IVOD_ID |
160516 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/160516 |
日期 |
2025-04-23 |
會議資料.會議代碼 |
委員會-11-3-36-10 |
會議資料.會議代碼:str |
第11屆第3會期司法及法制委員會第10次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
10 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
36 |
會議資料.委員會代碼:str[0] |
司法及法制委員會 |
會議資料.標題 |
第11屆第3會期司法及法制委員會第10次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-04-23T11:03:14+08:00 |
結束時間 |
2025-04-23T11:17:55+08:00 |
影片長度 |
00:14:41 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/27ac2f54fdf75cc038cd83ab0415efd8a01776dcf2b4a8ff9a3354dc8dbd3a629930f9bb5cf0ddfa5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
吳思瑤 |
委員發言時間 |
11:03:14 - 11:17:55 |
會議時間 |
2025-04-23T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期司法及法制委員會第10次全體委員會議(事由:邀請司法院副秘書長、法務部部長、銓敘部部長、法務部調查局局長、法務部廉政署署長、行政院人事行政總處、公務人員保障暨培訓委員會、內政部、中央選舉委員會、內政部警政署率所屬相關單位列席就「選舉罷免程序中,如何落實公務人員含政務官(人員)、司法人員、選務人員恪守行政中立,且秉持公正執法勿偏頗」進行專題報告,並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
10.02096875 |
transcript.pyannote[0].end |
12.28221875 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
12.80534375 |
transcript.pyannote[1].end |
16.01159375 |
transcript.pyannote[2].speaker |
SPEAKER_03 |
transcript.pyannote[2].start |
13.86846875 |
transcript.pyannote[2].end |
14.88096875 |
transcript.pyannote[3].speaker |
SPEAKER_03 |
transcript.pyannote[3].start |
15.87659375 |
transcript.pyannote[3].end |
16.61909375 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
16.53471875 |
transcript.pyannote[4].end |
19.85909375 |
transcript.pyannote[5].speaker |
SPEAKER_03 |
transcript.pyannote[5].start |
20.16284375 |
transcript.pyannote[5].end |
22.79534375 |
transcript.pyannote[6].speaker |
SPEAKER_02 |
transcript.pyannote[6].start |
22.12034375 |
transcript.pyannote[6].end |
22.54221875 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
26.71034375 |
transcript.pyannote[7].end |
34.75971875 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
35.26596875 |
transcript.pyannote[8].end |
37.57784375 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
38.45534375 |
transcript.pyannote[9].end |
49.18784375 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
49.98096875 |
transcript.pyannote[10].end |
61.03409375 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
61.52346875 |
transcript.pyannote[11].end |
67.73346875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
68.42534375 |
transcript.pyannote[12].end |
69.31971875 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
70.21409375 |
transcript.pyannote[13].end |
72.32346875 |
transcript.pyannote[14].speaker |
SPEAKER_03 |
transcript.pyannote[14].start |
72.39096875 |
transcript.pyannote[14].end |
72.86346875 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
72.86346875 |
transcript.pyannote[15].end |
74.66909375 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
74.77034375 |
transcript.pyannote[16].end |
76.96409375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
77.23409375 |
transcript.pyannote[17].end |
78.12846875 |
transcript.pyannote[18].speaker |
SPEAKER_03 |
transcript.pyannote[18].start |
78.29721875 |
transcript.pyannote[18].end |
81.53721875 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
80.10284375 |
transcript.pyannote[19].end |
80.50784375 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
80.54159375 |
transcript.pyannote[20].end |
98.14221875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
98.29409375 |
transcript.pyannote[21].end |
98.58096875 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
98.88471875 |
transcript.pyannote[22].end |
100.96034375 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
101.24721875 |
transcript.pyannote[23].end |
102.79971875 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
103.35659375 |
transcript.pyannote[24].end |
106.39409375 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
107.18721875 |
transcript.pyannote[25].end |
114.91596875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
115.45596875 |
transcript.pyannote[26].end |
122.42534375 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
123.08346875 |
transcript.pyannote[27].end |
127.65659375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
128.29784375 |
transcript.pyannote[28].end |
137.52846875 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
138.30471875 |
transcript.pyannote[29].end |
140.43096875 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
141.02159375 |
transcript.pyannote[30].end |
155.11221875 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
155.85471875 |
transcript.pyannote[31].end |
167.85284375 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
169.20284375 |
transcript.pyannote[32].end |
171.21096875 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
172.32471875 |
transcript.pyannote[33].end |
173.79284375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
174.29909375 |
transcript.pyannote[34].end |
180.22221875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
180.64409375 |
transcript.pyannote[35].end |
181.96034375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
182.63534375 |
transcript.pyannote[36].end |
200.89409375 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
201.72096875 |
transcript.pyannote[37].end |
211.44096875 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
212.16659375 |
transcript.pyannote[38].end |
223.21971875 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
224.09721875 |
transcript.pyannote[39].end |
225.37971875 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
225.90284375 |
transcript.pyannote[40].end |
231.70784375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
232.33221875 |
transcript.pyannote[41].end |
252.81846875 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
253.40909375 |
transcript.pyannote[42].end |
262.30221875 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
263.16284375 |
transcript.pyannote[43].end |
269.76096875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
270.23346875 |
transcript.pyannote[44].end |
272.29221875 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
274.08096875 |
transcript.pyannote[45].end |
283.49721875 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
284.35784375 |
transcript.pyannote[46].end |
290.97284375 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
291.14159375 |
transcript.pyannote[47].end |
293.68971875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
293.97659375 |
transcript.pyannote[48].end |
294.68534375 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
294.87096875 |
transcript.pyannote[49].end |
295.71471875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
296.08596875 |
transcript.pyannote[50].end |
297.84096875 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
298.54971875 |
transcript.pyannote[51].end |
307.54409375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
308.08409375 |
transcript.pyannote[52].end |
316.50471875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
316.80846875 |
transcript.pyannote[53].end |
317.38221875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
318.29346875 |
transcript.pyannote[54].end |
319.82909375 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
320.70659375 |
transcript.pyannote[55].end |
340.50096875 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
341.29409375 |
transcript.pyannote[56].end |
343.21784375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
344.01096875 |
transcript.pyannote[57].end |
346.84596875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
347.47034375 |
transcript.pyannote[58].end |
349.10721875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
350.05221875 |
transcript.pyannote[59].end |
357.34221875 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
357.62909375 |
transcript.pyannote[60].end |
363.26534375 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
363.94034375 |
transcript.pyannote[61].end |
365.93159375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
366.42096875 |
transcript.pyannote[62].end |
369.57659375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
371.06159375 |
transcript.pyannote[63].end |
372.73221875 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
373.37346875 |
transcript.pyannote[64].end |
385.20284375 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
385.77659375 |
transcript.pyannote[65].end |
393.20159375 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
393.94409375 |
transcript.pyannote[66].end |
397.57221875 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
397.82534375 |
transcript.pyannote[67].end |
404.03534375 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
405.21659375 |
transcript.pyannote[68].end |
406.85346875 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
407.29221875 |
transcript.pyannote[69].end |
415.52721875 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
416.53971875 |
transcript.pyannote[70].end |
425.70284375 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
426.47909375 |
transcript.pyannote[71].end |
433.80284375 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
434.76471875 |
transcript.pyannote[72].end |
445.02471875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
445.96971875 |
transcript.pyannote[73].end |
457.86659375 |
transcript.pyannote[74].speaker |
SPEAKER_03 |
transcript.pyannote[74].start |
458.57534375 |
transcript.pyannote[74].end |
471.18096875 |
transcript.pyannote[75].speaker |
SPEAKER_03 |
transcript.pyannote[75].start |
471.65346875 |
transcript.pyannote[75].end |
478.67346875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
477.57659375 |
transcript.pyannote[76].end |
488.07284375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
488.64659375 |
transcript.pyannote[77].end |
491.07659375 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
491.49846875 |
transcript.pyannote[78].end |
506.48346875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
506.58471875 |
transcript.pyannote[79].end |
509.95971875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
510.60096875 |
transcript.pyannote[80].end |
537.53346875 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
537.80346875 |
transcript.pyannote[81].end |
542.29221875 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
542.83221875 |
transcript.pyannote[82].end |
545.56596875 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
547.62471875 |
transcript.pyannote[83].end |
548.46846875 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
549.86909375 |
transcript.pyannote[84].end |
550.59471875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
551.53971875 |
transcript.pyannote[85].end |
552.58596875 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
552.99096875 |
transcript.pyannote[86].end |
554.52659375 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
556.41659375 |
transcript.pyannote[87].end |
564.88784375 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
565.74846875 |
transcript.pyannote[88].end |
568.70159375 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
569.49471875 |
transcript.pyannote[89].end |
573.44346875 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
572.09346875 |
transcript.pyannote[90].end |
572.76846875 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
574.11846875 |
transcript.pyannote[91].end |
576.78471875 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
576.86909375 |
transcript.pyannote[92].end |
584.22659375 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
584.22659375 |
transcript.pyannote[93].end |
584.68221875 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
585.08721875 |
transcript.pyannote[94].end |
590.79096875 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
591.46596875 |
transcript.pyannote[95].end |
601.94534375 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
602.87346875 |
transcript.pyannote[96].end |
606.50159375 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
607.59846875 |
transcript.pyannote[97].end |
609.04971875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
609.97784375 |
transcript.pyannote[98].end |
617.08221875 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
617.43659375 |
transcript.pyannote[99].end |
621.77346875 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
622.12784375 |
transcript.pyannote[100].end |
626.26221875 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
626.76846875 |
transcript.pyannote[101].end |
642.64784375 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
643.18784375 |
transcript.pyannote[102].end |
643.72784375 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
644.45346875 |
transcript.pyannote[103].end |
645.01034375 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
645.58409375 |
transcript.pyannote[104].end |
646.81596875 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
647.94659375 |
transcript.pyannote[105].end |
650.79846875 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
650.96721875 |
transcript.pyannote[106].end |
658.27409375 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
659.11784375 |
transcript.pyannote[107].end |
661.66596875 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
661.93596875 |
transcript.pyannote[108].end |
670.42409375 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
671.09909375 |
transcript.pyannote[109].end |
673.59659375 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
674.10284375 |
transcript.pyannote[110].end |
676.00971875 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
676.41471875 |
transcript.pyannote[111].end |
680.19471875 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
680.65034375 |
transcript.pyannote[112].end |
696.47909375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
696.96846875 |
transcript.pyannote[113].end |
699.09471875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
699.36471875 |
transcript.pyannote[114].end |
700.02284375 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
700.69784375 |
transcript.pyannote[115].end |
707.44784375 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
709.16909375 |
transcript.pyannote[116].end |
711.54846875 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
712.20659375 |
transcript.pyannote[117].end |
734.38034375 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
735.03846875 |
transcript.pyannote[118].end |
738.22784375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
738.88596875 |
transcript.pyannote[119].end |
743.03721875 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
745.73721875 |
transcript.pyannote[120].end |
746.80034375 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
747.81284375 |
transcript.pyannote[121].end |
749.51721875 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
749.80409375 |
transcript.pyannote[122].end |
750.58034375 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
751.20471875 |
transcript.pyannote[123].end |
759.54096875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
759.82784375 |
transcript.pyannote[124].end |
785.91659375 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
787.65471875 |
transcript.pyannote[125].end |
788.61659375 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
789.19034375 |
transcript.pyannote[126].end |
791.26596875 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
791.70471875 |
transcript.pyannote[127].end |
796.37909375 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
797.62784375 |
transcript.pyannote[128].end |
803.06159375 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
803.39909375 |
transcript.pyannote[129].end |
812.52846875 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
813.03471875 |
transcript.pyannote[130].end |
820.59471875 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
820.96596875 |
transcript.pyannote[131].end |
821.25284375 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
821.96159375 |
transcript.pyannote[132].end |
823.80096875 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
824.54346875 |
transcript.pyannote[133].end |
832.01909375 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
832.39034375 |
transcript.pyannote[134].end |
835.41096875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
836.18721875 |
transcript.pyannote[135].end |
840.38909375 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
840.81096875 |
transcript.pyannote[136].end |
843.17346875 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
843.76409375 |
transcript.pyannote[137].end |
847.84784375 |
transcript.pyannote[138].speaker |
SPEAKER_02 |
transcript.pyannote[138].start |
848.32034375 |
transcript.pyannote[138].end |
854.49659375 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
854.49659375 |
transcript.pyannote[139].end |
881.17596875 |
transcript.whisperx[0].start |
10.369 |
transcript.whisperx[0].end |
37.28 |
transcript.whisperx[0].text |
好 謝謝主席我請部長 政部長好麻煩部長全序部的施部長好 施部長請內政部民政司的代表還有中選會中選會處長好 民政司代表大家早安今天主席排定了這個主題我認為應當好好來討論行政中立誰行政不中立了呢 |
transcript.whisperx[1].start |
38.513 |
transcript.whisperx[1].end |
67.349 |
transcript.whisperx[1].text |
我要說以這段時間發生的很多事情恐怕是國民黨才是真正的行政不中立我們等一下再來論述而我更要破題包庇違法不查才是徹底的司法不公只要有違法事證不論是誰該辦就辦該查就查下一頁今天這個委員會高規格四院都邀請來列席報告獨缺立法院 |
transcript.whisperx[2].start |
68.703 |
transcript.whisperx[2].end |
68.865 |
transcript.whisperx[2].text |
市部長 |
transcript.whisperx[3].start |
70.273 |
transcript.whisperx[3].end |
97.606 |
transcript.whisperx[3].text |
行政中立法是你們考試院主管對行政中立法有排除司法院的公務人員嗎沒有只要是全國公務人員是所以行政中立法適用的是各級機關五院的公務人員他的排除有其他的排除但是一般來講立法院的公務人員也是要適用行政中立法也是要適用公務人員的行為法任用法乃至於懲戒法嗎對 |
transcript.whisperx[4].start |
98.956 |
transcript.whisperx[4].end |
126.693 |
transcript.whisperx[4].text |
那如果要講行政不中立在立法院來講應當是要探討議事中不中立那今天召委並沒有邀請立法院的人員來列席我覺得這某種程度就沒有那麼中立了就沒有那麼中立了那如果以今天主題相關的選舉罷免的程序當中的這件事情那我更認為立法院的代表應當要來 |
transcript.whisperx[5].start |
128.325 |
transcript.whisperx[5].end |
132.091 |
transcript.whisperx[5].text |
因為呢我們現在在面對的選舉罷免法的選罷法就這一年來2024跟2025年我們進行了修法 |
transcript.whisperx[6].start |
138.342 |
transcript.whisperx[6].end |
165.133 |
transcript.whisperx[6].text |
大家知道嗎選罷法在2024年的7月4號第一會期為了修選罷法的連署是不是要加嚴加密的那個門檻 招委是高精素媒內政委員會的招委可以把立法院的議事人員押到他的辦公室也就是議事人員請去他的辦公室喝茶然後議事人員就配合招委然後不進來主持會議把所有民進黨的委員要開會認真的委員曬在 |
transcript.whisperx[7].start |
169.369 |
transcript.whisperx[7].end |
181.342 |
transcript.whisperx[7].text |
內政委員會的會場 然後不開會這就是議事不中立嘛第二個呢 同樣選罷法的審查在2024年的12月16號更經典了我們的議事人員 |
transcript.whisperx[8].start |
182.711 |
transcript.whisperx[8].end |
211.087 |
transcript.whisperx[8].text |
不曉得是被脅迫還是出於自願喔在配合國民黨的召委徐欣盈封鎖了內政委員會的辦公室把民進黨的委員鎖在門外國民黨的委員一分鐘一分鐘只花一分鐘把選罷法送出委員會這樣子的議事人員也非常嚴重的涉及議事不中立當然我如果為他們想他們可能也身在江湖人不由己啊 |
transcript.whisperx[9].start |
212.216 |
transcript.whisperx[9].end |
231.452 |
transcript.whisperx[9].text |
很為難但是基本的捍衛議事中立是不論誰擔任立法院院長不論誰是國會多數立法院的公務人員都應當克尊憲法克尊法令嘛好再講選罷法立法院在去年的12月20號一天通過了三個惡法又用舉手表決了 |
transcript.whisperx[10].start |
232.769 |
transcript.whisperx[10].end |
261.348 |
transcript.whisperx[10].text |
選罷法也那一天三大惡法通過了結果呢居然三大惡法通過立法院的議事人員配合中國國民黨把選罷法押在立法院一直押押押把選罷法當人質肉票欸已經三讀通過的法案押了35天到今年的1月24號才把選罷法移送對不起移送我說錯了就是送提請行政院跟總統來公告 |
transcript.whisperx[11].start |
263.21 |
transcript.whisperx[11].end |
283.186 |
transcript.whisperx[11].text |
如果以跟今天的主題相關的選罷法選舉罷免進行的過程的這個謀法選罷法立法院完全沒有意識中立所以今天主席沒有邀請立法院的人員來我認為缺了一角而且是非常嚴重的缺了那一角 |
transcript.whisperx[12].start |
284.437 |
transcript.whisperx[12].end |
307.169 |
transcript.whisperx[12].text |
所以說所有的公務人員都要適用行政中立法我們要依法行政行政的根本在依據那個法律對不對第二個要執法公正沒有辦法不應當辦藍不辦綠藍綠都要辦秉公處理不選擇性辦案這叫做執法公正我支持 |
transcript.whisperx[13].start |
308.149 |
transcript.whisperx[13].end |
333.498 |
transcript.whisperx[13].text |
第三個所有的公務人員心中都有一把尺叫做政治中立這是行政中立法的第一條所規範的嘛下一頁我要請大家看看喔因為我們是立法院當然沒有辦法監督地方政府但是如果要探討這段時間的行政中不中立我們必須來看看各個地方政府到底在面對罷免這件事情上有沒有雙標兩套標準 |
transcript.whisperx[14].start |
335.709 |
transcript.whisperx[14].end |
356.585 |
transcript.whisperx[14].text |
從台北市長蔣萬安、桃園市長張善政、花蓮縣長的徐貞蔚花蓮的部分是給人家查水表只要有連署罷免副委員的縣府的戶政員就登門拜訪查水表而這個事情已經司法偵辦中了我就尊重,我就不再談了 |
transcript.whisperx[15].start |
357.679 |
transcript.whisperx[15].end |
366.97 |
transcript.whisperx[15].text |
桃園市長的張善政公然的說市政府會全力協助反制藍圍被罷免的行動然後他還刁難罷團場地租借 |
transcript.whisperx[16].start |
371.444 |
transcript.whisperx[16].end |
384.055 |
transcript.whisperx[16].text |
蔣萬安更經典啊也是一樣啊公然的花市府的公帑舉辦活動然後只要藍營的委員市政府的活動變成藍營的委員的造市場然後蔣萬安一樣刁難罷團的場地租借然後給罷免的店家查水表等等 |
transcript.whisperx[17].start |
394.191 |
transcript.whisperx[17].end |
415.214 |
transcript.whisperx[17].text |
這些濫用市府資源打壓霸團的這才是嚴重的行政不中立我是台北市的立委我們來看台北市下一頁跨局處查水表蔣市府追殺公民霸團前所未見我要就教於市部長你看看這是我整理出來這是台北市議員簡舒培整理的 |
transcript.whisperx[18].start |
416.824 |
transcript.whisperx[18].end |
444.237 |
transcript.whisperx[18].text |
蔣市府鎖定了六個有參與罷免的公民團體然後就這六個非常精準地鎖定請勞動局、消防局、健管處、督發局、商業處、環保局、衛生局一個一個去查水表有的來查你的衛生有沒有合格有的來查你的環保有沒有合格有的來查你的營業登記有的來查你的勞動有沒有違規 |
transcript.whisperx[19].start |
446.018 |
transcript.whisperx[19].end |
456.998 |
transcript.whisperx[19].text |
非常密集的就在這段時間動用了七個局處來鎖定六個霸團這有沒有過當的濫用了行政資源啊部長你看看 |
transcript.whisperx[20].start |
458.961 |
transcript.whisperx[20].end |
487.801 |
transcript.whisperx[20].text |
國務委員報告當然這是個案我對個案狀況並不了解不過從行政中立法整體上的概念來講國務委員應該要遵守就是說要完全遵守行政中立法如果他不是職權上的行為這個要特別特別一個小心那我想我們這個主管機關我們會做這樣一個如果說今天蔣萬安市長剛好針對譬如說大同區或是我的北投區剛好這段時間啟動這一個街區的商區的所有的 |
transcript.whisperx[21].start |
489.062 |
transcript.whisperx[21].end |
502.979 |
transcript.whisperx[21].text |
項目的檢查那沒有問題可是他非常奇怪的針對六個商家六個霸團然後七個局處去查這顯然那把尺大家都很清楚了下一頁 |
transcript.whisperx[22].start |
503.973 |
transcript.whisperx[22].end |
530.074 |
transcript.whisperx[22].text |
同樣是蔣市府喔協助某立委可以他沒有大手筆啦他是一口氣喔只花25萬不管是押金或者是場地使用費把松山信義722個居民活動中心全部讓一個立委這段時間3月到6月全包了其他的公民要使用活動你一定要用沒辦法我們的排舞媽媽要救沒辦法 |
transcript.whisperx[23].start |
533.297 |
transcript.whisperx[23].end |
545.244 |
transcript.whisperx[23].text |
我們的小朋友的下課的勞動教室 不會有九場地722個場地 然後讓一個立委一次全包這很奇怪耶 來內政部講一講可以這樣嗎 內政部你們有看過 可以這樣單一個 |
transcript.whisperx[24].start |
556.465 |
transcript.whisperx[24].end |
572.19 |
transcript.whisperx[24].text |
立委有這麼大嗎 然後市長可以護航他全部的台北市的場地 內區的場地這段時間全部block起來only for one person如果就你們民政督導機關 你同意這種事情嗎報告委員 這個場地使用逐屆是屬於台北市政府的說管 |
transcript.whisperx[25].start |
574.181 |
transcript.whisperx[25].end |
596.571 |
transcript.whisperx[25].text |
那你同意你認為這樣有沒有過當了在選舉辦免程序裡面關於選務人員的部分我們可以來做宣導對那這個部分一定是要嚴守行政中立好請嚴守行政中立這有沒有違反行政中立大家都有一把尺下一頁這個我就不再多說了居然花台北市民的錢舉辦的就業博覽會當天呢就成了五個國民黨立委的造勢場 |
transcript.whisperx[26].start |
602.901 |
transcript.whisperx[26].end |
625.932 |
transcript.whisperx[26].text |
他沒有邀請民進黨立委沒有邀請烏斯堯沒有關係I don't care我沒有需要再就業可是連所有的市議員都沒有受邀這一場活動就only for 台北市的五個立法委員某個政黨這實在如果這不是行政不中立那什麼叫做行政不中立呢 |
transcript.whisperx[27].start |
626.872 |
transcript.whisperx[27].end |
643.5 |
transcript.whisperx[27].text |
下一頁下一頁好我最後的時間我講這個我已經多次說了民主不容造假不管是作票不管是會選不管是罷免的偽造聯署都是造假的行為都是違法該查就查下一頁下一頁下一頁我們來講這一頁 |
transcript.whisperx[28].start |
649.505 |
transcript.whisperx[28].end |
669.821 |
transcript.whisperx[28].text |
讓證據說話司法重證據目前61個一階提案的案量是61案進入二階有59人另外那兩個之所以沒成案是因為嘉義的陳冠廷跟王美惠的霸團承認他們死亡連署造假連署他們自知理虧他們就不再舉辦了 |
transcript.whisperx[29].start |
671.141 |
transcript.whisperx[29].end |
697.986 |
transcript.whisperx[29].text |
好 平均的不合格率罷綠的是三成罷藍的是4.55 相差6.6倍而死亡連署數呢是1923比上12相差160倍如果以司法的人員辦案來講一定要優先從事證明確的去下手偵辦對不對而且下一頁 中選會已經說囉下一頁 |
transcript.whisperx[30].start |
700.786 |
transcript.whisperx[30].end |
706.915 |
transcript.whisperx[30].text |
全部的移送案件依職務告發有41件不分藍綠都送半碼所以部長我已經秀出多次 |
transcript.whisperx[31].start |
712.287 |
transcript.whisperx[31].end |
733.995 |
transcript.whisperx[31].text |
如果以霸藍的立委所有霸藍的立委裡頭最高的死亡連署是台中的廖偉祥委員那一區有三個死亡連署如果以霸綠的死亡連署是武利華委員有189位還是182位的死亡連署差距這麼大如果是檢察官 |
transcript.whisperx[32].start |
735.154 |
transcript.whisperx[32].end |
741.159 |
transcript.whisperx[32].text |
罪證確鑿 事證明確 它可以不辦嗎違法事證明確不辦不就才是司法不公嗎 是不是好 我最後一頁啦因為很多頁沒有辦法講我就以因為很多國民黨的委員都在說不要大小眼 不要辦藍不辦綠一直在拿出罷免韓國瑜前市長的這個 |
transcript.whisperx[33].start |
762.078 |
transcript.whisperx[33].end |
776.585 |
transcript.whisperx[33].text |
連署數我這裡是跟中選會一再確認正確的數字因為罷免韓國瑜市長他是整個高雄市他的基數是高達40萬送件的數是高達40萬7547人我如果相對於吳思瑤的罷免是2696人一接的時候罷免韓國瑜前市長的錯誤率是百分之 |
transcript.whisperx[34].start |
787.754 |
transcript.whisperx[34].end |
789.979 |
transcript.whisperx[34].text |
對不起 他這裡對 錯誤率是7.18%罷免無私藥是34.5%就以 我來這裡是闢謠的 |
transcript.whisperx[35].start |
797.657 |
transcript.whisperx[35].end |
809.085 |
transcript.whisperx[35].text |
大家說罷免韓國瑜有幾千個死亡連署你們怎麼沒有偵辦事實會說話罷免韓國瑜的死亡連署的占比是0.00009%0.00009%這是罷免韓國瑜高雄市長的時候的 |
transcript.whisperx[36].start |
822.134 |
transcript.whisperx[36].end |
847.514 |
transcript.whisperx[36].text |
死亡連署的佔比然後在一階的時候韓國瑜的死亡連署應當是95位二階的時候全高雄市罷免韓國瑜的死亡連署是35位所以我要把事實說清楚讓證據說話而事實上當初罷韓的也沒有不增辦嘛對不對只要我違法事證明確也是該辦也有辦嘛是不是部長 |
transcript.whisperx[37].start |
848.616 |
transcript.whisperx[37].end |
876.545 |
transcript.whisperx[37].text |
這個是檢察官有啟動那個偵查是 強加調查所以釐清財務部起訴處分所以當初罷免韓國瑜也有啟動偵辦只是後來事證不足而很有可能是我說的他的比例而且他實際去查的死亡連署沒有涉及造假的部分所以我們要把事實說清楚講明白我也非常希望行政不中立不能缺一角在立法院的意識中立是同等重要的 |
transcript.whisperx[38].start |
877.106 |
transcript.whisperx[38].end |
879.707 |
transcript.whisperx[38].text |
好 謝謝幾位 大家一起加油 謝謝主席 |