iVOD / 160523

Field Value
IVOD_ID 160523
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160523
日期 2025-04-23
會議資料.會議代碼 委員會-11-3-19-10
會議資料.會議代碼:str 第11屆第3會期經濟委員會第10次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 10
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第10次全體委員會議
影片種類 Clip
開始時間 2025-04-23T11:22:59+08:00
結束時間 2025-04-23T11:34:31+08:00
影片長度 00:11:32
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/27ac2f54fdf75cc07be1526c7c61d45d7fe8c6252e35fc4a9a3354dc8dbd3a622bf7ee431a5d15725ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 邱志偉
委員發言時間 11:22:59 - 11:34:31
會議時間 2025-04-23T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第10次全體委員會議(事由:邀請經濟部部長、國家發展委員會主任委員及衛生福利部首長就「美國實施進口產品國安調查對我國產業之影響及因應之道」進行報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 8.35034375
transcript.pyannote[0].end 11.38784375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 11.99534375
transcript.pyannote[1].end 13.73346875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 12.07971875
transcript.pyannote[2].end 12.72096875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 14.35784375
transcript.pyannote[3].end 16.02846875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 19.97721875
transcript.pyannote[4].end 29.49471875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 29.76471875
transcript.pyannote[5].end 32.53221875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 32.73471875
transcript.pyannote[6].end 34.23659375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 34.40534375
transcript.pyannote[7].end 34.86096875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 35.16471875
transcript.pyannote[8].end 37.57784375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 38.20221875
transcript.pyannote[9].end 45.77909375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 46.01534375
transcript.pyannote[10].end 50.26784375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 50.87534375
transcript.pyannote[11].end 52.12409375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 52.49534375
transcript.pyannote[12].end 54.58784375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 54.79034375
transcript.pyannote[13].end 55.34721875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 55.78596875
transcript.pyannote[14].end 56.56221875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 56.88284375
transcript.pyannote[15].end 58.51971875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 59.19471875
transcript.pyannote[16].end 61.01721875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 61.06784375
transcript.pyannote[17].end 61.89471875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 62.13096875
transcript.pyannote[18].end 62.73846875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 63.80159375
transcript.pyannote[19].end 64.98284375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 65.42159375
transcript.pyannote[20].end 67.39596875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 66.34971875
transcript.pyannote[21].end 77.30159375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 74.83784375
transcript.pyannote[22].end 74.85471875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 76.28909375
transcript.pyannote[23].end 78.04409375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 78.16221875
transcript.pyannote[24].end 80.30534375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 80.79471875
transcript.pyannote[25].end 83.54534375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 84.38909375
transcript.pyannote[26].end 85.62096875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 86.31284375
transcript.pyannote[27].end 90.19409375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 89.21534375
transcript.pyannote[28].end 90.17721875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 90.19409375
transcript.pyannote[29].end 94.90221875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 94.96971875
transcript.pyannote[30].end 95.07096875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 95.08784375
transcript.pyannote[31].end 98.63159375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 98.47971875
transcript.pyannote[32].end 104.89221875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 104.89221875
transcript.pyannote[33].end 104.90909375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 105.28034375
transcript.pyannote[34].end 115.65846875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 115.92846875
transcript.pyannote[35].end 116.83971875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 118.45971875
transcript.pyannote[36].end 118.47659375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 118.47659375
transcript.pyannote[37].end 125.36159375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 122.96534375
transcript.pyannote[38].end 126.79596875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 125.85096875
transcript.pyannote[39].end 136.60034375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 127.04909375
transcript.pyannote[40].end 128.34846875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 136.44846875
transcript.pyannote[41].end 151.97346875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 151.97346875
transcript.pyannote[42].end 162.70596875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 154.90971875
transcript.pyannote[43].end 155.14596875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 162.94221875
transcript.pyannote[44].end 164.20784375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 164.79846875
transcript.pyannote[45].end 168.42659375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 169.23659375
transcript.pyannote[46].end 175.93596875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 176.29034375
transcript.pyannote[47].end 177.18471875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 178.58534375
transcript.pyannote[48].end 179.17596875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 179.85096875
transcript.pyannote[49].end 190.16159375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 190.66784375
transcript.pyannote[50].end 192.08534375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 192.45659375
transcript.pyannote[51].end 193.51971875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 193.75596875
transcript.pyannote[52].end 193.77284375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 193.77284375
transcript.pyannote[53].end 193.78971875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 193.78971875
transcript.pyannote[54].end 194.44784375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 194.44784375
transcript.pyannote[55].end 196.86096875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 197.29971875
transcript.pyannote[56].end 199.54409375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 197.31659375
transcript.pyannote[57].end 219.28784375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 218.19096875
transcript.pyannote[58].end 226.42596875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 223.15221875
transcript.pyannote[59].end 223.54034375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 226.62846875
transcript.pyannote[60].end 231.13409375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 226.76346875
transcript.pyannote[61].end 226.98284375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 229.78409375
transcript.pyannote[62].end 238.96409375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 236.60159375
transcript.pyannote[63].end 237.10784375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 239.35221875
transcript.pyannote[64].end 240.04409375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 240.11159375
transcript.pyannote[65].end 242.67659375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 241.10721875
transcript.pyannote[66].end 241.52909375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 242.67659375
transcript.pyannote[67].end 246.13596875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 244.31346875
transcript.pyannote[68].end 246.05159375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 246.06846875
transcript.pyannote[69].end 246.08534375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 246.10221875
transcript.pyannote[70].end 246.47346875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 246.15284375
transcript.pyannote[71].end 246.18659375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 246.47346875
transcript.pyannote[72].end 246.50721875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 246.50721875
transcript.pyannote[73].end 246.57471875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 246.57471875
transcript.pyannote[74].end 254.84346875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 246.62534375
transcript.pyannote[75].end 247.58721875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 252.26159375
transcript.pyannote[76].end 252.70034375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 254.84346875
transcript.pyannote[77].end 261.81284375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 258.43784375
transcript.pyannote[78].end 258.99471875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 260.37846875
transcript.pyannote[79].end 263.95596875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 264.12471875
transcript.pyannote[80].end 264.20909375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 264.20909375
transcript.pyannote[81].end 267.01034375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 266.04846875
transcript.pyannote[82].end 266.99346875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 267.01034375
transcript.pyannote[83].end 267.02721875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 267.02721875
transcript.pyannote[84].end 276.54471875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 268.09034375
transcript.pyannote[85].end 270.04784375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 270.13221875
transcript.pyannote[86].end 270.19971875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 270.21659375
transcript.pyannote[87].end 270.41909375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 271.07721875
transcript.pyannote[88].end 271.71846875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 273.27096875
transcript.pyannote[89].end 273.59159375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 276.54471875
transcript.pyannote[90].end 276.88221875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 277.28721875
transcript.pyannote[91].end 284.88096875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 285.20159375
transcript.pyannote[92].end 286.70346875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 286.70346875
transcript.pyannote[93].end 289.48784375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 289.55534375
transcript.pyannote[94].end 292.33971875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 292.79534375
transcript.pyannote[95].end 298.56659375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 299.35971875
transcript.pyannote[96].end 305.28284375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 305.92409375
transcript.pyannote[97].end 306.75096875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 306.90284375
transcript.pyannote[98].end 306.97034375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 306.97034375
transcript.pyannote[99].end 307.57784375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 307.57784375
transcript.pyannote[100].end 307.59471875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 307.59471875
transcript.pyannote[101].end 309.07971875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 309.48471875
transcript.pyannote[102].end 314.36159375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 314.36159375
transcript.pyannote[103].end 314.61471875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 314.61471875
transcript.pyannote[104].end 317.12909375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 316.53846875
transcript.pyannote[105].end 316.90971875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 317.39909375
transcript.pyannote[106].end 317.41596875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 317.41596875
transcript.pyannote[107].end 317.66909375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 318.19221875
transcript.pyannote[108].end 319.42409375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 320.06534375
transcript.pyannote[109].end 329.65034375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 321.88784375
transcript.pyannote[110].end 323.10284375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 329.81909375
transcript.pyannote[111].end 336.28221875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 336.95721875
transcript.pyannote[112].end 338.50971875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 339.11721875
transcript.pyannote[113].end 341.17596875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 341.63159375
transcript.pyannote[114].end 349.69784375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 347.35221875
transcript.pyannote[115].end 347.92596875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 348.83721875
transcript.pyannote[116].end 363.45096875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 354.52409375
transcript.pyannote[117].end 355.13159375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 355.97534375
transcript.pyannote[118].end 356.78534375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 363.87284375
transcript.pyannote[119].end 365.12159375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 365.56034375
transcript.pyannote[120].end 370.75784375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 371.24721875
transcript.pyannote[121].end 375.97221875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 376.36034375
transcript.pyannote[122].end 380.12346875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 380.81534375
transcript.pyannote[123].end 381.84471875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 382.06409375
transcript.pyannote[124].end 393.47159375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 393.85971875
transcript.pyannote[125].end 394.53471875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 395.24346875
transcript.pyannote[126].end 404.18721875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 404.79471875
transcript.pyannote[127].end 408.08534375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 408.18659375
transcript.pyannote[128].end 409.57034375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 409.62096875
transcript.pyannote[129].end 410.61659375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 411.22409375
transcript.pyannote[130].end 424.96034375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 424.97721875
transcript.pyannote[131].end 429.11159375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 429.68534375
transcript.pyannote[132].end 433.38096875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 433.85346875
transcript.pyannote[133].end 445.54784375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 444.65346875
transcript.pyannote[134].end 448.77096875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 448.77096875
transcript.pyannote[135].end 449.15909375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 449.49659375
transcript.pyannote[136].end 450.71159375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 450.71159375
transcript.pyannote[137].end 450.94784375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 450.94784375
transcript.pyannote[138].end 455.09909375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 455.60534375
transcript.pyannote[139].end 461.02221875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 460.65096875
transcript.pyannote[140].end 476.10846875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 476.31096875
transcript.pyannote[141].end 476.96909375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 476.96909375
transcript.pyannote[142].end 488.61284375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 480.56346875
transcript.pyannote[143].end 480.59721875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 481.71096875
transcript.pyannote[144].end 483.16221875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 488.93346875
transcript.pyannote[145].end 492.66284375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 493.79346875
transcript.pyannote[146].end 494.77221875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 494.89034375
transcript.pyannote[147].end 496.24034375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 495.66659375
transcript.pyannote[148].end 498.28221875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 498.97409375
transcript.pyannote[149].end 502.33221875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 503.76659375
transcript.pyannote[150].end 525.14721875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 522.83534375
transcript.pyannote[151].end 527.39159375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 528.35346875
transcript.pyannote[152].end 538.02284375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 538.02284375
transcript.pyannote[153].end 541.95471875
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 540.25034375
transcript.pyannote[154].end 540.46971875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 542.32596875
transcript.pyannote[155].end 546.88221875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 547.52346875
transcript.pyannote[156].end 566.37284375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 565.90034375
transcript.pyannote[157].end 571.51971875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 571.82346875
transcript.pyannote[158].end 573.79784375
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 574.40534375
transcript.pyannote[159].end 575.50221875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 576.48096875
transcript.pyannote[160].end 577.69596875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 577.81409375
transcript.pyannote[161].end 579.38346875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 578.64096875
transcript.pyannote[162].end 579.07971875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 579.56909375
transcript.pyannote[163].end 581.44221875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 580.68284375
transcript.pyannote[164].end 581.45909375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 581.45909375
transcript.pyannote[165].end 584.56409375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 583.36596875
transcript.pyannote[166].end 583.48409375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 585.57659375
transcript.pyannote[167].end 588.41159375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 587.65221875
transcript.pyannote[168].end 592.34346875
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 591.38159375
transcript.pyannote[169].end 599.00909375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 596.29221875
transcript.pyannote[170].end 597.57471875
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 598.24971875
transcript.pyannote[171].end 610.83846875
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 610.26471875
transcript.pyannote[172].end 613.79159375
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 614.68596875
transcript.pyannote[173].end 616.77846875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 618.01034375
transcript.pyannote[174].end 636.18471875
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 618.16221875
transcript.pyannote[175].end 619.24221875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 635.29034375
transcript.pyannote[176].end 643.76159375
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 640.42034375
transcript.pyannote[177].end 642.00659375
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 644.65596875
transcript.pyannote[178].end 648.14909375
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 648.14909375
transcript.pyannote[179].end 648.62159375
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 648.43596875
transcript.pyannote[180].end 651.79409375
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 648.87471875
transcript.pyannote[181].end 650.19096875
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 651.45659375
transcript.pyannote[182].end 652.35096875
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 652.24971875
transcript.pyannote[183].end 656.92409375
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 657.00846875
transcript.pyannote[184].end 660.60284375
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 659.69159375
transcript.pyannote[185].end 672.43221875
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 671.47034375
transcript.pyannote[186].end 685.29096875
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 674.18721875
transcript.pyannote[187].end 675.63846875
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 681.32534375
transcript.pyannote[188].end 682.10159375
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 684.73409375
transcript.pyannote[189].end 685.25721875
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 685.29096875
transcript.pyannote[190].end 691.07909375
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 686.52284375
transcript.pyannote[191].end 687.11346875
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 690.31971875
transcript.pyannote[192].end 691.01159375
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 691.07909375
transcript.pyannote[193].end 691.26471875
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 691.60221875
transcript.pyannote[194].end 691.97346875
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 691.97346875
transcript.pyannote[195].end 692.59784375
transcript.whisperx[0].start 8.736
transcript.whisperx[0].end 36.827
transcript.whisperx[0].text 謝謝主席 是不是有請經濟部郭部長國安會高副主委好 部長跟高副主委委員好部長您好 部長第一個問題請教就是說881對受到關稅影響的這個製造業我們提供政府的協助嘛那你要通過特別條例特別條例之後這個政策上路你要產生效果會有一定的時限
transcript.whisperx[1].start 38.308
transcript.whisperx[1].end 62.674
transcript.whisperx[1].text 那有沒有考慮說我們最實質的這個對中小企業跟傳統製造業受到關稅影響的這些產業最實質的幫助而且立即生效了就針對他們成本降低啦成本降低齁 兄弟接著就說水田的經驗有可能嗎水田齁 佔人的成本是多少而已這樣嗎你說比方說啦齁 比較耗能
transcript.whisperx[2].start 63.874
transcript.whisperx[2].end 71.663
transcript.whisperx[2].text 金屬扣件 他們有可能是這麼做的嗎所以我們這樣是用這個EXCO就是節能減碳的方法 但是那個會有點久 第二 沒沒沒第二喔 這個骨的褻皮 骨的褻心喔
transcript.whisperx[3].start 84.814
transcript.whisperx[3].end 98.683
transcript.whisperx[3].text 這個太舊煥新我們有這種的這個比較嚴格的標準你可以分不同的類別譬如說你現在已經產生虧損了產生虧損你就降低它的減免 它的稅墊報告員 我的部分我們現在做到你剛才所質詢的我為材料
transcript.whisperx[4].start 105.627
transcript.whisperx[4].end 113.576
transcript.whisperx[4].text 有它的銀行有它的這個設備這三個構面來降低它的成本所以我現在知道我們要統購之後來發給他們
transcript.whisperx[5].start 118.493
transcript.whisperx[5].end 128.224
transcript.whisperx[5].text 對於他們來說這個受衝擊最大的就是傳統製造業所以我們有一些是比較耗水耗電比較耗水耗電的我說這個你要索賀要怎麼讓他們解決藍莓之急水電的經驗是可以讓他們馬上把成本降低
transcript.whisperx[6].start 135.512
transcript.whisperx[6].end 152.726
transcript.whisperx[6].text 你也可以輸課一下對 它是舊的設備才會這樣子但是那個是耗能的我們認為它可以趁這個機會我們有其他的這個預算可以幫助它太舊換新對 這邊開啟它主連 它用的水跟電就更加舊講到這個問題我繼續來請教對中小企業轉型你說那個簡簡單單是轉型嘛是轉型轉型你看你4月4號的發布的版本
transcript.whisperx[7].start 165.456
transcript.whisperx[7].end 192.576
transcript.whisperx[7].text 這個基本上是由以小代大以大代小以大代小那你4月20新的版本卻把這個門檻就把它提高你看這個所以這是不是能夠增加補助的資金跟項目那你現在這一次的880億裡面對於這些傳統製造業它的補助的條件跟資格也比較嚴格一點
transcript.whisperx[8].start 193.817
transcript.whisperx[8].end 209.943
transcript.whisperx[8].text 所以這部份是不是你會再去處理看看這個我們是從寬從簡從速的處理所以那個部分只要它能夠檢據有事實我們就認定所以報告委員如果你的這個譬如說有發現有這樣的這個我們的
transcript.whisperx[9].start 213.024
transcript.whisperx[9].end 225.933
transcript.whisperx[9].text 同仁對這方面認知不夠那有造成困擾的話麻煩你通知我們我們都可以馬上去你四月七日提出的方案你還有以大帶小的方式把沒有輸美實際的業者也一併大陸補助範圍
transcript.whisperx[10].start 228.675
transcript.whisperx[10].end 253.011
transcript.whisperx[10].text 那現在你4月21號就把這個罰除掉你無需不需要有疏寧包括你是間接疏寧的我們都承認但是你4月21號把這個取消了喔沒關係啦我都從觀認定啦因為在這裡會有人問啊市委先生你說可以現在說不行不需要在臥底上面可能要去跟齁跟一些中產企業他們有出了他有一些認知上的不同喔但是現在已經變成更嚴格了
transcript.whisperx[11].start 254.952
transcript.whisperx[11].end 270.619
transcript.whisperx[11].text 我們會 他如果有問題他可以打電話到我們的Code Center或者是我們的馬上辦服務中心他們都不打給你們 都直接打給我是喔 你就要叫他們打給我們啦那委員造成你的困擾比較不好意思但是我們馬上辦服務中心喔 最多一天啦最多一天一定回答他的問題
transcript.whisperx[12].start 278.002
transcript.whisperx[12].end 298.153
transcript.whisperx[12].text 國發會的報告裡面對鋼鐵跟鋁材啊他說這個對我國是相對有利啦齁你那個報告是這樣寫齁對 其實我們也是參考經濟部的報告因為之前我直接問產發署署長 邱署長你山葉你比較了解那個傳統山葉那個真的是對台灣相對有利嗎
transcript.whisperx[13].start 299.958
transcript.whisperx[13].end 318.859
transcript.whisperx[13].text 你那個鋼鐵跟鋁材包括下游的金屬扣減也是呢?這是相對的因為我們在川普1.0的時候對鋼鋁已經課徵國安關稅但是那時候有10個國家被豁免台灣沒有被豁免
transcript.whisperx[14].start 320.12
transcript.whisperx[14].end 329.384
transcript.whisperx[14].text 可是這一次川普2.0的時候,他把這10個國家全部都拉進來,變成大家拉平,大家保證有講過啊,我們台灣不敢緊張啊,我們大家要把他拍白啊,這次我們覺得鋼鋁把他拍白,我們台灣等到相對有利。鋼鐵工業也是這麼認為嗎?這個是我們問過業者以後,
transcript.whisperx[15].start 341.707
transcript.whisperx[15].end 362.887
transcript.whisperx[15].text 就一路這樣我們這樣從北到南這樣去問業者大家業者是認為說只要給我們公平的這個競爭的機會這個我們是有機會所以整個鋼鐵跟鋁材的產業是有相對有利的相對川普1.0的時候是有10個國家豁免相對有利我們要講清楚這樣比較了解下一個議題就是說關於半導體半導體這個可能部長最清楚
transcript.whisperx[16].start 363.948
transcript.whisperx[16].end 379.495
transcript.whisperx[16].text 就我們並沒有針對這個企業來協助有一個系統性的來模擬美國國安的調查機制美國國安調查機制有它的程序有很多他們在貿易談判有很多的業者全部都參與
transcript.whisperx[17].start 381.085
transcript.whisperx[17].end 407.583
transcript.whisperx[17].text 譬如說有一些媒體做一個很詳細的報導就是說他在跟各國在針對貿易在談判的時候有很多的這個企業界代表都有列席表達意見那我們好像沒有這個系統性的怎麼樣去協助企業能夠模擬美國國安調查機制讓他們了解整個國安機制的這個流程那我們才能做相關的因應做準備
transcript.whisperx[18].start 411.517
transcript.whisperx[18].end 428.99
transcript.whisperx[18].text 報告委員我們對於這個命題我們是非常的關注我們的貿易署也有針對這個我們有做對廠商可以個別的聯絡我們也會在今天事實上我們在今天下午
transcript.whisperx[19].start 429.75
transcript.whisperx[19].end 454.111
transcript.whisperx[19].text 也會開座談會這個座談會包括國內的業者包括國外的業者也就是說美國的客戶在台灣的廠商我們找他們一起來針對232這一題大家進入比較深層所以調查流程他這樣調查他的流程我們都有掌握嗎有我們都了解那對於他們我們有沒有可能建立風險預警機制
transcript.whisperx[20].start 456.513
transcript.whisperx[20].end 475.525
transcript.whisperx[20].text 針對未來可能敏感項目去及早掌握及早預防有所有該防範的該這個提早掌握的部分我們都有在進行那包括這個有一些包括什麼洗產地的啦或者是飛鴻供應鏈等等這一些事實上我們早就在運作
transcript.whisperx[21].start 476.545
transcript.whisperx[21].end 492.134
transcript.whisperx[21].text 這有沒有做一些模擬演練 沙盤推演有嗎 我是希望說你們拿出一個沙盤推演跟產業界來合作 你那個特定供應鏈這些類型你要有一個模擬推演的模式 讓產業界能夠參與我們會針對 譬如說各種不同的 譬如說這個
transcript.whisperx[22].start 503.8
transcript.whisperx[22].end 525.913
transcript.whisperx[22].text 不同類的半導體類的一種智慧型手機的一種電腦的手機一種電子零組件的一種大概分成幾個不同的項目然後我們都每一個場次去傾聽業者的想法那麼他們碰到的狀況是怎麼樣其實部長我只是提那個想法而已可能更要積極請他們參與
transcript.whisperx[23].start 528.373
transcript.whisperx[23].end 546.515
transcript.whisperx[23].text 你做任何供應鏈這個模擬演練做到衝擊應該有相關的產業進入而不是聽他們聲音而已不是我們當然會判斷這個就是說基本上因為我們跟美國在這個科技的產品上面是高度的互補
transcript.whisperx[24].start 547.574
transcript.whisperx[24].end 567.746
transcript.whisperx[24].text 高度的互補大部分美國的user的六大科技公司占我們這個出口的這個大概500億美金所以對他們來講這個稅是課在他們身上而且第二個我們有很多的廠商是做EMS做代工的客戶也是他們現在部長你這個我們對美採購的清單現在還在積極盤點當中嗎有訂單的嗎
transcript.whisperx[25].start 577.034
transcript.whisperx[25].end 584.226
transcript.whisperx[25].text 對門採購的清單還是動態那個是行政院副院長的工作
transcript.whisperx[26].start 585.992
transcript.whisperx[26].end 613.713
transcript.whisperx[26].text 他是谈判的我们只是提供我是想了解进度对面采购的清单是怎么样那个部分就是在进行中的这个过程另外啦基于国际惯例是不宜我了解我可以理解但是调整非关税障碍跟这个我们怎么样降低这个出口动能的下降这个部分基本上我们不会降低出口动能
transcript.whisperx[27].start 615.038
transcript.whisperx[27].end 643.473
transcript.whisperx[27].text 這個出口動能一定會受到影響嘛我們不會因為美國的這些科技產品對我們的依賴度是非常高的所以我們不會說給我們訂單我們不出口這是跟委員報告所以我們在這個分子的部分分母不變情況之下我們在分子的部分所以您認為出口動能不會下降不會因為說川普的關稅政策讓台灣出口動能下降我們會買進口的東西多一點
transcript.whisperx[28].start 645.527
transcript.whisperx[28].end 671.036
transcript.whisperx[28].text 不會下降可是很多經濟學家都認為說我們台灣又有匯率的問題又有我們貨幣政策的問題又大量粗糙這個未來在談判的過程中會比較辛苦我們會大量我們就粗糙啦我們粗糙的部分就是說我們進口少然後出口多啦但是我們現在出口不變的情況下我們進口多一點
transcript.whisperx[29].start 671.616
transcript.whisperx[29].end 688.266
transcript.whisperx[29].text 有的說台灣會是跟對美談判中 辛苦的國家之一你覺得不懂 我看你很樂觀 樂觀所以我們不會是對美談判很辛苦的國家相對是比較輕鬆的國家我不是談判成員 但是我相當樂觀