iVOD / 160483

Field Value
IVOD_ID 160483
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160483
日期 2025-04-23
會議資料.會議代碼 委員會-11-3-20-9
會議資料.會議代碼:str 第11屆第3會期財政委員會第9次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 9
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第9次全體委員會議
影片種類 Clip
開始時間 2025-04-23T10:00:30+08:00
結束時間 2025-04-23T10:11:52+08:00
影片長度 00:11:22
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/27ac2f54fdf75cc077d1e70f87a5200ec0f390e692fb4f2487b5e96e7cd6ee72f151987b109fadff5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 吳秉叡
委員發言時間 10:00:30 - 10:11:52
會議時間 2025-04-23T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第9次全體委員會議(事由:一、審查「貨物稅條例」34案: (一) 本院委員葉元之等21人擬具「貨物稅條例刪除部分條文草案」案。 (二) 本院委員廖先翔等16人擬具「貨物稅條例刪除第八條條文草案」案。 (三) 本院台灣民眾黨黨團擬具「貨物稅條例第十一條、第十一條之一及第三十七條條文修正草案」案。 (四) 本院委員邱若華等20人擬具「貨物稅條例第十一條條文修正草案」案。 (五) 本院委員魯明哲等16人、委員顏寬恒等19人、委員羅廷瑋等16人、委員賴士葆等21人、委員邱鎮軍等22人、委員徐欣瑩等27人、委員翁曉玲等17人、委員羅明才等16人、委員郭國文等17人、委員王鴻薇等24人、委員廖偉翔等17人、委員許宇甄等21人、委員黃建賓等16人、委員林思銘等21人、委員萬美玲等16人分別擬具「貨物稅條例第十一條之一條文修正草案」等15案。 (六) 本院委員李坤城等24人擬具「貨物稅條例第十一條之一、第十二條之五及第十二條之六條文修正草案」案。 (七) 本院委員鄭天財Sra Kacaw等19人、委員林思銘等19人、委員涂權吉等17人、委員陳玉珍等19人、委員馬文君等18人、委員王世堅等19人、委員張智倫等25人、委員魯明哲等16人、委員王鴻薇等19人、委員楊瓊瓔等20人、委員邱鎮軍等24人、委員萬美玲等18人、委員廖偉翔等17人分別擬具「貨物稅條例第十二條條文修正草案」等13案。 (八) 本院委員邱鎮軍等19人擬具「貨物稅條例第十二條之三條文修正草案」案。 二、審查人民請願案有關「貨物稅條例」7案。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 0.70596875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 0.95909375
transcript.pyannote[1].end 3.49034375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 5.76846875
transcript.pyannote[2].end 6.32534375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 7.75971875
transcript.pyannote[3].end 14.83034375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 15.25221875
transcript.pyannote[4].end 15.80909375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 15.28596875
transcript.pyannote[5].end 15.99471875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 16.14659375
transcript.pyannote[6].end 19.87596875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 20.11221875
transcript.pyannote[7].end 31.11471875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 20.14596875
transcript.pyannote[8].end 20.19659375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 25.61346875
transcript.pyannote[9].end 25.98471875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 31.31721875
transcript.pyannote[10].end 34.91159375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 31.33409375
transcript.pyannote[11].end 31.38471875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 31.38471875
transcript.pyannote[12].end 31.70534375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 31.70534375
transcript.pyannote[13].end 31.73909375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 35.01284375
transcript.pyannote[14].end 41.47596875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 39.40034375
transcript.pyannote[15].end 40.51409375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 40.85159375
transcript.pyannote[16].end 42.23534375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 41.59409375
transcript.pyannote[17].end 42.79221875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 42.79221875
transcript.pyannote[18].end 44.44596875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 44.76659375
transcript.pyannote[19].end 50.13284375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 50.68971875
transcript.pyannote[20].end 53.01846875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 53.81159375
transcript.pyannote[21].end 54.70596875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 53.86221875
transcript.pyannote[22].end 66.68721875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 59.16096875
transcript.pyannote[23].end 59.86971875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 66.92346875
transcript.pyannote[24].end 68.49284375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 68.66159375
transcript.pyannote[25].end 69.30284375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 69.64034375
transcript.pyannote[26].end 72.54284375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 76.86284375
transcript.pyannote[27].end 89.65409375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 89.94096875
transcript.pyannote[28].end 102.63096875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 102.68159375
transcript.pyannote[29].end 104.13284375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 104.60534375
transcript.pyannote[30].end 104.77409375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 105.56721875
transcript.pyannote[31].end 107.11971875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 108.04784375
transcript.pyannote[32].end 129.96846875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 108.52034375
transcript.pyannote[33].end 109.56659375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 129.96846875
transcript.pyannote[34].end 131.57159375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 131.57159375
transcript.pyannote[35].end 137.41034375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 131.60534375
transcript.pyannote[36].end 131.63909375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 131.94284375
transcript.pyannote[37].end 133.20846875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 136.07721875
transcript.pyannote[38].end 143.65409375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 144.22784375
transcript.pyannote[39].end 145.42596875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 145.61159375
transcript.pyannote[40].end 146.32034375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 146.94471875
transcript.pyannote[41].end 147.60284375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 147.90659375
transcript.pyannote[42].end 149.22284375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 149.47596875
transcript.pyannote[43].end 154.50471875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 154.70721875
transcript.pyannote[44].end 156.47909375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 157.05284375
transcript.pyannote[45].end 157.45784375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 157.93034375
transcript.pyannote[46].end 164.46096875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 164.98409375
transcript.pyannote[47].end 165.03471875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 165.03471875
transcript.pyannote[48].end 165.20346875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 165.20346875
transcript.pyannote[49].end 165.28784375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 165.28784375
transcript.pyannote[50].end 165.32159375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 165.32159375
transcript.pyannote[51].end 165.42284375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 165.42284375
transcript.pyannote[52].end 165.45659375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 165.45659375
transcript.pyannote[53].end 166.77284375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 166.95846875
transcript.pyannote[54].end 168.17346875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 168.34221875
transcript.pyannote[55].end 171.34596875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 172.76346875
transcript.pyannote[56].end 174.65346875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 175.00784375
transcript.pyannote[57].end 176.52659375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 177.21846875
transcript.pyannote[58].end 183.59721875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 184.28909375
transcript.pyannote[59].end 185.99346875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 186.53346875
transcript.pyannote[60].end 187.52909375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 187.88346875
transcript.pyannote[61].end 189.63846875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 191.02221875
transcript.pyannote[62].end 195.15659375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 195.59534375
transcript.pyannote[63].end 198.41346875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 198.93659375
transcript.pyannote[64].end 203.72909375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 202.88534375
transcript.pyannote[65].end 203.88096875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 204.28596875
transcript.pyannote[66].end 206.58096875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 207.00284375
transcript.pyannote[67].end 207.05346875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 207.05346875
transcript.pyannote[68].end 207.07034375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 207.07034375
transcript.pyannote[69].end 207.40784375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 207.08721875
transcript.pyannote[70].end 207.47534375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 207.45846875
transcript.pyannote[71].end 207.99846875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 207.49221875
transcript.pyannote[72].end 207.50909375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 208.57221875
transcript.pyannote[73].end 217.19534375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 217.63409375
transcript.pyannote[74].end 219.60846875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 219.32159375
transcript.pyannote[75].end 221.83596875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 221.83596875
transcript.pyannote[76].end 221.92034375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 221.92034375
transcript.pyannote[77].end 221.93721875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 222.73034375
transcript.pyannote[78].end 226.93221875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 227.82659375
transcript.pyannote[79].end 229.17659375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 229.96971875
transcript.pyannote[80].end 231.94409375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 233.12534375
transcript.pyannote[81].end 245.39346875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 246.50721875
transcript.pyannote[82].end 248.56596875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 249.00471875
transcript.pyannote[83].end 249.35909375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 249.25784375
transcript.pyannote[84].end 252.95346875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 253.39221875
transcript.pyannote[85].end 258.84284375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 259.19721875
transcript.pyannote[86].end 262.92659375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 263.95596875
transcript.pyannote[87].end 264.64784375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 264.64784375
transcript.pyannote[88].end 265.20471875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 265.62659375
transcript.pyannote[89].end 267.90471875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 268.57971875
transcript.pyannote[90].end 271.58346875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 272.42721875
transcript.pyannote[91].end 274.41846875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 275.32971875
transcript.pyannote[92].end 285.04971875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 285.40409375
transcript.pyannote[93].end 292.87971875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 293.65596875
transcript.pyannote[94].end 295.68096875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 296.79471875
transcript.pyannote[95].end 299.76471875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 301.11471875
transcript.pyannote[96].end 308.48909375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 308.79284375
transcript.pyannote[97].end 312.20159375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 315.89721875
transcript.pyannote[98].end 316.40346875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 316.55534375
transcript.pyannote[99].end 317.33159375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 317.80409375
transcript.pyannote[100].end 320.35221875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 320.84159375
transcript.pyannote[101].end 326.84909375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 327.30471875
transcript.pyannote[102].end 331.89471875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 332.60346875
transcript.pyannote[103].end 333.83534375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 334.86471875
transcript.pyannote[104].end 336.61971875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 337.15971875
transcript.pyannote[105].end 338.88096875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 339.45471875
transcript.pyannote[106].end 341.07471875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 341.68221875
transcript.pyannote[107].end 342.96471875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 343.74096875
transcript.pyannote[108].end 345.27659375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 346.23846875
transcript.pyannote[109].end 348.63471875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 349.10721875
transcript.pyannote[110].end 351.45284375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 352.14471875
transcript.pyannote[111].end 352.48221875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 352.98846875
transcript.pyannote[112].end 353.93346875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 354.62534375
transcript.pyannote[113].end 356.61659375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 356.93721875
transcript.pyannote[114].end 357.93284375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 358.00034375
transcript.pyannote[115].end 359.99159375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 360.41346875
transcript.pyannote[116].end 361.54409375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 362.99534375
transcript.pyannote[117].end 364.90221875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 365.77971875
transcript.pyannote[118].end 367.33221875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 367.75409375
transcript.pyannote[119].end 369.77909375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 371.24721875
transcript.pyannote[120].end 372.15846875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 372.41159375
transcript.pyannote[121].end 373.59284375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 374.21721875
transcript.pyannote[122].end 375.22971875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 376.51221875
transcript.pyannote[123].end 383.95409375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 384.56159375
transcript.pyannote[124].end 385.20284375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 385.50659375
transcript.pyannote[125].end 386.94096875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 387.39659375
transcript.pyannote[126].end 393.43784375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 393.64034375
transcript.pyannote[127].end 396.07034375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 396.23909375
transcript.pyannote[128].end 399.17534375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 399.44534375
transcript.pyannote[129].end 403.93409375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 404.11971875
transcript.pyannote[130].end 417.90659375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 418.15971875
transcript.pyannote[131].end 419.50971875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 419.83034375
transcript.pyannote[132].end 421.95659375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 422.58096875
transcript.pyannote[133].end 430.03971875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 430.42784375
transcript.pyannote[134].end 431.40659375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 432.28409375
transcript.pyannote[135].end 435.13596875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 436.62096875
transcript.pyannote[136].end 438.37596875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 438.69659375
transcript.pyannote[137].end 442.42596875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 443.52284375
transcript.pyannote[138].end 446.40846875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 446.50971875
transcript.pyannote[139].end 447.91034375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 449.12534375
transcript.pyannote[140].end 451.09971875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 452.04471875
transcript.pyannote[141].end 459.97596875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 460.54971875
transcript.pyannote[142].end 462.00096875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 462.47346875
transcript.pyannote[143].end 470.42159375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 469.57784375
transcript.pyannote[144].end 475.51784375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 475.75409375
transcript.pyannote[145].end 479.09534375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 479.50034375
transcript.pyannote[146].end 482.47034375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 482.82471875
transcript.pyannote[147].end 495.61596875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 495.98721875
transcript.pyannote[148].end 503.10846875
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 503.95221875
transcript.pyannote[149].end 504.98159375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 506.12909375
transcript.pyannote[150].end 508.17096875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 510.31409375
transcript.pyannote[151].end 512.89596875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 515.29221875
transcript.pyannote[152].end 516.59159375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 518.00909375
transcript.pyannote[153].end 518.24534375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 519.24096875
transcript.pyannote[154].end 538.68096875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 538.30971875
transcript.pyannote[155].end 543.70971875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 544.21596875
transcript.pyannote[156].end 545.02596875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 545.29596875
transcript.pyannote[157].end 552.82221875
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 554.02034375
transcript.pyannote[158].end 555.18471875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 555.30284375
transcript.pyannote[159].end 557.49659375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 558.20534375
transcript.pyannote[160].end 564.12846875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 565.29284375
transcript.pyannote[161].end 566.03534375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 566.74409375
transcript.pyannote[162].end 572.70096875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 573.51096875
transcript.pyannote[163].end 575.40096875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 576.58221875
transcript.pyannote[164].end 577.71284375
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 578.28659375
transcript.pyannote[165].end 580.63221875
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 581.47596875
transcript.pyannote[166].end 582.72471875
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 584.20971875
transcript.pyannote[167].end 585.79596875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 587.06159375
transcript.pyannote[168].end 587.75346875
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 588.24284375
transcript.pyannote[169].end 591.48284375
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 592.02284375
transcript.pyannote[170].end 592.49534375
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 592.84971875
transcript.pyannote[171].end 594.79034375
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 594.97596875
transcript.pyannote[172].end 596.19096875
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 596.56221875
transcript.pyannote[173].end 600.30846875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 600.96659375
transcript.pyannote[174].end 601.99596875
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 602.58659375
transcript.pyannote[175].end 603.05909375
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 603.61596875
transcript.pyannote[176].end 605.26971875
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 606.24846875
transcript.pyannote[177].end 618.82034375
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 619.12409375
transcript.pyannote[178].end 623.27534375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 623.84909375
transcript.pyannote[179].end 642.31034375
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 641.21346875
transcript.pyannote[180].end 646.02284375
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 642.96846875
transcript.pyannote[181].end 643.01909375
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 646.47846875
transcript.pyannote[182].end 649.66784375
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 650.69721875
transcript.pyannote[183].end 654.40971875
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 654.96659375
transcript.pyannote[184].end 662.05409375
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 662.05409375
transcript.pyannote[185].end 667.97721875
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 663.42096875
transcript.pyannote[186].end 666.15471875
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 667.45409375
transcript.pyannote[187].end 671.74034375
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 671.80784375
transcript.pyannote[188].end 672.61784375
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 675.55409375
transcript.pyannote[189].end 678.50721875
transcript.whisperx[0].start 0.009
transcript.whisperx[0].end 2.212
transcript.whisperx[0].text 現在美國的汽車如果進口到台灣,總共要付多少稅金?
transcript.whisperx[1].start 16.345
transcript.whisperx[1].end 37.34
transcript.whisperx[1].text 目前就是進口的關稅是17.5%然後再加上我們的貨物稅如果是小客車的話他有25%或30%2000cc以下是25%然後2000cc以上是30%那當然加起來就是最高就是47.5%然後如果再加上我們的營業稅5%的話那就是大概52.5%
transcript.whisperx[2].start 40.962
transcript.whisperx[2].end 52.324
transcript.whisperx[2].text 最高是52.5那台灣賣去美國的相同的汽車假設是油車的話假設是2000CC以上的話進到美國去要付多少關稅
transcript.whisperx[3].start 53.874
transcript.whisperx[3].end 72.088
transcript.whisperx[3].text 付多少稅金?關稅是2.5%但是因為他們也是有課徵貨物稅加起來多少?加起來多少這個我們沒有辦法講因為貨物稅的金額我們只有一個區間區間可以區間講啊那就是你們那個我只能講大概是
transcript.whisperx[4].start 77.069
transcript.whisperx[4].end 103.757
transcript.whisperx[4].text 對 它對於那個高耗油量的汽車的話它是以這個每輛車以行駛公里9.1以上的話是每公升課三萬三千塊錢的這叫什麼 美元嗎每公升 你有沒有弄錯單位換算台幣是每公升三萬三千元的貨物稅然後最高可以課到二十五萬四千一百元每公升是值
transcript.whisperx[5].start 105.612
transcript.whisperx[5].end 131.015
transcript.whisperx[5].text 每公升耗油啦對不是吧它是以每公升行駛的里程數9公里以上的話它就是計算只是它這個我們因為我們從搜尋到的資料是一個數額所以這個部分可能還沒辦法詳細的跟人報告我們可能會後看就是我們的稅比人家多了多嘛對不對
transcript.whisperx[6].start 132.076
transcript.whisperx[6].end 157.242
transcript.whisperx[6].text 坦白講就是以關稅來看是相對高但是後稅總體加在一起啦我要總體比我不要因為我們自己把人家稅分成好幾項然後說我只有拿關稅跟你比我覺得這樣不好啊是 了解我說是不是比人家高是確實是有稍微是偏高如果以關稅來看就已經偏高了台灣是貿易順差國呢了解
transcript.whisperx[7].start 157.95
transcript.whisperx[7].end 182.348
transcript.whisperx[7].text 但是因為也跟我們報告因為我們從美國進口的車子很多都是電動車電動車現在都是只有關稅17.5而已電動車是整車輸入嗎對對整車輸入好那另外要請教那個懲罰署陳副署長每次提到這個汽車的這個關稅啊貨物稅啊就尤其是關稅的部分經濟部就一直在講說這個台灣有多少人靠這個汽車產業在
transcript.whisperx[8].start 184.535
transcript.whisperx[8].end 203.094
transcript.whisperx[8].text 從事這個汽車產業靠這個才有工作到底真正的人數是多少報告委員汽車除了整車廠還有零件廠那整車廠目前是一萬就業人數零件廠是七萬合計八萬但是呢那組裝廠呢組裝廠就是整車廠一萬
transcript.whisperx[9].start 208.659
transcript.whisperx[9].end 230.987
transcript.whisperx[9].text 除了這個以外因為有很多模具相關的供應商像什麼塑膠零件等等那些整體加起來整個約有30萬的那你乾脆把那個煉油廠也都算進來好了啦你連那個汽車這個零件的模具連開模具你就算那我現在問一個問題啦齁
transcript.whisperx[10].start 233.168
transcript.whisperx[10].end 262.751
transcript.whisperx[10].text 台灣的市場就算你飽和他總共的量數也是有限所以台灣的零件廠必須要走向全世界其實台灣有很多的汽車零件他是行銷全世界他賣的很好那種反而是希望雙方都降低稅金嘛最好我們出口的國家稅金也降低台灣的稅金也降低讓台灣的零件既然可以行銷全世界這樣才能養活更多的人啊
transcript.whisperx[11].start 264.742
transcript.whisperx[11].end 292.268
transcript.whisperx[11].text 所以每次講的時候你都把它混為一談會影響的就是只有汽車的組裝廠嘛就是所謂的整車廠這一部分嘛所以我是覺得這個大家講的時候要講清楚好不好你每次都就 憨不啷噹就講說三十幾萬然後現在跟我講說組裝廠的這個整車廠的一萬人然後汽車零件廠的七萬人然後再加上你有沒有沒啊 開沒啊 什麼的這個全部加在一起三十幾萬
transcript.whisperx[12].start 293.717
transcript.whisperx[12].end 312.126
transcript.whisperx[12].text 我覺得你們這樣的講法不好欸經濟部應該就是就事論事啦齁這個事情如果弄清楚之後希望以後不要再聽到說啊這個如果怎麼樣的話會影響到三十幾萬人如果你這樣講的話哪一天跟美國談關稅降低了你是不是要救助這三十幾萬人啊
transcript.whisperx[13].start 315.973
transcript.whisperx[13].end 344.685
transcript.whisperx[13].text 所以要在事實的基礎上談論問題啦這是我的希望第二個我上次也問過財政部部長你也回答我這個問題現在我們定義說只要在台灣加值超過35%的就算沒得贏台灣但是美國那一邊啊他說只要原料產品有35%以上是從中國來的他就算是中國的產品
transcript.whisperx[14].start 346.274
transcript.whisperx[14].end 374.916
transcript.whisperx[14].text 那我就要問一個問題當然這個問題是你現在是不是邏輯上給他推理有中國的零件或是中國的原料百分之五十在台灣加值百分之五十輸出到美國去台灣說這是台灣made in Taiwan美國說是made in China那到底是made in Taiwan還是made in China報告委員我們現在第一點就是
transcript.whisperx[15].start 377.01
transcript.whisperx[15].end 401.624
transcript.whisperx[15].text 貨物的原產地由進口國海關來認定所以是哪一個國家進口那個國家的海關來認定第二點根據世界海關組織官務組織他們有規定就是現在台灣的原產地規則是follow這個世界官務組織的一個規定就是使用進口原材料你如果在台灣附加價值達到35%
transcript.whisperx[16].start 404.245
transcript.whisperx[16].end 430.761
transcript.whisperx[16].text 或者你的稅則有轉換所以我使用進口的原料在台灣附加價值超過35%你就可以視同是台灣原產這是我們目前的規定啊就是這個規定喔對台灣帶來莫大的危機啊所以當台灣的廠商信誓旦旦說對啊我沒得贏台灣啊我出口當然沒得贏台灣所以我出口要台灣出口是台灣製造
transcript.whisperx[17].start 432.521
transcript.whisperx[17].end 459.673
transcript.whisperx[17].text 從美國的觀點就是你就台灣在替中國洗產地對不對進口國認為35%的原料來自中國他就認為是中國製造結果我們這邊的廠商在我們政府的規定我這是台灣製造啊我台灣製造所以我出口去美國啊那美國就剛好用那個標準說你看你這就是台灣在替中國洗產地所以我直接要問說這個問題到底要如何解決啊
transcript.whisperx[18].start 460.972
transcript.whisperx[18].end 478.04
transcript.whisperx[18].text 報告委員 我們進口國認定這個原產地規則是各國的通則那我們這個部分我們會來跟我跟你講川普就是要改變世界的貿易規則嘛你看不懂他在改變世界的貿易規則嗎是 我們理解那我們會來研議說怎麼來處理這個我們進口原產地的規則
transcript.whisperx[19].start 483.004
transcript.whisperx[19].end 501.115
transcript.whisperx[19].text 對啊 這個我是覺得這個是我們一個很大的危機我現在看一看那個洗產地的問題我們台灣用35%實在是太寬鬆了我跟你講中國的這個電動車現在全世界大家都在想辦法要防堵它如果照你的標準我弄65%的中國的電動車來然後我台灣給你組裝加值超過35%你們沒得贏台灣啊台灣人能相信這是沒得贏台灣嗎
transcript.whisperx[20].start 510.353
transcript.whisperx[20].end 516.142
transcript.whisperx[20].text 那中國用你台灣這個標準給你弄進來那台灣就要接受嗎
transcript.whisperx[21].start 519.561
transcript.whisperx[21].end 539.713
transcript.whisperx[21].text 委員我們除了我剛剛講的那兩個原則六月碼轉換跟35%的這個附加價值其實還有一個叫做實質轉型的認定如果你認為特別的製程要在台灣發生這個都可以去規範我們可以來討論如何來認定針對我們MIT的產品如何來認定它是台灣我跟你講現在其實有兩個問題啦齁你所謂照全世界的標準
transcript.whisperx[22].start 544.275
transcript.whisperx[22].end 572.016
transcript.whisperx[22].text 有兩個大國現在不準備照選制的標準第一個就是中國他不準備照世界的標準他參加WTO之後他從來就沒有照世界標準他到處在犯規所以才引起美國對他的制裁嘛那再來就是美國川普因為上台之後為了要解決這個問題所以他現在要改變世界貿易規則就像你台灣就夾在兩個中間然後就假裝說沒有我就照世界規則我跟你講你現在照世界規則你會死的
transcript.whisperx[23].start 573.55
transcript.whisperx[23].end 585.375
transcript.whisperx[23].text 在現在這個時空環境之下你對中國要特別對待他因為他不照WTO來的那你對待美國要怎麼樣好好的跟他談
transcript.whisperx[24].start 587.113
transcript.whisperx[24].end 604.865
transcript.whisperx[24].text 假設台灣的關稅談判會失敗我認為最大的可能性就是美國一直懷疑你台灣在替中國洗慘地這是最大的危機所以我一直問財政部說你們那個小額小額包裹對不對美國現在都在制裁
transcript.whisperx[25].start 606.291
transcript.whisperx[25].end 623.117
transcript.whisperx[25].text 要把那個小兒包裹要加到官司要加到120%從墨西哥去的從加拿大去的都一樣所以我們到底是要用什麼樣的態度我們希望他們不要多把他賴給說我現在在談判我現在在談判自己好好趕快想清楚因為我們問了這個問題問了好久了都沒答案啊
transcript.whisperx[26].start 624.917
transcript.whisperx[26].end 649.304
transcript.whisperx[26].text 報告委員那基本上當然就是剛才就是針對那個中國藉由台灣洗產業這件事情我們一定是會嚴格查核的那至於剛才講到那個小兒包裹那個要不要就是考慮他的免稅取消的部分這個部分目前我們已經在積極的不是我是跟你講說你所謂的嚴格查核應該是要去把你那個標準到底是什麼重新
transcript.whisperx[27].start 650.731
transcript.whisperx[27].end 672.483
transcript.whisperx[27].text 你如果照法令標準底下再來執行那你法令跟標準是錯的大前提是錯的時候你底下這個再怎麼執行結論也會是錯的啦所以我剛剛講的就是前提的檢討拜託加油啦我們台灣很大的危機在這個地方加油謝謝謝謝吳秉瑞吳委員來我們賴昭偉來