企業界代表都有列席表達意見那我們好像沒有這個系統性的怎麼樣去協助企業能夠模擬美國國安調查機制讓他們了解整個國安機制的這個流程那我們才能做相關的因應做準備 |
transcript.whisperx[18].start |
411.517 |
transcript.whisperx[18].end |
428.99 |
transcript.whisperx[18].text |
報告委員我們對於這個命題我們是非常的關注我們的貿易署也有針對這個我們有做對廠商可以個別的聯絡我們也會在今天事實上我們在今天下午 |
transcript.whisperx[19].start |
429.75 |
transcript.whisperx[19].end |
454.111 |
transcript.whisperx[19].text |
也會開座談會這個座談會包括國內的業者包括國外的業者也就是說美國的客戶在台灣的廠商我們找他們一起來針對232這一題大家進入比較深層所以調查流程他這樣調查他的流程我們都有掌握嗎有我們都了解那對於他們我們有沒有可能建立風險預警機制 |
transcript.whisperx[20].start |
456.513 |
transcript.whisperx[20].end |
475.525 |
transcript.whisperx[20].text |
針對未來可能敏感項目去及早掌握及早預防有所有該防範的該這個提早掌握的部分我們都有在進行那包括這個有一些包括什麼洗產地的啦或者是飛鴻供應鏈等等這一些事實上我們早就在運作 |
transcript.whisperx[21].start |
476.545 |
transcript.whisperx[21].end |
492.134 |
transcript.whisperx[21].text |
這有沒有做一些模擬演練 沙盤推演有嗎 我是希望說你們拿出一個沙盤推演跟產業界來合作 你那個特定供應鏈這些類型你要有一個模擬推演的模式 讓產業界能夠參與我們會針對 譬如說各種不同的 譬如說這個 |
transcript.whisperx[22].start |
503.8 |
transcript.whisperx[22].end |
525.913 |
transcript.whisperx[22].text |
不同類的半導體類的一種智慧型手機的一種電腦的手機一種電子零組件的一種大概分成幾個不同的項目然後我們都每一個場次去傾聽業者的想法那麼他們碰到的狀況是怎麼樣其實部長我只是提那個想法而已可能更要積極請他們參與 |
transcript.whisperx[23].start |
528.373 |
transcript.whisperx[23].end |
546.515 |
transcript.whisperx[23].text |
你做任何供應鏈這個模擬演練做到衝擊應該有相關的產業進入而不是聽他們聲音而已不是我們當然會判斷這個就是說基本上因為我們跟美國在這個科技的產品上面是高度的互補 |
transcript.whisperx[24].start |
547.574 |
transcript.whisperx[24].end |
567.746 |
transcript.whisperx[24].text |
高度的互補大部分美國的user的六大科技公司占我們這個出口的這個大概500億美金所以對他們來講這個稅是課在他們身上而且第二個我們有很多的廠商是做EMS做代工的客戶也是他們現在部長你這個我們對美採購的清單現在還在積極盤點當中嗎有訂單的嗎 |
transcript.whisperx[25].start |
577.034 |
transcript.whisperx[25].end |
584.226 |
transcript.whisperx[25].text |
對門採購的清單還是動態那個是行政院副院長的工作 |
transcript.whisperx[26].start |
585.992 |
transcript.whisperx[26].end |
613.713 |
transcript.whisperx[26].text |
他是谈判的我们只是提供我是想了解进度对面采购的清单是怎么样那个部分就是在进行中的这个过程另外啦基于国际惯例是不宜我了解我可以理解但是调整非关税障碍跟这个我们怎么样降低这个出口动能的下降这个部分基本上我们不会降低出口动能 |
transcript.whisperx[27].start |
615.038 |
transcript.whisperx[27].end |
643.473 |
transcript.whisperx[27].text |
這個出口動能一定會受到影響嘛我們不會因為美國的這些科技產品對我們的依賴度是非常高的所以我們不會說給我們訂單我們不出口這是跟委員報告所以我們在這個分子的部分分母不變情況之下我們在分子的部分所以您認為出口動能不會下降不會因為說川普的關稅政策讓台灣出口動能下降我們會買進口的東西多一點 |
transcript.whisperx[28].start |
645.527 |
transcript.whisperx[28].end |
671.036 |
transcript.whisperx[28].text |
不會下降可是很多經濟學家都認為說我們台灣又有匯率的問題又有我們貨幣政策的問題又大量粗糙這個未來在談判的過程中會比較辛苦我們會大量我們就粗糙啦我們粗糙的部分就是說我們進口少然後出口多啦但是我們現在出口不變的情況下我們進口多一點 |
transcript.whisperx[29].start |
671.616 |
transcript.whisperx[29].end |
688.266 |
transcript.whisperx[29].text |
有的說台灣會是跟對美談判中 辛苦的國家之一你覺得不懂 我看你很樂觀 樂觀所以我們不會是對美談判很辛苦的國家相對是比較輕鬆的國家我不是談判成員 但是我相當樂觀 |