IVOD_ID |
160514 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/160514 |
日期 |
2025-04-23 |
會議資料.會議代碼 |
委員會-11-3-20-9 |
會議資料.會議代碼:str |
第11屆第3會期財政委員會第9次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
9 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
20 |
會議資料.委員會代碼:str[0] |
財政委員會 |
會議資料.標題 |
第11屆第3會期財政委員會第9次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-04-23T10:53:33+08:00 |
結束時間 |
2025-04-23T11:06:38+08:00 |
影片長度 |
00:13:05 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/27ac2f54fdf75cc03154d74b9c88f802c0f390e692fb4f249a3354dc8dbd3a62cb86eaca5078d11d5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
鍾佳濱 |
委員發言時間 |
10:53:33 - 11:06:38 |
會議時間 |
2025-04-23T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期財政委員會第9次全體委員會議(事由:一、審查「貨物稅條例」34案:
(一) 本院委員葉元之等21人擬具「貨物稅條例刪除部分條文草案」案。
(二) 本院委員廖先翔等16人擬具「貨物稅條例刪除第八條條文草案」案。
(三) 本院台灣民眾黨黨團擬具「貨物稅條例第十一條、第十一條之一及第三十七條條文修正草案」案。
(四) 本院委員邱若華等20人擬具「貨物稅條例第十一條條文修正草案」案。
(五) 本院委員魯明哲等16人、委員顏寬恒等19人、委員羅廷瑋等16人、委員賴士葆等21人、委員邱鎮軍等22人、委員徐欣瑩等27人、委員翁曉玲等17人、委員羅明才等16人、委員郭國文等17人、委員王鴻薇等24人、委員廖偉翔等17人、委員許宇甄等21人、委員黃建賓等16人、委員林思銘等21人、委員萬美玲等16人分別擬具「貨物稅條例第十一條之一條文修正草案」等15案。
(六) 本院委員李坤城等24人擬具「貨物稅條例第十一條之一、第十二條之五及第十二條之六條文修正草案」案。
(七) 本院委員鄭天財Sra Kacaw等19人、委員林思銘等19人、委員涂權吉等17人、委員陳玉珍等19人、委員馬文君等18人、委員王世堅等19人、委員張智倫等25人、委員魯明哲等16人、委員王鴻薇等19人、委員楊瓊瓔等20人、委員邱鎮軍等24人、委員萬美玲等18人、委員廖偉翔等17人分別擬具「貨物稅條例第十二條條文修正草案」等13案。
(八) 本院委員邱鎮軍等19人擬具「貨物稅條例第十二條之三條文修正草案」案。
二、審查人民請願案有關「貨物稅條例」7案。) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
10.54409375 |
transcript.pyannote[0].end |
21.24284375 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
21.24284375 |
transcript.pyannote[1].end |
23.65596875 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
25.51221875 |
transcript.pyannote[2].end |
25.96784375 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
26.81159375 |
transcript.pyannote[3].end |
36.21096875 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
36.53159375 |
transcript.pyannote[4].end |
37.00409375 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
37.15596875 |
transcript.pyannote[5].end |
37.57784375 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
37.86471875 |
transcript.pyannote[6].end |
39.88971875 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
41.17221875 |
transcript.pyannote[7].end |
41.72909375 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
41.94846875 |
transcript.pyannote[8].end |
42.79221875 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
42.65721875 |
transcript.pyannote[9].end |
42.96096875 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
42.80909375 |
transcript.pyannote[10].end |
42.82596875 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
42.84284375 |
transcript.pyannote[11].end |
43.36596875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
43.95659375 |
transcript.pyannote[12].end |
46.26846875 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
47.70284375 |
transcript.pyannote[13].end |
50.21721875 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
50.16659375 |
transcript.pyannote[14].end |
54.28409375 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
51.01034375 |
transcript.pyannote[15].end |
51.93846875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
53.84534375 |
transcript.pyannote[16].end |
55.88721875 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
56.22471875 |
transcript.pyannote[17].end |
58.89096875 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
59.46471875 |
transcript.pyannote[18].end |
60.03846875 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
60.25784375 |
transcript.pyannote[19].end |
60.81471875 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
61.15221875 |
transcript.pyannote[20].end |
62.70471875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
63.12659375 |
transcript.pyannote[21].end |
65.57346875 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
65.79284375 |
transcript.pyannote[22].end |
68.74596875 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
69.11721875 |
transcript.pyannote[23].end |
71.51346875 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
69.87659375 |
transcript.pyannote[24].end |
78.02721875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
78.46596875 |
transcript.pyannote[25].end |
78.88784375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
79.24221875 |
transcript.pyannote[26].end |
81.41909375 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
81.87471875 |
transcript.pyannote[27].end |
83.42721875 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
83.84909375 |
transcript.pyannote[28].end |
84.03471875 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
84.23721875 |
transcript.pyannote[29].end |
84.64221875 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
85.70534375 |
transcript.pyannote[30].end |
87.03846875 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
87.15659375 |
transcript.pyannote[31].end |
89.53596875 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
90.24471875 |
transcript.pyannote[32].end |
90.32909375 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
90.32909375 |
transcript.pyannote[33].end |
91.03784375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
91.52721875 |
transcript.pyannote[34].end |
105.88784375 |
transcript.pyannote[35].speaker |
SPEAKER_02 |
transcript.pyannote[35].start |
102.49596875 |
transcript.pyannote[35].end |
104.21721875 |
transcript.pyannote[36].speaker |
SPEAKER_02 |
transcript.pyannote[36].start |
106.02284375 |
transcript.pyannote[36].end |
106.41096875 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
106.54596875 |
transcript.pyannote[37].end |
114.59534375 |
transcript.pyannote[38].speaker |
SPEAKER_02 |
transcript.pyannote[38].start |
108.58784375 |
transcript.pyannote[38].end |
109.27971875 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
114.83159375 |
transcript.pyannote[39].end |
118.64534375 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
119.69159375 |
transcript.pyannote[40].end |
121.44659375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
121.54784375 |
transcript.pyannote[41].end |
129.27659375 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
130.23846875 |
transcript.pyannote[42].end |
139.38471875 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
139.38471875 |
transcript.pyannote[43].end |
144.12659375 |
transcript.pyannote[44].speaker |
SPEAKER_01 |
transcript.pyannote[44].start |
144.00846875 |
transcript.pyannote[44].end |
144.58221875 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
144.58221875 |
transcript.pyannote[45].end |
153.12096875 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
154.55534375 |
transcript.pyannote[46].end |
156.02346875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
156.25971875 |
transcript.pyannote[47].end |
160.14096875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
160.44471875 |
transcript.pyannote[48].end |
163.65096875 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
163.83659375 |
transcript.pyannote[49].end |
166.75596875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
167.24534375 |
transcript.pyannote[50].end |
173.40471875 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
173.82659375 |
transcript.pyannote[51].end |
174.26534375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
173.94471875 |
transcript.pyannote[52].end |
175.44659375 |
transcript.pyannote[53].speaker |
SPEAKER_01 |
transcript.pyannote[53].start |
176.39159375 |
transcript.pyannote[53].end |
181.69034375 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
176.98221875 |
transcript.pyannote[54].end |
178.80471875 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
181.06596875 |
transcript.pyannote[55].end |
182.17971875 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
182.75346875 |
transcript.pyannote[56].end |
188.25471875 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
183.05721875 |
transcript.pyannote[57].end |
183.07409375 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
188.47409375 |
transcript.pyannote[58].end |
189.68909375 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
189.94221875 |
transcript.pyannote[59].end |
192.86159375 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
193.65471875 |
transcript.pyannote[60].end |
196.03409375 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
194.17784375 |
transcript.pyannote[61].end |
195.02159375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
195.39284375 |
transcript.pyannote[62].end |
201.50159375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
201.77159375 |
transcript.pyannote[63].end |
203.34096875 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
204.25221875 |
transcript.pyannote[64].end |
204.87659375 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
205.21409375 |
transcript.pyannote[65].end |
206.78346875 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
207.15471875 |
transcript.pyannote[66].end |
207.76221875 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
207.84659375 |
transcript.pyannote[67].end |
209.16284375 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
209.31471875 |
transcript.pyannote[68].end |
211.23846875 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
211.32284375 |
transcript.pyannote[69].end |
212.35221875 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
212.57159375 |
transcript.pyannote[70].end |
213.88784375 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
214.27596875 |
transcript.pyannote[71].end |
215.76096875 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
216.79034375 |
transcript.pyannote[72].end |
218.46096875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
218.54534375 |
transcript.pyannote[73].end |
219.76034375 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
220.40159375 |
transcript.pyannote[74].end |
221.76846875 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
223.20284375 |
transcript.pyannote[75].end |
225.80159375 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
226.03784375 |
transcript.pyannote[76].end |
227.60721875 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
227.64096875 |
transcript.pyannote[77].end |
231.65721875 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
232.12971875 |
transcript.pyannote[78].end |
248.12721875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
248.19471875 |
transcript.pyannote[79].end |
248.83596875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
249.29159375 |
transcript.pyannote[80].end |
250.65846875 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
251.21534375 |
transcript.pyannote[81].end |
251.73846875 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
252.46409375 |
transcript.pyannote[82].end |
253.64534375 |
transcript.pyannote[83].speaker |
SPEAKER_02 |
transcript.pyannote[83].start |
254.86034375 |
transcript.pyannote[83].end |
255.01221875 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
255.21471875 |
transcript.pyannote[84].end |
256.04159375 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
256.12596875 |
transcript.pyannote[85].end |
257.18909375 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
257.35784375 |
transcript.pyannote[86].end |
260.10846875 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
260.19284375 |
transcript.pyannote[87].end |
260.98596875 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
261.22221875 |
transcript.pyannote[88].end |
261.96471875 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
262.63971875 |
transcript.pyannote[89].end |
264.95159375 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
265.45784375 |
transcript.pyannote[90].end |
267.61784375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
267.88784375 |
transcript.pyannote[91].end |
272.05596875 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
273.23721875 |
transcript.pyannote[92].end |
273.74346875 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
274.11471875 |
transcript.pyannote[93].end |
276.00471875 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
276.47721875 |
transcript.pyannote[94].end |
277.23659375 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
277.67534375 |
transcript.pyannote[95].end |
279.46409375 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
279.59909375 |
transcript.pyannote[96].end |
281.03346875 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
281.21909375 |
transcript.pyannote[97].end |
282.73784375 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
283.17659375 |
transcript.pyannote[98].end |
284.10471875 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
284.57721875 |
transcript.pyannote[99].end |
286.95659375 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
287.29409375 |
transcript.pyannote[100].end |
290.61846875 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
291.32721875 |
transcript.pyannote[101].end |
304.54034375 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
305.55284375 |
transcript.pyannote[102].end |
306.36284375 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
306.61596875 |
transcript.pyannote[103].end |
308.70846875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
309.51846875 |
transcript.pyannote[104].end |
313.02846875 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
313.41659375 |
transcript.pyannote[105].end |
314.53034375 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
315.40784375 |
transcript.pyannote[106].end |
318.05721875 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
318.31034375 |
transcript.pyannote[107].end |
320.94284375 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
321.93846875 |
transcript.pyannote[108].end |
323.55846875 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
323.92971875 |
transcript.pyannote[109].end |
327.96284375 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
328.36784375 |
transcript.pyannote[110].end |
330.79784375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
331.05096875 |
transcript.pyannote[111].end |
332.55284375 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
332.89034375 |
transcript.pyannote[112].end |
335.92784375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
335.97846875 |
transcript.pyannote[113].end |
336.02909375 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
336.36659375 |
transcript.pyannote[114].end |
339.64034375 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
336.67034375 |
transcript.pyannote[115].end |
336.68721875 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
339.31971875 |
transcript.pyannote[116].end |
344.06159375 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
342.12096875 |
transcript.pyannote[117].end |
344.85471875 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
345.42846875 |
transcript.pyannote[118].end |
359.70471875 |
transcript.pyannote[119].speaker |
SPEAKER_01 |
transcript.pyannote[119].start |
360.16034375 |
transcript.pyannote[119].end |
370.89284375 |
transcript.pyannote[120].speaker |
SPEAKER_02 |
transcript.pyannote[120].start |
362.20221875 |
transcript.pyannote[120].end |
362.26971875 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
362.26971875 |
transcript.pyannote[121].end |
363.45096875 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
367.04534375 |
transcript.pyannote[122].end |
370.92659375 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
370.92659375 |
transcript.pyannote[123].end |
370.94346875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
372.39471875 |
transcript.pyannote[124].end |
373.30596875 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
373.60971875 |
transcript.pyannote[125].end |
376.69784375 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
376.93409375 |
transcript.pyannote[126].end |
379.21221875 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
379.98846875 |
transcript.pyannote[127].end |
380.91659375 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
380.93346875 |
transcript.pyannote[128].end |
380.95034375 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
380.95034375 |
transcript.pyannote[129].end |
382.46909375 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
381.27096875 |
transcript.pyannote[130].end |
381.33846875 |
transcript.pyannote[131].speaker |
SPEAKER_01 |
transcript.pyannote[131].start |
381.54096875 |
transcript.pyannote[131].end |
383.32971875 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
383.65034375 |
transcript.pyannote[132].end |
384.93284375 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
385.32096875 |
transcript.pyannote[133].end |
387.56534375 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
386.23221875 |
transcript.pyannote[134].end |
387.41346875 |
transcript.pyannote[135].speaker |
SPEAKER_01 |
transcript.pyannote[135].start |
387.81846875 |
transcript.pyannote[135].end |
390.68721875 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
388.74659375 |
transcript.pyannote[136].end |
391.15971875 |
transcript.pyannote[137].speaker |
SPEAKER_01 |
transcript.pyannote[137].start |
391.15971875 |
transcript.pyannote[137].end |
391.54784375 |
transcript.pyannote[138].speaker |
SPEAKER_01 |
transcript.pyannote[138].start |
391.66596875 |
transcript.pyannote[138].end |
393.97784375 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
391.73346875 |
transcript.pyannote[139].end |
394.80471875 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
395.24346875 |
transcript.pyannote[140].end |
396.57659375 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
397.80846875 |
transcript.pyannote[141].end |
401.38596875 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
402.04409375 |
transcript.pyannote[142].end |
402.75284375 |
transcript.pyannote[143].speaker |
SPEAKER_01 |
transcript.pyannote[143].start |
403.27596875 |
transcript.pyannote[143].end |
408.59159375 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
407.54534375 |
transcript.pyannote[144].end |
408.67596875 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
409.40159375 |
transcript.pyannote[145].end |
409.90784375 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
409.90784375 |
transcript.pyannote[146].end |
414.12659375 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
414.97034375 |
transcript.pyannote[147].end |
416.64096875 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
417.19784375 |
transcript.pyannote[148].end |
421.06221875 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
421.34909375 |
transcript.pyannote[149].end |
423.23909375 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
423.71159375 |
transcript.pyannote[150].end |
426.42846875 |
transcript.pyannote[151].speaker |
SPEAKER_01 |
transcript.pyannote[151].start |
426.93471875 |
transcript.pyannote[151].end |
429.33096875 |
transcript.pyannote[152].speaker |
SPEAKER_00 |
transcript.pyannote[152].start |
427.40721875 |
transcript.pyannote[152].end |
433.63409375 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
434.24159375 |
transcript.pyannote[153].end |
435.03471875 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
435.23721875 |
transcript.pyannote[154].end |
436.30034375 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
436.99221875 |
transcript.pyannote[155].end |
438.47721875 |
transcript.pyannote[156].speaker |
SPEAKER_01 |
transcript.pyannote[156].start |
438.73034375 |
transcript.pyannote[156].end |
439.05096875 |
transcript.pyannote[157].speaker |
SPEAKER_00 |
transcript.pyannote[157].start |
439.40534375 |
transcript.pyannote[157].end |
440.41784375 |
transcript.pyannote[158].speaker |
SPEAKER_01 |
transcript.pyannote[158].start |
440.95784375 |
transcript.pyannote[158].end |
442.25721875 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
441.85221875 |
transcript.pyannote[159].end |
445.46346875 |
transcript.pyannote[160].speaker |
SPEAKER_00 |
transcript.pyannote[160].start |
446.12159375 |
transcript.pyannote[160].end |
446.88096875 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
447.01596875 |
transcript.pyannote[161].end |
448.77096875 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
449.53034375 |
transcript.pyannote[162].end |
451.04909375 |
transcript.pyannote[163].speaker |
SPEAKER_00 |
transcript.pyannote[163].start |
451.50471875 |
transcript.pyannote[163].end |
454.66034375 |
transcript.pyannote[164].speaker |
SPEAKER_00 |
transcript.pyannote[164].start |
454.99784375 |
transcript.pyannote[164].end |
457.52909375 |
transcript.pyannote[165].speaker |
SPEAKER_00 |
transcript.pyannote[165].start |
457.59659375 |
transcript.pyannote[165].end |
458.72721875 |
transcript.pyannote[166].speaker |
SPEAKER_00 |
transcript.pyannote[166].start |
459.21659375 |
transcript.pyannote[166].end |
460.07721875 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
460.46534375 |
transcript.pyannote[167].end |
460.76909375 |
transcript.pyannote[168].speaker |
SPEAKER_00 |
transcript.pyannote[168].start |
461.56221875 |
transcript.pyannote[168].end |
462.20346875 |
transcript.pyannote[169].speaker |
SPEAKER_00 |
transcript.pyannote[169].start |
462.69284375 |
transcript.pyannote[169].end |
465.96659375 |
transcript.pyannote[170].speaker |
SPEAKER_01 |
transcript.pyannote[170].start |
466.48971875 |
transcript.pyannote[170].end |
467.87346875 |
transcript.pyannote[171].speaker |
SPEAKER_00 |
transcript.pyannote[171].start |
467.48534375 |
transcript.pyannote[171].end |
468.53159375 |
transcript.pyannote[172].speaker |
SPEAKER_01 |
transcript.pyannote[172].start |
468.53159375 |
transcript.pyannote[172].end |
468.68346875 |
transcript.pyannote[173].speaker |
SPEAKER_00 |
transcript.pyannote[173].start |
469.03784375 |
transcript.pyannote[173].end |
470.99534375 |
transcript.pyannote[174].speaker |
SPEAKER_00 |
transcript.pyannote[174].start |
471.34971875 |
transcript.pyannote[174].end |
472.21034375 |
transcript.pyannote[175].speaker |
SPEAKER_00 |
transcript.pyannote[175].start |
472.61534375 |
transcript.pyannote[175].end |
476.74971875 |
transcript.pyannote[176].speaker |
SPEAKER_01 |
transcript.pyannote[176].start |
477.76221875 |
transcript.pyannote[176].end |
481.37346875 |
transcript.pyannote[177].speaker |
SPEAKER_00 |
transcript.pyannote[177].start |
481.79534375 |
transcript.pyannote[177].end |
482.30159375 |
transcript.pyannote[178].speaker |
SPEAKER_01 |
transcript.pyannote[178].start |
482.30159375 |
transcript.pyannote[178].end |
482.77409375 |
transcript.pyannote[179].speaker |
SPEAKER_00 |
transcript.pyannote[179].start |
482.84159375 |
transcript.pyannote[179].end |
487.93784375 |
transcript.pyannote[180].speaker |
SPEAKER_00 |
transcript.pyannote[180].start |
488.41034375 |
transcript.pyannote[180].end |
498.88971875 |
transcript.pyannote[181].speaker |
SPEAKER_00 |
transcript.pyannote[181].start |
498.94034375 |
transcript.pyannote[181].end |
502.12971875 |
transcript.pyannote[182].speaker |
SPEAKER_02 |
transcript.pyannote[182].start |
502.29846875 |
transcript.pyannote[182].end |
502.61909375 |
transcript.pyannote[183].speaker |
SPEAKER_00 |
transcript.pyannote[183].start |
502.61909375 |
transcript.pyannote[183].end |
504.62721875 |
transcript.pyannote[184].speaker |
SPEAKER_00 |
transcript.pyannote[184].start |
505.09971875 |
transcript.pyannote[184].end |
507.47909375 |
transcript.pyannote[185].speaker |
SPEAKER_00 |
transcript.pyannote[185].start |
508.13721875 |
transcript.pyannote[185].end |
508.94721875 |
transcript.pyannote[186].speaker |
SPEAKER_00 |
transcript.pyannote[186].start |
509.92596875 |
transcript.pyannote[186].end |
511.02284375 |
transcript.pyannote[187].speaker |
SPEAKER_00 |
transcript.pyannote[187].start |
511.37721875 |
transcript.pyannote[187].end |
518.39721875 |
transcript.pyannote[188].speaker |
SPEAKER_00 |
transcript.pyannote[188].start |
518.80221875 |
transcript.pyannote[188].end |
522.97034375 |
transcript.pyannote[189].speaker |
SPEAKER_00 |
transcript.pyannote[189].start |
523.66221875 |
transcript.pyannote[189].end |
525.78846875 |
transcript.pyannote[190].speaker |
SPEAKER_00 |
transcript.pyannote[190].start |
526.12596875 |
transcript.pyannote[190].end |
526.71659375 |
transcript.pyannote[191].speaker |
SPEAKER_00 |
transcript.pyannote[191].start |
527.22284375 |
transcript.pyannote[191].end |
530.80034375 |
transcript.pyannote[192].speaker |
SPEAKER_00 |
transcript.pyannote[192].start |
531.07034375 |
transcript.pyannote[192].end |
532.01534375 |
transcript.pyannote[193].speaker |
SPEAKER_00 |
transcript.pyannote[193].start |
532.42034375 |
transcript.pyannote[193].end |
533.63534375 |
transcript.pyannote[194].speaker |
SPEAKER_00 |
transcript.pyannote[194].start |
534.76596875 |
transcript.pyannote[194].end |
535.47471875 |
transcript.pyannote[195].speaker |
SPEAKER_00 |
transcript.pyannote[195].start |
536.47034375 |
transcript.pyannote[195].end |
537.95534375 |
transcript.pyannote[196].speaker |
SPEAKER_00 |
transcript.pyannote[196].start |
538.25909375 |
transcript.pyannote[196].end |
540.60471875 |
transcript.pyannote[197].speaker |
SPEAKER_01 |
transcript.pyannote[197].start |
540.99284375 |
transcript.pyannote[197].end |
542.07284375 |
transcript.pyannote[198].speaker |
SPEAKER_00 |
transcript.pyannote[198].start |
542.07284375 |
transcript.pyannote[198].end |
542.54534375 |
transcript.pyannote[199].speaker |
SPEAKER_00 |
transcript.pyannote[199].start |
543.03471875 |
transcript.pyannote[199].end |
547.81034375 |
transcript.pyannote[200].speaker |
SPEAKER_00 |
transcript.pyannote[200].start |
547.92846875 |
transcript.pyannote[200].end |
549.54846875 |
transcript.pyannote[201].speaker |
SPEAKER_02 |
transcript.pyannote[201].start |
549.90284375 |
transcript.pyannote[201].end |
550.13909375 |
transcript.pyannote[202].speaker |
SPEAKER_00 |
transcript.pyannote[202].start |
550.45971875 |
transcript.pyannote[202].end |
552.87284375 |
transcript.pyannote[203].speaker |
SPEAKER_00 |
transcript.pyannote[203].start |
553.69971875 |
transcript.pyannote[203].end |
554.89784375 |
transcript.pyannote[204].speaker |
SPEAKER_00 |
transcript.pyannote[204].start |
555.67409375 |
transcript.pyannote[204].end |
559.04909375 |
transcript.pyannote[205].speaker |
SPEAKER_00 |
transcript.pyannote[205].start |
559.53846875 |
transcript.pyannote[205].end |
561.90096875 |
transcript.pyannote[206].speaker |
SPEAKER_00 |
transcript.pyannote[206].start |
562.39034375 |
transcript.pyannote[206].end |
565.44471875 |
transcript.pyannote[207].speaker |
SPEAKER_00 |
transcript.pyannote[207].start |
565.90034375 |
transcript.pyannote[207].end |
569.52846875 |
transcript.pyannote[208].speaker |
SPEAKER_00 |
transcript.pyannote[208].start |
569.76471875 |
transcript.pyannote[208].end |
570.67596875 |
transcript.pyannote[209].speaker |
SPEAKER_00 |
transcript.pyannote[209].start |
570.87846875 |
transcript.pyannote[209].end |
572.38034375 |
transcript.pyannote[210].speaker |
SPEAKER_01 |
transcript.pyannote[210].start |
574.03409375 |
transcript.pyannote[210].end |
579.99096875 |
transcript.pyannote[211].speaker |
SPEAKER_00 |
transcript.pyannote[211].start |
578.33721875 |
transcript.pyannote[211].end |
584.86784375 |
transcript.pyannote[212].speaker |
SPEAKER_00 |
transcript.pyannote[212].start |
585.35721875 |
transcript.pyannote[212].end |
587.85471875 |
transcript.pyannote[213].speaker |
SPEAKER_00 |
transcript.pyannote[213].start |
588.07409375 |
transcript.pyannote[213].end |
595.02659375 |
transcript.pyannote[214].speaker |
SPEAKER_00 |
transcript.pyannote[214].start |
595.33034375 |
transcript.pyannote[214].end |
597.57471875 |
transcript.pyannote[215].speaker |
SPEAKER_00 |
transcript.pyannote[215].start |
597.82784375 |
transcript.pyannote[215].end |
598.84034375 |
transcript.pyannote[216].speaker |
SPEAKER_00 |
transcript.pyannote[216].start |
599.21159375 |
transcript.pyannote[216].end |
601.10159375 |
transcript.pyannote[217].speaker |
SPEAKER_01 |
transcript.pyannote[217].start |
601.89471875 |
transcript.pyannote[217].end |
609.26909375 |
transcript.pyannote[218].speaker |
SPEAKER_00 |
transcript.pyannote[218].start |
608.71221875 |
transcript.pyannote[218].end |
610.60221875 |
transcript.pyannote[219].speaker |
SPEAKER_00 |
transcript.pyannote[219].start |
611.22659375 |
transcript.pyannote[219].end |
614.16284375 |
transcript.pyannote[220].speaker |
SPEAKER_00 |
transcript.pyannote[220].start |
614.66909375 |
transcript.pyannote[220].end |
619.84971875 |
transcript.pyannote[221].speaker |
SPEAKER_00 |
transcript.pyannote[221].start |
620.22096875 |
transcript.pyannote[221].end |
621.50346875 |
transcript.pyannote[222].speaker |
SPEAKER_00 |
transcript.pyannote[222].start |
622.34721875 |
transcript.pyannote[222].end |
628.69221875 |
transcript.pyannote[223].speaker |
SPEAKER_00 |
transcript.pyannote[223].start |
629.04659375 |
transcript.pyannote[223].end |
629.97471875 |
transcript.pyannote[224].speaker |
SPEAKER_00 |
transcript.pyannote[224].start |
630.44721875 |
transcript.pyannote[224].end |
634.02471875 |
transcript.pyannote[225].speaker |
SPEAKER_00 |
transcript.pyannote[225].start |
634.42971875 |
transcript.pyannote[225].end |
634.91909375 |
transcript.pyannote[226].speaker |
SPEAKER_00 |
transcript.pyannote[226].start |
635.27346875 |
transcript.pyannote[226].end |
636.50534375 |
transcript.pyannote[227].speaker |
SPEAKER_00 |
transcript.pyannote[227].start |
636.91034375 |
transcript.pyannote[227].end |
638.00721875 |
transcript.pyannote[228].speaker |
SPEAKER_01 |
transcript.pyannote[228].start |
638.85096875 |
transcript.pyannote[228].end |
641.97284375 |
transcript.pyannote[229].speaker |
SPEAKER_00 |
transcript.pyannote[229].start |
639.44159375 |
transcript.pyannote[229].end |
641.31471875 |
transcript.pyannote[230].speaker |
SPEAKER_00 |
transcript.pyannote[230].start |
641.68596875 |
transcript.pyannote[230].end |
642.83346875 |
transcript.pyannote[231].speaker |
SPEAKER_00 |
transcript.pyannote[231].start |
643.47471875 |
transcript.pyannote[231].end |
646.46159375 |
transcript.pyannote[232].speaker |
SPEAKER_00 |
transcript.pyannote[232].start |
647.00159375 |
transcript.pyannote[232].end |
647.99721875 |
transcript.pyannote[233].speaker |
SPEAKER_00 |
transcript.pyannote[233].start |
648.30096875 |
transcript.pyannote[233].end |
650.98409375 |
transcript.pyannote[234].speaker |
SPEAKER_00 |
transcript.pyannote[234].start |
651.28784375 |
transcript.pyannote[234].end |
652.13159375 |
transcript.pyannote[235].speaker |
SPEAKER_00 |
transcript.pyannote[235].start |
652.68846875 |
transcript.pyannote[235].end |
653.24534375 |
transcript.pyannote[236].speaker |
SPEAKER_00 |
transcript.pyannote[236].start |
653.80221875 |
transcript.pyannote[236].end |
654.37596875 |
transcript.pyannote[237].speaker |
SPEAKER_00 |
transcript.pyannote[237].start |
654.88221875 |
transcript.pyannote[237].end |
655.48971875 |
transcript.pyannote[238].speaker |
SPEAKER_00 |
transcript.pyannote[238].start |
655.89471875 |
transcript.pyannote[238].end |
661.69971875 |
transcript.pyannote[239].speaker |
SPEAKER_00 |
transcript.pyannote[239].start |
661.90221875 |
transcript.pyannote[239].end |
663.01596875 |
transcript.pyannote[240].speaker |
SPEAKER_00 |
transcript.pyannote[240].start |
663.25221875 |
transcript.pyannote[240].end |
665.20971875 |
transcript.pyannote[241].speaker |
SPEAKER_00 |
transcript.pyannote[241].start |
665.63159375 |
transcript.pyannote[241].end |
670.12034375 |
transcript.pyannote[242].speaker |
SPEAKER_01 |
transcript.pyannote[242].start |
670.99784375 |
transcript.pyannote[242].end |
673.83284375 |
transcript.pyannote[243].speaker |
SPEAKER_00 |
transcript.pyannote[243].start |
673.00596875 |
transcript.pyannote[243].end |
673.17471875 |
transcript.pyannote[244].speaker |
SPEAKER_00 |
transcript.pyannote[244].start |
674.18721875 |
transcript.pyannote[244].end |
674.62596875 |
transcript.pyannote[245].speaker |
SPEAKER_00 |
transcript.pyannote[245].start |
674.67659375 |
transcript.pyannote[245].end |
679.72221875 |
transcript.pyannote[246].speaker |
SPEAKER_00 |
transcript.pyannote[246].start |
680.61659375 |
transcript.pyannote[246].end |
681.47721875 |
transcript.pyannote[247].speaker |
SPEAKER_00 |
transcript.pyannote[247].start |
683.09721875 |
transcript.pyannote[247].end |
684.53159375 |
transcript.pyannote[248].speaker |
SPEAKER_01 |
transcript.pyannote[248].start |
683.94096875 |
transcript.pyannote[248].end |
686.65784375 |
transcript.pyannote[249].speaker |
SPEAKER_00 |
transcript.pyannote[249].start |
684.70034375 |
transcript.pyannote[249].end |
687.87284375 |
transcript.pyannote[250].speaker |
SPEAKER_01 |
transcript.pyannote[250].start |
687.87284375 |
transcript.pyannote[250].end |
688.02471875 |
transcript.pyannote[251].speaker |
SPEAKER_01 |
transcript.pyannote[251].start |
688.09221875 |
transcript.pyannote[251].end |
688.22721875 |
transcript.pyannote[252].speaker |
SPEAKER_00 |
transcript.pyannote[252].start |
688.37909375 |
transcript.pyannote[252].end |
691.09596875 |
transcript.pyannote[253].speaker |
SPEAKER_00 |
transcript.pyannote[253].start |
691.97346875 |
transcript.pyannote[253].end |
694.30221875 |
transcript.pyannote[254].speaker |
SPEAKER_00 |
transcript.pyannote[254].start |
694.74096875 |
transcript.pyannote[254].end |
696.64784375 |
transcript.pyannote[255].speaker |
SPEAKER_00 |
transcript.pyannote[255].start |
696.91784375 |
transcript.pyannote[255].end |
698.52096875 |
transcript.pyannote[256].speaker |
SPEAKER_00 |
transcript.pyannote[256].start |
698.55471875 |
transcript.pyannote[256].end |
702.35159375 |
transcript.pyannote[257].speaker |
SPEAKER_01 |
transcript.pyannote[257].start |
702.85784375 |
transcript.pyannote[257].end |
708.20721875 |
transcript.pyannote[258].speaker |
SPEAKER_00 |
transcript.pyannote[258].start |
708.08909375 |
transcript.pyannote[258].end |
713.97846875 |
transcript.pyannote[259].speaker |
SPEAKER_00 |
transcript.pyannote[259].start |
714.26534375 |
transcript.pyannote[259].end |
720.76221875 |
transcript.pyannote[260].speaker |
SPEAKER_00 |
transcript.pyannote[260].start |
720.88034375 |
transcript.pyannote[260].end |
729.08159375 |
transcript.pyannote[261].speaker |
SPEAKER_01 |
transcript.pyannote[261].start |
729.62159375 |
transcript.pyannote[261].end |
733.84034375 |
transcript.pyannote[262].speaker |
SPEAKER_00 |
transcript.pyannote[262].start |
733.08096875 |
transcript.pyannote[262].end |
733.68846875 |
transcript.pyannote[263].speaker |
SPEAKER_01 |
transcript.pyannote[263].start |
734.26221875 |
transcript.pyannote[263].end |
736.38846875 |
transcript.pyannote[264].speaker |
SPEAKER_01 |
transcript.pyannote[264].start |
737.36721875 |
transcript.pyannote[264].end |
738.00846875 |
transcript.pyannote[265].speaker |
SPEAKER_01 |
transcript.pyannote[265].start |
738.71721875 |
transcript.pyannote[265].end |
738.73409375 |
transcript.pyannote[266].speaker |
SPEAKER_00 |
transcript.pyannote[266].start |
738.73409375 |
transcript.pyannote[266].end |
739.89846875 |
transcript.pyannote[267].speaker |
SPEAKER_01 |
transcript.pyannote[267].start |
739.86471875 |
transcript.pyannote[267].end |
743.15534375 |
transcript.pyannote[268].speaker |
SPEAKER_00 |
transcript.pyannote[268].start |
741.19784375 |
transcript.pyannote[268].end |
743.05409375 |
transcript.pyannote[269].speaker |
SPEAKER_00 |
transcript.pyannote[269].start |
743.34096875 |
transcript.pyannote[269].end |
744.99471875 |
transcript.pyannote[270].speaker |
SPEAKER_01 |
transcript.pyannote[270].start |
745.12971875 |
transcript.pyannote[270].end |
745.93971875 |
transcript.pyannote[271].speaker |
SPEAKER_00 |
transcript.pyannote[271].start |
745.50096875 |
transcript.pyannote[271].end |
747.55971875 |
transcript.pyannote[272].speaker |
SPEAKER_01 |
transcript.pyannote[272].start |
748.74096875 |
transcript.pyannote[272].end |
758.81534375 |
transcript.pyannote[273].speaker |
SPEAKER_00 |
transcript.pyannote[273].start |
749.48346875 |
transcript.pyannote[273].end |
750.42846875 |
transcript.pyannote[274].speaker |
SPEAKER_00 |
transcript.pyannote[274].start |
752.28471875 |
transcript.pyannote[274].end |
753.28034375 |
transcript.pyannote[275].speaker |
SPEAKER_00 |
transcript.pyannote[275].start |
757.60034375 |
transcript.pyannote[275].end |
758.64659375 |
transcript.pyannote[276].speaker |
SPEAKER_01 |
transcript.pyannote[276].start |
759.28784375 |
transcript.pyannote[276].end |
764.40096875 |
transcript.pyannote[277].speaker |
SPEAKER_00 |
transcript.pyannote[277].start |
760.46909375 |
transcript.pyannote[277].end |
766.40909375 |
transcript.pyannote[278].speaker |
SPEAKER_01 |
transcript.pyannote[278].start |
764.55284375 |
transcript.pyannote[278].end |
769.69971875 |
transcript.pyannote[279].speaker |
SPEAKER_00 |
transcript.pyannote[279].start |
768.21471875 |
transcript.pyannote[279].end |
770.57721875 |
transcript.pyannote[280].speaker |
SPEAKER_01 |
transcript.pyannote[280].start |
769.71659375 |
transcript.pyannote[280].end |
770.42534375 |
transcript.pyannote[281].speaker |
SPEAKER_01 |
transcript.pyannote[281].start |
770.47596875 |
transcript.pyannote[281].end |
770.94846875 |
transcript.pyannote[282].speaker |
SPEAKER_00 |
transcript.pyannote[282].start |
770.88096875 |
transcript.pyannote[282].end |
774.42471875 |
transcript.pyannote[283].speaker |
SPEAKER_01 |
transcript.pyannote[283].start |
773.88471875 |
transcript.pyannote[283].end |
776.71971875 |
transcript.pyannote[284].speaker |
SPEAKER_01 |
transcript.pyannote[284].start |
777.04034375 |
transcript.pyannote[284].end |
778.54221875 |
transcript.pyannote[285].speaker |
SPEAKER_01 |
transcript.pyannote[285].start |
783.26721875 |
transcript.pyannote[285].end |
785.29221875 |
transcript.whisperx[0].start |
10.738 |
transcript.whisperx[0].end |
34.124 |
transcript.whisperx[0].text |
主席 再當委員先進列席了政府金管署長 官員會長 工作夥伴 媒體記者 女士先生有請財政部理事長也請我們的護稅署宋署長和國庫署的陳署長好 理事長齁 宋署長 陳署長委員早安次長早 兩位署長早我的標題呢 護護稅不是非關稅貿易障礙飲料品類比車輛類更要檢討來 先請教一下關稅 今天的題目請問 次長關稅會不會影響兩國的貿易量 |
transcript.whisperx[1].start |
41.254 |
transcript.whisperx[1].end |
48.459 |
transcript.whisperx[1].text |
會影響嘛所以嚴格來講關稅可不可以視為一種貿易障礙會影響貿易的進行嗎通常是貿易談判一個很重要的因素那什麼叫做非關稅的貿易障礙譬如說進口農產品的農藥檢測會造成外國農產品輸入困難會不會被當作一種非關稅的貿易障礙 |
transcript.whisperx[2].start |
70.062 |
transcript.whisperx[2].end |
89.302 |
transcript.whisperx[2].text |
會嘛,很好,我們來看一下,我們來看一下,川普他21號發文,他說非關稅的作弊有八成,他用作弊喔,他不是說障礙喔他說,台灣我看來看去,貨幣超重,台灣有沒有被列入觀察名單?有轉運逃避關稅,有沒有被擔心台灣來作為席產地? |
transcript.whisperx[3].start |
90.422 |
transcript.whisperx[3].end |
118.111 |
transcript.whisperx[3].text |
有可能但是有一個像什麼補貼傾銷所謂的補貼跟傾銷我相信是沒有啦最近你們財政部國庫署做一個很好的事情有些中國產製的啤酒冒充本地的啤酒我們要嚴格的加以稽查你們有提高他的罰則 有沒有好 那給我們陳署長一個鼓勵該做的事要做好 台灣有沒有傾銷有沒有補貼但是有沒有利用增值稅變相實施關稅跟出國補貼有沒有 台灣有沒有 |
transcript.whisperx[4].start |
119.815 |
transcript.whisperx[4].end |
129.059 |
transcript.whisperx[4].text |
其實嚴格講起來應該是沒有你認為沒有好那我們來問一下請問貨物稅算不算一種利用增值稅變相實施關稅與出口補貼的手段 |
transcript.whisperx[5].start |
130.267 |
transcript.whisperx[5].end |
149.492 |
transcript.whisperx[5].text |
沒有 其實我們貨物稅的課程是就是國內外大家都是公平對待而且世界各國都一樣它就是一個一般的稅一般的特種消費稅所以貨物稅會不會造成兩國貿易量的下降是不是一種非關稅的貿易障礙不會不會 好 很好 肯定答案好 那我們來看一看今天來談貨物稅我們就來談貨物稅 謝謝陳署長可以請回了口頭嘉獎過了 謝謝好 我們看一下 |
transcript.whisperx[6].start |
156.914 |
transcript.whisperx[6].end |
175.005 |
transcript.whisperx[6].text |
來這是你們財政部石料研究室的南京政府時期有三種麵粉捲煙後來棉紗火柴水泥這五種後來要加上了酒跟煙這幾種這九種稅呢成為在二次大戰當時國民政府的重要財源是不是哪一項不是為了充裕國庫 |
transcript.whisperx[7].start |
178.51 |
transcript.whisperx[7].end |
202.848 |
transcript.whisperx[7].text |
他就是一個重要的就是財政收入那都找誰收找實業家嘛當年能製造麵粉的能製造火柴的能製造棉紗的都是實業家工廠在那裡你政府要跟他課稅他跑得掉嗎跑不掉嘛所以你們就是對這些有錢的實業家課稅當然他會轉嫁到消費者身上好 還有一種稅 往下看民國18年的一個報告 |
transcript.whisperx[8].start |
205.239 |
transcript.whisperx[8].end |
221.308 |
transcript.whisperx[8].text |
捲菸它是奢侈品而且會傷肺、弱腦、傷經前在場抽菸的18年前民國上班就這樣做了它變成健康菌的概念現在捲菸算不算貨物稅不課貨物稅課菸酒稅課菸酒稅好往下看所以現在貨物稅拿幾種 |
transcript.whisperx[9].start |
223.237 |
transcript.whisperx[9].end |
251.3 |
transcript.whisperx[9].text |
我們有橡膠輪胎 油氣 電氣 車輛水泥 飲料品 平板玻璃我看了一下你們在民國九十一年你們自己財政部內部的一個貨物稅之檢討距今已經二十四年 二十三年了他說輪胎這個有公共汙染油氣類要節約能源電氣類會消耗能源車輛類會造成交通堵塞這些都有外部成本所以科貨物稅的目的是要怎樣要把外部成本內部化是這樣嗎 |
transcript.whisperx[10].start |
252.641 |
transcript.whisperx[10].end |
271.829 |
transcript.whisperx[10].text |
這是你們自己寫的喔是是這樣喔好可是我搞不懂呢水泥飲料平板玻璃為什麼要課貨物稅水泥說減便因為很容易課稅你就減便就收飲料跟平板玻璃是為了財政目的財政目的收入目的那麼多為什麼找這兩個目的來下手為什麼 |
transcript.whisperx[11].start |
274.215 |
transcript.whisperx[11].end |
290.063 |
transcript.whisperx[11].text |
呃就是課程上也是便利啦便利嘛好抽的就盡量給他抽啦我要叫他思考一下我們看一下貨物稅現在佔比多不多1600億佔我們總稅收的4.3%要充裕國庫實在不需要找貨物稅而且你們還不斷的減免 |
transcript.whisperx[12].start |
291.52 |
transcript.whisperx[12].end |
320.32 |
transcript.whisperx[12].text |
貨物稅十一條之一十二條都是車輛能源效率往下看接下來貨物稅十二之三十二之五通通都是為了什麼拿在手裡然後呢給一些政策性的鼓勵所以現在貨物稅是不是變成政府的一個政策手段都點頭嘛我跟你講我一個朋友啦大家輕鬆一點齁他說他老婆手上那個鑽戒齁我說那個不是鑽戒嗎他說不是那叫小美本我說什麼叫小美本你老婆手上的鑽戒叫小美本說每次老婆跟我吵架我就說我有買鑽戒給你喔 |
transcript.whisperx[13].start |
321.991 |
transcript.whisperx[13].end |
344.456 |
transcript.whisperx[13].text |
所以我覺得政府開貨物稅啊 每當人民覺得對政府不滿覺得這個不滿 那我貨物稅給你調降一下貨物稅變成政府跟人民的小美本欸你們現在有沒有貨物稅都是在延長啊 免稅啊 抵免啊 有沒有然後時間到了呢 大家又來延長啊 抵免啊 是不是這樣可是它確實是一個政策工具 它可以改變我們消費制度是的 可是你這個政策工具有問題 我們往下看 |
transcript.whisperx[14].start |
345.496 |
transcript.whisperx[14].end |
370.678 |
transcript.whisperx[14].text |
你的財稅目的 你的徵收目的 貨物稅來是貨物稅的目的 貨物稅 固定稅率 有錢人沒有錢人都一樣有錢人他消費的占比低 沒有錢人他消費的占比高所以形同是一種窮人稅 你同不同意這個不能這樣解釋啦 因為貨物稅不是單一費率嗎因為它就是一個消費稅 消費稅的性質就是你認為它是消費稅 那為什麼這七項消費稅 我們來看一下 |
transcript.whisperx[15].start |
372.455 |
transcript.whisperx[15].end |
396.289 |
transcript.whisperx[15].text |
橡膠輪胎 油氣類 電氣類 車輛類 水泥類 飲料類 平板玻璃目前哪一個貢獻 稅務貢獻度最高車輛吧車輛 哪個貢獻度最低油漆跟車輛 對貢獻度最低的是哪一個飲料還是玻璃玻璃吧玻璃玻璃是很好的 飲料也很低啦所以哪些是有錢人用比較有錢人開車 一般人就喝飲料 |
transcript.whisperx[16].start |
397.881 |
transcript.whisperx[16].end |
413.924 |
transcript.whisperx[16].text |
有錢的人跟一般的人的消費品你們都給他課同樣的稅這合理嗎?可是因為消費稅它的性質就是這樣那為什麼只有這七種?對啊你說不出來啊既然是消費稅為什麼只有七種?來往下看 |
transcript.whisperx[17].start |
415.017 |
transcript.whisperx[17].end |
435.398 |
transcript.whisperx[17].text |
所以說現在請你們檢討啊高必需性高普及性的民生用品要調整啊避免變成是對窮人瞌睡啊有錢人在喝飲料還是一般人在喝飲料都喝差不多的錢嘛難不成比較有錢人喝得非常的貴沒有他們喝很貴的飲料呢都是菸酒稅啦我們來看一下我們來談飲品齁 |
transcript.whisperx[18].start |
437.04 |
transcript.whisperx[18].end |
460.5 |
transcript.whisperx[18].text |
目前飲料有沒有免稅的有什麼樣的飲品免稅天然 純天然的 天然的統合純天然的都免稅對不對那可是呢你們現在還規定很嚴格喔純天然的果汁跟蔬菜汁必須符合國家標準然後呢如果把這兩種混合的也可以免稅分得好細啊A |
transcript.whisperx[19].start |
461.581 |
transcript.whisperx[19].end |
476.29 |
transcript.whisperx[19].text |
可以免稅B可以免稅所以A加B就可以免稅是不是這樣子對 兩個都一樣好 那往下看現在如果A加B加C這個C還沒有被國家標準認定是純天然的那要不要繳稅 |
transcript.whisperx[20].start |
478.213 |
transcript.whisperx[20].end |
507.273 |
transcript.whisperx[20].text |
呃如果還沒有被認定當然可能就是課稅範圍啦是啊是所以你來看齁現在很多的市售果汁是把很多調在一起他強調都是天然的都沒有加水都是百分之百但是呢必須在CNS有項目的可以只要他放了一個項目是CNS上沒有的就要按照什麼按照8%的稅是不是這樣子是好那這個很不簡正便宜嘛往下看你看看條文往前往前再往前 |
transcript.whisperx[21].start |
508.173 |
transcript.whisperx[21].end |
532.984 |
transcript.whisperx[21].text |
你來看一下喔你們怎麼證明貨物稅證明的認定要主管機關的證明文件是由進口或產製者憑主管機關工業、能源或交通主管機關然後呢來給我們的貨稅的主管機關來證明那麼呢基增機關因洽主管機關提供經驗後注意這幾個字喔本於職權誰的職權 |
transcript.whisperx[22].start |
536.536 |
transcript.whisperx[22].end |
554.734 |
transcript.whisperx[22].text |
所以基深機關的職權還是所謂的交通能源工業機關的職權基深機關的職權是嘛所以說國家標準有沒有符合最後你們要不要認定它是百分之百的天然果菜汁一樣由你們來認定嘛對不對是但是現在情況不是這樣我告訴你來往下看所以現在呢往下看 |
transcript.whisperx[23].start |
555.914 |
transcript.whisperx[23].end |
572.231 |
transcript.whisperx[23].text |
現在呢 我們的情況是 我們很多的飲料強調機能 強調健康 百分之百但是他把他的果菜汁當中有一項只要不在現在的國家標準檢驗局的項目當中你們就給他磕8%的稅 你認為合不合理 |
transcript.whisperx[24].start |
575.06 |
transcript.whisperx[24].end |
600.897 |
transcript.whisperx[24].text |
這個當然就是要看他事實上是不是最後還是符合他要 你知道嗎 國家標準檢驗局檢查一個產品少則半年多則一年這半年一年的貨物稅你要怎麼賠他他如果檢驗出來是說我A加B加C A你們已經證明是純天然 B也是純天然C呢我送去國家標準檢驗局檢查後 證明是天然那我過去這段時間繳的稅要不要退 |
transcript.whisperx[25].start |
601.869 |
transcript.whisperx[25].end |
603.41 |
transcript.whisperx[25].text |
所以說我現在先做第二點請就以立案申請並切決的CNS國家標準五項目的純天然果汁 |
transcript.whisperx[26].start |
622.403 |
transcript.whisperx[26].end |
646.26 |
transcript.whisperx[26].text |
我說我在做純天然果汁有很多的果品跟蔬菜品其中幾個項目還沒取得國家標準年齡的標準但是我竊竊了那麼你們是不是可以給我過度時間就是說比照天然的果汁先免稅如果後來驗不過我再補可以嗎可以這是一個主型的方案第二個請研議現行的高必需性高普及性的民生用品 |
transcript.whisperx[27].start |
647.065 |
transcript.whisperx[27].end |
669.741 |
transcript.whisperx[27].text |
的貨物稅我強調一次只有七項我再背一次給你聽橡膠輪胎油氣電氣車輛這四種有外部成本的另外三種水泥水泥我不曉得有沒有外部成本平板玻璃跟飲料我聽來聽去跟民生最相關的就是飲料是不是針對優先從飲料來減免貨物稅著手可不可以提個報告 |
transcript.whisperx[28].start |
671.395 |
transcript.whisperx[28].end |
690.908 |
transcript.whisperx[28].text |
委員我們可以提出報告,沒問題這七種,當然你要擴及到其他種我有沒有意見,我再唸一次給林主席站起來橡膠輪胎還有油氣類、電氣類、車輛類,這幾種是不是符合我們高B薛馨跟泡芙琴,我不知道 |
transcript.whisperx[29].start |
692.028 |
transcript.whisperx[29].end |
713.265 |
transcript.whisperx[29].text |
平板玻璃跟水泥是屬於建材獨獨這個飲品飲料類是幾乎大家每天都在喝的優先檢討飲品從貨物稅當中排除可不可以這個部分我們可以來研議然後提出一個說明跟報告給文參希望你們要瞭解我從你們民國18年貨物稅開始起徵我們研究到達到現在 |
transcript.whisperx[30].start |
714.526 |
transcript.whisperx[30].end |
728.812 |
transcript.whisperx[30].text |
貨物稅現在存在的價值跟意義都需要深刻的來檢討不要變成政府手上的熊尾笨每當人民或其他國家跟你要什麼相對的籌碼的時候你就拿來當籌碼使用要符合原來稅制的目的 可以嗎 |
transcript.whisperx[31].start |
730.033 |
transcript.whisperx[31].end |
743.559 |
transcript.whisperx[31].text |
這部分謝謝委員指教 我們會往這個方向來演繹好 謝謝委員你沒有給我們時間 所以我們報告多久出來我是因為你這邊講辣藥 我們提出報告你們要多久時間 明年以後的時間都可以 |
transcript.whisperx[32].start |
748.926 |
transcript.whisperx[32].end |
777.415 |
transcript.whisperx[32].text |
報告要多久要多久是第一個可以給我們一個月的時間好 一個月可以那至於第二個部分因為我們可能還要洽一下那個主管機關的意見也是一個月好不好對可以給我們兩個月兩個月第一個比較簡單飲料全部免稅比較簡單一個月第二個CMS比較困難要兩個月我們已經有相關的研究報告已經有研究的過程好 第一項一個月第二項兩個月是好 志願委員來報告我的時間呢24小時以內我都可以接受謝謝好 謝謝張嘉斌委員接著我們請賴會員委員 |
transcript.whisperx[33].start |
783.947 |
transcript.whisperx[33].end |
784.468 |
transcript.whisperx[33].text |
謝謝主席 我們請 |