iVOD / 160511

Field Value
IVOD_ID 160511
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160511
日期 2025-04-23
會議資料.會議代碼 委員會-11-3-19-10
會議資料.會議代碼:str 第11屆第3會期經濟委員會第10次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 10
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第10次全體委員會議
影片種類 Clip
開始時間 2025-04-23T10:52:37+08:00
結束時間 2025-04-23T11:02:09+08:00
影片長度 00:09:32
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/27ac2f54fdf75cc08f8ad4776b62665e7fe8c6252e35fc4a9a3354dc8dbd3a62da6c27b9980abdb35ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 謝衣鳯
委員發言時間 10:52:37 - 11:02:09
會議時間 2025-04-23T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第10次全體委員會議(事由:邀請經濟部部長、國家發展委員會主任委員及衛生福利部首長就「美國實施進口產品國安調查對我國產業之影響及因應之道」進行報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 6.73034375
transcript.pyannote[0].end 10.42596875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 10.57784375
transcript.pyannote[1].end 11.69159375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 14.10471875
transcript.pyannote[2].end 15.92721875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 15.57284375
transcript.pyannote[3].end 15.84284375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 16.21409375
transcript.pyannote[4].end 16.73721875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 17.29409375
transcript.pyannote[5].end 27.16596875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 27.50346875
transcript.pyannote[6].end 27.95909375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 28.93784375
transcript.pyannote[7].end 30.22034375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 30.45659375
transcript.pyannote[8].end 36.71721875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 35.67096875
transcript.pyannote[9].end 43.99034375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 44.63159375
transcript.pyannote[10].end 45.03659375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 45.03659375
transcript.pyannote[11].end 60.81471875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 61.16909375
transcript.pyannote[12].end 63.43034375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 61.21971875
transcript.pyannote[13].end 87.88221875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 68.50971875
transcript.pyannote[14].end 69.16784375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 88.27034375
transcript.pyannote[15].end 96.50534375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 94.26096875
transcript.pyannote[16].end 94.27784375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 94.27784375
transcript.pyannote[17].end 94.32846875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 94.32846875
transcript.pyannote[18].end 94.56471875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 96.89346875
transcript.pyannote[19].end 116.58659375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 116.67096875
transcript.pyannote[20].end 117.49784375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 117.63284375
transcript.pyannote[21].end 125.32784375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 124.78784375
transcript.pyannote[22].end 127.89284375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 126.17159375
transcript.pyannote[23].end 145.40909375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 129.73221875
transcript.pyannote[24].end 130.22159375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 143.73846875
transcript.pyannote[25].end 147.67034375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 146.42159375
transcript.pyannote[26].end 156.56346875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 156.56346875
transcript.pyannote[27].end 156.90096875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 156.90096875
transcript.pyannote[28].end 156.96846875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 156.96846875
transcript.pyannote[29].end 157.44096875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 157.44096875
transcript.pyannote[30].end 157.45784375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 158.38596875
transcript.pyannote[31].end 171.51471875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 172.27409375
transcript.pyannote[32].end 173.57346875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 173.87721875
transcript.pyannote[33].end 175.96971875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 175.96971875
transcript.pyannote[34].end 185.53784375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 185.63909375
transcript.pyannote[35].end 186.51659375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 187.78221875
transcript.pyannote[36].end 195.39284375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 195.56159375
transcript.pyannote[37].end 196.92846875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 197.45159375
transcript.pyannote[38].end 197.85659375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 198.59909375
transcript.pyannote[39].end 201.51846875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 201.51846875
transcript.pyannote[40].end 201.88971875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 202.19346875
transcript.pyannote[41].end 204.64034375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 204.67409375
transcript.pyannote[42].end 204.84284375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 204.84284375
transcript.pyannote[43].end 204.91034375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 204.91034375
transcript.pyannote[44].end 204.97784375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 204.97784375
transcript.pyannote[45].end 205.01159375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 205.01159375
transcript.pyannote[46].end 205.02846875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 205.48409375
transcript.pyannote[47].end 211.64346875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 212.23409375
transcript.pyannote[48].end 216.82409375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 216.89159375
transcript.pyannote[49].end 221.66721875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 221.75159375
transcript.pyannote[50].end 223.28721875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 223.50659375
transcript.pyannote[51].end 223.84409375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 223.96221875
transcript.pyannote[52].end 226.20659375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 226.59471875
transcript.pyannote[53].end 236.85471875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 234.34034375
transcript.pyannote[54].end 234.62721875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 234.84659375
transcript.pyannote[55].end 234.94784375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 236.98971875
transcript.pyannote[56].end 261.35721875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 241.36034375
transcript.pyannote[57].end 241.56284375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 255.33284375
transcript.pyannote[58].end 255.34971875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 255.34971875
transcript.pyannote[59].end 255.83909375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 261.45846875
transcript.pyannote[60].end 261.98159375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 261.98159375
transcript.pyannote[61].end 266.38596875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 266.95971875
transcript.pyannote[62].end 274.45221875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 274.48596875
transcript.pyannote[63].end 277.28721875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 274.90784375
transcript.pyannote[64].end 274.97534375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 274.97534375
transcript.pyannote[65].end 274.99221875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 277.37159375
transcript.pyannote[66].end 284.40846875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 279.58221875
transcript.pyannote[67].end 279.80159375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 279.95346875
transcript.pyannote[68].end 280.03784375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 282.36659375
transcript.pyannote[69].end 285.13409375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 285.06659375
transcript.pyannote[70].end 287.15909375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 286.99034375
transcript.pyannote[71].end 291.39471875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 291.76596875
transcript.pyannote[72].end 295.81596875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 295.90034375
transcript.pyannote[73].end 295.95096875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 295.95096875
transcript.pyannote[74].end 296.11971875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 296.11971875
transcript.pyannote[75].end 297.60471875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 297.80721875
transcript.pyannote[76].end 302.41409375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 298.43159375
transcript.pyannote[77].end 298.76909375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 301.38471875
transcript.pyannote[78].end 310.66596875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 302.58284375
transcript.pyannote[79].end 303.00471875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 310.36221875
transcript.pyannote[80].end 310.58159375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 310.66596875
transcript.pyannote[81].end 314.15909375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 314.63159375
transcript.pyannote[82].end 318.61409375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 318.76596875
transcript.pyannote[83].end 371.70284375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 371.70284375
transcript.pyannote[84].end 398.36534375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 398.85471875
transcript.pyannote[85].end 399.96846875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 399.96846875
transcript.pyannote[86].end 400.42409375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 400.42409375
transcript.pyannote[87].end 400.55909375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 401.03159375
transcript.pyannote[88].end 404.47409375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 404.79471875
transcript.pyannote[89].end 409.55346875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 409.92471875
transcript.pyannote[90].end 415.89846875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 416.13471875
transcript.pyannote[91].end 417.38346875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 418.46346875
transcript.pyannote[92].end 421.18034375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 421.21409375
transcript.pyannote[93].end 421.23096875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 421.41659375
transcript.pyannote[94].end 421.72034375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 422.24346875
transcript.pyannote[95].end 428.89221875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 429.56721875
transcript.pyannote[96].end 431.18721875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 432.18284375
transcript.pyannote[97].end 433.76909375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 433.98846875
transcript.pyannote[98].end 434.02221875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 434.02221875
transcript.pyannote[99].end 434.93346875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 434.69721875
transcript.pyannote[100].end 439.00034375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 439.01721875
transcript.pyannote[101].end 444.34971875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 444.43409375
transcript.pyannote[102].end 444.48471875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 444.48471875
transcript.pyannote[103].end 444.95721875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 444.87284375
transcript.pyannote[104].end 447.52221875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 447.57284375
transcript.pyannote[105].end 447.62346875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 447.62346875
transcript.pyannote[106].end 448.06221875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 447.99471875
transcript.pyannote[107].end 457.25909375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 449.90159375
transcript.pyannote[108].end 454.25534375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 457.74846875
transcript.pyannote[109].end 462.69284375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 460.97159375
transcript.pyannote[110].end 461.42721875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 462.74346875
transcript.pyannote[111].end 462.96284375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 462.96284375
transcript.pyannote[112].end 462.97971875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 463.50284375
transcript.pyannote[113].end 470.64096875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 470.87721875
transcript.pyannote[114].end 474.58971875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 476.12534375
transcript.pyannote[115].end 478.55534375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 478.82534375
transcript.pyannote[116].end 494.23221875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 491.63346875
transcript.pyannote[117].end 491.92034375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 492.25784375
transcript.pyannote[118].end 496.12221875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 496.12221875
transcript.pyannote[119].end 496.49346875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 496.15596875
transcript.pyannote[120].end 496.20659375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 496.42596875
transcript.pyannote[121].end 498.63659375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 498.73784375
transcript.pyannote[122].end 500.86409375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 499.68284375
transcript.pyannote[123].end 535.76159375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 503.59784375
transcript.pyannote[124].end 504.03659375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 510.92159375
transcript.pyannote[125].end 511.14096875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 511.14096875
transcript.pyannote[126].end 511.17471875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 511.17471875
transcript.pyannote[127].end 511.32659375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 522.58221875
transcript.pyannote[128].end 523.10534375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 536.16659375
transcript.pyannote[129].end 539.72721875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 540.48659375
transcript.pyannote[130].end 545.59971875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 545.26221875
transcript.pyannote[131].end 546.08909375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 545.71784375
transcript.pyannote[132].end 545.75159375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 546.22409375
transcript.pyannote[133].end 552.50159375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 552.04596875
transcript.pyannote[134].end 555.33659375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 554.07096875
transcript.pyannote[135].end 559.11659375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 557.63159375
transcript.pyannote[136].end 560.38221875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 560.61846875
transcript.pyannote[137].end 568.60034375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 568.80284375
transcript.pyannote[138].end 569.44409375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 569.44409375
transcript.pyannote[139].end 570.23721875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 569.46096875
transcript.pyannote[140].end 569.47784375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 569.71409375
transcript.pyannote[141].end 570.87846875
transcript.whisperx[0].start 7.332
transcript.whisperx[0].end 26.842
transcript.whisperx[0].text 謝謝主席 我想要請國發會的高副主委好 請高副主委委員好副主委好因為國發會是台積電的股東我想要請問一下之前台積電宣布1000億投資美國那未來會不會再有加碼 會不會
transcript.whisperx[1].start 28.973
transcript.whisperx[1].end 33.535
transcript.whisperx[1].text 有可能嗎我們雖然是台積電的股東我們沒有辦法幫台積電做發言你們參與相關的會議裡面那台積電會不會有再加碼的
transcript.whisperx[2].start 44.9
transcript.whisperx[2].end 60.397
transcript.whisperx[2].text 這樣子的情況我想會不會加碼應該如果就他目前投資應該就是以這個加增加1000億為那個那至於後面會不會加碼可能要看後續的情況而定而且這個應該是公司本身的考量
transcript.whisperx[3].start 61.238
transcript.whisperx[3].end 87.319
transcript.whisperx[3].text 因為這個東西其實對台灣來講一般的民眾來講大家認為非常重要的就是因為他們希望即便台積電到美國去設廠但也要把重要的根留在台灣而不是整個供應鏈都到美國去在這個情況下我想要請問怎麼樣子把根留在台灣
transcript.whisperx[4].start 88.525
transcript.whisperx[4].end 116.375
transcript.whisperx[4].text 跟委員報告 其實目前二瀨米其實今年已經在台灣已經可以量產了那等到美國的這些台積電要到美國去設廠那六個廠完成也是要三年跟五年以後的事情所以台灣在先進半導體的這一塊裡面台灣的就是的確在台灣整個產能在最近就是剛才那個台積電有告發說就算他六個廠完成以後最多也只佔他百分之三十
transcript.whisperx[5].start 117.815
transcript.whisperx[5].end 142.523
transcript.whisperx[5].text 那所以基本上在所以先進製程的產能其實還是在台灣以台灣為主百分之三十的部分就是魏哲嘉那個董事長他在法說會裡面講的就是說就算他所有在目前在美國的所有要建廠的完成以後也只佔二耐敏製程裡面的百分之三十
transcript.whisperx[6].start 143.263
transcript.whisperx[6].end 150.067
transcript.whisperx[6].text 那要是好幾年以後是全球的30%還是美國的30%台積電所有先進製程2奈米以下的30%那1.8呢我覺得接下來2奈米以下它就會往2奈米以下繼續往前進所以我們絕對台灣的先進製程的絕對會領先在
transcript.whisperx[7].start 172.318
transcript.whisperx[7].end 186.311
transcript.whisperx[7].text 美国的这些厂商好谢谢那请回那个郭部长好像对这个题目非常的胸有成竹有准备你来说郭部长请郭部长
transcript.whisperx[8].start 188.368
transcript.whisperx[8].end 203.702
transcript.whisperx[8].text 我想台積電這個題目確實是我非常熟練的題目我跟委員報告台積電前面這三個廠是650億後來要增加大概是1000億
transcript.whisperx[9].start 205.564
transcript.whisperx[9].end 222.675
transcript.whisperx[9].text 那這個是他們已經宣布的事情但是把這個1650億完成的投資這裡面二奈米因為它前面兩個廠一個是四奈米一個是三奈米所以它後面這個二奈米三個廠加起來包括台灣台灣大概有七個廠
transcript.whisperx[10].start 224.076
transcript.whisperx[10].end 246.134
transcript.whisperx[10].text 那這加起來大概占30%好台灣這七個廠七個廠或者將來會再增加必須要看到市場的變異它台積電確實現在開始要設入1.4或者1.6奈米的這個先進製程對 他們已經在做可是1.8是不是已經相對成熟了
transcript.whisperx[11].start 246.334
transcript.whisperx[11].end 265.963
transcript.whisperx[11].text 那個是所謂的縮小版那個部分隨時都是ready的但是他不一定會採取因為那個就是說客戶是不是要用這個製程這個是決定在客戶但台積電比較厲害的地方就是說
transcript.whisperx[12].start 267.023
transcript.whisperx[12].end 291.176
transcript.whisperx[12].text 我今天我的各種先進製程我除了能夠研發以外我能夠大量生產那個大量生產出來的良率我都是靠良率在贏別人的比如說我良率都是七成以上那美國的良率呢他就是贏在這個上面我說美國的良率有沒有辦法比台灣的良率高
transcript.whisperx[13].start 291.823
transcript.whisperx[13].end 313.878
transcript.whisperx[13].text 如果假以时日会跟台湾并起不会比台湾高对啊我是说美国的良率有没有办法比台湾高所以他要晚一个generation的话晚一个generation的话就会跟在台湾的那个世代是一样我看到一个新闻啦就是美国的制造业
transcript.whisperx[14].start 314.699
transcript.whisperx[14].end 330.141
transcript.whisperx[14].text 以高端的就是說成衣像Amos來講他說在美國廠的Amos的那個皮的廢料的就是說耗率是高於其他地區的
transcript.whisperx[15].start 330.501
transcript.whisperx[15].end 351.211
transcript.whisperx[15].text 那所以其實從當初的拜登總統他的晶片法案就是希望台積電或者是這樣子高端的半導體能夠回到美國製造但是美國的製造業有沒有辦法像其他地區一樣這是美國要面對的挑戰嘛
transcript.whisperx[16].start 355.273
transcript.whisperx[16].end 371.421
transcript.whisperx[16].text 那你對台積電很在行啊對於他們這些先進的製程來說的良率有沒有辦法到達像台灣這樣子以及未來我們怎麼樣子能夠把台積電的耕留台灣呢
transcript.whisperx[17].start 372.761
transcript.whisperx[17].end 398.189
transcript.whisperx[17].text 報告委員我想我們現在在亞利桑那裡面因為還有蠻多台積電在台灣的同事去把他的這個量力不斷的在做一些改善提升那現在大概他那個4奈米的部分已經跟台灣的4奈米的製程量力是差不多的就是說經過改善當然會達到到台灣的水準但是要超越台灣其實是有難度的
transcript.whisperx[18].start 398.919
transcript.whisperx[18].end 416.451
transcript.whisperx[18].text 有難度嗎 是不是那我要再請問喔就是目前台灣對美的出口是1163億美元那其中我們的貿易順差是739億美元這裡面有沒有包含軍購台灣對美的軍購沒有 是不是
transcript.whisperx[19].start 422.315
transcript.whisperx[19].end 447.191
transcript.whisperx[19].text 有報紙說啦如果越南透過軍事採購來降低他們對美的關稅那我們有沒有可能這樣子我們有沒有可能加大對美的軍事的採購對美的現在這樣就是說你如果透過民間去採購軍品就透過美國的海關那就會算
transcript.whisperx[20].start 448.072
transcript.whisperx[20].end 473.984
transcript.whisperx[20].text 你如果透過美國的政府不透過海關就不算透過美國的軍購透過美國政府買來的軍購是有保障的透過民間買來的軍購是沒保障的那這個就是抉擇的問題不是不是我講的是說在未來我們整個關稅的談判上面那如果我們加大對美的軍購
transcript.whisperx[21].start 476.209
transcript.whisperx[21].end 498.335
transcript.whisperx[21].text 有沒有辦法能夠降低這個稅越南已經在做了嘛越南有可能會加大他們對美的軍購嘛那既然你說了我們的軍購不算在我們順差的數字裡面那會不會有可能我們要加大軍購加大多少我買很多的軟體啊其實美國都沒有算在關稅上面
transcript.whisperx[22].start 500.664
transcript.whisperx[22].end 521.959
transcript.whisperx[22].text 在談判的時候我們都會跟美國溝通不能夠只從名目上面的關稅資料關稅的紀錄來談這樣子 出操入操但是因為美國他要解決的問題不是只有貿易逆差的問題他要解決很多的譬如說金融上面失衡的問題
transcript.whisperx[23].start 522.859
transcript.whisperx[23].end 539.442
transcript.whisperx[23].text 還有他要讓美國再度偉大製造上面製造空洞化的問題所以我們是我想我們的那個談判小組他們會針對所有美國關心的命題一一的去跟他談判這不是只有單獨一個所謂貿易失衡的問題
transcript.whisperx[24].start 541.206
transcript.whisperx[24].end 568.377
transcript.whisperx[24].text 所以軍購也是有可能那個都是可以談的一個項目而且按照你說的不一定是真的軍購嘛可能從軟體的數字或者是軟體是不計關稅的不計關稅就是不算在也不算在那個數字裡面我們跟美國買那麼多軟體你看看所以未來希望說我們能夠加大就是說把所有對我們有利的關稅條件都拿去談好不好
transcript.whisperx[25].start 569.687
transcript.whisperx[25].end 570.718
transcript.whisperx[25].text 好谢谢谢谢韦英