IVOD_ID |
160520 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/160520 |
日期 |
2025-04-23 |
會議資料.會議代碼 |
委員會-11-3-26-7 |
會議資料.會議代碼:str |
第11屆第3會期社會福利及衛生環境委員會第7次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
7 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第3會期社會福利及衛生環境委員會第7次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-04-23T10:59:52+08:00 |
結束時間 |
2025-04-23T11:28:46+08:00 |
影片長度 |
00:28:54 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/27ac2f54fdf75cc01b338ddc6c03c15b4d63fb5309bb2e639a3354dc8dbd3a62e5caf0930cab58e95ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
林淑芬 |
委員發言時間 |
10:59:52 - 11:28:46 |
會議時間 |
2025-04-23T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期社會福利及衛生環境委員會第7次全體委員會議(事由:邀請衛生福利部部長、財政部次長就「國家社會福利政策財源檢討及偏鄉兒童發展篩檢執行情形」進行專題報告,並備質詢。
【4月23日及24日二天一次會】) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
0.35159375 |
transcript.pyannote[0].end |
0.97596875 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
10.94909375 |
transcript.pyannote[1].end |
11.11784375 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
11.96159375 |
transcript.pyannote[2].end |
13.49721875 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
19.25159375 |
transcript.pyannote[3].end |
23.74034375 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
24.39846875 |
transcript.pyannote[4].end |
33.91596875 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
34.40534375 |
transcript.pyannote[5].end |
36.59909375 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
36.70034375 |
transcript.pyannote[6].end |
54.89159375 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
55.95471875 |
transcript.pyannote[7].end |
62.09721875 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
63.81846875 |
transcript.pyannote[8].end |
64.39221875 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
65.92784375 |
transcript.pyannote[9].end |
70.11284375 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
70.50096875 |
transcript.pyannote[10].end |
72.07034375 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
72.66096875 |
transcript.pyannote[11].end |
74.09534375 |
transcript.pyannote[12].speaker |
SPEAKER_02 |
transcript.pyannote[12].start |
75.20909375 |
transcript.pyannote[12].end |
84.49034375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
75.32721875 |
transcript.pyannote[13].end |
78.65159375 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
83.14034375 |
transcript.pyannote[14].end |
87.64596875 |
transcript.pyannote[15].speaker |
SPEAKER_02 |
transcript.pyannote[15].start |
85.40159375 |
transcript.pyannote[15].end |
85.72221875 |
transcript.pyannote[16].speaker |
SPEAKER_02 |
transcript.pyannote[16].start |
87.64596875 |
transcript.pyannote[16].end |
87.66284375 |
transcript.pyannote[17].speaker |
SPEAKER_02 |
transcript.pyannote[17].start |
87.67971875 |
transcript.pyannote[17].end |
91.18971875 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
90.81846875 |
transcript.pyannote[18].end |
104.75721875 |
transcript.pyannote[19].speaker |
SPEAKER_02 |
transcript.pyannote[19].start |
101.87159375 |
transcript.pyannote[19].end |
105.93846875 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
105.22971875 |
transcript.pyannote[20].end |
107.60909375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
108.43596875 |
transcript.pyannote[21].end |
129.49596875 |
transcript.pyannote[22].speaker |
SPEAKER_02 |
transcript.pyannote[22].start |
108.89159375 |
transcript.pyannote[22].end |
110.12346875 |
transcript.pyannote[23].speaker |
SPEAKER_02 |
transcript.pyannote[23].start |
110.71409375 |
transcript.pyannote[23].end |
111.94596875 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
129.63096875 |
transcript.pyannote[24].end |
129.66471875 |
transcript.pyannote[25].speaker |
SPEAKER_02 |
transcript.pyannote[25].start |
129.66471875 |
transcript.pyannote[25].end |
130.67721875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
130.67721875 |
transcript.pyannote[26].end |
132.51659375 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
132.97221875 |
transcript.pyannote[27].end |
142.55721875 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
143.18159375 |
transcript.pyannote[28].end |
144.71721875 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
145.39221875 |
transcript.pyannote[29].end |
150.65721875 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
151.39971875 |
transcript.pyannote[30].end |
156.20909375 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
156.41159375 |
transcript.pyannote[31].end |
161.03534375 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
161.84534375 |
transcript.pyannote[32].end |
162.68909375 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
163.46534375 |
transcript.pyannote[33].end |
165.32159375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
165.82784375 |
transcript.pyannote[34].end |
168.59534375 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
170.89034375 |
transcript.pyannote[35].end |
170.97471875 |
transcript.pyannote[36].speaker |
SPEAKER_02 |
transcript.pyannote[36].start |
170.97471875 |
transcript.pyannote[36].end |
171.02534375 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
171.02534375 |
transcript.pyannote[37].end |
171.32909375 |
transcript.pyannote[38].speaker |
SPEAKER_02 |
transcript.pyannote[38].start |
171.32909375 |
transcript.pyannote[38].end |
172.56096875 |
transcript.pyannote[39].speaker |
SPEAKER_02 |
transcript.pyannote[39].start |
173.15159375 |
transcript.pyannote[39].end |
174.26534375 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
174.26534375 |
transcript.pyannote[40].end |
175.73346875 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
176.18909375 |
transcript.pyannote[41].end |
179.20971875 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
180.35721875 |
transcript.pyannote[42].end |
181.80846875 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
182.16284375 |
transcript.pyannote[43].end |
201.34971875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
201.88971875 |
transcript.pyannote[44].end |
219.55784375 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
220.09784375 |
transcript.pyannote[45].end |
224.35034375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
224.82284375 |
transcript.pyannote[46].end |
256.32846875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
256.63221875 |
transcript.pyannote[47].end |
259.09596875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
259.55159375 |
transcript.pyannote[48].end |
260.61471875 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
261.01971875 |
transcript.pyannote[49].end |
265.06971875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
265.96409375 |
transcript.pyannote[50].end |
270.36846875 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
270.92534375 |
transcript.pyannote[51].end |
276.93284375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
277.27034375 |
transcript.pyannote[52].end |
278.29971875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
278.80596875 |
transcript.pyannote[53].end |
281.25284375 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
281.72534375 |
transcript.pyannote[54].end |
283.59846875 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
284.05409375 |
transcript.pyannote[55].end |
293.03159375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
293.13284375 |
transcript.pyannote[56].end |
305.13096875 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
305.51909375 |
transcript.pyannote[57].end |
311.84721875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
312.08346875 |
transcript.pyannote[58].end |
315.55971875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
316.08284375 |
transcript.pyannote[59].end |
317.06159375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
317.68596875 |
transcript.pyannote[60].end |
322.03971875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
322.29284375 |
transcript.pyannote[61].end |
327.55784375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
328.13159375 |
transcript.pyannote[62].end |
333.73409375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
334.37534375 |
transcript.pyannote[63].end |
339.89346875 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
341.46284375 |
transcript.pyannote[64].end |
342.15471875 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
342.86346875 |
transcript.pyannote[65].end |
351.85784375 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
352.44846875 |
transcript.pyannote[66].end |
353.81534375 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
355.38471875 |
transcript.pyannote[67].end |
358.33784375 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
359.04659375 |
transcript.pyannote[68].end |
364.02471875 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
364.37909375 |
transcript.pyannote[69].end |
366.91034375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
367.24784375 |
transcript.pyannote[70].end |
374.63909375 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
375.48284375 |
transcript.pyannote[71].end |
377.22096875 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
378.50346875 |
transcript.pyannote[72].end |
381.87846875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
383.31284375 |
transcript.pyannote[73].end |
385.20284375 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
385.89471875 |
transcript.pyannote[74].end |
389.23596875 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
391.22721875 |
transcript.pyannote[75].end |
392.84721875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
393.38721875 |
transcript.pyannote[76].end |
394.43346875 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
394.85534375 |
transcript.pyannote[77].end |
395.56409375 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
396.18846875 |
transcript.pyannote[78].end |
401.48721875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
401.90909375 |
transcript.pyannote[79].end |
404.27159375 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
405.06471875 |
transcript.pyannote[80].end |
407.54534375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
408.22034375 |
transcript.pyannote[81].end |
412.79346875 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
413.06346875 |
transcript.pyannote[82].end |
417.43409375 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
417.68721875 |
transcript.pyannote[83].end |
422.34471875 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
423.89721875 |
transcript.pyannote[84].end |
428.45346875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
429.97221875 |
transcript.pyannote[85].end |
431.30534375 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
432.58784375 |
transcript.pyannote[86].end |
434.61284375 |
transcript.pyannote[87].speaker |
SPEAKER_02 |
transcript.pyannote[87].start |
437.22846875 |
transcript.pyannote[87].end |
438.86534375 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
438.86534375 |
transcript.pyannote[88].end |
440.14784375 |
transcript.pyannote[89].speaker |
SPEAKER_02 |
transcript.pyannote[89].start |
440.45159375 |
transcript.pyannote[89].end |
441.02534375 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
441.19409375 |
transcript.pyannote[90].end |
442.15596875 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
442.51034375 |
transcript.pyannote[91].end |
445.58159375 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
446.08784375 |
transcript.pyannote[92].end |
448.48409375 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
449.32784375 |
transcript.pyannote[93].end |
456.87096875 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
457.25909375 |
transcript.pyannote[94].end |
461.39346875 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
462.03471875 |
transcript.pyannote[95].end |
468.75096875 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
469.74659375 |
transcript.pyannote[96].end |
484.73159375 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
485.47409375 |
transcript.pyannote[97].end |
495.56534375 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
497.45534375 |
transcript.pyannote[98].end |
499.42971875 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
500.35784375 |
transcript.pyannote[99].end |
519.71346875 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
520.28721875 |
transcript.pyannote[100].end |
521.29971875 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
521.95784375 |
transcript.pyannote[101].end |
522.86909375 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
525.36659375 |
transcript.pyannote[102].end |
527.44221875 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
527.56034375 |
transcript.pyannote[103].end |
528.55596875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
529.41659375 |
transcript.pyannote[104].end |
537.98909375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
538.22534375 |
transcript.pyannote[105].end |
541.78596875 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
541.97159375 |
transcript.pyannote[106].end |
543.97971875 |
transcript.pyannote[107].speaker |
SPEAKER_02 |
transcript.pyannote[107].start |
545.11034375 |
transcript.pyannote[107].end |
552.36659375 |
transcript.pyannote[108].speaker |
SPEAKER_02 |
transcript.pyannote[108].start |
553.26096875 |
transcript.pyannote[108].end |
554.74596875 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
553.88534375 |
transcript.pyannote[109].end |
557.74971875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
557.81721875 |
transcript.pyannote[110].end |
562.79534375 |
transcript.pyannote[111].speaker |
SPEAKER_02 |
transcript.pyannote[111].start |
557.88471875 |
transcript.pyannote[111].end |
560.53409375 |
transcript.pyannote[112].speaker |
SPEAKER_02 |
transcript.pyannote[112].start |
562.40721875 |
transcript.pyannote[112].end |
564.29721875 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
563.80784375 |
transcript.pyannote[113].end |
566.77784375 |
transcript.pyannote[114].speaker |
SPEAKER_02 |
transcript.pyannote[114].start |
564.82034375 |
transcript.pyannote[114].end |
565.49534375 |
transcript.pyannote[115].speaker |
SPEAKER_02 |
transcript.pyannote[115].start |
565.59659375 |
transcript.pyannote[115].end |
568.24596875 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
567.75659375 |
transcript.pyannote[116].end |
569.20784375 |
transcript.pyannote[117].speaker |
SPEAKER_02 |
transcript.pyannote[117].start |
568.70159375 |
transcript.pyannote[117].end |
576.39659375 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
573.84846875 |
transcript.pyannote[118].end |
586.20096875 |
transcript.pyannote[119].speaker |
SPEAKER_02 |
transcript.pyannote[119].start |
578.91096875 |
transcript.pyannote[119].end |
580.91909375 |
transcript.pyannote[120].speaker |
SPEAKER_02 |
transcript.pyannote[120].start |
585.37409375 |
transcript.pyannote[120].end |
589.00221875 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
587.31471875 |
transcript.pyannote[121].end |
590.43659375 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
590.85846875 |
transcript.pyannote[122].end |
593.11971875 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
593.49096875 |
transcript.pyannote[123].end |
598.43534375 |
transcript.pyannote[124].speaker |
SPEAKER_02 |
transcript.pyannote[124].start |
599.86971875 |
transcript.pyannote[124].end |
604.93221875 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
603.39659375 |
transcript.pyannote[125].end |
605.96159375 |
transcript.pyannote[126].speaker |
SPEAKER_02 |
transcript.pyannote[126].start |
604.94909375 |
transcript.pyannote[126].end |
604.96596875 |
transcript.pyannote[127].speaker |
SPEAKER_02 |
transcript.pyannote[127].start |
605.32034375 |
transcript.pyannote[127].end |
608.25659375 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
607.36221875 |
transcript.pyannote[128].end |
608.81346875 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
609.89346875 |
transcript.pyannote[129].end |
611.74971875 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
612.32346875 |
transcript.pyannote[130].end |
612.34034375 |
transcript.pyannote[131].speaker |
SPEAKER_02 |
transcript.pyannote[131].start |
612.34034375 |
transcript.pyannote[131].end |
619.36034375 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
612.44159375 |
transcript.pyannote[132].end |
612.45846875 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
612.49221875 |
transcript.pyannote[133].end |
614.31471875 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
617.31846875 |
transcript.pyannote[134].end |
620.86221875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
621.23346875 |
transcript.pyannote[135].end |
623.29221875 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
624.00096875 |
transcript.pyannote[136].end |
626.80221875 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
627.42659375 |
transcript.pyannote[137].end |
628.25346875 |
transcript.pyannote[138].speaker |
SPEAKER_02 |
transcript.pyannote[138].start |
631.47659375 |
transcript.pyannote[138].end |
637.61909375 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
635.37471875 |
transcript.pyannote[139].end |
639.62721875 |
transcript.pyannote[140].speaker |
SPEAKER_02 |
transcript.pyannote[140].start |
638.09159375 |
transcript.pyannote[140].end |
639.08721875 |
transcript.pyannote[141].speaker |
SPEAKER_02 |
transcript.pyannote[141].start |
639.44159375 |
transcript.pyannote[141].end |
643.93034375 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
642.44534375 |
transcript.pyannote[142].end |
645.04409375 |
transcript.pyannote[143].speaker |
SPEAKER_02 |
transcript.pyannote[143].start |
644.70659375 |
transcript.pyannote[143].end |
653.51534375 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
645.51659375 |
transcript.pyannote[144].end |
647.18721875 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
648.92534375 |
transcript.pyannote[145].end |
649.54971875 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
650.14034375 |
transcript.pyannote[146].end |
651.33846875 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
652.18221875 |
transcript.pyannote[147].end |
652.57034375 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
653.58284375 |
transcript.pyannote[148].end |
660.07971875 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
660.95721875 |
transcript.pyannote[149].end |
665.22659375 |
transcript.pyannote[150].speaker |
SPEAKER_02 |
transcript.pyannote[150].start |
665.17596875 |
transcript.pyannote[150].end |
666.89721875 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
666.13784375 |
transcript.pyannote[151].end |
669.59721875 |
transcript.pyannote[152].speaker |
SPEAKER_02 |
transcript.pyannote[152].start |
668.73659375 |
transcript.pyannote[152].end |
668.75346875 |
transcript.pyannote[153].speaker |
SPEAKER_02 |
transcript.pyannote[153].start |
668.77034375 |
transcript.pyannote[153].end |
669.63096875 |
transcript.pyannote[154].speaker |
SPEAKER_02 |
transcript.pyannote[154].start |
670.64346875 |
transcript.pyannote[154].end |
671.35221875 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
671.55471875 |
transcript.pyannote[155].end |
672.02721875 |
transcript.pyannote[156].speaker |
SPEAKER_02 |
transcript.pyannote[156].start |
672.14534375 |
transcript.pyannote[156].end |
672.65159375 |
transcript.pyannote[157].speaker |
SPEAKER_00 |
transcript.pyannote[157].start |
672.90471875 |
transcript.pyannote[157].end |
674.92971875 |
transcript.pyannote[158].speaker |
SPEAKER_02 |
transcript.pyannote[158].start |
675.23346875 |
transcript.pyannote[158].end |
679.75596875 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
677.91659375 |
transcript.pyannote[159].end |
678.06846875 |
transcript.pyannote[160].speaker |
SPEAKER_00 |
transcript.pyannote[160].start |
679.75596875 |
transcript.pyannote[160].end |
680.22846875 |
transcript.pyannote[161].speaker |
SPEAKER_02 |
transcript.pyannote[161].start |
679.77284375 |
transcript.pyannote[161].end |
682.08471875 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
682.59096875 |
transcript.pyannote[162].end |
687.58596875 |
transcript.pyannote[163].speaker |
SPEAKER_02 |
transcript.pyannote[163].start |
688.42971875 |
transcript.pyannote[163].end |
695.36534375 |
transcript.pyannote[164].speaker |
SPEAKER_00 |
transcript.pyannote[164].start |
688.54784375 |
transcript.pyannote[164].end |
689.17221875 |
transcript.pyannote[165].speaker |
SPEAKER_00 |
transcript.pyannote[165].start |
695.11221875 |
transcript.pyannote[165].end |
702.80721875 |
transcript.pyannote[166].speaker |
SPEAKER_00 |
transcript.pyannote[166].start |
703.04346875 |
transcript.pyannote[166].end |
713.37096875 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
713.92784375 |
transcript.pyannote[167].end |
715.66596875 |
transcript.pyannote[168].speaker |
SPEAKER_00 |
transcript.pyannote[168].start |
717.64034375 |
transcript.pyannote[168].end |
722.90534375 |
transcript.pyannote[169].speaker |
SPEAKER_02 |
transcript.pyannote[169].start |
722.75346875 |
transcript.pyannote[169].end |
728.64284375 |
transcript.pyannote[170].speaker |
SPEAKER_00 |
transcript.pyannote[170].start |
724.30596875 |
transcript.pyannote[170].end |
730.81971875 |
transcript.pyannote[171].speaker |
SPEAKER_01 |
transcript.pyannote[171].start |
728.64284375 |
transcript.pyannote[171].end |
728.67659375 |
transcript.pyannote[172].speaker |
SPEAKER_00 |
transcript.pyannote[172].start |
733.53659375 |
transcript.pyannote[172].end |
733.99221875 |
transcript.pyannote[173].speaker |
SPEAKER_00 |
transcript.pyannote[173].start |
734.65034375 |
transcript.pyannote[173].end |
738.32909375 |
transcript.pyannote[174].speaker |
SPEAKER_01 |
transcript.pyannote[174].start |
735.24096875 |
transcript.pyannote[174].end |
737.97471875 |
transcript.pyannote[175].speaker |
SPEAKER_02 |
transcript.pyannote[175].start |
737.97471875 |
transcript.pyannote[175].end |
738.02534375 |
transcript.pyannote[176].speaker |
SPEAKER_00 |
transcript.pyannote[176].start |
739.08846875 |
transcript.pyannote[176].end |
747.20534375 |
transcript.pyannote[177].speaker |
SPEAKER_00 |
transcript.pyannote[177].start |
747.44159375 |
transcript.pyannote[177].end |
753.07784375 |
transcript.pyannote[178].speaker |
SPEAKER_00 |
transcript.pyannote[178].start |
753.28034375 |
transcript.pyannote[178].end |
758.32596875 |
transcript.pyannote[179].speaker |
SPEAKER_00 |
transcript.pyannote[179].start |
758.96721875 |
transcript.pyannote[179].end |
763.70909375 |
transcript.pyannote[180].speaker |
SPEAKER_00 |
transcript.pyannote[180].start |
764.09721875 |
transcript.pyannote[180].end |
767.10096875 |
transcript.pyannote[181].speaker |
SPEAKER_00 |
transcript.pyannote[181].start |
767.33721875 |
transcript.pyannote[181].end |
782.52471875 |
transcript.pyannote[182].speaker |
SPEAKER_00 |
transcript.pyannote[182].start |
782.89596875 |
transcript.pyannote[182].end |
794.35409375 |
transcript.pyannote[183].speaker |
SPEAKER_00 |
transcript.pyannote[183].start |
794.94471875 |
transcript.pyannote[183].end |
796.02471875 |
transcript.pyannote[184].speaker |
SPEAKER_00 |
transcript.pyannote[184].start |
796.39596875 |
transcript.pyannote[184].end |
797.89784375 |
transcript.pyannote[185].speaker |
SPEAKER_00 |
transcript.pyannote[185].start |
798.18471875 |
transcript.pyannote[185].end |
798.85971875 |
transcript.pyannote[186].speaker |
SPEAKER_00 |
transcript.pyannote[186].start |
799.02846875 |
transcript.pyannote[186].end |
805.87971875 |
transcript.pyannote[187].speaker |
SPEAKER_00 |
transcript.pyannote[187].start |
806.11596875 |
transcript.pyannote[187].end |
820.12221875 |
transcript.pyannote[188].speaker |
SPEAKER_00 |
transcript.pyannote[188].start |
820.81409375 |
transcript.pyannote[188].end |
841.78971875 |
transcript.pyannote[189].speaker |
SPEAKER_00 |
transcript.pyannote[189].start |
841.97534375 |
transcript.pyannote[189].end |
857.98971875 |
transcript.pyannote[190].speaker |
SPEAKER_00 |
transcript.pyannote[190].start |
858.98534375 |
transcript.pyannote[190].end |
864.46971875 |
transcript.pyannote[191].speaker |
SPEAKER_00 |
transcript.pyannote[191].start |
865.12784375 |
transcript.pyannote[191].end |
870.00471875 |
transcript.pyannote[192].speaker |
SPEAKER_00 |
transcript.pyannote[192].start |
870.24096875 |
transcript.pyannote[192].end |
871.60784375 |
transcript.pyannote[193].speaker |
SPEAKER_00 |
transcript.pyannote[193].start |
872.01284375 |
transcript.pyannote[193].end |
895.43534375 |
transcript.pyannote[194].speaker |
SPEAKER_00 |
transcript.pyannote[194].start |
896.00909375 |
transcript.pyannote[194].end |
897.32534375 |
transcript.pyannote[195].speaker |
SPEAKER_02 |
transcript.pyannote[195].start |
897.93284375 |
transcript.pyannote[195].end |
913.39034375 |
transcript.pyannote[196].speaker |
SPEAKER_00 |
transcript.pyannote[196].start |
903.90659375 |
transcript.pyannote[196].end |
904.96971875 |
transcript.pyannote[197].speaker |
SPEAKER_01 |
transcript.pyannote[197].start |
904.96971875 |
transcript.pyannote[197].end |
905.03721875 |
transcript.pyannote[198].speaker |
SPEAKER_00 |
transcript.pyannote[198].start |
905.03721875 |
transcript.pyannote[198].end |
905.86409375 |
transcript.pyannote[199].speaker |
SPEAKER_01 |
transcript.pyannote[199].start |
905.86409375 |
transcript.pyannote[199].end |
906.03284375 |
transcript.pyannote[200].speaker |
SPEAKER_00 |
transcript.pyannote[200].start |
906.03284375 |
transcript.pyannote[200].end |
907.53471875 |
transcript.pyannote[201].speaker |
SPEAKER_00 |
transcript.pyannote[201].start |
909.32346875 |
transcript.pyannote[201].end |
910.74096875 |
transcript.pyannote[202].speaker |
SPEAKER_00 |
transcript.pyannote[202].start |
911.97284375 |
transcript.pyannote[202].end |
912.36096875 |
transcript.pyannote[203].speaker |
SPEAKER_00 |
transcript.pyannote[203].start |
912.74909375 |
transcript.pyannote[203].end |
920.10659375 |
transcript.pyannote[204].speaker |
SPEAKER_02 |
transcript.pyannote[204].start |
920.64659375 |
transcript.pyannote[204].end |
922.78971875 |
transcript.pyannote[205].speaker |
SPEAKER_00 |
transcript.pyannote[205].start |
922.31721875 |
transcript.pyannote[205].end |
924.02159375 |
transcript.pyannote[206].speaker |
SPEAKER_00 |
transcript.pyannote[206].start |
924.46034375 |
transcript.pyannote[206].end |
929.05034375 |
transcript.pyannote[207].speaker |
SPEAKER_01 |
transcript.pyannote[207].start |
929.59034375 |
transcript.pyannote[207].end |
931.71659375 |
transcript.pyannote[208].speaker |
SPEAKER_00 |
transcript.pyannote[208].start |
931.71659375 |
transcript.pyannote[208].end |
938.92221875 |
transcript.pyannote[209].speaker |
SPEAKER_00 |
transcript.pyannote[209].start |
939.56346875 |
transcript.pyannote[209].end |
957.87284375 |
transcript.pyannote[210].speaker |
SPEAKER_00 |
transcript.pyannote[210].start |
957.90659375 |
transcript.pyannote[210].end |
958.75034375 |
transcript.pyannote[211].speaker |
SPEAKER_01 |
transcript.pyannote[211].start |
959.40846875 |
transcript.pyannote[211].end |
974.22471875 |
transcript.pyannote[212].speaker |
SPEAKER_00 |
transcript.pyannote[212].start |
970.17471875 |
transcript.pyannote[212].end |
984.97409375 |
transcript.pyannote[213].speaker |
SPEAKER_01 |
transcript.pyannote[213].start |
984.97409375 |
transcript.pyannote[213].end |
995.18346875 |
transcript.pyannote[214].speaker |
SPEAKER_00 |
transcript.pyannote[214].start |
993.22596875 |
transcript.pyannote[214].end |
999.04784375 |
transcript.pyannote[215].speaker |
SPEAKER_00 |
transcript.pyannote[215].start |
999.53721875 |
transcript.pyannote[215].end |
1005.02159375 |
transcript.pyannote[216].speaker |
SPEAKER_00 |
transcript.pyannote[216].start |
1005.12284375 |
transcript.pyannote[216].end |
1009.67909375 |
transcript.pyannote[217].speaker |
SPEAKER_01 |
transcript.pyannote[217].start |
1010.13471875 |
transcript.pyannote[217].end |
1016.59784375 |
transcript.pyannote[218].speaker |
SPEAKER_00 |
transcript.pyannote[218].start |
1015.26471875 |
transcript.pyannote[218].end |
1016.64846875 |
transcript.pyannote[219].speaker |
SPEAKER_01 |
transcript.pyannote[219].start |
1016.64846875 |
transcript.pyannote[219].end |
1017.03659375 |
transcript.pyannote[220].speaker |
SPEAKER_00 |
transcript.pyannote[220].start |
1017.03659375 |
transcript.pyannote[220].end |
1020.81659375 |
transcript.pyannote[221].speaker |
SPEAKER_00 |
transcript.pyannote[221].start |
1021.72784375 |
transcript.pyannote[221].end |
1027.51596875 |
transcript.pyannote[222].speaker |
SPEAKER_00 |
transcript.pyannote[222].start |
1028.24159375 |
transcript.pyannote[222].end |
1031.97096875 |
transcript.pyannote[223].speaker |
SPEAKER_01 |
transcript.pyannote[223].start |
1031.97096875 |
transcript.pyannote[223].end |
1046.82096875 |
transcript.pyannote[224].speaker |
SPEAKER_00 |
transcript.pyannote[224].start |
1046.95596875 |
transcript.pyannote[224].end |
1056.91221875 |
transcript.pyannote[225].speaker |
SPEAKER_00 |
transcript.pyannote[225].start |
1056.92909375 |
transcript.pyannote[225].end |
1056.96284375 |
transcript.pyannote[226].speaker |
SPEAKER_00 |
transcript.pyannote[226].start |
1057.03034375 |
transcript.pyannote[226].end |
1070.00721875 |
transcript.pyannote[227].speaker |
SPEAKER_00 |
transcript.pyannote[227].start |
1070.32784375 |
transcript.pyannote[227].end |
1071.62721875 |
transcript.pyannote[228].speaker |
SPEAKER_01 |
transcript.pyannote[228].start |
1071.62721875 |
transcript.pyannote[228].end |
1089.63284375 |
transcript.pyannote[229].speaker |
SPEAKER_01 |
transcript.pyannote[229].start |
1089.91971875 |
transcript.pyannote[229].end |
1103.13284375 |
transcript.pyannote[230].speaker |
SPEAKER_00 |
transcript.pyannote[230].start |
1100.16284375 |
transcript.pyannote[230].end |
1101.95159375 |
transcript.pyannote[231].speaker |
SPEAKER_01 |
transcript.pyannote[231].start |
1103.40284375 |
transcript.pyannote[231].end |
1104.17909375 |
transcript.pyannote[232].speaker |
SPEAKER_01 |
transcript.pyannote[232].start |
1104.38159375 |
transcript.pyannote[232].end |
1120.73346875 |
transcript.pyannote[233].speaker |
SPEAKER_00 |
transcript.pyannote[233].start |
1120.73346875 |
transcript.pyannote[233].end |
1121.49284375 |
transcript.pyannote[234].speaker |
SPEAKER_00 |
transcript.pyannote[234].start |
1121.52659375 |
transcript.pyannote[234].end |
1131.93846875 |
transcript.pyannote[235].speaker |
SPEAKER_00 |
transcript.pyannote[235].start |
1132.57971875 |
transcript.pyannote[235].end |
1133.50784375 |
transcript.pyannote[236].speaker |
SPEAKER_00 |
transcript.pyannote[236].start |
1134.11534375 |
transcript.pyannote[236].end |
1134.97596875 |
transcript.pyannote[237].speaker |
SPEAKER_00 |
transcript.pyannote[237].start |
1135.83659375 |
transcript.pyannote[237].end |
1141.99596875 |
transcript.pyannote[238].speaker |
SPEAKER_00 |
transcript.pyannote[238].start |
1142.55284375 |
transcript.pyannote[238].end |
1157.58846875 |
transcript.pyannote[239].speaker |
SPEAKER_00 |
transcript.pyannote[239].start |
1158.02721875 |
transcript.pyannote[239].end |
1162.02659375 |
transcript.pyannote[240].speaker |
SPEAKER_00 |
transcript.pyannote[240].start |
1162.70159375 |
transcript.pyannote[240].end |
1163.05596875 |
transcript.pyannote[241].speaker |
SPEAKER_00 |
transcript.pyannote[241].start |
1163.93346875 |
transcript.pyannote[241].end |
1169.62034375 |
transcript.pyannote[242].speaker |
SPEAKER_00 |
transcript.pyannote[242].start |
1170.32909375 |
transcript.pyannote[242].end |
1207.01534375 |
transcript.pyannote[243].speaker |
SPEAKER_00 |
transcript.pyannote[243].start |
1207.74096875 |
transcript.pyannote[243].end |
1210.94721875 |
transcript.pyannote[244].speaker |
SPEAKER_00 |
transcript.pyannote[244].start |
1211.62221875 |
transcript.pyannote[244].end |
1217.46096875 |
transcript.pyannote[245].speaker |
SPEAKER_02 |
transcript.pyannote[245].start |
1218.23721875 |
transcript.pyannote[245].end |
1225.64534375 |
transcript.pyannote[246].speaker |
SPEAKER_00 |
transcript.pyannote[246].start |
1225.02096875 |
transcript.pyannote[246].end |
1229.81346875 |
transcript.pyannote[247].speaker |
SPEAKER_02 |
transcript.pyannote[247].start |
1225.81409375 |
transcript.pyannote[247].end |
1230.55596875 |
transcript.pyannote[248].speaker |
SPEAKER_00 |
transcript.pyannote[248].start |
1230.52221875 |
transcript.pyannote[248].end |
1236.56346875 |
transcript.pyannote[249].speaker |
SPEAKER_00 |
transcript.pyannote[249].start |
1236.79971875 |
transcript.pyannote[249].end |
1242.35159375 |
transcript.pyannote[250].speaker |
SPEAKER_00 |
transcript.pyannote[250].start |
1242.72284375 |
transcript.pyannote[250].end |
1248.67971875 |
transcript.pyannote[251].speaker |
SPEAKER_02 |
transcript.pyannote[251].start |
1249.13534375 |
transcript.pyannote[251].end |
1253.05034375 |
transcript.pyannote[252].speaker |
SPEAKER_00 |
transcript.pyannote[252].start |
1251.34596875 |
transcript.pyannote[252].end |
1251.76784375 |
transcript.pyannote[253].speaker |
SPEAKER_00 |
transcript.pyannote[253].start |
1252.52721875 |
transcript.pyannote[253].end |
1255.21034375 |
transcript.pyannote[254].speaker |
SPEAKER_02 |
transcript.pyannote[254].start |
1253.52284375 |
transcript.pyannote[254].end |
1263.34409375 |
transcript.pyannote[255].speaker |
SPEAKER_00 |
transcript.pyannote[255].start |
1262.07846875 |
transcript.pyannote[255].end |
1265.89221875 |
transcript.pyannote[256].speaker |
SPEAKER_00 |
transcript.pyannote[256].start |
1266.39846875 |
transcript.pyannote[256].end |
1270.56659375 |
transcript.pyannote[257].speaker |
SPEAKER_00 |
transcript.pyannote[257].start |
1270.73534375 |
transcript.pyannote[257].end |
1272.25409375 |
transcript.pyannote[258].speaker |
SPEAKER_00 |
transcript.pyannote[258].start |
1272.91221875 |
transcript.pyannote[258].end |
1280.01659375 |
transcript.pyannote[259].speaker |
SPEAKER_02 |
transcript.pyannote[259].start |
1279.45971875 |
transcript.pyannote[259].end |
1283.12159375 |
transcript.pyannote[260].speaker |
SPEAKER_00 |
transcript.pyannote[260].start |
1281.50159375 |
transcript.pyannote[260].end |
1291.42409375 |
transcript.pyannote[261].speaker |
SPEAKER_00 |
transcript.pyannote[261].start |
1291.74471875 |
transcript.pyannote[261].end |
1294.86659375 |
transcript.pyannote[262].speaker |
SPEAKER_00 |
transcript.pyannote[262].start |
1295.44034375 |
transcript.pyannote[262].end |
1299.38909375 |
transcript.pyannote[263].speaker |
SPEAKER_00 |
transcript.pyannote[263].start |
1300.11471875 |
transcript.pyannote[263].end |
1307.37096875 |
transcript.pyannote[264].speaker |
SPEAKER_00 |
transcript.pyannote[264].start |
1307.86034375 |
transcript.pyannote[264].end |
1313.31096875 |
transcript.pyannote[265].speaker |
SPEAKER_00 |
transcript.pyannote[265].start |
1314.59346875 |
transcript.pyannote[265].end |
1317.02346875 |
transcript.pyannote[266].speaker |
SPEAKER_00 |
transcript.pyannote[266].start |
1317.29346875 |
transcript.pyannote[266].end |
1326.82784375 |
transcript.pyannote[267].speaker |
SPEAKER_00 |
transcript.pyannote[267].start |
1327.14846875 |
transcript.pyannote[267].end |
1329.74721875 |
transcript.pyannote[268].speaker |
SPEAKER_00 |
transcript.pyannote[268].start |
1329.89909375 |
transcript.pyannote[268].end |
1333.02096875 |
transcript.pyannote[269].speaker |
SPEAKER_00 |
transcript.pyannote[269].start |
1333.93221875 |
transcript.pyannote[269].end |
1334.77596875 |
transcript.pyannote[270].speaker |
SPEAKER_00 |
transcript.pyannote[270].start |
1335.11346875 |
transcript.pyannote[270].end |
1340.74971875 |
transcript.pyannote[271].speaker |
SPEAKER_00 |
transcript.pyannote[271].start |
1341.03659375 |
transcript.pyannote[271].end |
1342.74096875 |
transcript.pyannote[272].speaker |
SPEAKER_00 |
transcript.pyannote[272].start |
1343.39909375 |
transcript.pyannote[272].end |
1348.91721875 |
transcript.pyannote[273].speaker |
SPEAKER_00 |
transcript.pyannote[273].start |
1349.64284375 |
transcript.pyannote[273].end |
1350.82409375 |
transcript.pyannote[274].speaker |
SPEAKER_00 |
transcript.pyannote[274].start |
1351.36409375 |
transcript.pyannote[274].end |
1358.36721875 |
transcript.pyannote[275].speaker |
SPEAKER_00 |
transcript.pyannote[275].start |
1359.19409375 |
transcript.pyannote[275].end |
1364.12159375 |
transcript.pyannote[276].speaker |
SPEAKER_01 |
transcript.pyannote[276].start |
1359.27846875 |
transcript.pyannote[276].end |
1359.91971875 |
transcript.pyannote[277].speaker |
SPEAKER_00 |
transcript.pyannote[277].start |
1364.64471875 |
transcript.pyannote[277].end |
1373.20034375 |
transcript.pyannote[278].speaker |
SPEAKER_00 |
transcript.pyannote[278].start |
1373.89221875 |
transcript.pyannote[278].end |
1384.69221875 |
transcript.pyannote[279].speaker |
SPEAKER_00 |
transcript.pyannote[279].start |
1385.06346875 |
transcript.pyannote[279].end |
1387.61159375 |
transcript.pyannote[280].speaker |
SPEAKER_00 |
transcript.pyannote[280].start |
1389.01221875 |
transcript.pyannote[280].end |
1395.03659375 |
transcript.pyannote[281].speaker |
SPEAKER_00 |
transcript.pyannote[281].start |
1395.55971875 |
transcript.pyannote[281].end |
1396.09971875 |
transcript.pyannote[282].speaker |
SPEAKER_00 |
transcript.pyannote[282].start |
1396.63971875 |
transcript.pyannote[282].end |
1407.81096875 |
transcript.pyannote[283].speaker |
SPEAKER_00 |
transcript.pyannote[283].start |
1408.04721875 |
transcript.pyannote[283].end |
1417.41284375 |
transcript.pyannote[284].speaker |
SPEAKER_00 |
transcript.pyannote[284].start |
1419.37034375 |
transcript.pyannote[284].end |
1423.38659375 |
transcript.pyannote[285].speaker |
SPEAKER_00 |
transcript.pyannote[285].start |
1423.58909375 |
transcript.pyannote[285].end |
1433.51159375 |
transcript.pyannote[286].speaker |
SPEAKER_00 |
transcript.pyannote[286].start |
1433.69721875 |
transcript.pyannote[286].end |
1433.74784375 |
transcript.pyannote[287].speaker |
SPEAKER_02 |
transcript.pyannote[287].start |
1433.74784375 |
transcript.pyannote[287].end |
1433.78159375 |
transcript.pyannote[288].speaker |
SPEAKER_00 |
transcript.pyannote[288].start |
1433.78159375 |
transcript.pyannote[288].end |
1436.49846875 |
transcript.pyannote[289].speaker |
SPEAKER_02 |
transcript.pyannote[289].start |
1433.81534375 |
transcript.pyannote[289].end |
1434.45659375 |
transcript.pyannote[290].speaker |
SPEAKER_02 |
transcript.pyannote[290].start |
1435.82346875 |
transcript.pyannote[290].end |
1441.98284375 |
transcript.pyannote[291].speaker |
SPEAKER_00 |
transcript.pyannote[291].start |
1440.90284375 |
transcript.pyannote[291].end |
1446.91034375 |
transcript.pyannote[292].speaker |
SPEAKER_02 |
transcript.pyannote[292].start |
1443.65346875 |
transcript.pyannote[292].end |
1445.52659375 |
transcript.pyannote[293].speaker |
SPEAKER_02 |
transcript.pyannote[293].start |
1445.77971875 |
transcript.pyannote[293].end |
1448.42909375 |
transcript.pyannote[294].speaker |
SPEAKER_00 |
transcript.pyannote[294].start |
1448.02409375 |
transcript.pyannote[294].end |
1450.18409375 |
transcript.pyannote[295].speaker |
SPEAKER_02 |
transcript.pyannote[295].start |
1448.71596875 |
transcript.pyannote[295].end |
1462.97534375 |
transcript.pyannote[296].speaker |
SPEAKER_00 |
transcript.pyannote[296].start |
1453.15409375 |
transcript.pyannote[296].end |
1456.32659375 |
transcript.pyannote[297].speaker |
SPEAKER_00 |
transcript.pyannote[297].start |
1457.62596875 |
transcript.pyannote[297].end |
1463.09346875 |
transcript.pyannote[298].speaker |
SPEAKER_00 |
transcript.pyannote[298].start |
1463.51534375 |
transcript.pyannote[298].end |
1479.17534375 |
transcript.pyannote[299].speaker |
SPEAKER_00 |
transcript.pyannote[299].start |
1479.22596875 |
transcript.pyannote[299].end |
1482.31409375 |
transcript.pyannote[300].speaker |
SPEAKER_00 |
transcript.pyannote[300].start |
1482.60096875 |
transcript.pyannote[300].end |
1487.96721875 |
transcript.pyannote[301].speaker |
SPEAKER_00 |
transcript.pyannote[301].start |
1488.49034375 |
transcript.pyannote[301].end |
1488.89534375 |
transcript.pyannote[302].speaker |
SPEAKER_02 |
transcript.pyannote[302].start |
1489.08096875 |
transcript.pyannote[302].end |
1494.36284375 |
transcript.pyannote[303].speaker |
SPEAKER_00 |
transcript.pyannote[303].start |
1490.27909375 |
transcript.pyannote[303].end |
1493.70471875 |
transcript.pyannote[304].speaker |
SPEAKER_00 |
transcript.pyannote[304].start |
1494.32909375 |
transcript.pyannote[304].end |
1497.26534375 |
transcript.pyannote[305].speaker |
SPEAKER_02 |
transcript.pyannote[305].start |
1497.68721875 |
transcript.pyannote[305].end |
1498.86846875 |
transcript.pyannote[306].speaker |
SPEAKER_00 |
transcript.pyannote[306].start |
1497.78846875 |
transcript.pyannote[306].end |
1499.37471875 |
transcript.pyannote[307].speaker |
SPEAKER_02 |
transcript.pyannote[307].start |
1499.37471875 |
transcript.pyannote[307].end |
1499.40846875 |
transcript.pyannote[308].speaker |
SPEAKER_02 |
transcript.pyannote[308].start |
1499.66159375 |
transcript.pyannote[308].end |
1500.77534375 |
transcript.pyannote[309].speaker |
SPEAKER_00 |
transcript.pyannote[309].start |
1499.71221875 |
transcript.pyannote[309].end |
1501.28159375 |
transcript.pyannote[310].speaker |
SPEAKER_02 |
transcript.pyannote[310].start |
1501.28159375 |
transcript.pyannote[310].end |
1504.70721875 |
transcript.pyannote[311].speaker |
SPEAKER_00 |
transcript.pyannote[311].start |
1502.93534375 |
transcript.pyannote[311].end |
1505.71971875 |
transcript.pyannote[312].speaker |
SPEAKER_02 |
transcript.pyannote[312].start |
1504.82534375 |
transcript.pyannote[312].end |
1508.30159375 |
transcript.pyannote[313].speaker |
SPEAKER_00 |
transcript.pyannote[313].start |
1507.06971875 |
transcript.pyannote[313].end |
1508.97659375 |
transcript.pyannote[314].speaker |
SPEAKER_02 |
transcript.pyannote[314].start |
1509.21284375 |
transcript.pyannote[314].end |
1509.58409375 |
transcript.pyannote[315].speaker |
SPEAKER_00 |
transcript.pyannote[315].start |
1509.97221875 |
transcript.pyannote[315].end |
1511.25471875 |
transcript.pyannote[316].speaker |
SPEAKER_00 |
transcript.pyannote[316].start |
1511.54159375 |
transcript.pyannote[316].end |
1515.77721875 |
transcript.pyannote[317].speaker |
SPEAKER_02 |
transcript.pyannote[317].start |
1515.52409375 |
transcript.pyannote[317].end |
1517.71784375 |
transcript.pyannote[318].speaker |
SPEAKER_00 |
transcript.pyannote[318].start |
1517.29596875 |
transcript.pyannote[318].end |
1519.28721875 |
transcript.pyannote[319].speaker |
SPEAKER_00 |
transcript.pyannote[319].start |
1520.92409375 |
transcript.pyannote[319].end |
1523.50596875 |
transcript.pyannote[320].speaker |
SPEAKER_02 |
transcript.pyannote[320].start |
1524.88971875 |
transcript.pyannote[320].end |
1528.87221875 |
transcript.pyannote[321].speaker |
SPEAKER_00 |
transcript.pyannote[321].start |
1525.64909375 |
transcript.pyannote[321].end |
1526.57721875 |
transcript.pyannote[322].speaker |
SPEAKER_00 |
transcript.pyannote[322].start |
1527.99471875 |
transcript.pyannote[322].end |
1530.88034375 |
transcript.pyannote[323].speaker |
SPEAKER_02 |
transcript.pyannote[323].start |
1531.52159375 |
transcript.pyannote[323].end |
1532.19659375 |
transcript.pyannote[324].speaker |
SPEAKER_00 |
transcript.pyannote[324].start |
1531.65659375 |
transcript.pyannote[324].end |
1532.88846875 |
transcript.pyannote[325].speaker |
SPEAKER_00 |
transcript.pyannote[325].start |
1533.29346875 |
transcript.pyannote[325].end |
1535.03159375 |
transcript.pyannote[326].speaker |
SPEAKER_00 |
transcript.pyannote[326].start |
1535.23409375 |
transcript.pyannote[326].end |
1556.24346875 |
transcript.pyannote[327].speaker |
SPEAKER_00 |
transcript.pyannote[327].start |
1556.49659375 |
transcript.pyannote[327].end |
1557.40784375 |
transcript.pyannote[328].speaker |
SPEAKER_00 |
transcript.pyannote[328].start |
1557.93096875 |
transcript.pyannote[328].end |
1561.98096875 |
transcript.pyannote[329].speaker |
SPEAKER_00 |
transcript.pyannote[329].start |
1562.35221875 |
transcript.pyannote[329].end |
1566.45284375 |
transcript.pyannote[330].speaker |
SPEAKER_00 |
transcript.pyannote[330].start |
1566.60471875 |
transcript.pyannote[330].end |
1571.59971875 |
transcript.pyannote[331].speaker |
SPEAKER_00 |
transcript.pyannote[331].start |
1572.37596875 |
transcript.pyannote[331].end |
1579.21034375 |
transcript.pyannote[332].speaker |
SPEAKER_00 |
transcript.pyannote[332].start |
1579.53096875 |
transcript.pyannote[332].end |
1587.09096875 |
transcript.pyannote[333].speaker |
SPEAKER_02 |
transcript.pyannote[333].start |
1586.68596875 |
transcript.pyannote[333].end |
1591.93409375 |
transcript.pyannote[334].speaker |
SPEAKER_00 |
transcript.pyannote[334].start |
1590.88784375 |
transcript.pyannote[334].end |
1595.47784375 |
transcript.pyannote[335].speaker |
SPEAKER_02 |
transcript.pyannote[335].start |
1592.40659375 |
transcript.pyannote[335].end |
1595.35971875 |
transcript.pyannote[336].speaker |
SPEAKER_02 |
transcript.pyannote[336].start |
1595.47784375 |
transcript.pyannote[336].end |
1598.85284375 |
transcript.pyannote[337].speaker |
SPEAKER_00 |
transcript.pyannote[337].start |
1598.85284375 |
transcript.pyannote[337].end |
1604.97846875 |
transcript.pyannote[338].speaker |
SPEAKER_02 |
transcript.pyannote[338].start |
1605.46784375 |
transcript.pyannote[338].end |
1606.83471875 |
transcript.pyannote[339].speaker |
SPEAKER_00 |
transcript.pyannote[339].start |
1607.47596875 |
transcript.pyannote[339].end |
1608.08346875 |
transcript.pyannote[340].speaker |
SPEAKER_00 |
transcript.pyannote[340].start |
1609.11284375 |
transcript.pyannote[340].end |
1611.37409375 |
transcript.pyannote[341].speaker |
SPEAKER_02 |
transcript.pyannote[341].start |
1611.20534375 |
transcript.pyannote[341].end |
1615.06971875 |
transcript.pyannote[342].speaker |
SPEAKER_00 |
transcript.pyannote[342].start |
1611.52596875 |
transcript.pyannote[342].end |
1617.21284375 |
transcript.pyannote[343].speaker |
SPEAKER_02 |
transcript.pyannote[343].start |
1615.50846875 |
transcript.pyannote[343].end |
1620.63846875 |
transcript.pyannote[344].speaker |
SPEAKER_00 |
transcript.pyannote[344].start |
1619.74409375 |
transcript.pyannote[344].end |
1632.14721875 |
transcript.pyannote[345].speaker |
SPEAKER_02 |
transcript.pyannote[345].start |
1621.34721875 |
transcript.pyannote[345].end |
1623.92909375 |
transcript.pyannote[346].speaker |
SPEAKER_00 |
transcript.pyannote[346].start |
1632.33284375 |
transcript.pyannote[346].end |
1641.71534375 |
transcript.pyannote[347].speaker |
SPEAKER_00 |
transcript.pyannote[347].start |
1642.08659375 |
transcript.pyannote[347].end |
1642.62659375 |
transcript.pyannote[348].speaker |
SPEAKER_00 |
transcript.pyannote[348].start |
1643.25096875 |
transcript.pyannote[348].end |
1643.92596875 |
transcript.pyannote[349].speaker |
SPEAKER_00 |
transcript.pyannote[349].start |
1644.24659375 |
transcript.pyannote[349].end |
1656.76784375 |
transcript.pyannote[350].speaker |
SPEAKER_00 |
transcript.pyannote[350].start |
1657.08846875 |
transcript.pyannote[350].end |
1663.21409375 |
transcript.pyannote[351].speaker |
SPEAKER_00 |
transcript.pyannote[351].start |
1663.93971875 |
transcript.pyannote[351].end |
1667.14596875 |
transcript.pyannote[352].speaker |
SPEAKER_02 |
transcript.pyannote[352].start |
1667.19659375 |
transcript.pyannote[352].end |
1674.43596875 |
transcript.pyannote[353].speaker |
SPEAKER_00 |
transcript.pyannote[353].start |
1670.63909375 |
transcript.pyannote[353].end |
1679.11034375 |
transcript.pyannote[354].speaker |
SPEAKER_02 |
transcript.pyannote[354].start |
1674.80721875 |
transcript.pyannote[354].end |
1676.89971875 |
transcript.pyannote[355].speaker |
SPEAKER_02 |
transcript.pyannote[355].start |
1677.00096875 |
transcript.pyannote[355].end |
1680.46034375 |
transcript.pyannote[356].speaker |
SPEAKER_00 |
transcript.pyannote[356].start |
1679.81909375 |
transcript.pyannote[356].end |
1682.13096875 |
transcript.pyannote[357].speaker |
SPEAKER_02 |
transcript.pyannote[357].start |
1681.23659375 |
transcript.pyannote[357].end |
1683.59909375 |
transcript.pyannote[358].speaker |
SPEAKER_00 |
transcript.pyannote[358].start |
1683.59909375 |
transcript.pyannote[358].end |
1686.50159375 |
transcript.pyannote[359].speaker |
SPEAKER_02 |
transcript.pyannote[359].start |
1685.72534375 |
transcript.pyannote[359].end |
1689.53909375 |
transcript.pyannote[360].speaker |
SPEAKER_00 |
transcript.pyannote[360].start |
1689.53909375 |
transcript.pyannote[360].end |
1700.64284375 |
transcript.pyannote[361].speaker |
SPEAKER_02 |
transcript.pyannote[361].start |
1690.61909375 |
transcript.pyannote[361].end |
1693.99409375 |
transcript.pyannote[362].speaker |
SPEAKER_02 |
transcript.pyannote[362].start |
1695.47909375 |
transcript.pyannote[362].end |
1696.87971875 |
transcript.pyannote[363].speaker |
SPEAKER_00 |
transcript.pyannote[363].start |
1701.19971875 |
transcript.pyannote[363].end |
1705.31721875 |
transcript.pyannote[364].speaker |
SPEAKER_00 |
transcript.pyannote[364].start |
1705.75596875 |
transcript.pyannote[364].end |
1708.82721875 |
transcript.pyannote[365].speaker |
SPEAKER_00 |
transcript.pyannote[365].start |
1709.95784375 |
transcript.pyannote[365].end |
1712.37096875 |
transcript.pyannote[366].speaker |
SPEAKER_02 |
transcript.pyannote[366].start |
1713.63659375 |
transcript.pyannote[366].end |
1721.14596875 |
transcript.pyannote[367].speaker |
SPEAKER_00 |
transcript.pyannote[367].start |
1721.43284375 |
transcript.pyannote[367].end |
1726.49534375 |
transcript.pyannote[368].speaker |
SPEAKER_02 |
transcript.pyannote[368].start |
1725.66846875 |
transcript.pyannote[368].end |
1728.79034375 |
transcript.pyannote[369].speaker |
SPEAKER_00 |
transcript.pyannote[369].start |
1728.79034375 |
transcript.pyannote[369].end |
1729.39784375 |
transcript.pyannote[370].speaker |
SPEAKER_02 |
transcript.pyannote[370].start |
1729.39784375 |
transcript.pyannote[370].end |
1729.83659375 |
transcript.pyannote[371].speaker |
SPEAKER_00 |
transcript.pyannote[371].start |
1730.22471875 |
transcript.pyannote[371].end |
1732.23284375 |
transcript.pyannote[372].speaker |
SPEAKER_02 |
transcript.pyannote[372].start |
1733.75159375 |
transcript.pyannote[372].end |
1733.76846875 |
transcript.pyannote[373].speaker |
SPEAKER_00 |
transcript.pyannote[373].start |
1733.76846875 |
transcript.pyannote[373].end |
1733.85284375 |
transcript.pyannote[374].speaker |
SPEAKER_02 |
transcript.pyannote[374].start |
1733.85284375 |
transcript.pyannote[374].end |
1733.92034375 |
transcript.pyannote[375].speaker |
SPEAKER_00 |
transcript.pyannote[375].start |
1733.92034375 |
transcript.pyannote[375].end |
1733.97096875 |
transcript.pyannote[376].speaker |
SPEAKER_02 |
transcript.pyannote[376].start |
1733.97096875 |
transcript.pyannote[376].end |
1734.10596875 |
transcript.whisperx[0].start |
0.458 |
transcript.whisperx[0].end |
1.599 |
transcript.whisperx[0].text |
好是不是請我們邱部長部長今天在野黨委員質詢了這個 |
transcript.whisperx[1].start |
24.785 |
transcript.whisperx[1].end |
30.131 |
transcript.whisperx[1].text |
所謂的資訊的醫療資訊大平台的議題所以你們派了資訊處處長來了然後公研院也派了法務長來了今天你最核心的業務你們主管的這個國光藥廠出了這麼大的新聞 |
transcript.whisperx[2].start |
43.186 |
transcript.whisperx[2].end |
54.495 |
transcript.whisperx[2].text |
你早上一大早你說就知道了那你通通都沒有派任何業務單位的人來今天來練習的食藥署的本來是一個檢認劑證你現在是當初立法院議員問這個問題立法院的立委對這個議題都不高興嗎 |
transcript.whisperx[3].start |
65.953 |
transcript.whisperx[3].end |
69.459 |
transcript.whisperx[3].text |
在野黨要問什麼 你比早知道了還懂得叫資訊處處長來今天新聞這麼大篇 食藥署沒人來 |
transcript.whisperx[4].start |
75.593 |
transcript.whisperx[4].end |
85.757 |
transcript.whisperx[4].text |
你現在是說在到立法院之前同時有四個委員會需要食藥署同時四個委員會需要食藥署 請問署長來哪一個委員會哪一個 署長在國安會所以你現在給我回答的是什麼問題我在問你食藥署署長有沒有來 副署長有沒有來你說立法院有四個委員會需要他們署長 |
transcript.whisperx[5].start |
100.803 |
transcript.whisperx[5].end |
104.464 |
transcript.whisperx[5].text |
我說署長在哪裡結果你說他不在立法院你說他不在立法院署長不在立法院我實在是不想對你動怒但是我想你今天在到立法院來之前你也受訪了 |
transcript.whisperx[6].start |
118.772 |
transcript.whisperx[6].end |
144.372 |
transcript.whisperx[6].text |
你還講說這個國光藥廠這些白老鼠這些實驗老鼠整個事件違反GMP要罰三到二萬就沒三到兩百萬問題是國光生技包庇這麼嚴重的污染事件有沒有違反GMP都是國光生技說了算嗎好他們今天發了新聞稿 |
transcript.whisperx[7].start |
145.793 |
transcript.whisperx[7].end |
150.415 |
transcript.whisperx[7].text |
國光 雙濟發的新聞稿 兩批 很大批在講動物福利然後 跟你衛福部 跟國人最關注的整個彈職場 彈職場在生產什麼疫苗 你給我講彈職場出事的這個工廠 在生產什麼疫苗 你給我回答 |
transcript.whisperx[8].start |
171.44 |
transcript.whisperx[8].end |
178.312 |
transcript.whisperx[8].text |
一般流感疫苗 破傷風疫苗那你在生產流感疫苗的 |
transcript.whisperx[9].start |
180.567 |
transcript.whisperx[9].end |
200.414 |
transcript.whisperx[9].text |
結果他們對於整個事情最後一段才提到他說他們內部調查確認上述實驗動物事件在作業程序上存在可進一步完善之處那相關部門依憑管系統啟動現場實地查核要求研發相關人員接受重新訓練 |
transcript.whisperx[10].start |
201.994 |
transcript.whisperx[10].end |
217.103 |
transcript.whisperx[10].text |
所以還有改善之處 人員要重新訓練沒有遵守實驗動物相關的SOP處理流程 他們會陷阱完成改善那本公司有嚴謹的設施區隔和管控措施並嚴格遵守相關規範 如果這樣 今天這個必責那些商品不是都AI合成的 |
transcript.whisperx[11].start |
224.858 |
transcript.whisperx[11].end |
233.163 |
transcript.whisperx[11].text |
他們說他們公司嚴格遵守相關規範研發實驗室和GMP管控的疫苗生產製造和品管檢驗場所在物理空間環境控制系統人員和物料動線以及所適用的管理規範上均各自獨立且完全區隔所以他認為有改善之處但是他們沒有問題他們沒有問題請問 |
transcript.whisperx[12].start |
253.456 |
transcript.whisperx[12].end |
258.662 |
transcript.whisperx[12].text |
這個接避者的所有的照片 都合成的你們現在才要說 今天你知道 看了報紙報導才知道 |
transcript.whisperx[13].start |
266.865 |
transcript.whisperx[13].end |
288.867 |
transcript.whisperx[13].text |
問題這麼嚴重關係到流感疫苗有沒有受到污染你們現在是整個部裡面神經斷掉你說現在要去查現在幾個月以後快一年啦你現在才要去查你能查到什麼你在這裡說要去調查去年事發到現在八個多月現在去查場能查什麼 |
transcript.whisperx[14].start |
289.668 |
transcript.whisperx[14].end |
314.067 |
transcript.whisperx[14].text |
老鼠的毛有嗎尿液有嗎你的實驗器材你的微量吸管菌質藥劑的試管震盪混合器你的檢測核酸DND濃度的精密儀器有沒有汙染你的製冰機恆溫水槽實驗袍有沒有暴露在汙染的實驗當中它的汙染有沒有造成實驗數據的 |
transcript.whisperx[15].start |
316.229 |
transcript.whisperx[15].end |
339.14 |
transcript.whisperx[15].text |
失真通通都沒辦法查了啦 重點是要查什麼不是你說你現在馬上去調查 最快速度跟大家報告可以解決現在是要完整的收集吹哨者的資料和說法而不是讓國光生氣 包庇 隻手遮天 欺上瞞下 |
transcript.whisperx[16].start |
341.499 |
transcript.whisperx[16].end |
351.446 |
transcript.whisperx[16].text |
不對 我這樣說 你也忙著聽你部署給你報告 你也不知道剛才休息十分鐘 你也不想去了解 現在就要臨時報佛教今天看到了根據媒體鋪路 我們現在看到的是你們需要署你們衛福部食品安全也靠吹哨者 藥品安全也要靠吹哨者 |
transcript.whisperx[17].start |
367.995 |
transcript.whisperx[17].end |
374.137 |
transcript.whisperx[17].text |
藥廠螺絲酸了 重點是這個藥廠這件事一夜之秋啊 見為知著啊整個藥廠的螺絲鬆了它不是單一事件 而且人家照片人員指證利率 |
transcript.whisperx[18].start |
391.274 |
transcript.whisperx[18].end |
401.105 |
transcript.whisperx[18].text |
你們在去年這個事情之後不要忘了國光發生了基隆市衛生局的通報事件 |
transcript.whisperx[19].start |
402.374 |
transcript.whisperx[19].end |
421.787 |
transcript.whisperx[19].text |
國光的流感疫苗這個外觀呈現黃色同批號回收18.3萬劑我問你你們這個事情已經過了這麼久了去年的10月到現在半年了請問這一批疫苗是哪一個廠製造的國光這一批出了問題的疫苗是哪一個廠製造的談是不是談紙廠 |
transcript.whisperx[20].start |
432.605 |
transcript.whisperx[20].end |
434.366 |
transcript.whisperx[20].text |
台中攤子是不是也是攤子廠是不是是啊 所以我說啊我說啊這個有氣螺絲掉滿地啊你們的螺絲也掉滿地 |
transcript.whisperx[21].start |
449.403 |
transcript.whisperx[21].end |
468.088 |
transcript.whisperx[21].text |
你們在出現這個疫苗變色的這個事件之後你們機關署初步判定非微生物污染認為是單一案例然後你們食藥署也是根據國光生技提交的調查報告 |
transcript.whisperx[22].start |
470.493 |
transcript.whisperx[22].end |
484.618 |
transcript.whisperx[22].text |
給專家審查然後認定是單一事件如今隨著今天的新聞披露內部的吹哨者才爆發出同樣這一個台中彈指廠國光生技實驗室爆發這麼嚴重的污染整個藥廠從研發到生產可能 |
transcript.whisperx[23].start |
497.586 |
transcript.whisperx[23].end |
521.174 |
transcript.whisperx[23].text |
整個螺絲都鬆動啊所以不是不是當初疫苗變色流感疫苗出問題單一事件當時你也說單一現在又說單一一個單一事件再加一個單一事件只要屬衛福部都是廠商說了算嗎看起來像是像是啊 |
transcript.whisperx[24].start |
525.404 |
transcript.whisperx[24].end |
528.466 |
transcript.whisperx[24].text |
補充你也說看看,現在是怎樣藥廠螺絲鬆了,掉滿地了主管機關衛福部都聽藥廠的報告然後就以單一事件結案了事然後一次又一次我們絕對不會只有聽藥廠的報告,它只是一個報告而已最重要我們會親自去查 |
transcript.whisperx[25].start |
553.468 |
transcript.whisperx[25].end |
557.171 |
transcript.whisperx[25].text |
會查核 你問我現在問你啦 今天你報到的事件 你要怎麼查核 經過各位要怎麼查核我們也去查核啦 你要去查什麼啦 老鼠的毛也掉不到找不到 有人也查不到 |
transcript.whisperx[26].start |
569.34 |
transcript.whisperx[26].end |
586.264 |
transcript.whisperx[26].text |
這個部分他照片呈現的部分是研發部門啦那當然研發部門也必須要保護他的研發部門都這麼隨便了你怎麼知道生產部門不隨便那生產部門的部分如果再有一個吹哨者吹出生產部門也是這樣俐俐俐俐俐俐俐俐俐俐俐俐俐俐俐俐俐俐俐俐俐俐俐那我要你政府幹什麼 |
transcript.whisperx[27].start |
599.909 |
transcript.whisperx[27].end |
619.442 |
transcript.whisperx[27].text |
我們當然會全力按照一個最好的制度來所以我問你啊這次你要怎麼調查不要靠大家一起來努力靠大家是靠誰啊大家要靠你政府啦你政府要靠我們大家政府當然是擔任最大的一個責任我現在就問你這個事件你要怎麼查你說馬上去查現在去調查還能調查什麼我問你啊 |
transcript.whisperx[28].start |
631.519 |
transcript.whisperx[28].end |
641.865 |
transcript.whisperx[28].text |
我們當然是把所有整個實驗室的作業程序完全環境的一個紀錄那個紀錄 現在你就要調查啊 大家也做好給你看沒有啦 今天就隨便你查嘛啊就稍微曝光啊 人家就知道要曝光啊而且要訪談人家 人都知道啦來釐清我們報紙 媒體的報導的適合違反利用期 要司法的57條你光是認為立委很好呼嚨 連派一個主責機關的任何一個 |
transcript.whisperx[29].start |
661.007 |
transcript.whisperx[29].end |
669.592 |
transcript.whisperx[29].text |
高層來都沒有就知道你不在乎這個事情我們很在乎你在乎你告訴我食藥署派了誰來剛開始那個誰因為署長沒有來副署長沒有來署長在開國安的會議副署長在經濟委員會另外一個因為你今天派的是食品組的檢認記證來啦 |
transcript.whisperx[30].start |
689.668 |
transcript.whisperx[30].end |
697.712 |
transcript.whisperx[30].text |
我們另外一個副市長他本來回署裡面他現在已經在過來的路上你一個資訊案資訊的議題你就這樣資訊處處長趕快來年老公園院的就趕快來現在你業務主管的你核心的你最最最核心的業務主管的你連派個像樣的人都沒有業務單位通通都沒有 |
transcript.whisperx[31].start |
717.702 |
transcript.whisperx[31].end |
727.731 |
transcript.whisperx[31].text |
所以你也螺絲鬆了 算了 螺絲都不是鬆了 是掉滿地了國關藥廠的螺絲掉滿地 理事藥署衛福部的螺絲也掉滿地對不對 我現在再問你一次 |
transcript.whisperx[32].start |
739.11 |
transcript.whisperx[32].end |
744.254 |
transcript.whisperx[32].text |
我們在講說因為美國對等關稅的議題你上個禮拜來報告然後FDA食藥署裡面認為美國的輸入的藥品的許可證214張裡面在專利期限 |
transcript.whisperx[33].start |
759.028 |
transcript.whisperx[33].end |
780.534 |
transcript.whisperx[33].text |
替代性低的非買美國藥不可的有60個健保署說的數字當然不一樣健保署說美國進口的藥物一共有176個其中有72個在必要藥品清單包括抗腫瘤免疫相關藥物24項還有感染相關用藥及血液相關藥物各18項 |
transcript.whisperx[34].start |
783.335 |
transcript.whisperx[34].end |
787.998 |
transcript.whisperx[34].text |
這個東西我先跟你要資料請你們在三天內提供以上清單給我們辦公室我們來看看兩邊的數據兜不起來嘛那你把清單給我們然後再來就是說我上次只談到藥品醫材那現在問你說對於公費疫苗會不會受到美國關稅政策影響公費疫苗我國公費疫苗 |
transcript.whisperx[35].start |
810.791 |
transcript.whisperx[35].end |
835.2 |
transcript.whisperx[35].text |
製造廠在美國 距離上個禮拜來這裡你們的報告也已經過了一個禮拜了 你有沒有思考過這個議題我們最近一次疾管署採購的公費疫苗當中水痘疫苗 麻疹 篩腺炎 德國麻疹混合疫苗23架的肺炎鏈球菌多醣體疫苗的製造廠 |
transcript.whisperx[36].start |
835.7 |
transcript.whisperx[36].end |
857.436 |
transcript.whisperx[36].text |
都是美國廠採購合約都為美國莫沙東除此以外FDA合法的水痘和德國麻疹疫苗的藥證當中疫苗製造廠在美國的比例相當相當的高如果日後的關稅政策影響採購其他國家不是只有台灣要去搶喔 |
transcript.whisperx[37].start |
859.045 |
transcript.whisperx[37].end |
863.709 |
transcript.whisperx[37].text |
其他國家也一定會去講那個替代的藥廠選效但台灣市場小本來就沒有市場的這個這個市場的談判的能力在各國競爭之下你認不認為公費疫苗會不會有缺藥的問題 |
transcript.whisperx[38].start |
880.743 |
transcript.whisperx[38].end |
885.488 |
transcript.whisperx[38].text |
這個不是預算夠不夠有沒有被在野黨凍結喔這個是你有錢也沒有辦法在時間內完成採購買不到的問題台灣的公衛會受到相當相當的衝擊喔蛤 有沒有 |
transcript.whisperx[39].start |
898.427 |
transcript.whisperx[39].end |
907.332 |
transcript.whisperx[39].text |
包委員我想這個部份食藥機關使會做已經很早就會表示在議員這種狀況另外我們也也致力了疫苗產業委員會你不要在這裡關槍關掉再官宣一遍啦你告訴我你可不可以保證絕對不會受到衝擊 |
transcript.whisperx[40].start |
920.817 |
transcript.whisperx[40].end |
927.445 |
transcript.whisperx[40].text |
我現在問你一句話啦 麻疹疫苗 台灣自己有本土手在做這個疫苗嗎 有喔目前台灣沒有麻疹的疫苗是不是全部都有採購 越南有5.4萬例 雖然台灣都是還算是還可以 |
transcript.whisperx[41].start |
939.6 |
transcript.whisperx[41].end |
956.508 |
transcript.whisperx[41].text |
但是不要忘了 台灣到越南旅遊現在是旺季 人數大幅攀升台灣的麻疹疫苗有續創6年同期新高如果爆發全球大流行沒有台灣本土自製的麻疹疫苗 蛤 怎麼辦 |
transcript.whisperx[42].start |
959.709 |
transcript.whisperx[42].end |
968.678 |
transcript.whisperx[42].text |
跟委員報告因為我們目前國內的一個疫苗的麻疹疫苗的接種率大概都是至少95%以上所以整個全國的一個對呀小孩子都按照時間一定要啊所以我現在告訴你 |
transcript.whisperx[43].start |
975.504 |
transcript.whisperx[43].end |
994.437 |
transcript.whisperx[43].text |
採購的可能是OK下一次要漲價那你的預算怎麼辦你怎麼因應那有錢買不到的時候你怎麼因應各位媒體我們目前疫苗的採購政策大概主要還是跟多國來採購那我們都會採多年的一個合約來你告訴我現在就現在的這個多年合約多國採購現在美國製造的 |
transcript.whisperx[44].start |
999.58 |
transcript.whisperx[44].end |
1026.71 |
transcript.whisperx[44].text |
比例算多少那其他非美國製造當大家大幅去搶的時候他採購的時候遞延了送貨到貨的日子怎麼辦確實在短期之內應該沒有問題因為目前的採購合約那我再問你流感疫苗台灣的流感疫苗都叫做國光哩哩哩哩哩哩哩走台灣的流感疫苗國產的市占率多高其他都要外國採購 |
transcript.whisperx[45].start |
1028.774 |
transcript.whisperx[45].end |
1046.223 |
transcript.whisperx[45].text |
國光的疫苗本土自製的流感疫苗佔多少比例我們去年大概採購了將近700萬劑的疫苗那國光大概有將近500萬劑所以在流感疫苗這個部分我們自製的比例算是比較高的 |
transcript.whisperx[46].start |
1046.983 |
transcript.whisperx[46].end |
1063.316 |
transcript.whisperx[46].text |
有沒有原料上的這個風險 原料上 比如說自製的比例五百多萬高端是買回來分裝的台灣只有國光跟高端 而你沒有說的是高端是給外國買好做好回來分裝是啊你這個給外國買的人 大家也要買這沒有 這沒有 |
transcript.whisperx[47].start |
1070.402 |
transcript.whisperx[47].end |
1089.169 |
transcript.whisperx[47].text |
都沒有任何風險嗎有關目前流感疫苗的國產的一個部分就是像剛剛委員說的就是目前有國光跟高端那高端的疫苗目前其實只是在台灣分裝他們的原液是從韓國進來的對啊 我在問妳說原液 如果大家搶著要原液 |
transcript.whisperx[48].start |
1089.889 |
transcript.whisperx[48].end |
1090.269 |
transcript.whisperx[48].text |
國光跟高端各占多少萬劑? |
transcript.whisperx[49].start |
1104.906 |
transcript.whisperx[49].end |
1131.678 |
transcript.whisperx[49].text |
以去年的一個採購的一個結果去年國光是採購將近500萬劑那因為高端的一個在評選的一個結果呢是屬於序位比較低的所以他們的劑量相對來講要少很多好那接下來就是希望你們對國光藥廠的把關要好一點那我今天為什麼要講這個因為下一波傳染病大流行來的時候呢 |
transcript.whisperx[50].start |
1132.628 |
transcript.whisperx[50].end |
1161.762 |
transcript.whisperx[50].text |
Who can help部長你現在講了大流行協定WHO的會員國大流行協定達成共識了而且在台灣時間這個月的16號就通過了爭議慶條文達成共識了5月召開的WHA就要正式通過而且簽署了但是呢我們都知道我們最友好的美國要退出WHO了 |
transcript.whisperx[51].start |
1164.002 |
transcript.whisperx[51].end |
1181.948 |
transcript.whisperx[51].text |
那這個東西美國退出WHO對我們在非WHOWHA會議上能表達的有限的狀況裡面大流行協定主要三個部分在取得共識是防疫議題 |
transcript.whisperx[52].start |
1183.288 |
transcript.whisperx[52].end |
1204.773 |
transcript.whisperx[52].text |
病毒株資訊分享 技術移轉我們沒有辦法參與談判 我們沒有辦法成為締約國我們在這種狀況裡面 照上次新冠疫情我們沒有辦法相互馬上得到資源的疫苗要不然病毒的資訊 也是有一點困難和障礙在這種狀況裡面 你們要怎麼因應啊 保定啊 |
transcript.whisperx[53].start |
1211.75 |
transcript.whisperx[53].end |
1227.656 |
transcript.whisperx[53].text |
失去了最重要的最有力的盟國美國的幫忙那我們要怎麼因應我想我們跟美國這些理念相近國家在醫藥上的合作是絕對持續不斷我現在問你說美國退出WHO之後他退出WHO以後對我們參加WHA的大會 |
transcript.whisperx[54].start |
1237.501 |
transcript.whisperx[54].end |
1244.626 |
transcript.whisperx[54].text |
對我們未來面對如果新興的大流行這個大流行病的這個衝擊我們會受到什麼影響 |
transcript.whisperx[55].start |
1249.178 |
transcript.whisperx[55].end |
1269.629 |
transcript.whisperx[55].text |
我想請委員放心 我們有COVID的經驗來看我們的政府 我們的人民 我們的防疫的成效是世界有名的而且我們來支援國際 為什麼那麼多國家國家問你不是這個 那當初都知道上次的經驗是因為我們有半導體產業拿去換啦 |
transcript.whisperx[56].start |
1273.39 |
transcript.whisperx[56].end |
1290.917 |
transcript.whisperx[56].text |
現在我們被迫要到美國設廠了我們連籌碼的重要性都遞減了我想委員要對我們台灣的防疫有信心我現在問你因應的方法是什麼不是只有精神上的信心你要提出具體的政策比如說你現在都講不出來你們都忘掉了比如說你們的CDMO |
transcript.whisperx[57].start |
1300.861 |
transcript.whisperx[57].end |
1312.311 |
transcript.whisperx[57].text |
你知道你們的CDMO政策信心是要建立在具體的政府的作為政府面對下一波挑戰你最未雨綢繆 |
transcript.whisperx[58].start |
1314.659 |
transcript.whisperx[58].end |
1332.658 |
transcript.whisperx[58].text |
我們看得到你未雨綢繆當新冠突然來的時候全世界沒有發生過所以我們措手不及好努力去反應這個是可以的可是當有這樣子慘痛的經驗之後我們現在不能再像新冠那樣子 |
transcript.whisperx[59].start |
1333.971 |
transcript.whisperx[59].end |
1358.134 |
transcript.whisperx[59].text |
而且在新冠的時候同樣的在這個地方衛福部也做了一些報告你們提出來的報告當初是用半導體產業的優勢去換取這個疫苗那當初過了以後我們在講我們要發展台灣向國際爭取CDMO你知道什麼是CDMO吧 |
transcript.whisperx[60].start |
1359.249 |
transcript.whisperx[60].end |
1387.144 |
transcript.whisperx[60].text |
你那時候在這個委員會我還被踢出去這個委員會CDMO2021年專案報告題目叫做爭取COVID-19新冠肺炎國際疫苗代工策略目前我國各項疫苗政策方向疫苗準備情形及109年8月AZ疫苗研發團隊來台探尋代工疫苗評估過程當時你們衛福部就講 |
transcript.whisperx[61].start |
1389.076 |
transcript.whisperx[61].end |
1415.152 |
transcript.whisperx[61].text |
要發展台灣成為國際疫苗CDMO的夥伴CDMO當你們把新冠肺炎降階為第四類傳產以後你們指揮中心同時解編以後整個面對新興的大流行的這些病毒現在是怎樣CDMO現在是 |
transcript.whisperx[62].start |
1419.64 |
transcript.whisperx[62].end |
1428.609 |
transcript.whisperx[62].text |
這個叫政習人亡還是什麼的還是頭過心就過還是等下一波大傳染病大流行時的時候我們再來頭目在燒到底是要怎麼樣你們的CDMO在哪裡你叫我有信心我希望你給我們信心政府跟衛福部 |
transcript.whisperx[63].start |
1438.559 |
transcript.whisperx[63].end |
1447.325 |
transcript.whisperx[63].text |
都有針對新興的一個我現在問你CDMO你不要打高空你的CDMO現在是如何陸續在討論陸續在討論但是因為條件有相當多的差距陸續在討論所以我們不能說我現在講因為美國的保護主義心情美國的對等關稅 |
transcript.whisperx[64].start |
1463.636 |
transcript.whisperx[64].end |
1475.278 |
transcript.whisperx[64].text |
所以有沒有可能你即便你的CDMO可能的疫苗代工合作模式也會遇到障礙因為美國政府川普要連他們的藥廠都必須回去美國製造你CDMO連談都沒有談成然後如果當他們要求全部都搬回美國再一次如果發生這樣子像COVID-19這種疫情我們要怎麼自救 |
transcript.whisperx[65].start |
1489.141 |
transcript.whisperx[65].end |
1495.126 |
transcript.whisperx[65].text |
我們當然以最成全的方式來應變我十問你都虛答但是我十問你都答不出來你都沒在想耶你都沒在想耶我們全部的政府跟對付主的同仁日益企業在因應各種變化 |
transcript.whisperx[66].start |
1510.031 |
transcript.whisperx[66].end |
1518.905 |
transcript.whisperx[66].text |
五月就要到了失去美國這個這麼重要的夥伴他們退出WHO他們明年才會退出 今年還會參加今年還必須要繳費 我知道今年還必須 因為要提前一年告知 |
transcript.whisperx[67].start |
1524.926 |
transcript.whisperx[67].end |
1529.51 |
transcript.whisperx[67].text |
我們還會 還是跟美國的重要的關係我們要自立自強啦 我在講自立自強所以政府規劃當初說政府規劃主導成立新公司國發基金來投資招募民間生技廠商入股這個成立新版的生技條例委託代工CDMO你們還有租稅優惠條款 |
transcript.whisperx[68].start |
1552.19 |
transcript.whisperx[68].end |
1571.271 |
transcript.whisperx[68].text |
要跟莫德納談MRNA平台的技術移轉然後當初還講鎖定到台北地區一處現有的廠房然後莫德納在去年跟三星簽訂了CDMO合約在日本、澳洲同步設有辦公室 |
transcript.whisperx[69].start |
1572.432 |
transcript.whisperx[69].end |
1595.818 |
transcript.whisperx[69].text |
而且在香港、馬來西亞和新加坡增設子公司2022年到台灣合作所提到的未來開發重點請問當初你們講的是現在進行式還是已經成為過去式了不是進行式我們有成立一個國家疫苗產業合作標準對啦 進行式那進行到哪裡現在不是過去式吧當然是進行式啊 |
transcript.whisperx[70].start |
1599.58 |
transcript.whisperx[70].end |
1604.688 |
transcript.whisperx[70].text |
那美國政府要求藥廠回流本土製造有沒有衝擊我們會密切來評估 |
transcript.whisperx[71].start |
1609.181 |
transcript.whisperx[71].end |
1630.329 |
transcript.whisperx[71].text |
你藥品也沒有評估出來醫材然後現在告訴你公費疫苗公費疫苗你也沒有辦法好 新加坡已經成功的跟BNT建立疫苗生產基地越南也成為歐盟授權生產的重要基地因為美國大家都衝擊很大所以分散風險韓國 |
transcript.whisperx[72].start |
1633.03 |
transcript.whisperx[72].end |
1649.6 |
transcript.whisperx[72].text |
也透過美國他們在莫德納他們在做合作但是新加坡越南他們都跟歐盟在合作所以下一波疫情來之前你可以告訴我們說放心絕對沒有問題我們都CDMO也準備好了我們的衝擊也沒有問題如果你這樣講 |
transcript.whisperx[73].start |
1657.405 |
transcript.whisperx[73].end |
1662.711 |
transcript.whisperx[73].text |
講出具體的政策那我就相信但你今天在這裡什麼都講不出來你什麼都回答不出來 |
transcript.whisperx[74].start |
1664.113 |
transcript.whisperx[74].end |
1672.419 |
transcript.whisperx[74].text |
這是我們擔心的 不是精神上喊話就可以的我們買足夠的疫苗 經過專家的評估買足夠的疫苗 疫苗是動態的 持續動態的不是你現在精快買足夠就夠的 當重大的做到什麼 你在講什麼 我有說浪費公帑嗎不是空話 這個就是真的在做啊 |
transcript.whisperx[75].start |
1689.591 |
transcript.whisperx[75].end |
1697.713 |
transcript.whisperx[75].text |
我現在提醒你是 這是一個動態的狀態 動態的狀態因為你這一波的流感 光是你們的相關的疫苗 我剛剛講那些疫苗 小兒疫苗從美國採購的很多 很多 連預算都受到衝擊連預算都受到衝擊 這個預算是公務預算那你的公務預算如果短少了 怎麼辦 |
transcript.whisperx[76].start |
1713.866 |
transcript.whisperx[76].end |
1728.559 |
transcript.whisperx[76].text |
我們這是疫苗基金啦我們疫苗的基金我們會隨時來注意它的充分請委員放心也請國務院放心我很想對政府放心但是我對你邱太元就不放心啦不用對我放心對政府對衛福部要有信心謝謝 |