IVOD_ID |
160511 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/160511 |
日期 |
2025-04-23 |
會議資料.會議代碼 |
委員會-11-3-19-10 |
會議資料.會議代碼:str |
第11屆第3會期經濟委員會第10次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
10 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.標題 |
第11屆第3會期經濟委員會第10次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-04-23T10:52:37+08:00 |
結束時間 |
2025-04-23T11:02:09+08:00 |
影片長度 |
00:09:32 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/27ac2f54fdf75cc08f8ad4776b62665e7fe8c6252e35fc4a9a3354dc8dbd3a62da6c27b9980abdb35ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
謝衣鳯 |
委員發言時間 |
10:52:37 - 11:02:09 |
會議時間 |
2025-04-23T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期經濟委員會第10次全體委員會議(事由:邀請經濟部部長、國家發展委員會主任委員及衛生福利部首長就「美國實施進口產品國安調查對我國產業之影響及因應之道」進行報告,並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_02 |
transcript.pyannote[0].start |
6.73034375 |
transcript.pyannote[0].end |
10.42596875 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
10.57784375 |
transcript.pyannote[1].end |
11.69159375 |
transcript.pyannote[2].speaker |
SPEAKER_02 |
transcript.pyannote[2].start |
14.10471875 |
transcript.pyannote[2].end |
15.92721875 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
15.57284375 |
transcript.pyannote[3].end |
15.84284375 |
transcript.pyannote[4].speaker |
SPEAKER_02 |
transcript.pyannote[4].start |
16.21409375 |
transcript.pyannote[4].end |
16.73721875 |
transcript.pyannote[5].speaker |
SPEAKER_02 |
transcript.pyannote[5].start |
17.29409375 |
transcript.pyannote[5].end |
27.16596875 |
transcript.pyannote[6].speaker |
SPEAKER_02 |
transcript.pyannote[6].start |
27.50346875 |
transcript.pyannote[6].end |
27.95909375 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
28.93784375 |
transcript.pyannote[7].end |
30.22034375 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
30.45659375 |
transcript.pyannote[8].end |
36.71721875 |
transcript.pyannote[9].speaker |
SPEAKER_02 |
transcript.pyannote[9].start |
35.67096875 |
transcript.pyannote[9].end |
43.99034375 |
transcript.pyannote[10].speaker |
SPEAKER_02 |
transcript.pyannote[10].start |
44.63159375 |
transcript.pyannote[10].end |
45.03659375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
45.03659375 |
transcript.pyannote[11].end |
60.81471875 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
61.16909375 |
transcript.pyannote[12].end |
63.43034375 |
transcript.pyannote[13].speaker |
SPEAKER_02 |
transcript.pyannote[13].start |
61.21971875 |
transcript.pyannote[13].end |
87.88221875 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
68.50971875 |
transcript.pyannote[14].end |
69.16784375 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
88.27034375 |
transcript.pyannote[15].end |
96.50534375 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
94.26096875 |
transcript.pyannote[16].end |
94.27784375 |
transcript.pyannote[17].speaker |
SPEAKER_02 |
transcript.pyannote[17].start |
94.27784375 |
transcript.pyannote[17].end |
94.32846875 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
94.32846875 |
transcript.pyannote[18].end |
94.56471875 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
96.89346875 |
transcript.pyannote[19].end |
116.58659375 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
116.67096875 |
transcript.pyannote[20].end |
117.49784375 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
117.63284375 |
transcript.pyannote[21].end |
125.32784375 |
transcript.pyannote[22].speaker |
SPEAKER_02 |
transcript.pyannote[22].start |
124.78784375 |
transcript.pyannote[22].end |
127.89284375 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
126.17159375 |
transcript.pyannote[23].end |
145.40909375 |
transcript.pyannote[24].speaker |
SPEAKER_02 |
transcript.pyannote[24].start |
129.73221875 |
transcript.pyannote[24].end |
130.22159375 |
transcript.pyannote[25].speaker |
SPEAKER_02 |
transcript.pyannote[25].start |
143.73846875 |
transcript.pyannote[25].end |
147.67034375 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
146.42159375 |
transcript.pyannote[26].end |
156.56346875 |
transcript.pyannote[27].speaker |
SPEAKER_02 |
transcript.pyannote[27].start |
156.56346875 |
transcript.pyannote[27].end |
156.90096875 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
156.90096875 |
transcript.pyannote[28].end |
156.96846875 |
transcript.pyannote[29].speaker |
SPEAKER_02 |
transcript.pyannote[29].start |
156.96846875 |
transcript.pyannote[29].end |
157.44096875 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
157.44096875 |
transcript.pyannote[30].end |
157.45784375 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
158.38596875 |
transcript.pyannote[31].end |
171.51471875 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
172.27409375 |
transcript.pyannote[32].end |
173.57346875 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
173.87721875 |
transcript.pyannote[33].end |
175.96971875 |
transcript.pyannote[34].speaker |
SPEAKER_02 |
transcript.pyannote[34].start |
175.96971875 |
transcript.pyannote[34].end |
185.53784375 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
185.63909375 |
transcript.pyannote[35].end |
186.51659375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
187.78221875 |
transcript.pyannote[36].end |
195.39284375 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
195.56159375 |
transcript.pyannote[37].end |
196.92846875 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
197.45159375 |
transcript.pyannote[38].end |
197.85659375 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
198.59909375 |
transcript.pyannote[39].end |
201.51846875 |
transcript.pyannote[40].speaker |
SPEAKER_02 |
transcript.pyannote[40].start |
201.51846875 |
transcript.pyannote[40].end |
201.88971875 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
202.19346875 |
transcript.pyannote[41].end |
204.64034375 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
204.67409375 |
transcript.pyannote[42].end |
204.84284375 |
transcript.pyannote[43].speaker |
SPEAKER_02 |
transcript.pyannote[43].start |
204.84284375 |
transcript.pyannote[43].end |
204.91034375 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
204.91034375 |
transcript.pyannote[44].end |
204.97784375 |
transcript.pyannote[45].speaker |
SPEAKER_02 |
transcript.pyannote[45].start |
204.97784375 |
transcript.pyannote[45].end |
205.01159375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
205.01159375 |
transcript.pyannote[46].end |
205.02846875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
205.48409375 |
transcript.pyannote[47].end |
211.64346875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
212.23409375 |
transcript.pyannote[48].end |
216.82409375 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
216.89159375 |
transcript.pyannote[49].end |
221.66721875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
221.75159375 |
transcript.pyannote[50].end |
223.28721875 |
transcript.pyannote[51].speaker |
SPEAKER_02 |
transcript.pyannote[51].start |
223.50659375 |
transcript.pyannote[51].end |
223.84409375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
223.96221875 |
transcript.pyannote[52].end |
226.20659375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
226.59471875 |
transcript.pyannote[53].end |
236.85471875 |
transcript.pyannote[54].speaker |
SPEAKER_02 |
transcript.pyannote[54].start |
234.34034375 |
transcript.pyannote[54].end |
234.62721875 |
transcript.pyannote[55].speaker |
SPEAKER_02 |
transcript.pyannote[55].start |
234.84659375 |
transcript.pyannote[55].end |
234.94784375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
236.98971875 |
transcript.pyannote[56].end |
261.35721875 |
transcript.pyannote[57].speaker |
SPEAKER_02 |
transcript.pyannote[57].start |
241.36034375 |
transcript.pyannote[57].end |
241.56284375 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
255.33284375 |
transcript.pyannote[58].end |
255.34971875 |
transcript.pyannote[59].speaker |
SPEAKER_02 |
transcript.pyannote[59].start |
255.34971875 |
transcript.pyannote[59].end |
255.83909375 |
transcript.pyannote[60].speaker |
SPEAKER_02 |
transcript.pyannote[60].start |
261.45846875 |
transcript.pyannote[60].end |
261.98159375 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
261.98159375 |
transcript.pyannote[61].end |
266.38596875 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
266.95971875 |
transcript.pyannote[62].end |
274.45221875 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
274.48596875 |
transcript.pyannote[63].end |
277.28721875 |
transcript.pyannote[64].speaker |
SPEAKER_02 |
transcript.pyannote[64].start |
274.90784375 |
transcript.pyannote[64].end |
274.97534375 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
274.97534375 |
transcript.pyannote[65].end |
274.99221875 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
277.37159375 |
transcript.pyannote[66].end |
284.40846875 |
transcript.pyannote[67].speaker |
SPEAKER_02 |
transcript.pyannote[67].start |
279.58221875 |
transcript.pyannote[67].end |
279.80159375 |
transcript.pyannote[68].speaker |
SPEAKER_02 |
transcript.pyannote[68].start |
279.95346875 |
transcript.pyannote[68].end |
280.03784375 |
transcript.pyannote[69].speaker |
SPEAKER_02 |
transcript.pyannote[69].start |
282.36659375 |
transcript.pyannote[69].end |
285.13409375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
285.06659375 |
transcript.pyannote[70].end |
287.15909375 |
transcript.pyannote[71].speaker |
SPEAKER_02 |
transcript.pyannote[71].start |
286.99034375 |
transcript.pyannote[71].end |
291.39471875 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
291.76596875 |
transcript.pyannote[72].end |
295.81596875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
295.90034375 |
transcript.pyannote[73].end |
295.95096875 |
transcript.pyannote[74].speaker |
SPEAKER_02 |
transcript.pyannote[74].start |
295.95096875 |
transcript.pyannote[74].end |
296.11971875 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
296.11971875 |
transcript.pyannote[75].end |
297.60471875 |
transcript.pyannote[76].speaker |
SPEAKER_02 |
transcript.pyannote[76].start |
297.80721875 |
transcript.pyannote[76].end |
302.41409375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
298.43159375 |
transcript.pyannote[77].end |
298.76909375 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
301.38471875 |
transcript.pyannote[78].end |
310.66596875 |
transcript.pyannote[79].speaker |
SPEAKER_02 |
transcript.pyannote[79].start |
302.58284375 |
transcript.pyannote[79].end |
303.00471875 |
transcript.pyannote[80].speaker |
SPEAKER_02 |
transcript.pyannote[80].start |
310.36221875 |
transcript.pyannote[80].end |
310.58159375 |
transcript.pyannote[81].speaker |
SPEAKER_02 |
transcript.pyannote[81].start |
310.66596875 |
transcript.pyannote[81].end |
314.15909375 |
transcript.pyannote[82].speaker |
SPEAKER_02 |
transcript.pyannote[82].start |
314.63159375 |
transcript.pyannote[82].end |
318.61409375 |
transcript.pyannote[83].speaker |
SPEAKER_02 |
transcript.pyannote[83].start |
318.76596875 |
transcript.pyannote[83].end |
371.70284375 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
371.70284375 |
transcript.pyannote[84].end |
398.36534375 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
398.85471875 |
transcript.pyannote[85].end |
399.96846875 |
transcript.pyannote[86].speaker |
SPEAKER_02 |
transcript.pyannote[86].start |
399.96846875 |
transcript.pyannote[86].end |
400.42409375 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
400.42409375 |
transcript.pyannote[87].end |
400.55909375 |
transcript.pyannote[88].speaker |
SPEAKER_02 |
transcript.pyannote[88].start |
401.03159375 |
transcript.pyannote[88].end |
404.47409375 |
transcript.pyannote[89].speaker |
SPEAKER_02 |
transcript.pyannote[89].start |
404.79471875 |
transcript.pyannote[89].end |
409.55346875 |
transcript.pyannote[90].speaker |
SPEAKER_02 |
transcript.pyannote[90].start |
409.92471875 |
transcript.pyannote[90].end |
415.89846875 |
transcript.pyannote[91].speaker |
SPEAKER_02 |
transcript.pyannote[91].start |
416.13471875 |
transcript.pyannote[91].end |
417.38346875 |
transcript.pyannote[92].speaker |
SPEAKER_02 |
transcript.pyannote[92].start |
418.46346875 |
transcript.pyannote[92].end |
421.18034375 |
transcript.pyannote[93].speaker |
SPEAKER_02 |
transcript.pyannote[93].start |
421.21409375 |
transcript.pyannote[93].end |
421.23096875 |
transcript.pyannote[94].speaker |
SPEAKER_02 |
transcript.pyannote[94].start |
421.41659375 |
transcript.pyannote[94].end |
421.72034375 |
transcript.pyannote[95].speaker |
SPEAKER_02 |
transcript.pyannote[95].start |
422.24346875 |
transcript.pyannote[95].end |
428.89221875 |
transcript.pyannote[96].speaker |
SPEAKER_02 |
transcript.pyannote[96].start |
429.56721875 |
transcript.pyannote[96].end |
431.18721875 |
transcript.pyannote[97].speaker |
SPEAKER_02 |
transcript.pyannote[97].start |
432.18284375 |
transcript.pyannote[97].end |
433.76909375 |
transcript.pyannote[98].speaker |
SPEAKER_02 |
transcript.pyannote[98].start |
433.98846875 |
transcript.pyannote[98].end |
434.02221875 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
434.02221875 |
transcript.pyannote[99].end |
434.93346875 |
transcript.pyannote[100].speaker |
SPEAKER_02 |
transcript.pyannote[100].start |
434.69721875 |
transcript.pyannote[100].end |
439.00034375 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
439.01721875 |
transcript.pyannote[101].end |
444.34971875 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
444.43409375 |
transcript.pyannote[102].end |
444.48471875 |
transcript.pyannote[103].speaker |
SPEAKER_02 |
transcript.pyannote[103].start |
444.48471875 |
transcript.pyannote[103].end |
444.95721875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
444.87284375 |
transcript.pyannote[104].end |
447.52221875 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
447.57284375 |
transcript.pyannote[105].end |
447.62346875 |
transcript.pyannote[106].speaker |
SPEAKER_02 |
transcript.pyannote[106].start |
447.62346875 |
transcript.pyannote[106].end |
448.06221875 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
447.99471875 |
transcript.pyannote[107].end |
457.25909375 |
transcript.pyannote[108].speaker |
SPEAKER_02 |
transcript.pyannote[108].start |
449.90159375 |
transcript.pyannote[108].end |
454.25534375 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
457.74846875 |
transcript.pyannote[109].end |
462.69284375 |
transcript.pyannote[110].speaker |
SPEAKER_02 |
transcript.pyannote[110].start |
460.97159375 |
transcript.pyannote[110].end |
461.42721875 |
transcript.pyannote[111].speaker |
SPEAKER_02 |
transcript.pyannote[111].start |
462.74346875 |
transcript.pyannote[111].end |
462.96284375 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
462.96284375 |
transcript.pyannote[112].end |
462.97971875 |
transcript.pyannote[113].speaker |
SPEAKER_02 |
transcript.pyannote[113].start |
463.50284375 |
transcript.pyannote[113].end |
470.64096875 |
transcript.pyannote[114].speaker |
SPEAKER_02 |
transcript.pyannote[114].start |
470.87721875 |
transcript.pyannote[114].end |
474.58971875 |
transcript.pyannote[115].speaker |
SPEAKER_02 |
transcript.pyannote[115].start |
476.12534375 |
transcript.pyannote[115].end |
478.55534375 |
transcript.pyannote[116].speaker |
SPEAKER_02 |
transcript.pyannote[116].start |
478.82534375 |
transcript.pyannote[116].end |
494.23221875 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
491.63346875 |
transcript.pyannote[117].end |
491.92034375 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
492.25784375 |
transcript.pyannote[118].end |
496.12221875 |
transcript.pyannote[119].speaker |
SPEAKER_02 |
transcript.pyannote[119].start |
496.12221875 |
transcript.pyannote[119].end |
496.49346875 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
496.15596875 |
transcript.pyannote[120].end |
496.20659375 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
496.42596875 |
transcript.pyannote[121].end |
498.63659375 |
transcript.pyannote[122].speaker |
SPEAKER_02 |
transcript.pyannote[122].start |
498.73784375 |
transcript.pyannote[122].end |
500.86409375 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
499.68284375 |
transcript.pyannote[123].end |
535.76159375 |
transcript.pyannote[124].speaker |
SPEAKER_02 |
transcript.pyannote[124].start |
503.59784375 |
transcript.pyannote[124].end |
504.03659375 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
510.92159375 |
transcript.pyannote[125].end |
511.14096875 |
transcript.pyannote[126].speaker |
SPEAKER_02 |
transcript.pyannote[126].start |
511.14096875 |
transcript.pyannote[126].end |
511.17471875 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
511.17471875 |
transcript.pyannote[127].end |
511.32659375 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
522.58221875 |
transcript.pyannote[128].end |
523.10534375 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
536.16659375 |
transcript.pyannote[129].end |
539.72721875 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
540.48659375 |
transcript.pyannote[130].end |
545.59971875 |
transcript.pyannote[131].speaker |
SPEAKER_02 |
transcript.pyannote[131].start |
545.26221875 |
transcript.pyannote[131].end |
546.08909375 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
545.71784375 |
transcript.pyannote[132].end |
545.75159375 |
transcript.pyannote[133].speaker |
SPEAKER_02 |
transcript.pyannote[133].start |
546.22409375 |
transcript.pyannote[133].end |
552.50159375 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
552.04596875 |
transcript.pyannote[134].end |
555.33659375 |
transcript.pyannote[135].speaker |
SPEAKER_02 |
transcript.pyannote[135].start |
554.07096875 |
transcript.pyannote[135].end |
559.11659375 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
557.63159375 |
transcript.pyannote[136].end |
560.38221875 |
transcript.pyannote[137].speaker |
SPEAKER_02 |
transcript.pyannote[137].start |
560.61846875 |
transcript.pyannote[137].end |
568.60034375 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
568.80284375 |
transcript.pyannote[138].end |
569.44409375 |
transcript.pyannote[139].speaker |
SPEAKER_02 |
transcript.pyannote[139].start |
569.44409375 |
transcript.pyannote[139].end |
570.23721875 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
569.46096875 |
transcript.pyannote[140].end |
569.47784375 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
569.71409375 |
transcript.pyannote[141].end |
570.87846875 |
transcript.whisperx[0].start |
7.332 |
transcript.whisperx[0].end |
26.842 |
transcript.whisperx[0].text |
謝謝主席 我想要請國發會的高副主委好 請高副主委委員好副主委好因為國發會是台積電的股東我想要請問一下之前台積電宣布1000億投資美國那未來會不會再有加碼 會不會 |
transcript.whisperx[1].start |
28.973 |
transcript.whisperx[1].end |
33.535 |
transcript.whisperx[1].text |
有可能嗎我們雖然是台積電的股東我們沒有辦法幫台積電做發言你們參與相關的會議裡面那台積電會不會有再加碼的 |
transcript.whisperx[2].start |
44.9 |
transcript.whisperx[2].end |
60.397 |
transcript.whisperx[2].text |
這樣子的情況我想會不會加碼應該如果就他目前投資應該就是以這個加增加1000億為那個那至於後面會不會加碼可能要看後續的情況而定而且這個應該是公司本身的考量 |
transcript.whisperx[3].start |
61.238 |
transcript.whisperx[3].end |
87.319 |
transcript.whisperx[3].text |
因為這個東西其實對台灣來講一般的民眾來講大家認為非常重要的就是因為他們希望即便台積電到美國去設廠但也要把重要的根留在台灣而不是整個供應鏈都到美國去在這個情況下我想要請問怎麼樣子把根留在台灣 |
transcript.whisperx[4].start |
88.525 |
transcript.whisperx[4].end |
116.375 |
transcript.whisperx[4].text |
跟委員報告 其實目前二瀨米其實今年已經在台灣已經可以量產了那等到美國的這些台積電要到美國去設廠那六個廠完成也是要三年跟五年以後的事情所以台灣在先進半導體的這一塊裡面台灣的就是的確在台灣整個產能在最近就是剛才那個台積電有告發說就算他六個廠完成以後最多也只佔他百分之三十 |
transcript.whisperx[5].start |
117.815 |
transcript.whisperx[5].end |
142.523 |
transcript.whisperx[5].text |
那所以基本上在所以先進製程的產能其實還是在台灣以台灣為主百分之三十的部分就是魏哲嘉那個董事長他在法說會裡面講的就是說就算他所有在目前在美國的所有要建廠的完成以後也只佔二耐敏製程裡面的百分之三十 |
transcript.whisperx[6].start |
143.263 |
transcript.whisperx[6].end |
150.067 |
transcript.whisperx[6].text |
那要是好幾年以後是全球的30%還是美國的30%台積電所有先進製程2奈米以下的30%那1.8呢我覺得接下來2奈米以下它就會往2奈米以下繼續往前進所以我們絕對台灣的先進製程的絕對會領先在 |
transcript.whisperx[7].start |
172.318 |
transcript.whisperx[7].end |
186.311 |
transcript.whisperx[7].text |
美国的这些厂商好谢谢那请回那个郭部长好像对这个题目非常的胸有成竹有准备你来说郭部长请郭部长 |
transcript.whisperx[8].start |
188.368 |
transcript.whisperx[8].end |
203.702 |
transcript.whisperx[8].text |
我想台積電這個題目確實是我非常熟練的題目我跟委員報告台積電前面這三個廠是650億後來要增加大概是1000億 |
transcript.whisperx[9].start |
205.564 |
transcript.whisperx[9].end |
222.675 |
transcript.whisperx[9].text |
那這個是他們已經宣布的事情但是把這個1650億完成的投資這裡面二奈米因為它前面兩個廠一個是四奈米一個是三奈米所以它後面這個二奈米三個廠加起來包括台灣台灣大概有七個廠 |
transcript.whisperx[10].start |
224.076 |
transcript.whisperx[10].end |
246.134 |
transcript.whisperx[10].text |
那這加起來大概占30%好台灣這七個廠七個廠或者將來會再增加必須要看到市場的變異它台積電確實現在開始要設入1.4或者1.6奈米的這個先進製程對 他們已經在做可是1.8是不是已經相對成熟了 |
transcript.whisperx[11].start |
246.334 |
transcript.whisperx[11].end |
265.963 |
transcript.whisperx[11].text |
那個是所謂的縮小版那個部分隨時都是ready的但是他不一定會採取因為那個就是說客戶是不是要用這個製程這個是決定在客戶但台積電比較厲害的地方就是說 |
transcript.whisperx[12].start |
267.023 |
transcript.whisperx[12].end |
291.176 |
transcript.whisperx[12].text |
我今天我的各種先進製程我除了能夠研發以外我能夠大量生產那個大量生產出來的良率我都是靠良率在贏別人的比如說我良率都是七成以上那美國的良率呢他就是贏在這個上面我說美國的良率有沒有辦法比台灣的良率高 |
transcript.whisperx[13].start |
291.823 |
transcript.whisperx[13].end |
313.878 |
transcript.whisperx[13].text |
如果假以时日会跟台湾并起不会比台湾高对啊我是说美国的良率有没有办法比台湾高所以他要晚一个generation的话晚一个generation的话就会跟在台湾的那个世代是一样我看到一个新闻啦就是美国的制造业 |
transcript.whisperx[14].start |
314.699 |
transcript.whisperx[14].end |
330.141 |
transcript.whisperx[14].text |
以高端的就是說成衣像Amos來講他說在美國廠的Amos的那個皮的廢料的就是說耗率是高於其他地區的 |
transcript.whisperx[15].start |
330.501 |
transcript.whisperx[15].end |
351.211 |
transcript.whisperx[15].text |
那所以其實從當初的拜登總統他的晶片法案就是希望台積電或者是這樣子高端的半導體能夠回到美國製造但是美國的製造業有沒有辦法像其他地區一樣這是美國要面對的挑戰嘛 |
transcript.whisperx[16].start |
355.273 |
transcript.whisperx[16].end |
371.421 |
transcript.whisperx[16].text |
那你對台積電很在行啊對於他們這些先進的製程來說的良率有沒有辦法到達像台灣這樣子以及未來我們怎麼樣子能夠把台積電的耕留台灣呢 |
transcript.whisperx[17].start |
372.761 |
transcript.whisperx[17].end |
398.189 |
transcript.whisperx[17].text |
報告委員我想我們現在在亞利桑那裡面因為還有蠻多台積電在台灣的同事去把他的這個量力不斷的在做一些改善提升那現在大概他那個4奈米的部分已經跟台灣的4奈米的製程量力是差不多的就是說經過改善當然會達到到台灣的水準但是要超越台灣其實是有難度的 |
transcript.whisperx[18].start |
398.919 |
transcript.whisperx[18].end |
416.451 |
transcript.whisperx[18].text |
有難度嗎 是不是那我要再請問喔就是目前台灣對美的出口是1163億美元那其中我們的貿易順差是739億美元這裡面有沒有包含軍購台灣對美的軍購沒有 是不是 |
transcript.whisperx[19].start |
422.315 |
transcript.whisperx[19].end |
447.191 |
transcript.whisperx[19].text |
有報紙說啦如果越南透過軍事採購來降低他們對美的關稅那我們有沒有可能這樣子我們有沒有可能加大對美的軍事的採購對美的現在這樣就是說你如果透過民間去採購軍品就透過美國的海關那就會算 |
transcript.whisperx[20].start |
448.072 |
transcript.whisperx[20].end |
473.984 |
transcript.whisperx[20].text |
你如果透過美國的政府不透過海關就不算透過美國的軍購透過美國政府買來的軍購是有保障的透過民間買來的軍購是沒保障的那這個就是抉擇的問題不是不是我講的是說在未來我們整個關稅的談判上面那如果我們加大對美的軍購 |
transcript.whisperx[21].start |
476.209 |
transcript.whisperx[21].end |
498.335 |
transcript.whisperx[21].text |
有沒有辦法能夠降低這個稅越南已經在做了嘛越南有可能會加大他們對美的軍購嘛那既然你說了我們的軍購不算在我們順差的數字裡面那會不會有可能我們要加大軍購加大多少我買很多的軟體啊其實美國都沒有算在關稅上面 |
transcript.whisperx[22].start |
500.664 |
transcript.whisperx[22].end |
521.959 |
transcript.whisperx[22].text |
在談判的時候我們都會跟美國溝通不能夠只從名目上面的關稅資料關稅的紀錄來談這樣子 出操入操但是因為美國他要解決的問題不是只有貿易逆差的問題他要解決很多的譬如說金融上面失衡的問題 |
transcript.whisperx[23].start |
522.859 |
transcript.whisperx[23].end |
539.442 |
transcript.whisperx[23].text |
還有他要讓美國再度偉大製造上面製造空洞化的問題所以我們是我想我們的那個談判小組他們會針對所有美國關心的命題一一的去跟他談判這不是只有單獨一個所謂貿易失衡的問題 |
transcript.whisperx[24].start |
541.206 |
transcript.whisperx[24].end |
568.377 |
transcript.whisperx[24].text |
所以軍購也是有可能那個都是可以談的一個項目而且按照你說的不一定是真的軍購嘛可能從軟體的數字或者是軟體是不計關稅的不計關稅就是不算在也不算在那個數字裡面我們跟美國買那麼多軟體你看看所以未來希望說我們能夠加大就是說把所有對我們有利的關稅條件都拿去談好不好 |
transcript.whisperx[25].start |
569.687 |
transcript.whisperx[25].end |
570.718 |
transcript.whisperx[25].text |
好谢谢谢谢韦英 |